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Abstract

We study convection in a vertical layer of ferro-magnetic fluid heated from

the side and subject to a transverse magnetic field. It is found that the subse-

quent fluid motion is caused by interacting thermo-gravitational and thermo-

magnetic mechanisms. Our experiments and computations show that the

excitation of magneto-convection leads to the formation of vertically aligned

stationary rolls, while gravitational convection results in horizontal rolls cor-

responding to a pair of counter-propagating thermal waves. The interaction of

these instability modes leads to a wide spectrum of experimentally observed

flow patterns including stationary rolls and standing waves of various spatial

orientations. A comprehensive stability map is computed and compared with

experimental flow visualisations. Disturbance energy is analysed to achieve a

deeper insight into the physical mechanisms driving the fluid motion.

1 Introduction

Common non-conducting artificial magnetic fluids consist of magnetite colloids
which contain ferro-magnetic nano-particles suspended in a carrier fluid, usually
synthetic oil, water or kerosene. To prevent formation of magnetite aggregates and
their subsequent sedimentation a surfactant such as oleic acid is frequently used [1].
One of the applications of non-conducting ferrofluids is as a heat carrier in efficient
cooling systems where the heat transfer by natural gravitational convection can be
significantly enhanced by applying an external magnetic field [2]. Nonuniform heat-
ing results in a nonuniform magnetisation of a ferrofluid: cooler regions contain
stronger magnetised fluid. Subsequently, a ponderomotive force arises which drives
stronger magnetised cooler fluid particles to the regions with a stronger magnetic
field. This phenomenon is known as magneto-convection and is not associated with
gravitational buoyancy forces. However in normal gravity conditions it always acts
alongside with the buoyancy forces. Therefore the purpose of the current work is
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to use a perturbation energy analysis to determine the parametric regions where
each of these physical mechanisms is dominant as well as to determine the internal
structure of the corresponding instability patterns. To achieve these goals we choose
the simple geometry of a vertical wide and tall fluid layer heated from one side and
placed in a perpendicular magnetic field. Such a configuration is easy to re-create
experimentally and is convenient to model due to the simplicity of the boundary
conditions.

2 Problem definition and stability equations

Consider a vertical layer of ferro-magnetic fluid which fills the gap between two
infinitely long and wide parallel plates. The plates are separated by distance 2d
and are maintained at constant different temperatures T∗ ± Θ. An external hori-
zontal uniform magnetic field ~He = (He, 0, 0) is applied perpendicular to the layer.

This field causes an internal magnetic field ~H within the layer. Since the fluid is
ferromagnetic the external field leads to its magnetisation ~M which is assumed to
be co-directed with the internal magnetic field: ~M = χ∗

~H, where χ∗ is the mag-
netic susceptibility of the ferromagnetic fluid. We adopt Boussinesq approximation
for the governing continuity, Navier-Stokes and thermal energy equations which are
complemented by Maxwell’s equations for magnetic field as discussed in [1, 2, 3].
The equations are non-dimensionalised using

(x′, y′, z′) = d(x, y, z) , ~v′ = η∗
ρ∗d

~v , t′ = ρ∗d2

η∗
t , P ′ = η2

∗

ρ∗d2 P , T ′ − T∗ = Θθ ,

~H ′ = KΘ

1+χ
~H , H ′ = KΘ

1+χ
H , ~M ′ = KΘ

1+χ
~M , M ′ = KΘ

1+χ
M , ~g = g~eg ,

where primes denote dimensional quantities. Then we obtain

∂~v

∂t
+ ~v · ∇~v = −∇P + ∇2~v − Grθ~eg − Grmθ∇H , (1)

∂θ

∂t
+ ~v · ∇θ =

1

Pr
∇2θ , ∇ · ~v = 0 , ∇× ~H = ~0 , (2)

(1 + χ∗)∇ · ~H + (χ − χ∗)∇H · ~e∗ − (1 + χ)∇θ · ~e∗ = 0 , (3)

~M = [(χ − χ∗)(H − N) − (1 + χ)θ]~e∗ + χ∗
~H (4)

with boundary conditions
[

~He − [(χ − χ∗)(H − N) ∓ (1 + χ)]~e∗ − (1 + χ∗) ~H
]

