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ABSTRACT
One of the major impacts of climate change in the agricultural sector relates to changes in the 
suitability of areas that are used for planting crops. Since peanut (Arachis hypogaea L.) is one of 
the most important sources of protein, an assessment of the potential shifts in peanut crop 
planting areas is critical. In this study, we evaluated the effects of climate change on the 
potential distribution of peanut crops in Australia. The current and potential future distribu
tions of peanut crops were modeled using Species Distribution Models (SDMs) of CLIMatic 
indEX (CLIMEX). The future potential peanut crop distributions in Australia for 2030, 2050, 2070, 
and 2100 were modeled by employing CSIRO-Mk3.0 and MIROC-H Global Climate Models 
(GCMs) under SRES A2 climate change scenarios from CliMond 10’ database. The results 
indicated an increase in unsuitable areas for peanut cultivation in Australia throughout the 
projected years for the two GCMs. The CSIRO-Mk3.0 projection of unsuitable areas in 2100 was 
higher (i.e. 76% of the Australian continent) than the MIROC-H projection (i.e. 48% of the 
Australian continent). It was found that the projected increase in dry stress in the future could 
cause limitations in areas that are currently suitable for peanut crop cultivation. Looking into 
the future suitability of existing peanut cultivation areas, both GCMs agreed that some areas 
will become unsuitable, while they disagreed with the suitability of other areas. However, they 
agreed on the important point that only a small number of existing peanut cultivation areas 
would still be suitable in the future. Using CLIMEX, the present study has confirmed the effects 
of climate change on the shifts in areas suitable for peanut cultivation in the future, and thus 
may provide valuable information relevant to the long-term planning of peanut cultivation in 
Australia.
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1. Introduction

Climate change is ongoing and inevitable. As weather and 
climate have a significant influence on agricultural pro
duction (Zhao et al. 2017; Nguyen-Huy et al. 2018), future 
climate change and climate variability place agriculture as 
a susceptible sector (Anwar et al. 2013). Research indi
cates that the increase in anthropogenic gas emissions is 
the dominant cause of climate change (IPCC 2014). The 
increase in emissions leads to alterations in mean tem
perature, climate variability, and increasing extreme 
weather events, such as very high or very low tempera
tures, drought, heavy rainfall, flooding, and tropical 
storms (Gornall et al. 2010; Waterfield 2018). From 
1850–1900 to 2010–2019, global surface temperature 
has risen between 0.8°C and 1.3°C (Masson-Delmotte 
et al. 2021). It was recorded that the temperature of the 
last four decades has consecutively increased compared 
to any decade since 1850 (Masson-Delmotte et al. 2021). 
If there will be no changes in the current emission rates, it 
is projected that between 2030 and 2052, the temperature 

will increase by 1.5°C (Waterfield 2018). Therefore, the 
Paris Agreement was introduced in 2015 with the aim to 
limit the increase in global temperature to 2°C by 2100 
and to pursue effort in limiting the temperature increase 
to 1.5°C (Fawzy et al. 2020). This long-term global goal 
was reaffirmed at the UN Climate Change Conference 
UK 2021 or COP26 (UNFCCC 2021).

Australia’s climate is influenced by El Nino – 
Southern Oscillation (ENSO), the Indian Ocean 
Dipole (IOD), the Madden-Julian Oscillation (MJO), 
and the Southern Annular Mode (SAM) (King et al. 
2014; CSIRO, and BoM 2015), all of which lead to 
Australia having one of the most variable climates in 
the world (Potgieter et al. 2013; DERM 2010). Over the 
last 50 years, Australia has become hotter with sub
stantial changes in the geographic distribution of rain
fall (DERM 2010). The country has experienced 
a mean temperature increase of 1.4°C since 1910, 
with a rapid increase in extreme heat events and 
a decline in rainfall in southern and eastern regions 
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(CSIRO, and BoM 2020; Canadell et al. 2021). As 
a result of the variability, climate change will continue 
to significantly influence Australia's agricultural sector.

The climate in the future will be different to the 
climate at present and in the past (DERM 2010; Steffen 
et al. 2012). Global Climate Models (GCMs) are 
among the best instruments for projecting climate 
change. These are developed using mathematical 
representations of the climate systems, based on the 
laws of physics, including conservation of mass, 
energy, and momentum (CSIRO, and BoM 2015; 
Suppiah et al. 2007). The projections are built by 
accounting for the main natural and anthropogenic 
radiative forces, such as greenhouse gases, aerosols, 
land use, and solar output (Tang et al. 2019). It is 
predicted that under all emissions scenarios in the 
climate projections, further temperature increase will 
occur until mid-century (Masson-Delmotte et al. 
2021).

Because of the impacts of climate change, agricul
tural industries are exposed to a number of risks like 
heat stress, drought, water availability, waterlogging, 
salinity, the occurrence of pests and diseases, reduc
tion in production, and unsuitability of current plant
ing areas (Steffen et al. 2012; Gornall et al. 2010). 
Major factors determining the geographic boundary 
in planting crops include soil quality, availability of 
nutrients, and climate (Anwar et al. 2013; Ujoh, 
Igbawua, and Ogidi Paul 2019). In particular, geogra
phical distribution and growth of plant species will be 
significantly affected by climate change (Scheffers 
et al. 2016), although the scale will depend on the 
species type (annuals or perennials) and their growth 
patterns (agricultural crops or natural vegetation) 
(Coakley, Scherm, and Chakraborty 1999). 
Unfortunately, in most landscapes, plant species are 
unable to cope with the projected climate change, 
which results in a natural shift in their geographical 
range (IPCC 2014). If the climate changes as projected, 
there will be shifts in crop areas planted and the 
occurrence of pests and diseases, which could lead to 
economic impacts from crop loss (Chakraborty, 
Tiedemann, and Teng 2000). Therefore, studies on 
the spatio-temporal dynamics of cropland and crop
ping pattern changes are crucial to understand the 
underlying factors and the functional effects of the 
agricultural landscape (Rahman and Saha 2009).

Peanut (Arachis hypogaea L.) is one of the most 
important sources of protein and has 26% more pro
tein than eggs, dairy products, meat, or fish (DPIF 
2007). Peanut crops require relatively warm condi
tions, an abundance of sunshine, 500–600 mm well- 
distributed rainfall, and stored soil water to harvest 
a high-yielding crop (Halder et al. 2020). Peanut 
crops originated in South America and have adapted 
without problems to warmer regions of Australia 
(DPIF 2007). Queensland is the main peanut 

cropping area in Australia, producing more than 
90% of Australia’s peanuts (GRDC 2014). 
Originally, peanut crops were grown in the Burnett 
and the Atherton Tableland regions in Queensland, 
but in 1990s, the cropping areas expanded into other 
Queensland areas, namely Bundaberg, Mackay, 
Emerald, and southern Queensland (Crosthwaite 
1994; DPIF 2007). Currently, the peanut planting 
areas further expand into Katherine in the Northern 
Territory and other Queensland areas, i.e. Texas, 
Inglewood, St. George, Childers, Chinchilla, and 
Georgetown (Chauhan et al. 2013).

