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Maize silage is a key component of feed rations in dairy systems due to its high

forage and grain yield, water use efficiency, and energy content. However, maize

silage nutritive value can be compromised by in-season changes during crop

development due to changes in plant partitioning between grain and other

biomass fractions. The partitioning to grain (harvest index, HI) is affected by the

interactions between genotype (G) × environment (E) × management (M). Thus,

modelling tools could assist in accurately predicting changes during the in-

season crop partitioning and composition and, from these, the HI of maize silage.

Our objectives were to (i) identify the main drivers of grain yield and HI variability,

(ii) calibrate the Agricultural Production Systems Simulator (APSIM) to estimate

crop growth, development, and plant partitioning using detailed experimental

field data, and (iii) explore themain sources of HI variance in a wide range of G × E

× M combinations. Nitrogen (N) rates, sowing date, harvest date, plant density,

irrigation rates, and genotype data were used from four field experiments to

assess the main drivers of HI variability and to calibrate the maize crop module in

APSIM. Then, the model was run for a complete range of G × E ×M combinations

across 50 years. Experimental data demonstrated that the main drivers of

observed HI variability were genotype and water status. The model accurately

simulated phenology [leaf number and canopy green cover; Concordance

Correlation Coefficient (CCC)=0.79-0.97, and Root Mean Square Percentage

Error (RMSPE)=13%] and crop growth (total aboveground biomass, grain + cob,

leaf, and stover weight; CCC=0.86-0.94 and RMSPE=23-39%). In addition, for HI,

CCC was high (0.78) with an RMSPE of 12%. The long-term scenario analysis

exercise showed that genotype and N rate contributed to 44% and 36% of the HI

variance. Our study demonstrated that APSIM is a suitable tool to estimate maize
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HI as one potential proxy of silage quality. The calibrated APSIM model can now

be used to compare the inter-annual variability of HI for maize forage crops

based on G × E × M interactions. Therefore, the model provides new knowledge

to (potentially) improve maize silage nutritive value and aid genotype selection

and harvest timing decision-making.
KEYWORDS
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1 Introduction

Maize (Zea mays L.) silage is a key component of the dairy cow

feed ration in intensive dairy production systems and is also used in

temperate pasture-based systems to supplement cows’ diets when

pasture availability is low (Wales and Kolver, 2017). The inclusion

of maize in dairy cows’ diets has increased over the past 30 years due

to its high total yield (Ferraretto et al., 2018), digestible energy

content (Sucu et al., 2016), and the opportunity for relatively long-

term storage as silage with limited nutritive value loss when ensiled

properly (Borreani et al., 2018).

Crop growth, phenology, and yield are also affected by genetics

(Barlow et al., 2012; Borreani et al., 2018; Gruber et al., 2018),

environmental (Bernardes et al., 2018), and management factors

(Nilahyane et al., 2020; Petković et al., 2022). For the latter, the

inputs of nitrogen (N) fertiliser and water have the greatest economic

and environmental impact with regards to maize production

(Petković et al., 2022). Optimal irrigation of maize crops can

increase biomass partitioning to grain (Li et al., 2020) and the

management of irrigation and N (defined by rate and timing) can

affect dry matter allocation to different parts of the plant, and,

therefore, maize silage nutritive value (Nilahyane et al., 2020; Zhou

et al., 2021). Maize silage of high quality can result in a feed ingredient

with a high recovery of dry matter, energy, and highly digestible

nutrients compared with the fresh crop (Kung et al., 2018). More

specifically, starch content and, therefore, grain yield can markedly

improve silage forage quality (Nazli et al., 2019) and, consequently,

milk production of dairy systems (Boerman et al., 2015).

However, maize yield (grain and total plant) and climatic

conditions can vary greatly both spatially and temporally (Khalili

et al., 2013; Nilahyane et al., 2020). Thus, predictive tools that

provide a quantification of the variability in the grain proportion

relative to biomass, i.e., the ratio between grain yield and

aboveground biomass (HI) of maize crops grown for silage, are

urgently required. Such tools would allow farmers and advisors to

predict the inter-annual variability of maize HI based on genotype

(G) × environment (E) × management (M) interactions and,

therefore, provide a decision support system to aid genotype

selection (Hütsch and Schubert, 2017; Gruber et al., 2018) and

harvest timing (Borreani et al., 2018; Ferraretto et al., 2018) decision

making for optimising ration formulations. Mechanistic crop

models (hereafter ‘models’) are effective tools for understanding
02
the complexity of system interactions to achieve productivity and

environmental goals (Archontoulis et al., 2014). Models enable the

analysis of climate variability on crop growth and thus inform the

development of adaptation strategies (Challinor et al., 2013;

Jahangirlou et al., 2023). Despite the increasing use of models,

there are implicit model uncertainties (i.e., deviations derived from

a probability distribution of simulations generated using different

parameters) and prediction uncertainties (i.e., deviations between

simulations and observations commonly named residuals)

(Chapagain et al., 2022). Therefore, there is a need for a

standardised approach to quantify both model and prediction

uncertainty (Chapagain et al., 2022) to increase model accuracy.

The Agricultural Production Systems Simulator (APSIM)

(Holzworth et al., 2014) is a mechanistic biophysical crop model

that estimates crop growth and development in response to G × E ×

M interactions. This model has been widely used for maize under

several productive scenarios (Archontoulis et al., 2014; Ojeda et al.,

2018b; Rotili et al., 2020; Kamali et al., 2022; Jahangirlou et al., 2023).

These studies demonstrated that APSIM had a reasonable to very

good accuracy for biomass and maize grain yield estimations. Apart

from some exceptions (Pembleton et al., 2013; Teixeira et al., 2017;

Ojeda et al., 2018a; Ojeda et al., 2018b; Morel et al., 2020), previous

studies assessing the performance of APSIM to estimate crop yield

have been largely focused on maize crops grown for grain, using

specific grain yield harvest-destined genotypes and crop management

to achieve high grain yields. While these studies mainly assessed the

effect of crop management and environment on maize biomass and

grain yield, the effect of genotype onHI has not been assessed under a

wide range of crop management conditions. There is only one study

where maize quality was estimated by combining APSIM yield

simulations with logistic regression models with a focus on grain

composition although it used grain genotypes and generated

predictions based on simulated grain dry weight (Jahangirlou et al.,

2023). The model’s ability to estimate crop growth and phenological

responses for maize silage genotypes and management under

contrasting environments and focus on the prediction of HI across

a wide range of G × E × M is still required.