· ~n = 0 , (5)

~v = ~0 , θ = ±1 , at x = ∓1 , (6)

where ~eg = (0,−1, 0), ~n = ~e∗ = (1, 0, 0). The dimensionless parameters appearing
in the problem,

Gr =
ρ2
∗
β∗Θgd3

η2
∗

, Grm =
ρ∗µ0K

2Θ2d2

η2
∗
(1 + χ)

, P r =
η∗

ρ∗κ∗

, N =
H∗(1 + χ)

KΘ
, (7)

are thermal and magnetic Grashof numbers characterising the importance of buoy-
ancy and magnetic forces, Prandtl number characterising the ratio of viscous and



Proceedings of XXXVI International Summer School-Conference APM’ 2008 646

thermal diffusion and parameter N characterising thermo-magnetic properties of
a working fluid, respectively. In the above ρ∗, η∗ and κ∗ are the fluids character-
istic density, dynamic viscosity and thermal diffusivity, µ0 = 4π × 10−7 H/m is
the magnetic constant, T∗, M∗ and H∗ are the temperature, the magnetisation and
the magnitude of the magnetic field in the mid-plane of the layer, χ = ∂M

∂H

∣
∣
H∗

,

K = − ∂M
∂T

∣
∣
T∗

.

Equations (1)–(6) admit steady parallel basic flow solution

θ0 = −x , v0 = Gr
6

(x3 − x) , P0 = −Grm
x2

2
+ C , (8)

H0 = N − x , M0 = χ∗N + x , (9)

where C is an arbitrary constant. The buoyancy force caused by the linear varia-
tion of the temperature (and the density) across the layer are responsible for the
existence of a symmetric cubic velocity profile such that the fluid rises along the
hot wall and sinks along the cold one. The fluid magnetisation increases towards
the cold wall while the magnetic field decreases in this direction so that the sum
H0 + M0 =const. as dictated by Maxwell’s equations in the absence of electrical
currents.

As shown in [4] linearising equations (1)–(6) about (8)–(9), and then using a
standard normal mode decomposition of the disturbance fields and Squire’s trans-
formation we obtain an equivalent two-dimensional stability problem of the form

σu +
(
α2 + iαv0 − D2

)
u + DP + GrmDH0 θ + GrmΘ0D

2φ = 0 , (10)

σv + Dv0 u +
(
α2 + iαv0 − D2

)
v + iαP − Grθ + iαGrmΘ0Dφ = 0 , (11)

σθ + DΘ0u +

(
α2 − D2

Pr
+ iαv0

)

θ = 0 , (12)

Du + iαv = 0 ,

(

D2 −
1 + χ∗

1 + χ
α2

)

φ − Dθ = 0 , (13)

with boundary conditions

u1 = v1 = w1 = θ1 = 0 , (1 + χ)Dφ1 ±
√

α2 + β2φ1 = 0 at x = ±1 , (14)

where D ≡ d/dx and φ is the magnetic potential such that the disturbance magnetic

field is given by ~H = (Dφ, iαφ). All disturbance quantities in equations (10)–(13)
are functions of x only, see [3, 4] for details. Equations (10)–(14) comprise an
eigenvalue problem for the disturbance complex amplification rate σ = σR + iσI

for each fixed set of governing physical parameters and wavenumber α. Marginal
stability is observed when the value of σR maximised over the range of α becomes
zero.

We emphasise that two-dimensional perturbation equations (10)–(14) represent
a full three-dimensional problem which is recovered using the inverse Squire’s trans-
formation. However the goal of this short paper is to determine the physical mech-
anisms driving the instabilities which is possible to do by using a two-dimensional
equivalent problem alone. The reader is referred to [4] for the detailed analysis of
the three-dimensional unfoldings of the current results.
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Figure 1: Typical experimentally observed magneto-convective instability pattern
(left), parametric stability boundary (a) and critical wavenumber (b) for combined
thermo-gravitational and magnetic convection in a vertical layer of ferro-fluid at
Pr = 130 and χ = χ∗ = 5. Basic flow is stable below and to the left of the solid line
and above the dashed and dash-dotted lines in plot (a).