Like other crops, peanut crops can also be affected 
by climate change. In Australia, peanuts are tradition
ally cultivated in dryland conditions (Chauhan et al. 
2013). Unfortunately, since Australia’s climate is 
highly variable (Nguyen-Huy et al. 2020) due to the 
impact of El Nino-Southern Oscillation (ENSO) 
(Nicholls, Drosdowsky, and Lavery 1997), unfavorable 
weather conditions, for instance drought and excessive 
rainfall, can easily affect peanut production in the 
country (Meinke, Stone, and Hammer 1996). As cli
mate holds an important role in determining crop 
planting suitability (Anwar et al. 2013), it is projected 
that the future geographic distribution of peanut crops 
will be affected.

Shifting geographic distribution of crops due to 
climate change can be mapped using modeling tech
niques such as Species Distribution Models (SDMs). 
A fundamental approach of SDMs is that climate 
ultimately limits the distribution of species 
(Beaumont, Hughes, and Pitman 2008). These models 
establish the relationship between known species dis
tribution data and environmental variables and/or 
spatial characteristics of those locations to determine 
appropriate environmental conditions for a species to 
survive (Joshi et al. 2011; Elith and Leathwick 2009). 
The resulting data can then be used to predict species 
potential distribution under a particular climate 
change scenario (Heikkinen et al. 2006). This condi
tion makes SDMs a valuable tool in the study of 
invasive species (Joshi et al. 2011). Some examples of 
SDMs are MaxEnt, ANUCLIM/BIOCLIM, CLIMATE, 
CLIMATE ENVELOPE, DOMAIN, GARP, HAB 
ITAT, and CLIMatic indEX(CLIMEX) (Kriticos and 
Randall 2001; Gogol-Prokurat 2011; Liu et al. 2015). In 
statistical modeling of species distribution, three com
ponents are required, namely ecological model (eco
logical knowledge and theory), data model (the 
collection and measurement/estimation of data), and 
statistical model (statistical method, error function, 
and significance tests) (Austin 2002).

CLIMEX (Sutherst and Maywald 1985) is 
a simplified dynamic computer model that deduces 
species’ or other biological entities’ responses to climate, 
based on their geographical distribution and their sea
sonal growth and mortality patterns in different areas 
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(Kriticos et al. 2015). It is based on the key assumption 
that if it is known where a species lives, it will be 
possible to deduce tolerant climatic conditions for the 
species, an assumption also used by other models. 
However, while other correlative statistical models try 
to characterize species’ occupied environments, 
CLIMEX attempts to mimic mechanisms that limit 
the geographical distribution of the species, determine 
species’ seasonal phenology, and to some extent deter
mine species’ relative abundance (Kriticos et al. 2015). 
CLIMEX also facilitates the need to contain dynamic 
elements, which is often missing in correlative models, 
by depicting the response of species to a set of climatic 
variables at daily or temporal scales (Kriticos et al. 
2015). The model has been widely used to predict future 
geographic distributions of several crops, such as the 
common bean (Ramirez-Cabral, Kumar, and Taylor 
2016), wheat and cotton (Shabani and Kotey 2015), oil 
palms (Paterson et al. 2015), tomato (Silva et al. 2017), 
and date palms (Shabani, Kumar, and Taylor 2014, 
2015). However, to the best of our knowledge, studies 
regarding the projected suitable areas for peanut culti
vation in the future have not been carried out in any 
part of the world, including Australia.

Recently, Australia’s climate has been becoming war
mer and is projected to continue in the future, which 
increases the possibility of extremely hot summers 
(DERM 2010; King, Karoly, and Henley 2017). 
Consequently, some regions could turn out to be more 
suitable for future peanut planting, while others could 
turn out to be less favorable. Moreover, the analysis of 
land suitability for crops is a key factor for irrigation 
development and crop productivity improvement to 
ensure food security and stable expansion of agricultural 
production (Al-Hanbali et al. 2021; Sarkar, Ghosh, and 
Banik 2014). Therefore, it is important to identify and 
map which areas will be favorable for peanut production 
in the future, and which areas will be adversely affected 
by climate change impacts. Performing these tasks will 
provide useful knowledge in anticipating climate change 
effects in this commodity. The primary aim of this study 
was to evaluate the effects of climate change on the 
future geographic distribution of peanut crops in 
Australia. The following are the specific objectives: 1) 
to develop CLIMEX model parameters on geographic 
distribution of peanut crops by using current crop dis
tribution and climate data and 2) to project and analyze 
the potential future geographic distribution of peanut 
crops in Australia under two different climate models.

2. Materials and methods

2.1. Study area

This study covered the entire Australian continent 
(Figure 1), with a total area of 7.692 million km2 

(Geoscience Australia 2018). Australia has a variety 

of climates comprising five major climate groups, i.e. 
tropical, subtropical, semi-arid, arid, and temperate 
(Kriticos et al. 2012). This climate classification is 
based on the Koppen-Geiger classification system, 
which was developed by applying the rules of 
Kriticos et al. (2012) to the 5’resolution WorldClim 
global climatology (Hijmans et al. 2005). Agricultural 
lands in Australia are located in the eastern parts of 
Queensland and New South Wales, the majority of 
Victoria, the southern part of South Australia, and 
the south-western part of Western Australia 
(ABARES 2019). These agricultural lands are domi
nated by subtropical, semi-arid, and temperate cli
mates. Summer crops planted in Australia are 
sorghums, cottons, rice paddies, corns, mung beans, 
peanuts, soybeans, and sunflowers, while winter crops 
planted are wheat, barleys, canola, chickpeas, faba 
beans, field peas, lentils, lupine, oats, safflower, and 
triticale (ABARES 2016).

2.2. Research flowchart

The entire workflow employed in this study is pre
sented in Figure 2.

2.3. Data acquisition

2.3.1. Peanut crop geographic distribution
Data representing the current distribution of peanut 
(Arachis hypogaea L.) (Figure 3) were obtained from 
the Global Biodiversity Information Facility (GBIF 
2017) and the Atlas of Living Australia (ALA 2017). 
A total of 9,011 records were obtained from these 
databases. However, only 1,912 records were used in 
this study, since the other 7,099 records were identi
fied as records without geographic coordinates, pre
served specimens, duplicate records, and data outliers. 
During the CLIMEX model parameter development, 
these geographic distribution records were divided 
into two: one area was used for parameter fitting, 
while the other area was used for model validation. 
This division is important to ensure data indepen
dence of model validation, thus affirming the reliabil
ity of the model.

2.3.2. Climate data and climate change models and 
scenarios
The CliMond gridded climate data at 10’ resolution 
(Kriticos et al. 2012) was employed to model the 
geographical distribution of peanut crops. The climate 
variables used to run the CLIMEX model are average 
maximum monthly temperature (Tmax), average mini
mum monthly temperature (Tmin), average monthly 
precipitation (Ptotal) and Relative Humidity recorded 
at 9:00 am (RH09:00) and 3:00 pm (RH15:00) (Kriticos 
et al. 2012). Historical climate data of these five cli
mate variables for a period of 1950–2000 (centered at 
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1975) were retrieved from the CliMond database to 
develop peanut CLIMEX parameters. The same cli
mate variables were also used to model future peanut 

distribution in Australia by employing GCMs and the 
climate change scenarios.