The objectives of this study were to (i) identify the main drivers

of grain yield and HI variability, (ii) calibrate APSIM to estimate

crop growth, development, and plant partitioning using detailed

experimental field data, and (iii) explore the primary sources of HI

variability of silage maize in a wide range of G×E×M combinations.
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2 Material and methods

In this study, we applied two levels of analysis which are

described in detail in 2.1 and 2.5. First, we identified the main

drivers of HI (ratio between grain yield and biomass) variability at

plot level using a non-complete factorial combination of fields

which was analysed by experiment depending on the factors

present in each experiment. Second, we used APSIM to generate

results from a complete factorial combination (and therefore

interactions) where we used a widely known Analysis of Variance

approach to decompose the effect of each factor and their

interactions on HI variability. For the analysis of simulated data,

we applied a G × E × M model to disentangle the effect of G, E, and

M on HI variability at one site. The E component was implicit in the

inter-annual variability of climate across years.
2.1 Experimental datasets

Data from four field experiments conducted by the University

of Sydney in different locations (P-farm, Westwood, and Mayfarm)

near Camden, NSW, Australia (33° 59’ 53.52” S; 150° 36’ 45.72” E)

were used to determine the key drivers of grain yield and HI
Frontiers in Plant Science 03
variability and to calibrate the maize crop module in APSIM

Classic (v7.10; https://www.apsim.info/) to predict biomass

partitioning (Table 1). The Mayfarm site included two

experimental years (MayfarmY1 and MayfarmY2) and several in-

season crop measurements. A detailed description of these two

experiments is provided by Islam et al. (2011); Islam et al. (2012)

and Islam and Garcia (Islam and Garcia, 2012; Islam and Garcia,

2014). P-farm and Westwood sites included one experiment each

and data at the final harvest for silage. For P-farm, hybrid forage

maize (Pioneer 2307) was sown on 4 November 2012 in 20 × 20 m

blocks within a 30-ha paddock. Maize was planted at two plant

densities (6.6 plants m-2 and 7.4 plants m-2) with row-to-row

distances of 79 cm and harvested at three different stages of

maturity [31%, 38%, and 45% whole plant dry matter (DM)] on

14 March, 27 March, and 8 April in 2013, respectively, for both

sowing densities. Each treatment (density × maturity stage at

harvest) was replicated in three blocks. For Westwood, two

hybrid forage maize (PacificX and PioneerX) were grown in 60 ×

15 m blocks within a 20-ha paddock. Both maize forages were sown

on 20 November 2012 at two plant densities (5.5 plants m-2 and 8.2

plants m-2) with row-to-row distances of 68 cm and harvested at

three different stages of maturity (31%, 42%, and 45% DM) on 20

March, 8 April, and 15 April in 2013, respectively, for both sowing

densities. In both P-farm and Westwood, each treatment was
TABLE 1 Description of maize field experiments, factors of analysis, treatments, and observations (in-season and at final harvest) used to calibrate the
Agricultural Production Systems Simulator.

Experiments
P-farm Westwood MayfarmY1 MayfarmY2

Factor Value Factor Value Factor Value Factor Value

Factorial combinations

Harvest
date

120
DAS*

Harvest
date

120 DAS Sowing date 20-Oct Irrigation rates 0 mm (0%)

133
DAS

139 DAS 3-Nov 153 mm
(33%)

145
DAS

141 DAS N fertilisation rate
pre-sowing

0 kgN
ha-1

305 mm
(66%)

Sowing
density

6.3-6.9
plants
m-2

Genotype PioneerX 135 kgN
ha-1

480 mm
(100%)

7.2-7.7
plants
m-2

PacificX N fertilisation rate
post-sowing

0 kgN
ha-1

N fertilisation rate
pre-sowing

0 kgN ha-1

Sowing
density

5.2-6 plants
m-2

79 kgN
ha-1

135 kgN
ha-1

6.4-9.3
plants m-2

158 kgN
ha-1

N fertilisation rate
post-sowing

0 kgN ha-1

79 kgN ha-1

158 kgN
ha-1

Treatments (replications) 6 (3) 12 (4) 12 (4) 24 (4)

Obs. variables in-season by
treatment

12 (2) 24 (2)

Obs. Variables at harvest by
treatment

6 (3) 12 (4) 12 (4) 24 (4)
fr
*DAS, days after sowing.
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assigned to a plot of 5 × 3 m and 5 × 2 m, respectively, with a 1 m

buffer on each side of the plot, and plots were randomised within

each block. All experiments included combinations of different

factors (crop management and genotypes) as shown in Table 1.

For all experiments, total aboveground biomass and its partitioning

between plant organs (leaf weight, stem weight, and grain + cob

weight) were measured. Total biomass was measured by harvesting

the whole plot, while leaf, stem, and grain + cob weight were

estimated based on the proportions determined from one sampled

plant per plot (Islam et al., 2012; Islam and Garcia, 2014). For the

Mayfarm site, leaf number and normalised difference vegetation

index (NDVI) were also measured sequentially over the whole

growing period. The number of observations varied between

experiments and variables assessed (Table 2). The NDVI

observations were converted to the proportion of intercepted

photosynthetically active solar radiation, commonly known as

fPAR or cover green in APSIM, using the equation proposed by

Pellegrini et al. (2020) as follows:

Green  Cover = (1:5  � NDVI) − 0:29 Eq: (1)
2.2 Model description

We used the maize crop module within APSIM Classic 7.10

(Holzworth et al., 2014). The model has been described at https://

www.apsim.info/documentation/model-documentation/crop-

module-documentation/maize/ and calibrated with satisfactory

results across an extensive range of environments (Ojeda et al.,

2018b; Wu et al., 2021). A complete description of the model

structure and parameters was provided by Brown et al. (2014a)

and Brown et al. (2019). The model contains algorithms that

simulate crop phenology, growth, and soil-plant C and N

dynamics. In brief, crop phenology is simulated using thermal

time thresholds for each phenological stage. The model

accumulates thermal time until a target is achieved, which defines

the change of the stage. The growing period for the whole crop cycle

of maize in APSIM is mainly influenced by the cumulative thermal

time from emergence to the end of the juvenile phase and flowering
Frontiers in Plant Science 04
(R1; Ritchie et al., 1996) to physiological maturity (R6), as well as by

the phyllochron (leaf appearance rate). When water and N

conditions are optimum, crop daily growth rate is only limited by

photosynthetically active solar radiation (PAR) and is calculated as

the product of intercepted PAR and radiation use efficiency. When

the crop is under water stress, biomass accumulation is calculated as

the product of potential crop transpiration (limited by available soil

moisture within field capacity and permanent wilting point, root

extent, and water uptake capacity) and transpiration efficiency,

adjusted for atmospheric vapour pressure deficit (Brown et al.,

2014b). Table S1 shows details on key embedded processes in the

APSIM-Maize model.