3 Instability mechanisms and disturbance energy

Experimental observations [5] show that various types of instability patterns super-
posed onto the basic flow exist depending on the values of the governing parameters.
The most prominent pattern has the form of vertical rolls such as the ones seen in
the left photo in Figure 1. Computations show that it appears for Grm > 1.39, rela-
tively small values of Gr and wavenumber αc ≈ 1.9 (dashed lines in Figure 1(a,b)).
These values are in good agreement with the experimentally measured ones at the
onset of instability. However computations also predict the existence of other insta-
bilities for the larger values of Grm (dash-dotted line in Figure 1(a)) and Gr (solid
line).

In order to determine the physical mechanisms driving instabilities we consider
the disturbance energy balance. We multiply the momentum equations (10) and
(11) by complex conjugate velocity components ū and v̄, respectively, add them
together, integrate by parts across the layer using boundary conditions (14) and the
continuity equation, and take the real part (denoted by ℜ below) of the result to
obtain

σRΣk = Σuv + Σm1 + Σm2 + ΣGr + Σvis , (15)

where

Σk =

∫ 1

−1

(
|u|2 + |v|2

)
dx > 0 , Σuv = −

∫ 1

−1

Dv0ℜ(uv̄) dx ,

Σm1 =

∫ 1

−1

−GrmDH0 ℜ(θū)
︸ ︷︷ ︸

Em1

dx , Σm2 =

∫ 1

−1

GrmDθ0 ℜ(Dφ ū)
︸ ︷︷ ︸

Em2

dx , (16)

ΣGr =

∫ 1

−1

Grℜ(θv̄)
︸ ︷︷ ︸

EGr

dx , Σvis = −

∫ 1

−1

(
|Du|2 + |Dv|2

)
dx < 0 .

Since Σk, the kinetic energy of perturbations, is positively defined the flow is stable
(unstable) if the sum of terms in the right-hand side of (15) is negative (positive).
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Table 1: Disturbance energy integrals for selected marginal stability points shown
by circles in Figure 1.

Grm Gr α Σuv Σm1 Σm2 ΣGr

1 0 40.974 1.238 -0.006 0 0 1.006
2 1.398 39.976 1.256 -0.007 0.004 -0.002 1.005
3 15.775 16.690 1.696 -0.011 0.302 -0.086 0.795
4 14.468 6.6 1.853 -0.003 1.141 -0.318 0.180
5 16.353 4.4 1.463 0.001 1.795 -0.759 -0.036
6 16.239 4.4 2.147 0.002 1.812 -0.595 -0.219
7 16.189 4.4 3.278 -0.003 1.516 -0.350 -0.163
8 1.398 0 1.936 0 1.584 -0.584 0

Equivalently, we can say that positive terms in the right-hand side of (15) are respon-
sible for instability. The values of various energy balance terms are given in Table 1
for the marginal stability (σR = 0) points shown by circles in Figure 1(a,b). Since
within the framework of a linearised stability analysis the amplitude of disturbance
fields is undefined we normalise them in such a way that the viscous dissipation
integral Σvis = −1 for all points. The remaining four entries in the energy balance
are listed in Table 1. From this table we make the following conclusions.

• The contribution of the basic flow velocity into the disturbance energy balance
(Σuv) can be either slightly positive or negative, but it remains small for all
regimes. Therefore the interaction of the disturbance velocity field with the
basic flow is weak. The energy exchange between basic and disturbance veloc-
ity fields is insignificant and does not play any noticeable role in flow pattern
formation.

• The first of the two magnetic contributions to the energy balance, Σm1, is
positive for all non-zero values of Grm. This term represents a ponderomotive
force which drives stronger magnetised cooler fluid particles into the regions
of a stronger basic magnetic field (i.e. from the cold wall towards the hot
wall as suggested by the basic flow field distributions (8)–(9)). Therefore in
the considered configuration the dependence of fluid magnetisation on the
temperature always plays a destabilising role leading to the onset of a thermo-
magnetic convection.

• In contrast, the second magnetic term, Σm2, always remains negative. It repre-
sents the induction of a disturbance magnetic field by displaced ferro-magnetic
fluid particles. Therefore the modification of the basic magnetic field always
absorbs energy and thus plays a stabilising role. It hinders the change in
the primary magnetisation field. However this magnetic stabilisation effect is
always weaker than the thermo-magnetic de-stabilisation. Therefore the over-
all magnetic influence on the basic flow in the considered geometry is always
destabilising.