Two GCMs, i.e. CSIRO-Mk3.0 (developed by 
CSIRO, Australia) and MIROC-H (developed by the 
Center for Climate Research, Japan) were used in this 
study and downloaded from the CliMond database. 
The choice of these GCMs was based on three criteria 
(Kriticos et al. 2012): 1) their availability of monthly 
averages of minimum and maximum daily tempera
ture, precipitation, mean sea-level pressure, and spe
cific humidity; 2) their relatively small horizontal grid 
spacing; and 3) their superior performance relative to 
other GCMs. The SRES (Special Report on Emissions 
Scenarios) A2 family (Nakicenovic et al. 2000) was 
used as emission scenarios for both GCMs. The “A” 
family of SRES emission scenarios is the most extreme 
SRES scenario family; it was chosen in this study based 
on its consistency with the emission of carbon dioxide 
since 2000 (Manning et al. 2010). The A2 emission 
scenario family depicts the world as very heteroge
neous with high population growth, but slow eco
nomic growth, largely due to slow changes in 
technology (Bernstein et al. 2008). This scenario 
family’s theme is self-reliance and local identities pre
servation, which leads to regional orientation of eco
nomic development (Nakicenovic et al. 2000).

Figure 1. Map of the study area (Australia) with the locations (town and cities) of peanut cropping areas throughout different 
climate zones. Adapted from Kriticos et al. (2012).

Figure 2. Flow chart of data and key processing tasks 
employed in the study.
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2.4. Species distribution model (SDMs)

2.4.1. CLIMEX model
CLIMEX is a dynamic model based on a mechanistic 
(process-oriented) approach of species population 
processes. This enables the determination of 
a species’ relative abundance, potential geographic 
distribution, and seasonal variations based on climate- 
related processes (Kriticos et al. 2015). There are three 
options for running the model: compare locations, 
compare years, and compare locations/years 
(Kriticos et al. 2015), and this study has employed 
the compare locations option. The model can utilize 
the minimum field data by extracting the maximum 
information of species’ responses to climate (Sutherst 
2003). It works on the assumption that most species 
experienced both favorable season(s) for population 
growth, which is known as the growth season and 
unfavorable season(s) for population growth, which 
is known as the survival or stress season (Sutherst 
2003; Kriticos et al. 2015).

The CLIMEX model develops a Growth Index 
(GIA) to describe the potential species’ growth dur
ing favorable season(s), and a Stress Index (SI) to 
describe the survival ability of species during unfa
vorable season(s). The philosophy of the model is 
that a range of climatic parameters defined by 
Growth Indices (i.e. Temperature Index (TIW) and 
Moisture Index (MIW)) will determine species’ 
population growth. Values outside these ranges 
will stimulate stress and lead to a negative popula
tion growth, which is described by Stress Indices: 
Cold Stress (CS), Heat Stress (HS), Dry Stress (DS), 
and Wet Stress (WS). Growth and Stress Indices 
define species’ responses to temperature, soil 

moisture, and if applicable, light. The CLIMEX pro
gram calculated these indices every week, then com
bined them into an annual value. The purpose of the 
model is to combine the GI and SI indices into an 
Ecoclimatic Index (EI) value, which describes the 
climatic favorability of a location for a species’ per
manent occupation (Kriticos et al. 2015; Sutherst 
and Maywald 1985). The EI can be calculated as 
follows: 

where: 

TIW is weekly Temperature Index and MIW is weekly 
Moisture Index 

CS, DS, HS, WS, respectively are the annual cold, dry, 
heat, and wet stress indices.

The Ecoclimatic Index (EI) value ranges from 1 to 
100 which denotes unsuitable to optimal conditions 
for a species to survive in one location. If the climate of 
a location is ideal for a species to persist throughout 
the year, the EI value will be 100. However, this rarely 
occurs since GI seldom reaches its maximum value 
(Kriticos and Leriche 2010; Kriticos et al. 2015). In 
areas with distinct wet and dry seasons, it would be 
expected that the maximum EI value would be around 

Figure 3. The current data site distribution of peanut crops taken from GBIF (2017) and ALA (2017). Red triangles represent the 
distribution data.
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50 (Kriticos et al. 2015; Sutherst 2003). It has been 
found that EI values of more than 20 have been ade
quate to support substantial population densities, 
while EI values of less than 10 indicate that the loca
tion is likely to experience large annual climate fluc
tuation and is therefore marginal for species’ 
permanent occupation (Sutherst 2003). The EI classi
fication used in this study was defined as follows: 
unsuitable (EI = 0), marginal (0 < EI < 10), suitable 
(10< EI  < 20), and optimal (EI > 20).

2.4.2. Fitting CLIMEX parameters
The most challenging task in CLIMEX modeling is 
fitting species’ CLIMEX parameters. It requires an 
understanding of global geography and climatic pat
terns and the sensitivity of Stress and Growth indices 
(Kriticos et al. 2015). The underlying philosophy is 
that Stress Indices limit the geographical distribution 
of the species, while Growth Indices indicate the sea
sonal population growth (Ramirez-Cabral, Kumar, 
and Taylor 2016; Kriticos et al. 2015). In addition, 
the resulting parameters should be biologically reason
able, based on theoretical and practical species’ knowl
edge from experimental domains (Kriticos et al. 2015).

As with other CLIMEX studies (Ramirez-Cabral, 
Kumar, and Taylor 2016; Taylor et al. 2012), this 
study also used native and exotic distribution data 
with a heterogeneous environment to fit peanut 
CLIMEX parameters. A heterogeneous environment 
with variable climates is recommended in fitting 
CLIMEX parameters (Kriticos et al. 2015; Sutherst 
2003), since it facilitates the required range of possible 
temperature and moisture values for species’ perma
nent occupations (Sutherst 2003). Furthermore, in 
fitting the parameters, Sutherst (2003) and Kriticos 
and Leriche (2010) have suggested the use of both 
native and exotic (agricultural worldwide) distribution 
data of the species. After being released from the 
effects of natural enemies, a species might occupy 
exotic distribution areas, which have totally different 
climate ranges from the native distribution areas. 
Therefore, the inclusion of these climate ranges will 
enhance the model’s ability to approximate the spe
cies’ potential distribution (Kriticos et al. 2015; 
Kriticos and Leriche 2010; Sutherst 2003).

In this study, peanut geographical distribution data, 
which provides general pictures of peanut climatic 
preferences, was used as a guideline in fitting 
CLIMEX parameters. Comparing the peanut distribu
tion data with the available CLIMEX template, this 
study chose the CLIMEX wet tropical template, 
which showed the best fit with overall peanut geogra
phical distribution, as a starting point to develop pea
nut CLIMEX parameters. The peanut geographical 
distribution data was divided into two groups, which 
were used for fitting parameters and model validation 
purposes. Peanut distributions in South America, 

North America, South Asia, South-East Asia, and 
East Asia were used in developing CLIMEX 
parameters.