Potential biomass partitioning among plant parts in APSIM

depends on the crop development stage and uses partitioning ratios

(Brown et al., 2019). Between emergence and flag leaf (the last leaf

to appear and expand), the fraction of biomass that is provisionally

allocated to the growing leaves decreases as the number of fully

expanded leaves increases. Between tassel initiation and flag leaf, the

biomass remaining after allocation to the leaves is partitioned

between the stem and the developing cobs with a fixed ratio.

After flag leaf, biomass is partitioned between the stem and the

cobs only, until partitioning to the grain starts at the onset of grain

filling (Soufizadeh et al., 2018). Grain yield is calculated as the

product of grain number and grain size. Grain number is estimated

from the average daily growth rate per plant during a thermal time

window defined as the critical period, generally starting at 227°Cd

before flowering (Otegui and Bonhomme, 1998) and finishing at the

start of grain filling and the potential grain number per cob (Liu

et al., 2022). Total grain assimilate demand is the product of grain

number and a potential grain growth rate, which is based on

potential grain size and grain filling duration. A detailed

description of the association between potential grain number

and grain size has been described by Gambıń et al. (2006).

2.3 Simulation configuration

2.3.1 Climate and soil
Experiment geolocations were used to retrieve climate and soil

data to calibrate the model. Historical daily climate data (daily
TABLE 2 The number of observations per variable (in-season and at final harvest) by experiment.

P-farm Westwood MayfarmY1 MayfarmY2 Total

Leaf number 54 144 198

Canopy green cover 54 54

Aboveground biomass weight 6 12 64 96 178

Grain/cob weight 6 12 64 96 178

Stover weight 6 12 64 96 178

Leaf weight 6 12 64 168 250

Stem weight 6 12 64 144 226

Grain number 6 12 12 30

Grain size 6 12 12 30
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rainfall, maximum and minimum air temperature, and global solar

radiation) from SILO (https://www.longpaddock.qld.gov.au/silo/

point-data/) were used as inputs to the model. This daily

interpolated climate dataset has been widely tested with weather

station data across Australia (Jeffrey et al., 2001; Beesley et al., 2009)

and also used for crop modelling purposes (Ojeda et al., 2020). Soil

data were extracted from the Soil and Landscape Grid of Australia

Database, which generates a synthetic APSIM soil derived from

pedotransfer functions (https://www.asris.csiro.au/ASRISApi#!/

APSIM32Services/ApsoilFromGrid_getApSoilTypeMap). Due to

the high spatial proximity of the experiments and after

consultation with the experimentalists about the soil types of the

experiments, we decided to use a single soil profile for the model

setup in all experiments. A complete description of the soil

parameters used to configure the soil profile in APSIM can be

found in Table S2.
2.3.2 Crop management
Actual crop management practices implemented in the field

were used to parametrise the crop management settings in the

model for in-silico experiments. Sowing density varied among

experiments from 5.5 to 11.4 plants m-2, and the distance

between rows was the same for all experiments (680 mm) except

for P-farm (790 mm). Sowing and harvest date varied among

experiments although all crops were harvested for silage purposes

(i.e., at a whole plant DM content of 21-47%; Table S3). In all

simulations, a harvesting rule was set to remove the biomass at a

height of 150 mm as per standard practice in commercial farms. We

used two model scripts to configure the actual N fertilisation rates of

the field experiments: one at the sowing date and the other at V6.

Nitrogen fertilisation was applied as urea in all experiments and the

rates varied from 0 to 293 kg N ha-1 (Table S3). The irrigation

module was parametrised to mimic the actual irrigation amounts

applied in the field. A detailed description of the crop management

practices used to set up the model can be found in Table S3.
2.3.3 Genotypic parametrisation
There are more than 90 maize genotypes available in APSIM.

Therefore, the computing cost to test the accuracy of the model

using all these APSIM default genotypes against our experimental

data would be too high and impossible to implement. In addition,

all hybrids used in the experiments employed in this study were

silage genotypic types unavailable in the APSIM cultivar library.

Thus, the parameterisation of new genotypes was required. We

classified the genotypic parameters into parameters for

parametrisation for optimisation or default model parameters

(Table S4). This classification helped us to identify the calibration

method to be implemented for each group of parameters. A

parameter for parametrisation can be calibrated using field

observations, while a parameter for optimisation is uncertain and,

therefore, requires to be optimised. We defined a default parameter

when there was a lack of data available to include them in the

optimisation procedure and therefore the original genotypic

parameter in APSIM was used for that parameter. The genotypic
Frontiers in Plant Science 05
parameter values after calibrating the model can be found

in Table 3.