In the first place, an intensive study to understand 
the biology and growth requirements of peanut was 
carried out to retrieve field and laboratory data on the 
peanut developmental threshold of temperature and 
moisture levels. These field and laboratory data were 
then used as initial CLIMEX parameter values to start 
fitting the CLIMEX parameters. Fitting CLIMEX para
meters involved a manual iterative procedure 
(Ramirez-Cabral, Kumar, and Taylor 2016). The 
initial CLIMEX parameter values were adjusted, by 
visually comparing various CLIMEX indices with the 
peanut geographic distribution data. This process was 
conducted until a satisfactory level of agreement 
between the model output and the peanut geographic 
distribution data was achieved; thus, parameter values 
for future reference could be justified (Kriticos et al. 
2015). Initially, Stress Indices were iteratively fitted, 
since they pointed to areas without stress conditions 
for peanut growth, and hence established peanut geo
graphical boundaries. Then, Growth Indices were 
established using the same iterative procedure. The 
determination of peanut CLIMEX parameter values 
are explained in detail below, and the values of 
CLIMEX parameters are presented in Table 1.

2.4.2.1. Cold stress. The day-degree temperature 
threshold of cold stress (DTCS) of 8°C and the accu
mulation rate derived from it (DHCS) of −0.00025  
week−1 denoted cold stress of peanut species. The 
stress parameters were iteratively adjusted to fit 
areas in the coldest peanut distributions, i.e. 
Shandong-China (GBIF 2017), Hebei-China (WMO 
2010), Virginia-USA, and Kalama (Washington)- 
USA (GBIF 2017).

2.4.2.2. Heat stress. Craufurd et al. (2003) found that 
many peanut genotypes showed consistently high 
temperature tolerance, which enabled them to persist 

Table 1. CLIMEX parameter values generated from this study 
are then used in modeling the peanut distribution.

Index Parameter Values

Temperature DV0 10°C
DV1 24°C
DV2 30°C
DV3 38°C

Moisture SM0 0.1
SM1 0.4
SM2 0.85
SM3 2

Cold stress DTCS 8°C
DHCS −0.00025 week−1

Heat stress TTHS 45°C
THHS 0.0002 week−1

Dry stress SMDS 0.1
HDS −0.0001 week−1

Wet stress SMWS 2
HWS 0.001 week−1
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in arid and semi-arid environments. To enable peanut 
persistence in the known distribution areas of 
Rajasthan, India (GBIF 2017), the heat stress tempera
ture threshold (TTHS) was set to 45°C with the weekly 
accumulation rate (THHS) of 0.0002 week−1. Setting 
heat stress at this value has eliminated heat stress in 
peanut distribution areas.

2.4.2.3. Dry stress. To include peanut persistence in 
the arid climate of Rajasthan, India, the dry stress 
threshold (SMDS) was set to be similar to the perma
nent wilting point of a crop, where peanut growth 
diminished, i.e. 0.1. Peanut crops started to accumu
late dry stress when they stopped growing, with an 
accumulation rate (HDS) of −0.0001 week −1.

2.4.2.4. Wet stress. The wet stress threshold (SMWS) 
was set at the same level as the highest CLIMEX soil 
moisture threshold (SM3), i.e. 2, and the wet stress 
accumulation rate (HWS) was chosen at 0.001 week −1. 
These parameter values prevented wet stress occurring 
in peanut distribution areas.

2.4.2.5. Temperature index. The CLIMEX Temp- 
erature Index consists of lower temperature threshold 
(DV0), lower optimum temperature (DV1), upper 
optimal temperature (DV2), and upper temperature 
threshold (DV3) parameters, which define the suitable 
temperature range for species’ growth and develop
ment (Kriticos et al. 2015). Peanuts require relatively 
warm conditions (Crosthwaite 1994), with different 
temperature requirements for their growing stages. 
The base temperature where peanuts start to grow 
and develop is widely considered between 9°C and 
11°C (Williams and Boote 1995). Other scientists, 
Leong and Ong (1983), considered a range of 10– 
11°C as peanut base temperature, while Bell, Shorter, 
and Mayer (1991) discovered Virginia and Spanish 
cultivar of peanut crops have a base temperature of 
8.2°C and 12.4°C, respectively. Based on this, the DV0 
was set at 10°C to accommodate the values mentioned 
above.

The optimum temperatures at which peanuts grow 
and develop maximally are in the range of 25°C and 
30°C for different crop stages (WMO 2010). Williams 
and Boote (1995) found that the optimum temperature 
is 27–33°C, whereas Vara Prasad et al. (2003) and DPIF 
(2007) suggested that peanut vegetative growth requires 
a temperature of 25–30°C, and generative growth 
requires a temperature of 22–24°C. As a result, DV1 
and DV2 were established at 24°C and 30°C, respec
tively. Although peanut crops were grown with suffi
cient water supply, their development started to 
decrease when the crops were exposed to 35°C 
(Ketring 1984). Furthermore, if peanut crops were 
exposed to a temperature of 38°C from flowering to 
maturity stages, there was a significant reduction in 

peanut pod yield (Vara Prasad, Craufurd, and 
Summerfield 2000). Based on this, the DV3 was set at 
38°C. In general, setting the DV0, DV1, DV2, and DV3 
at these values has enabled the coverage of peanut 
distribution areas in China and the United States.

2.4.2.6. Moisture index. The CLIMEX Moisture 
Index works on the assumption that soil moisture 
significantly determines a crop’s moisture content. 
The index provides a species’ responses to the soil 
moisture values, which consists of four parameters: 
lower soil moisture threshold (SM0); lower optimal 
soil moisture (SM1); upper optimal soil moisture 
(SM2); and upper soil moisture threshold (SM3) 
(Kriticos et al. 2015). Peanuts are considered to be 
drought tolerant crops at two specific development 
stages: at the beginning of the vegetative phase and 
at the maturation stage (Wright et al. 2009; DPIF 
2007), where the peanut water requirement can be as 
much as 40% of soil moisture level (Wright et al. 2009; 
Lindsay Corporation 2010). Based on this informa
tion, the SM1 value in this study was set to 0.4.

However, to achieve a yield that is high in quantity 
and quality, adequate soil moisture is needed (DPIF 
2007), especially in the developmental stages of flow
ering/pegging and pod formation when peanut crops 
use the greatest amount of water (Wright et al. 2009). 
In general, soil moisture levels should be maintained 
at around 85–90% of the plant’s available water- 
holding capacity (Lindsay Corporation 2010). In fact, 
by setting SM2 at 0.85, the model produced in this 
study had the ability to include peanut cropping areas 
in the arid region of Rajasthan, India. SMO was estab
lished using a permanent wilting point value of 0.1 
(Kriticos et al. 2015), whereas SM3 was set at 2, since 
excessive soil moisture can stimulate leaf disease 
(DPIF 2007).

2.4.3. Model validation
Validating the CLIMEX parameters is important to 
ensure model consistency and reliability. The model 
is indicated to be reliable if the model parameters built 
in one distribution area can predict the distribution in 
other areas successfully (Shabani and Kotey 2015). In 
this study, the CLIMEX parameters, which showed the 
best visual fit for the peanut distribution data in South 
America, North America, South Asia, South-East Asia, 
and East Asia were validated against independent dis
tribution data in Africa, Central America, and 
Australia.

2.4.4. Future distribution model
The final CLIMEX parameters were used to project 
peanut distribution in Australia for 2030, 2050, 2070, 
and 2100. The projections were conducted using cli
mate data derived from two GCMs, namely CSIRO- 
Mk3.0 and MIROC-H, with the SRES A2 climate 
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change scenarios. Model output from these two GCMs 
was analyzed further by overlaying the results, thus 
making it possible to acquire the common areas of 
future peanut distribution.

3. Results

3.1. Model evaluation and current climate

The peanut distribution model produced from the 
CLIMEX model (Figure 4) shows a consistent distri
bution with the current peanut distribution data 
retrieved from GBIF (2017) and ALA (2017) 
(Figure 3), with approximately 2.3% of peanut distri
bution data falling outside the model. Peanut distribu
tion data in its native range in South American 
countries, i.e. Bolivia, Brazil, Peru, Paraguay, and 
Uruguay, can be well presented in the model. Only 
data in the Andes mountain region in Peru was not 
included in the model, due to the persistence of cold 
stress (Figure 5a).

The model also successfully captured peanut distri
bution data in exotic locations, where the species is 
cultivated, including China, the United States, India, 
Indonesia, Myanmar, Thailand, Vietnam, and the 
Philippines. The peanut distribution in China result
ing from CLIMEX model aligns well with the peanut 
distribution map produced in Yang and Zheng (2016) 
study, and it captured all major peanut growing areas 
in China. Some minor growing areas in China, such as 
Xinjiang, Gansu, Ningxia, Inner Mongolia, and 
Heilongjiang, were not included in the model due to 
unfavorable climate conditions for massive peanut 
planting. These minor growing areas experience cold 
and arid climates. In India, only small amount of 
distribution data in the arid region of Rajasthan was 
not included in the model, due to lack of rainfall and 
dry stress persistence (Figure 5b). It was found in this 

study that peanut crop distribution was affected by 
cold stress, where low temperature limited peanut 
crop distribution, and dry stress, where low moisture 
limited peanut crop distribution.

The majority of peanut distribution data in Africa, 
Central America, and Australia, which was retained 
for model validation, shows general agreement with 
the CLIMEX model output (Figure 6). All distribution 
data in Australia were included in the CLIMEX model 
and only one outlier data were found in Central 
America. Closer detail of the African region reveals 
that 99.3% of peanut records were incorporated in the 
model. In addition, the majority of the distribution 
data of these validation areas fell within optimal and 
suitable areas for peanut planting.

Most of the areas with optimal suitability for grow
ing peanut crops are found in tropical regions, i.e. 
SouthEast Asia, East India, Central Africa, the north
ern part of South America, and Central America. 
However, it has been found that some subtropical 
and arid regions, including the southern part of 
China, the eastern part of Australia, the north- 
eastern part of Argentina, Uruguay, the south- 
eastern part of the United States, and the eastern 
parts of South Africa, Zambia, and South Angola, 
also show optimal suitability. In addition, areas 
which are categorized as suitable for peanut cultiva
tion are found in subtropical regions, such as the 
middle-eastern part of the United States and the east
ern part of China, and arid regions, such as the north
ern parts of India and Central Africa (Figure 4). In 
Australia, current suitable areas for peanut growing 
are located in the eastern parts of Queensland and 
New South Wales; the northern parts of Queensland, 
the Northern Territory, and Western Australia; and 
the eastern part of Western Australia, which are char
acterized as tropical and subtropical climate regions 
(Figure 6).

Figure 4. The Ecoclimatic Index (EI) of current peanut distribution using current climate data.
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3.2. Future projections

The results of projections of future peanut cropping 
areas in Australia using CSIRO-Mk3.0 are shown in 
Figure 7. A comparison of the projection years shows 
that there has been a significant increase in unsuitable 
peanut cropping areas, which is marked by approxi
mately 76% of Australian continent in 2100. In 2030, 
the projected unsuitable areas only cover the arid 
region in the middle of Australia, but these unsuitable 
areas will be expanded throughout the projection 
years, until in 2100, they are projected to reach the 
current peanut growing areas in subtropical regions of 
the eastern part of Queensland and tropical regions of 
northern Queensland and the Northern Territory. 
Current peanut planting areas, which will not be sui
table in 2100 include Katherine in the Northern 

Territory and Georgetown, Emerald, St. George, 
Chinchilla, Inglewood, and Texas in Queensland. 
These areas are the expansion of peanut growing 
regions in Australia, due to decreasing productivity 
in the traditional dryland peanut regions in the 
South and North Burnett (Chauhan et al. 2013).

Moreover, the traditional dryland peanut regions, 
i.e. the South Burnett and the North Burnett, have 
been projected as marginal peanut growing areas in 
2100. In terms of projections for optimal and suitable 
areas, which are mainly located on the eastern coast of 
Australia and known as peanut main production 
regions, there is a significant reduction under the 
CSIRO-Mk3.0 model (Figure 8). Interestingly, small 
areas in the south-western part of West Australia and 
south-eastern parts of New South Wales and Victoria, 

Figure 5. (a) Cold stress map and (b) dry stress map of peanut crops generated from the CLIMEX model. Green cross represents the 
peanut distribution data taken from GBIF (2017) and ALA (2017).
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which are marked as marginal areas in the current 
peanut distribution, are projected to become suitable 
areas in 2100 (Figure 8).

The results of MIROC-H projections in areas of 
peanut crop suitability in Australia (Figure 9), especially 
for optimal and suitable areas, are not as dramatic as 
CSIRO-Mk3.0 projections. Although there is 
a significant increase in unsuitable peanut areas in 
2100, it only accounts for approximately 48% of 
Australian continent. In addition, unlike CSIRO-Mk3. 
0 projections, MIROC-H projections of unsuitable 
areas are mainly concentrated in the middle of 
Australia, with a smaller effect for tropical regions in 
the northern part of Australia. The number of current 
peanut production areas, which will become unsuitable 
in 2100, according to the MIROC-H projection, is con
siderably smaller than the number CSIRO-Mk3.0 num
ber. Only two current peanut production areas will be 
affected: Georgetown in northern Queensland and 
Katherine in the Northern Territory.

Looking at the dynamic shifting of suitable and 
optimal areas throughout the projection years 
(Figure 10), the subtropical regions in the eastern 
part of Australia where peanuts are mainly produced, 
i.e. South Burnett, North Burnett, Chinchilla, 
Inglewood, and Texas, are still categorized as optimal 
and suitable areas in 2100. Only little change occurs in 

these regions. Meanwhile, other current peanut pro
duction areas, i.e. Emerald and St. George, are pro
jected to be marginal areas in 2100. Moreover, similar 
to the CSIRO-Mk3.0 projections, some areas in the 
south-western part of West Australia and south- 
eastern parts of New South Wales and Victoria will 
become suitable for peanut cultivation in 2100 accord
ing to the MIROC-H projection (Figure 10). However, 
MIROC-H projection coverage for these regions is 
larger than the CSIRO-Mk3.0 projection coverage.