2.3.4 Optimisation procedure
We carried out a multi-step optimisation procedure to select the

best combination of values for the most sensitive genotypic

parameters (Figure 1). We followed a series of steps: Step 1) We

generated a logical range of possible values of parameters for

optimisation based on the literature. We used the wide range of

maize parameters reported by Rotili et al. (2020) based on in-farm

and on-research station trials conducted across New South Wales

and Queensland, Australia, over three seasons. Step 2) We created

artificial genotypes in the Maize.xml plant module in APSIM using

all combinations of parameters previously selected. Step 3) We

differentiated the experimental treatments by genotype used. Step 4)

We ran APSIM using a range of values for five parameters that affect

biomass partitioning to grain: frac_stem_flower (0.05, 0.4, and 0.75),

stem_trans_frac (0.05, 0.4, and 0.75), GNk (0.27, 0.33, and 0.39),

GNmaxCoef (215, 282.5, and 350 grains plant-1), and potKernelWt

(299, 319, and 339 mg grain-1) (Table S4). Step 5) We selected the

set of parameters that optimised the grain yield simulations, i.e., the

highest reduction in the prediction uncertainty (simulated grain

yield – observed grain yield) for this model output at the experiment

level (one genotype by experiment).
2.4 Data analysis, calculations, and
model evaluation

First, we curated and formatted the data available from the four

above-mentioned experiments to unify units and names before

implementing the APSIM modelling calibration. Data curation and

analysis were done using Python 3.8.12 (https://www.python.org)

through the Jupyter Lab interface (https://jupyter.org/). The code

developed during this procedure is hosted in a private GitHub

repository (https://github.com/Jjguri/DairyUp) (access to the

repository can be provided by request to the corresponding

author). We used boxplots and scatter plots to investigate

relationships and general trends of grain yield, HI, and biomass

partitioning. In this paper, we considered HI as the ratio between

grain yield and aboveground biomass independent of the maize

growth stage when the measurements were collected (considering

mainly differences in the percentage of DM for silage purposes).

The correlation between observed HI and plant components was

assessed for all experiments (Figure S1). This analysis allowed us to

identify the main causes of variance for observed data.

Second, we calculated statistical coefficients, including the Root

Mean Square Error (RMSE) and the Root Mean Square Percentage

Error (RMSPE), the Nash–Sutcliffe model efficiency coefficient

(NSE), and Lin’s Concordance Correlation Coefficient (CCC).

The RMSE and RMSPE provide a quantification of the differences

between simulated and observed values in the unit of the variable

and percentage, respectively. On the other hand, the NSE is a

normalised statistic that determines the relative magnitude of the

residual variance compared to the observed data variance. The CCC
frontiersin.org
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TABLE 3 Description of calibrated genotypical parameters used in the Agricultural Production Systems Simulator by experiment.

P-farm Westwood MayfarmY1 MayfarmY2

Genotype Pioneer 2307 PacificX PioneerX PioneerY Pioneer 31H50

Parameter value unit

aX0 0.57 0.61 0.67 0.67 0.67 proportion

largestLeafParams 1666 -1.17 0.047 1000-1.17 0.047 1200 -1.17 0.047 3400 -1.17 0.047 3050 -1.17 0.047 –

leaf_app_r1 65 65 65 85 90 °Cd

leaf_app_r2 36 36 36 45 45 °Cd

leaf_app_r3 36 36 36 45 45 °Cd

leaf_no_rate_ch1 8 8 8 8 9 leaves

leaf_no_rate_ch2 3 3 3 3 6 leaves

ph1 12.5 12.5 12.5 12.5 12.5 h

ph2 20 20 20 20 20 h

ph_s 0 0 0 0 0 h

tt_emerg_to_endjuv 310 350 330 230 270 °Cd

tt_flag_to_flower 50 50 50 50 50

tt_flower_to_start_grain 170 170 170 170 170 °Cd

tt_flower_to_maturity 800 600 1000 700 600 °Cd

tt_maturity_to_ripe 1 1 1 1 1 °Cd

frac_stem2flower 0.26 0.46 0.12 0.47 0.55 0-1

stem_trans_frac 0.61 0.4 0.4 0.26 0.275 0-1

potKernelWt 315 332 311 319 315 mg grain-1

GNk 0.33 0.38 0.366 0.354 0.321 –

GNmaxCoef 323 339 309.5 350 297 grains plant-1
F
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FIGURE 1

Optimisation process description for genotype parameters. Steps 1-4 apply for all genotypes, and step 5 and the bar plot show a specific example
for MayfarmY2 for genotype Pioneer 31H50. Subscript letters in steps 1 and 2 indicate each level of a given parameter (i.e., for P1a, a = 0.4).
Subscript ‘i’ in step 2 represents ‘a’, ‘b’, or ‘c’ from step 1. Labels in the x-axis represent one ID combination of every four possible combinations for
display purposes.
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integrates precision through Pearson’s correlation coefficient, which

represents the proportion of the total variance in the observed data

that can be explained by the model and accuracy by a bias which

indicates how far the regression line deviates from the concordance

(y=x) line. All statistical indicators are suitable to evaluate model

performance; however, CCC integrates model precision and

accuracy, and the evaluation can be interpreted by assessing a

single number from -1 to 1. Following the approach proposed by

Ojeda et al. (2017), we created a categorical variable to evaluate the

model performance based on CCC. The model performance

(defined as the sum of accuracy and precision) to simulate all

variables was evaluated as: “very good” when CCC ≥ 0.90,

“satisfactory” when 0.8 ≤ CCC< 0.9, “acceptable” when 0.4 ≤

CCC< 0.8, and “poor” for other values (Tedeschi, 2006). We used

the NumPy and pandas packages in Python to assess the model

prediction uncertainty (simulated values – observed values). The

statistical coefficients were used to create a heatmap of global model

performance for the variables described in Table 2. Additionally, we

visually compared observed vs. simulated state variables by

experiment for each observation date (in-season and final harvest).
2.5 Scenario analysis of harvest
index variance

To analyse the variance of HI across a wide range of scenarios,

we ran APSIM with the calibrated and validated genotypes across a

50-year period (1972-2021) for several combinations of crop

management factors (described below). We used climate and soil

information from the Mayfarm site to run the long-term

simulations. We combined the effect of irrigation (rainfed, deficit,

and well-irrigated), sowing date (20 Oct and 3 Nov), sowing density

(5.2, 7.2, and 9.3 pl m-2), N application rate (0, 125, and 250 kg N

ha-1), genotype [early (PacificX; 1170°Cd from emergence to

physiological maturity) and late (PioneerX; 1550°Cd from

emergence to physiological maturity)], and harvest date (125, 138,

and 150 days after sowing). The levels of all factors were defined

based on the data range of the field experimental data used for the

calibration. Three irrigation levels were defined based on the ratio

between actual soil water and soil field capacity (0, rainfed; 0.4,

deficit irrigation; 0.8, well irrigated). The model quantified this ratio

every day and applied irrigation if the ratio exceeded the indicated

thresholds for each treatment. In total, we generated 324 scenarios

(three irrigations × two sowing dates × three sowing densities ×

three N rates × three harvest dates × two genotypes) across 50 years

(16,200 scenario x year combinations). The main drivers of HI

variability were assessed through boxplots and analysis of variance.