In general, the results show a projected reduction in 
suitable areas for peanut crop planting in Australia under 
the SRES A2 using two GCMs, CSIRO-Mk3.0 and 
MIROC-H; although a few areas will experience increas
ing suitability for peanut planting (Figures 7, 9). Both 
models, CSIRO-Mk3.0 and MIROC-H, show 
a decreased trend in optimal, suitable, and marginal 
areas throughout the projection years (Figure 11). 
However, CSIRO-Mk3.0 projected a significant reduc
tion from year to year, which could be seen from the 
decrease of 56% of the marginal areas and almost 50% of 
the optimal and suitable areas in 2100, compared to 2030. 
Meanwhile, MIROC-H predicted a small reduction in 
2100 compared to 2030 for optimal, suitable, and mar
ginal peanut planting areas, i.e. 5%, 13%, and 15%, 
respectively. Comparing the two models, the MIROC- 
H projections for optimal, suitable, and marginal areas 

Figure 6. The distribution of peanut crops in validation areas of (a) Central America, (b) Africa, and (c) Australia. Blue dots represent 
current peanut distribution data.
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are higher than CSIRO-Mk3.0 projections. It should also 
be noted that, for the MIROC-H projection, marginal 
areas for peanut cultivation in 2030 are slightly higher 
than unsuitable areas. Nevertheless, since 2050, unsuita
ble areas of MIROC-H projection exceed marginal areas, 
and the trend continues until 2100.

In contrast, there is an increased trend for unsui
table projection areas for both models. However, 
similar to the trends for other category areas, the 
increase for MIROC-H in 2100 compared to 2030 is 
lower than for CSIRO-Mk3.0, which accounted for 
20% and 57%, respectively. In general, the CSIRO- 
Mk3.0 projection for future unsuitable peanut crop 
areas shows a higher number than the MIROC-H 
projection, with a trend of an increasing gap between 
the two models throughout the projection years. The 
results show that there is a significant difference 
between projections of unsuitable peanut cropping 
areas for both models in 2100.

Examining cold stress projections for peanut 
planting areas, both the CSIRO-Mk3.0 and MIROC- 
H models forecast almost similar cold stress areas for 
peanut cultivation. These are located in temperate 
regions in the south-eastern part of Australia. 
Specifically, the models predicted a reduction in 
cold stress areas throughout the projection years. 
Comparing the two models, the MIROC-H model 

projected a slightly higher cold stress severity and 
coverage area than the CSIRO-Mk3.0 model, espe
cially in 2070 and 2100. In terms of dry stress projec
tions, which are mainly located in the arid region of 
central Australia, the areas affected by dry stress are 
larger for the CSIRO-Mk3.0 model than the MIROC- 
H model. Moreover, the CSIRO-Mk3.0 model pre
dicted an increase in dry stress areas throughout the 
projection years. It is projected that by 2100, dry 
stress areas will expand to central Queensland, the 
majority of Western Australia, and tropical regions in 
the Northern Territory. Meanwhile, the MIROC-H 
projected a reduction in dry stress in central 
Australia and a small dry stress increase in the north
ern part of Western Australia. Analyzing the heat 
stress, both models projected that Australia will not 
experience heat stress until 2100. However, compar
ing the two models, more areas are significantly 
affected by heat stress in the CSIRO-Mk3.0 projec
tion than the MIROC-H projection, i.e. areas in the 
northern and middle parts of Australia.

The results of overlaid maps between the two mod
els, CSIRO-Mk3.0 and MIROC-H, show an agreement 
in the reduction of peanut planting areas in the tropi
cal regions in the northern part of Australia and an 
increase in the peanut suitability in the temperate 
regions in the south-eastern part of Australia 

Figure 7. The future distribution of peanut crops in Australia using CSIRO-Mk3.0 Global Climate Model, with climate scenarios of 
the SRES A2.
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(Figure 12). While the percentage of unsuitable/mar
ginal agreement areas between two models is moder
ately constant from 81.09% of Australian continent in 
2030 to around 82.87% of Australian continent in 2100, 
the percentage of optimal/suitable areas decreased from 
14.65% of Australian continent in 2030 to 7.51% of 
Australian continent in 2100. In addition, the overlaid 
maps also show a disagreement between the two mod
els. For example, in 2100, Chinchilla is categorized as an 
unsuitable area in the CSIRO-Mk3.0 projection, while 
the MIROC-H projection included Chinchilla as 
a suitable area. The disagreement areas increased from 
4.26% of Australian continent in 2030 to 9.62% of 
Australian continent in 2100.

The overlaid maps show that some current peanut 
cropping areas, i.e. Katherine in the Northern Territory, 
Georgetown in northern Queensland, St. George in 
southern Queensland, and Emerald in central 
Queensland, will be not be suitable for peanut planting 
in 2100. Meanwhile, two models, i.e. CSIRO-Mk3.0 and 
MIROC-H, disagreed with the projections in 2100 of 
other current peanut planting areas in Queensland such 
as South Burnett, North Burnett, Chinchilla, Inglewood, 
and Texas.

4. Discussion

4.1. Peanut distribution under current climate

The CLIMEX model produced from this study showed 
agreement with the majority of the distribution data in 
both native and exotic ranges, which confirmed the 
correctness of the selected peanut CLIMEX parameter 
values. Only small amounts of peanut distribution 
data, i.e. 2.3%, were not included in the CLIMEX 
model, which could be peanut herbarium records or 
errors in GBIF or ALA databases. In addition, the fact 
that the majority of peanut distribution data were 
categorized as optimal and suitable peanut planting 
areas, together with the inclusion of majority peanut 
distribution data in model validation, has strength
ened the validity of the model. Furthermore, it was 
also found that the peanut distribution produced from 
this model is consistent with the data of global peanut 
cropping areas retrieved from the Spatial Production 
Allocation Model (SPAM 2021).

Although known as moderately drought tolerant 
crops, peanut crops require at least 600 mm of well- 
distributed water throughout the growing season for 
achieving optimal yields. In addition, the crops typi
cally require warm temperatures, i.e. around 25–30°C 
for vegetative growth and around 22–24°C for gen
erative growth (DPIF 2007). Therefore, as can be seen 
in the peanut CLIMEX model, tropical regions are the 
most suitable areas to cultivate peanut crops, although 
the model also includes some subtropical regions. In 
fact, the starting point to develop peanut CLIMEX 
parameters in this study was the CLIMEX wet tropical 
template parameters, which are provided in the 
CLIMEX program. In addition, due to the tempera
ture and water requirements as mentioned before, 
peanut crop distribution was limited by cold and dry 
stress. As a result, peanut distribution cannot be found 
in extremely arid regions, such as northern Africa, or 
in extremely cold regions, such as Northern Europe 
and Northern America.

Good data sources are important to enhance the 
reliability of CLIMEX model in projecting the species 
distribution. It is worth noting that this study included 
climate ranges of both native and exotic distribution 
data in a heterogeneous environment to parameterize 
CLIMEX model of peanut crops. As explained in 
section 2.4.2, this model parameterization was 
designed to enhance the model’s ability to project the 
species’ potential distribution (Kriticos et al. 2015). 
Some distribution areas could have been missed in 
the development of the CLIMEX model. However, 
model development did not only rely on geographical 
distribution alone but also from field and laboratory 
data (Kriticos et al. 2015) in the peanut developmental 
threshold of temperature and moisture levels. This is 
to ensure that the resulting model’s parameters are 
biologically responsible.

Figure 8. The dynamic shifting of projected suitable and 
optimal areas of peanut crops in Australia using CSIRO-Mk3.0 
Global Climate Model in 2030, 2050, 2070, and 2100.
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In addition, climate is not the only factor determin
ing species spatial distribution; other factors such as 
competition (e.g. natural enemies), habitat (e.g. soil 
types and host availability), crop price, and land man
agement also play crucial roles (Guoxin, Shibasaki, 
and Matsumura 2004; Kriticos et al. 2015). Areas 
with different climates from which species originally 
grew could be suitable for that species due to the 
absence of its natural enemies (Kriticos et al. 2015). 
Thus, to ensure the coverage of all climatic ranges of 
peanut crops, this study used both native and exotic 
distributions of peanut crops in developing the 
CLIMEX model.

The current development of SDMs of invasive 
species shows a trend of using only the exotic 
distribution data of the species. One of the criti
cisms in modeling invasive species using SDMs is 
that the model could violate the equilibrium 
assumption (Barbet-Massin et al. 2018). Therefore, 
the predictive accuracy of SDMs on projecting the 
invasion of species in exotic places needs to be 
assessed (Barbet-Massin et al. 2018). To facilitate 
this assessment, several studies developed their 
SDMs using two different groups of data, i.e. native 
and exotic distribution data and exotic distribution 
data. Barbet-Massin et al. (2018) found that the 

predictive accuracy of V.v. nigrithorax in its inva
sive range was slightly better when using exotic 
data only. Thus, future studies on peanut crops 
distribution in new expanded agricultural areas 
might explore the predictive accuracy of SDMs by 
employing specifically exotic distribution data.

Differentiating input data into two groups can 
provide an opportunity to explore environmental 
drivers of species distribution in specific areas. 
O’Mahony, de la Torre Cerro, and Holloway 
(2021) discovered that modeling the distribution of 
Asparagopsis species using the exotic distribution 
data alone produced broader projection areas than 
modeling it using both native and exotic distribution 
data. Their findings suggest the possibility of niche 
shift in the species’ suitability areas, which are dri
ven by the important environmental variables. 
Therefore, future research in the projection of pea
nut crops distribution might explore the possibility 
of running the model separately for each group of 
data to identify the most important environmental 
drivers in each group. In addition, as peanut crops 
are cultivated all around the world, running the 
model specifically for each distribution group can 
provide an opportunity to identify additional cli
matic niches of peanut crops (if any).

Figure 9. The future distribution of peanut crops in Australia using MIROC-H Global Climate Model, with climate scenarios of the 
SRES A2.
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4.2. Peanut distribution under future climate 
scenarios

The results of this study and other crop distribution 
studies, such as wheat and cotton (Shabani and Kotey 
2015), common bean (Ramirez-Cabral, Kumar, and 

Taylor 2016), tomato (Silva et al. 2017), oil palm 
(Paterson et al. 2015), and date palm (Shabani, 
Kumar, and Taylor 2015), confirm the effects of cli
mate change on crop distribution. Climate is one of 
the significant factors in determining crop planting 
suitability (Anwar et al. 2013). Currently, regions 
with low-temperature constraints, such as high mid- 
latitude countries, may increase their agricultural pro
ductivity, while current productive areas in mid- 
latitude continental countries may experience produc
tivity decrease due to moisture stress increase. In addi
tion, countries in lower middle and low latitudes, 
which have limited production capacity, will experi
ence further crop stress as a result of climate change 
(Parry, Porter, and Carter 1990).

CLIMEX model projections on future peanut crop
ping areas in Australia showed a decrease in suitable 
peanut planting areas and the emergence of new sui
table peanut planting areas for two climate models 
used in this study, i.e. CSIRO-Mk3.0 and MIROC-H. 
In the future, it is predicted that dry stress will limit 
peanut distribution in Australia, since the results of 
this study have shown that the increase in unsuitable 
areas is in line with the increase in projected dry stress. 
This study also found that dry stress projection cover
age for CSIRO-Mk3.0 was larger than MIROC-H cov
erage, which explains the larger coverage of unsuitable 
areas for CSIRO-Mk3.0 than MIROC-H coverage. In 
addition, the influence of heat stress occurrence in 
2100 also contribute for the decrease in suitable areas 
for peanut planting in Australia. Interestingly, some 
areas in the south-western part of Western Australia 
and south-eastern parts of New South Wales and 
Victoria, which are currently not suitable for peanut 
planting due to cold stress occurrence, are predicted to 
be suitable in the future. It is predicted that cold stress 

Figure 10. The dynamic shifting of projected suitable and 
optimal areas of peanut crops in Australia using MIROC-H 
Global climate in 2030, 2050, 2070, and 2100.

Figure 11. The total areas of future peanut crops using the CSIRO-Mk3.0 (CS) and MIROC-H (MR) projections for 2030, 2050, 2070, 
and 2100.
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limitation in these areas will be reduced in the future, 
since the areas will become warmer due to climate 
change.

The results of this study were consistent with the 
results of a future distribution study of another legume 
crop, the common bean (Phaseolus vulgaris L.), which 
also originated in South America. In their study, 
Ramirez-Cabral, Kumar, and Taylor (2016) used two 
climate models, CSIRO-Mk3.0 and MIROC-H, in pro
jecting the future common bean distribution. Their 
findings produced similar results to our study, i.e. 
there is a slight increase in suitable common bean 
planting area in the New South Wales coast and the 
southern coast of Western Australia, and CSIRO-Mk3.0 
(rather than MIROC-H) projected a less suitable area 
for common bean cultivation in Australia in 2100. The 
differences in the model output from these two climate 
models are understandable, given that they were devel
oped by two different institutions. CSIRO-M3.0 was 

developed by CSIRO, Australia, while MIROC-H was 
developed by the Center for Climate Research, Japan. In 
a study to measure the performance of AR4 GCMs in 
Australia, it was found that CSIRO-Mk3.0 was among 
the best models in simulating the probability of tem
perature minimum (Tmin), while MIROC-H was among 
the best models in simulating the probability of tem
perature maximum (Tmax) (Perkins et al. 2007). These 
results increase the confidence that the models can 
simulate future climate over Australia with a greater 
proportion, and thus confirm the model’s skill.