To determine the contribution of each factor to the total HI

variability, variance-based sensitivity indices were computed

(Monod et al., 2006; Kamali et al., 2022). According to this

method, the variance of the model output is decomposed into

fractions that can be attributed to various factors. These methods

measure the sensitivity of each factor independently and also

quantify the effect of interactions. Two indices, namely, Main

Effect (ME) (Eq. 2) and Total Effect (TE) (Eq. 3), were used to

disentangle the variance caused by one source from the variance
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caused by the interaction.

MEi =
Variance(E½HI Xi�)

variance (Y)
(2)

And

TEi = 1 −  
Variance (E½HI X−i�)

Variance (Y)
(3)

where E½HI Xi� denotes the expected value of HI across all

sources Xi (irrigation, sowing date, sowing density, N rate, harvest

date, and genotype), while E½HI X−i� is the expected value of HI

across all sources except for Xi. In other words, ME explains the

share of the components to HI variability without interactions, i.e.,

if ME = 1, the assessed factors explain the entire proportion of HI

variability, but if M < 1, residuals exist, which means additional

factors are required to explain this variability. TE represents the

interaction of a given factor with other factors, i.e., high TE values

for a given factor denote high interactions of that factor with other

factors; therefore, TE does not include residuals.
3 Results

3.1 Drivers of observed harvest
index variability

Observed biomass and grain yield varied across experiments

depending on the genotype and crop management. On average, the

observed biomass ranged from 1,558 g DM m-2 (MayfarmY2) to

2,922 g DMm-2 (MayfarmY1). Grain yield ranged from 772 g DMm-2

(MayfarmY2) to 1,096 g DM m-2 (MayfarmY1) and stover weight

ranged from 786 g DM m-2 (MayfarmY2) to 1,826 g DM m-2

(MayfarmY1). While the average observed HI was relatively similar

(0.472 to 0.487) between P-farm, Westwood, and MayfarmY2, it was

considerably lower on MayfarmY1 (0.374). Consequently, we found

the highest stover proportion at MayfarmY1 (0.626) (Figure 2).

In the experiments with the highest plant densities (MayfarmY1

and MayfarmY2), observed HI was significantly correlated with

observed grain yield. However, it was only associated with

aboveground biomass and stover weight at MayfarmY2 (Figure S1;

Table 4). The associations were mainly affected by irrigation rate (i.e.,

water crop status) and the genotype used in the experiments. While HI

considerably increased when the irrigation rate increased up to 66% at

MayfarmY2, it remained relatively constant when irrigation rates

surpassed this threshold (Figure S1). A complete description of the

relationship between observed HI and aboveground biomass, stover,

and grain weight is provided in Figure S1.
3.2 Crop phenology model calibration

Overall, APSIM showed a very good performance to estimate

crop leaf number (CCC = 0.97) and satisfactorily estimated canopy

green cover (CCC = 0.79) (Figure 3 and Figure S2). Therefore, the

model was able to capture leaf senescence and dry matter
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B C

D E F

A

FIGURE 2

Observed (A) aboveground biomass, (B) grain yield, (C) stover weight, (D) harvest index (HI), (E) stover proportion (SP; stover weight/aboveground
biomass), and (F) harvest index:stover proportion (HI : SP) by experiment. The letters above each boxplot indicate the combinations of factors
assessed in each experiment. N, N fertilisation rate; SD, sowing date; HD, harvest date; D, plant density; G, genotype; I, irrigation rate. Grain yield
data in (B) include only final harvest measurements (i.e., it does not include cob weight measurements).
FIGURE 3

Lin’s Concordance Correlation Coefficient (CCC), Nash Sutcliffe model Efficiency coefficient (NSE), Root Mean Square Percentage Error (RMSPE),
number of observations (n), and Categorical Performance Classification (CPC; Acceptable, Satisfactory, Very good) for each variable measured in-
season and at final harvest. The darker green colour indicates better model performance.
TABLE 4 The statistical description of correlations between grain yield and harvest index (HI) vs. aboveground biomass, grain yield, and stover weight
in each experiment.

Experiment Dependent
Variable (y)

Independent
Variable (x) R2 Regression equation P-value

MayfarmY1 grain yield aboveground biomass 0.95 y = 0.4251x – 152.23 <0.001

HI aboveground biomass 0.18 y = 0.0607ln(x) – 0.1099 0.024

grain yield 0.44 y = 0.0772ln(x) – 0.1652 <0.001

stover weight 0.05 y = 0.0335ln(x) + 0.123 0.292

MayfarmY2 grain yield aboveground biomass 0.98 y = 0.6311x – 211.05 <0.001

HI aboveground biomass 0.84 y = 0.2003ln(x) – 0.9904 <0.001

grain yield 0.93 y = 0.1388ln(x) – 0.4339 <0.001

stover weight 0.63 y = 0.2596ln(x) – 1.2558 <0.001

P-farm grain yield aboveground biomass 0.76 y = 0.4172x + 125.76 <0.001

Westwood grain yield aboveground biomass 0.94 y = 0.6917x – 410.54 <0.001
F
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remobilisation demonstrated by the capability to estimate green

cover, which only includes active photosynthetic crop canopy

(Figure 4). Although the ability of APSIM to estimate leaf

number was very good, there were slight under-estimations of

this variable under high N rates and irrigation amounts

(Figure 5). Canopy cover variables presented the lowest RMSPE

of the model calibration (13%).
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3.3 Model calibration of crop growth
and partitioning

The general model assessment (i.e., using in-season and final

harvest data) demonstrated that APSIM had a very good

performance to simulate total aboveground biomass (CCC =

0.94), grain + cob weight (CCC = 0.92), stover weight (CCC =
FIGURE 4

Observed (circles) and simulated (dashed black line) canopy green cover and total cover (live and dead canopy; solid black line) during the crop
growing season at the MayfarmY1 experiment. Each subplot represents a treatment combination of sowing date × N fertilisation rate pre-sowing × N
fertilisation rate post-sowing. For example, E_135_158 indicates an early sowing date, 135 kg N ha-1 is applied pre-sowing, and 158 kg N ha-1 is
applied post-sowing. Vertical dashed lines indicate the flowering date for each treatment. The CCC and RMSPE indicate Lin’s Concordance
Correlation Coefficient and the Relative Root Mean Square Percentage Error.
FIGURE 5