Analogous to other CLIMEX studies used to 
project future cotton and wheat distribution in 
Australia (Shabani and Kotey 2015), the 
projections of peanut planting areas produced 
from CSIRO-Mk3.0 and MIROC-H were overlaid 
to identify common areas between the two models. 
This method will enhance the likelihood of projec
tions in the future, and thus possible errors can be 

Figure 12. CSIRO-Mk3.0 (CS) and MIROC-H (MR) overlaid map of future distribution of peanut crops in Australia under climate 
scenarios of the SRES A2.
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minimized. Traditionally, in Australia, peanut crops 
are planted in the South Burnett and North Burnett 
regions under dryland conditions. However, due to 
recurring droughts in those regions, peanut areas 
have been expanded into Katherine in the Northern 
Territory and areas in the central and northern 
parts of Queensland, such as Georgetown, the 
Atherton Tablelands, Emerald, Chinchilla, 
St. George, Childers, Inglewood, Texas, and 
Bundaberg (Chauhan et al. 2013). Unfortunately, 
based on the overlaid projections of future suitable 
peanut planting areas using CLIMEX model, some 
of these expansion regions will experience unsuita
ble climatic conditions for peanut growth.

The overlaid CLIMEX model maps from CSIRO- 
Mk3.0 and MIROC-H climate models indicate that 
Katherine in the Northern Territory and 
Georgetown, Emerald, and St. George in Queensland 
will have low suitability or will not be suitable for 
peanut planting areas. Only Bundaberg, Mackay, the 
Atherton Tableland, and Childers in Queensland can 
be reserved as suitable or optimal areas in 2100. 
Meanwhile, both CSIRO-Mk3.0 and MIROC-H mod
els disagreed on climate suitability in 2100 for other 
peanut regions, including the traditional peanut plant
ing areas of South Burnett and North Burnett, where 
one model included a region as an optimal/suitable 
area, while the other model included it as an unsuita
ble/marginal area. Indeed, this fact gives a warning of 
the potential negative impacts of climate change in the 
current peanut growing regions in Australia. 
Currently, more than 90% of peanut growing regions 
in Australia, which supply the majority of the peanut 
domestic market, are located in Queensland (Wright, 
Wieck, and O’Connor 2017). Therefore, it is impor
tant to develop strategic measures to overcome and 
manage the economic impacts of the projected shifting 
climate suitability of the majority of current peanut 
growing regions.

Based on the projections, future peanut distribution in 
Australia will be limited by the occurrence of dry stress, 
which could have unfavorable effects for peanut crops. 
Although known as moderately drought tolerant, peanut 
crops require readily available moisture throughout their 
development stages, especially in the flowering and pod 
formation stages (DPIF 2007). Inadequate water supply 
during flowering will reduce pod yield, while severe 
drought stress during the pod filling stage will lead to 
more severe yield reduction (Wright, Hubick, and 
Farquhar 1991). Recurrence of water deficit during the 
late season decreases yield, reduces peanut quality, and 
increases the possibility of aflatoxin disease contamina
tion (Kambiranda et al. 2011). Peanut seed physiological 
activity is reduced with the occurrence of drought stress, 
thus it becomes more susceptible to fungal invasion, such 
as aspergillus invasion that leads to aflatoxin disease 
(Kambiranda et al. 2011).

As a result of frequent water deficit, crops experi
ence anatomical changes, i.e. reduction in size of cell 
and intercellular spaces, cell walls thickening, and 
larger development of epidermal tissue. In addition, 
severe water deficits could also influence a crop’s 
metabolic process, i.e. reduction in enzymatic activity 
(Kambiranda et al. 2011). Shahenshah and Isoda 
(2010) found that drought stress in peanut caused an 
increase in leaf temperature and non-photochemical 
quenching. Moreover, it leads to a reduction in water 
content per unit leaf area, chlorophyll content, and 
maximum quantum yield of the photosystem. 
Furthermore, peanut crops also experience an increase 
in root dry weight with a small reduction in leaf area 
when they suffer drought stress (Shahenshah and 
Isoda 2010).

Therefore, it is important to take strategic measures 
to anticipate the future shifting suitable areas of pea
nut crops in Australia, especially since the majority of 
current peanut planting areas will be negatively 
affected. One measure that has been taken and is still 
in progress is the development of drought tolerant 
varieties. Currently, drought tolerant peanut geno
types are screened using advanced molecular tools, 
which involve studies on the peanut at the molecular 
and cellular levels (Kambiranda et al. 2011). Although 
an improved peanut genotype that can tolerate 
drought stress has been developed, the process still 
needs to continue to develop advanced genotypes 
(Kambiranda et al. 2011). Another measure that can 
be considered is to apply and improve irrigation and 
greenhouse technologies, although economic con
straints must also be considered.

It should be noted that careful considerations 
should be taken in interpreting the results of this 
study, since the CLIMEX model only considers cli
matic factors in determining the current and future 
distributions of the species. Soberón and Townsend 
Peterson (2005) mentioned three factors that affect the 
geographical distribution of a species: first, environ
mental factors, which majority consist of abiotic fac
tors such as climate, topography, and solar 
radiation; second, biotic factors such as competitors, 
predators, and mutualists; and third, accessible areas. 
Non-climatic factors that could limit species distribu
tion, such as biotic interactions (e.g. competition and 
predator), habitats (e.g. presence of suitable hosts, soil 
types, and humans), and topographic elements 
(Kriticos et al. 2015), were likewise not considered in 
CLIMEX modeling. In addition, the model develop
ment of this study did not consider the application of 
irrigation and the use of greenhouse technologies in 
peanut crops, which could increase the suitable areas 
of peanut crop planting. It should also be noted that 
there could be some limitations of CLIMEX model, 
such as in capturing areas near the boundary or 
threshold of climate parameters used in the model.
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5. Conclusion

In this study, we have successfully developed 
CLIMEX model parameters for peanut crops, 
which are found to be consistent with the current 
peanut geographic distribution. In addition, using 
CSIRO-Mk3.0 and MIROC-H Global Climate 
Models under the climate scenarios of the SRES 
A2, CLIMEX model projections for future peanut 
distribution in Australia show an increase in unsui
table areas for peanut cultivation. Specifically, the 
projection of unsuitable peanut cultivation areas in 
2100 is higher for CSIRO-Mk3.0 (i.e. 76% of the 
Australian continent) than MIROC-H (48%). In the 
future, dry stress is projected to increase and will 
cause limitations of suitable peanut areas. The over
laid maps of CSIRO-Mk3.0 and MIROC-H models 
have projected that in 2100, some existing peanut 
cultivation areas, namely, Katherine (the Northern 
Territory) and Georgetown, Emerald, and St. George 
(Queensland), will become unsuitable for peanut 
cultivation. Only peanut cropping areas in 
Bundaberg, Mackay, the Atherton Tableland, and 
Childers in Queensland are projected to be suitable 
or optimal for peanut cultivation in 2100. 
Meanwhile, CSIRO-Mk3.0 and MIROC-H models 
disagreed on climatic suitability in 2100 for other 
peanut cropping areas, such as the traditional peanut 
planting areas in South and North Burnett, 
Chinchilla, Inglewood, and Texas. The future peanut 
distribution maps resulting from this study will pro
vide valuable contributions in long-term planning of 
peanut cultivation in Australia, especially with 
regard to the projected unsuitable areas for the 
majority of current peanut cultivation regions. 
However, further work is needed to include non- 
climatic factors, such as topography, soil type, and 
biotic interactions, to further increase the accuracy 
and robustness of the projected spatial distribution 
of peanut cropping areas.
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