Observed (circles) and simulated (solid black line) leaf number during the crop growing season at the MayfarmY2 experiment. Each subplot
represents a treatment combination of the percentage of irrigation × N fertilisation rate pre-sowing × N fertilisation rate post-sowing. For example,
100_135_158 indicates 100% irrigation, 135 kg N ha-1 is applied pre-sowing, and 158 kg N ha-1 is applied post-sowing. CCC and RMSPE indicate Lin’s
Concordance Correlation Coefficient and the Relative Root Mean Square Percentage Error.
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0.9), and stem weight (CCC = 0.9) (Figures 3 and 6). Leaf weight

was simulated with satisfactory model performance (CCC =

0.86). On the contrary, grain yield components (grain number

and size) had an acceptable modelling performance (CCC =

0.49). The highest RMSPE was found for leaf, stem, and grain +

cob weight (39%). In general, as N fertilisation (from left to right

in Figure 7 and Figure S3) and irrigation rates increased (from

top to bottom in Figure 7 and Figure S3), the model performance

for different aboveground crop components increased too.

S ea sona l pa t t e rn s o f obse rved and s imu la t ed da t a

demonstrated that the model was able to simulate specific crop

partitioning change events. This includes the flag leaf stage,

when the crop stops partitioning assimilates to the leaf

component and starts translocating assimilates to the grain

component (Figure 7). Partitioning to grain and cob started

earlier in the model than in the observed data, which generated

grain and cob weight over-estimations. However, the final values

(close to 90 and 120 days after sowing) were satisfactorily

s imula ted (F igure 7) . Most important ly , the mode l

satisfactorily estimated HI (CCC = 0.78) with a relatively low

RMSPE (12.1%) (Figure 8). A complete statistical description of

model deviations for all assessed crop variables is provided in

Table S5.
Frontiers in Plant Science 10
3.4 Sources of model
prediction uncertainty

The ability of the model to estimate the maize HI was mainly

affected by the accuracy to estimate grain yield (Figure 9). Although

the model prediction uncertainty (simulated values – observed

values) was higher than the observed standard deviations for

most crop variables, it was equal and lower than the observed

standard deviations for grain number and grain size, respectively

(Figure S4). This demonstrated that the model was able to capture

the variability of biomass partitioning across treatments and

environments. The model prediction uncertainty was also affected

by the sampling method applied for specific crop variables (leaf

weight, stem weight, grain yield + cob weight, and aboveground

biomass), particularly for grain yield + cob weight (Figure S5).
3.5 Assessing the harvest index variability
through scenario analysis

The scenario analysis demonstrated that genotype and N

application rates were the most influential crop management factors

affecting the variance of HI (Figures 10 and 11). Nitrogen rate
FIGURE 6

Observed vs. simulated leaf number, canopy green cover, aboveground biomass, grain + cob weight, stover weight, leaf weight, stem weight, grain
number, grain size by experiment (P-farm, MayfarmY1, MayfarmY2, and Westwood), and type of harvest. Data include in-season and final harvest
measurements. The solid grey line represents the line 1:1, that is, y = x and the solid black line represents the regression line adjusted to the
complete dataset. RMSE, Root Mean Square Error; RMSPE, Relative Root Mean Square Percentage Error; CCC, Lin’s Concordance Correlation
Coefficient; n, number of observations.
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outweighed the effect of irrigation which strongly affected grain yield,

and therefore HI, independent of the water status (Figures S6 and S7).

The harvest index varied from 0 (for scenarios without N rate

applications) to 0.71 (for late sowing × high density × early genotype

scenarios) (Table S6). The median HI across years and factors was 0.51.

Genotype and N rate contributed to 44% and 36% of the HI variance

(ME = 0.44 and ME = 0.36, respectively) (Figure 11A). These factors

were also the most interactive across all crop management practices

(Figure 11B). Harvest date, sowing density, sowing date, and irrigation

had a lower contribution to HI variance (ME< 0.04).
4 Discussion

4.1 Drivers of observed grain yield and
harvest index variability

We showed how genotype impacted the partitioning of maize

assimilate to cob and HI and the ratio between HI and stover

proportion (HI : SP) across experiments (Figure 2) , but the main

driver of observed HI variability for a given genotype was crop

water status (Figure S1). These results align with previous studies

which assessed the effect of maize genotypes under a wide range of

water conditions (Gambin et al., 2016). Harvest index has been

shown to be affected by various biotic and abiotic stresses, including

water, temperature, N, diseases, and pests (Bender et al., 2013;
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Khalili et al., 2013; Hütsch and Schubert, 2017; Liu et al., 2022). Our

results highlight the importance of genotype selection (based on its

HI : SP) and the maintenance of optimum water conditions during

the maize growing season in order to achieve high HI and,

therefore, greater silage quality (Hernandez et al., 2020).

Interestingly, the crop growing period driven by the thermal time

between sowing and flowering and between flowering and maturity

was similar between the genotypes used in this work (Table 3). In fact,

although the HI in MayfarmY1 was significantly lower than in the

other experiments, the genotype used in this experiment had a similar

vegetative:reproductive thermal time ratio to other genotypes, such as

PioneerX in Westwood (Table 3). For a given genotype, increasing

grain number per plant or decreasing vegetative shoot biomass are the

two main manipulations for increasing maize HI (Hütsch and

Schubert, 2017). As such, the ideal maize plant for silage would have

both high vegetative shoot biomass and a high grain number per plant

(Johnson et al., 1999). Although the duration of the vegetative and

reproductive phases may change HI (Capristo et al., 2007), the growing

conditions explored during the critical period for grain set and the

grain filling period and the intrinsic grain set efficiency of a given

genotype are the main factors governing this variable in maize

(Tollenaar et al., 2006). Accordingly, modern maize hybrids have

similar vegetative biomass at flowering but a lower shoot-dry matter

threshold for yield when compared with older maize hybrids, mainly

due to greater biomass partitioning to cobs, higher kernel set efficiency,

and more grain number per plant (Ciancio et al., 2016). At the same
FIGURE 7

Observed (circles) and simulated (lines) leaf weight, stem weight, cob + grain weight, and aboveground biomass (total) during the crop growing
season (das, days after sowing) at the MayfarmY2 experiment. Each subplot represents a treatment. For example, 100_135_158 indicates 100%
irrigation, 135 kg N ha-1 at sowing, and 158 kg N ha-1 post-sowing. CCC and RMSPE indicate Lin’s Concordance Correlation Coefficient and the
Relative Root Mean Square Percentage Error across treatments.
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time, a lower susceptibility of the crop to low soil water availability

could be the cause of greater grain yield stability (Messina et al., 2022).

In this study, we found maximum grain yields (1,159 g m-2; Figure 2B)

at MayfarmY1 under well-irrigated treatments (accumulated irrigation

during growing season = 534 mm), but the HI in this experiment was

on average the lowest (0.37; Figure 2D). One reason for this may be the

genotype used in this experiment which produced a greater stover

proportion with a reduced partitioning to cobs (Figure S1C).

Variability in HI has been observed between silage maize genotypes

(Tsakmakis et al., 2021), supporting the genotypic patterns observed in

the present work. Our results highlight the need to incorporate a wide

range of genotype maturity types and the HI : SP ratio in further
Frontiers in Plant Science 12
analyses when HI of si lage genotypes are compared

across environments.

4.2 Drivers of simulated grain yield and
harvest index variability

We calibrated APSIM to estimate crop growth, development,

and plant biomass partitioning (and therefore HI) and explored the

main sources of prediction uncertainty. Four detailed crop

experiments on maize grown for silage were used to successfully

calibrate APSIM, enhancing the value and applicability of historical

field experimental data not collected for crop modelling purposes.

Although we calibrated APSIM for biomass partitioning and grain

yield, we carried it out on a more detailed level than common

calibration practices usually performed in published papers,

including variables such as grain size and grain number which

usually are not included. This paper calibrated APSIM for forage

maize using 1,322 field observations across a wide range of factors

(sowing date, sowing density, genotype, N rate, and irrigation),

highlighting the novelty and uniqueness of this calibration. Also, we

calibrated the model in parallel for nine model outputs, i.e., we

considered the trade-offs between state variables in the model using

this approach.

Previous studies parametrised APSIM using datasets from

Australian environments and grain maize genotypes (Hammer

et al., 2010; Soufizadeh et al., 2018; Rotili et al., 2020). However,

in this study, we calibrated this model for maize growth in Australia

across nine crop variables, five silage genotypes, and six factors of

analysis (Table 1). Although APSIM has been used to simulate the

biomass production of silage maize under temperate environments

(Pembleton et al., 2013; Teixeira et al., 2017; Ojeda et al., 2018a;

Ojeda et al., 2018b) and extremely high latitudes (Morel et al.,

2020), the model has been not previously tested for its capacity to

predict the biomass partitioning for silage genotypes. Our work is

the first study that provides reasonable APSIM estimations of grain

yield and aboveground biomass (Figures 3 and 6) and satisfactory

estimations of HI (Figure 8). The estimations of grain number and

grain size presented in this study are comparable with other results

reported in Gatton, Australia, (Rotili et al., 2020) although the

prediction uncertainty for grain size in our work was considerably

lower (RMSE = 6 mg grain-1 vs. 38 mg grain-1). These results

provide confidence to use the model for nutritive quality

predictions for maize silage as this crop’s HI is correlated with

neutral detergent fibre content and in vitro true digestibility (due to

different grain:stover ratio through a HI gradient) (Tsakmakis et al.,

2021). Overall, the model overpredicted HI when the crop was

growing underwater limitations (Figure 9); however, these

overestimations were relatively low on average (HI = 0.04).

Therefore, this paper demonstrates that APSIM can model a set

of crop traits and processes that directly affect the silage quality,

expecting deviations lower than 10% in HI predictions (considering

the average observed HI was 0.465).

In this study, we also demonstrated that a satisfactory model

calibration could be achieved by parametrising the crop model for

both phenology and crop growth. It is particularly important to

properly simulate the occurrence of key crop stages related to
FIGURE 8

Observed vs. simulated harvest index (HI) by experiment. The solid
grey line represents the line 1:1, that is, y = x and the solid black line
represents the regression line adjusted to the complete dataset.
RMSE, Root Mean Square Error; RMSPE, Relative Root Mean Square
Percentage Error; CCC, Lin’s Concordance Correlation Coefficient;
n, number of observations.
FIGURE 9

Deviation (i.e., simulated value – observed value) of harvest index
(HI) vs. deviation of grain yield in all experiments. Colours and
symbols indicate irrigation and N rates applied during the growing
season. Dashed horizontal and vertical lines represent no deviation
between simulated and observed values.
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carbon allocation to different plant components (Brown et al., 2019)

and, therefore, define the HI and stover proportion derived from

leaf and stem partitioning. Previous modelling studies have applied

several methods to create new genotypes in crop models, including

the minimisation of statistical metrics (e.g., RMSE) between

observed and simulated values (Messina et al., 2006), gene-to-

phenotype multi-trait link function integration (Cooper et al.,

2021), and sensitivity analysis of cultivar trait parameters (Sexton

et al., 2017). However, in this research, we conducted an exhaustive
Frontiers in Plant Science 13
and robust procedure to generate new silage genotypes in the

model, integrating model parametrisation (using observations to

reduce the RMSE) and model optimisation based on sensitivity

analysis (Monod et al., 2006) (Figure 1).

Previous studies showed the strong effect of genotype and N

application rates on maize grain yield (Rossini et al., 2016; Ruiz

et al., 2022). These highlighted the importance of the maize growing

period length (particularly the reproductive phase) and crop N

availability to determine HI. However, some specific features of our
B C

D E
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FIGURE 10

Harvest index (HI) variance for each level of crop management factor (subplots). (A) Sowing dates (20 Oct and 3 Nov), (B) sowing density (5.2, 7.2,
and 9.3 pl m-2), (C) harvest date (125, 138, and 150 days after sowing), (D) irrigation (rainfed, deficit, and well-irrigated), (E) genotype (early and late
maturity) across N application rates in colours (0, 125 and 250 kg N ha-1), and years (50 seasons).
BA

FIGURE 11

Main effect (ME) (A) and total effect (TE) (B) of different crop management factors (sowing date, sowing density, harvest date, irrigation, genotype,
and N rate) explaining simulated harvest index variance.
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study are novel when compared to the previous knowledge.

Genotype and N application rate were the main drivers of

simulated HI variability across years (i.e., under contrasting

rainfall patterns) (Figure 10E), which corresponded with our

findings from field experimental data (Section 4.1; Figure 2).

However, the differences in HI were higher between genotypes

under N-limited crops (N rate = 0 kg N ha-1) than N fertilised crops

(125 and 250 kg N ha-1) because late maturity genotypes had higher

biomass in relation to grain yield than early maturity genotypes,

which considerably reduced HI (Figure 10E). This highlights the

importance of N fertilisation to achieve high HI, independent of the

genotype used.

The in-silico simulations allowed us to capture the interactions

between N rate application and other factors of variance (mainly

irrigation) across years, something that was not possible to identify in

the field despite using a similar range of N application rates (0-158 kg

N ha-1) due to lack of inter-annual rainfall variability. Maize biomass

and grain yield maximisation are usually conditioned by the existence

of water and N co-limitation, in which limitations due to one

resource depend on limitations due to the other resource (Cossani

and Sadras, 2018). The response to the addition of one resource

depends on the level at which the other is limiting (obeying the law of

optimum rather than the law of minimum). The ability of the crop to

uptake N depends on the water stress (Hammad et al., 2017); water-

stressed crops have high N concentrate, and synergistic effects have

been found between N and water stress in maize (Rossini et al., 2016).

In our simulated scenarios, the responses of HI to irrigation were only

expressed under non-N limited conditions (>125 kg N ha-1),

indicating that the effect of N rate on grain yield and, therefore HI,

outweighed the effect of irrigation. It must be noted that the

synergistic effects of water and N stress depend on the magnitude

and timing of both stresses (Rossini et al., 2016), and the constant

magnitude of the water limitations simulated across the whole crop

cycle could have conditioned the co-limitation level. Also, the long-

term analysis showed that maize crops limited by N (N rate = 0 kg N

ha-1) had much lower vegetative biomass than under high-N rates

and, therefore, under these conditions, the crop generally did not

experience water stress due to the amount of soil water available,

which was enough to provide for the low water requirements under

those conditions (Figure S6). The main differences of HI were found

between the treatment with 0 vs. 125 kg N ha-1 of applied N, while HI

was maximised above 125 kg N ha-1 and therefore, the results of this

scenario analysis suggest that, under high-rainfall years, the treatment

with 125 kg N ha-1 maximises HI and, therefore, can potentially

improve maize silage quality.
4.3 Implications of this study and
future work

This work provides a solid basis for additional parameterisation

of APSIM for silage maize with the overarching goal of accurately

predicting changes in plant’s partitioning and composition and,

from these, potentially predicting the nutritive value of whole plant

maize silage. As previously highlighted by Archontoulis et al.

(2014), accurate calibration of crop phenology is the primary
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priority as the partitioning of carbohydrates strongly depends on

the phenology stage. Our results showed the need to integrate

different approaches to achieve accurate genotype parameters to

reproduce the G×M×E interactions in the model. This was

demonstrated by the high accuracy to estimate grain yield

independent of the genotype, environment, and crop

management conditions (Figure 6). Therefore, future studies

should focus on a detailed phenological parametrisation of the

genotypes used to calibrate models using field or remote sensing-

based phenological data as demonstrated in this study and by Yang

et al. (2022) and Della Nave et al. (2022).

In addition, the overall satisfactory performance of APSIM to

accurately predict phenology and HI found in this study has several

implications for future work. A number of silage quality

components are directly correlated with HI (i.e., starch content,

neutral detergent fibre content, and forage digestibility) (Tsakmakis

et al., 2021; Jahangirlou et al., 2023). Therefore, further work should

be conducted to calibrate the model to estimate these quality

components and quantify the prediction uncertainty. Further

work is also required to determine the impact of N plant content

on silage crude protein, starch, fibre, and energy and their

interactions with HI to allow the modelling of these fine-tuning

relationships from a functional perspective. Moreover, these results

may be used to estimate the grain proportion of silage in advance

(i.e., from the early stages of the crop), guiding diet balance and

supplement purchases at the farm level. Future work should be done

by integrating this kind of analysis across regions and at the farm

level which will allow to cover a broader range of soil types and

spatial soil variability.

We found modelling performance to differ when the same

variables were collected using different harvest methodologies, i.e.,

harvesting the whole plot vs. proportions determined from one

sampled plant per plot (Figure S5). This is particularly important

because it generates uncertainty in the observations, which

generally is not accounted for in crop modelling studies as a

source of uncertainty (Chapagain et al., 2022). The quantification

of the observational uncertainty is a key step in any model

calibration procedure as it allows model users to target different

model accuracy thresholds to finish the calibration. It highlights the

need to use common protocols for crop sampling if experiments are

targeted for crop modelling purposes, particularly for biomass

partitioning. Future modelling studies should carefully consider

the ground sampling method applied to calibrate models for crop

biomass partitioning.
5 Conclusions

In this study, we present the first crop modelling study that

calibrates APSIM for HI and plant partitioning using a detailed field

dataset of forage maize and considering nine crop variables

simultaneously. While field experimentation during one growing

season demonstrated that the main drivers of HI variability were

genotype and water status, the long-term scenario analysis

highlighted the importance of N rate application as a second

driver. We also applied an integrated and robust approach for
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phenology and crop growth parameter calibration. In this study, we

demonstrated that the calibrated APSIM model:
Fron
• has a satisfactory performance using five silage genotypes

for maize grown in Australia across a wide range of G×E×M

combinations. This is one of the first attempts to use a crop

model to predict silage maize HI under contrasting crop

growth scenarios.

• is a suitable tool to estimate maize HI as a potential proxy of

silage quality for forage purposes.

• could now be used to compare inter-annual variability of

maize HI based on G×E×M interactions and, therefore,

assist in real-world farming conditions towards better

synchronisation of crop management interactions

focusing on high maize silage quality.
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