• The thermo-gravitational contribution, ΣGr, depends strongly on the values of
both Gr and Grm and can be either positive or negative. This term represents
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Figure 2: Selected disturbance energy integrands for parameters specified in Table 1.

the buoyancy force which drives warmer and less dense fluid upwards and
cooler denser fluid downwards. It is strongly destabilising in the absence of a
magnetic field i.e. for Grm ∼ 0, but becomes stabilising for the larger values
of Grm when the motions caused by the actions of the vertical buoyancy force
and the horizontal magnetic ponderomotive force start competing with each
other. The peculiar S-shape of the stability boundary shown by the solid
line in Figure 1(a) is the consequence of this competition: for larger values of
Gr both magnetic and thermo-gravitational terms are destabilising and their
combination leads to a reduction in the area of the region of stability (the
solid line goes down and then turns back). However for small values of Gr and
larger values of Grm the buoyancy starts playing a much stronger stabilising
role so that the solid line turns to the right increasing the stability region
underneath it.

In summary, the de-stabilisation of the primary parallel flow is achieved due to
the action of two physical mechanisms: the action of ponderomotive magnetic and
buoyancy forces. However at small values of Gr the buoyancy plays a stabilising role.
The integral values presented in Table 1 also identify the nature of the instabilities
whose boundaries are shown by the solid and dashed lines in Figure 1: gravitational
buoyancy and magnetic ponderomotive force, respectively. Yet neither the details
of these two instabilities nor the nature of the third instability whose boundary is
shown by the dash-dotted line are clear so far. In order to eliminate this shortcoming
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we consider the spatial distribution of the three destabilising integrands, Em1, Em2

and EGr, defined in (16) and plotted in Figure 2 for points 1–8 shown by circles in
Figure 1(a,b).

For small values of Grm and large values of Gr (points 1 and 2) the thermo-
gravitational instability mechanism dominates, see the dash-dotted line in plots 1
and 2 in Figure 2. The energy integrand EGr has two well defined symmetric max-
ima near the walls. This is a reflection of the well known fact that in high Prandtl
number fluids such as a typical kerosene-based ferro-colloid the thermo-gravitational
instability takes the form of two counter-propagating waves in the wall regions, see
detailed discussion in [4] and references therein. They are almost insensitive to a
magnetic field and exist even when the magnetic Grashof number is significantly
increased, see plots for points 3 and 4. However as the ratio Grm/Gr increases
the thermo-magnetic effects given by Em1 intensify significantly and eventually be-
come dominant, see plot 4. It is noteworthy that although the dominant physical
mechanism of instability changes, this happens in a continuous way, see solid lines
in Figure 1. The only indication that such a change has indeed occured is in the
qualitative behaviour of the disturbance wavenumber: as Grm increases so does the
wavenumber of thermo-gravitational waves, however this trend is reversed once they
are replaced with thermo-magnetic waves, see the solid line in Figure 1(b).

With decreasing Gr the difference between the two counter-propagating thermo-
magnetic waves becomes blurred: the wave speeds (not shown here, but see [4])
decrease, the instability pattern becomes nearly stationary and its maximum shifts
from the wall regions towards the centre of the layer, see the plot for point 5. The
thermo-gravitational convection mechanism continues to play a destabilising role in
the centre of the layer, but its influence in the wall regions becomes stabilising. A
shift of the instability production region to the centre of the layer has a profound
effect on the characteristic wavenumber of perturbations: it quickly decreases, see
the right end of the solid line in Figure 1(b). This has a straightforward explanation:
the disturbance structures in the centre of the layer near the inflection point of the
basic flow velocity profile are subject to large shear forces. They “stretch” convec-
tion rolls decreasing their wavenumber. The centrally located instability structures
elongated by the shear forces then become so large that they cause a strong “flow
blocking” effect. Eventually they are destroyed by the basic flow giving way to much
shorter structures, see the dash-dotted lines containing point 7 in Figure 1. Plot 7
in Figure 2 shows that the physical mechanism generating them is indeed the same
as that for the thermo-magnetic waves discussed above. Their size is sufficiently
small (the wavenumber is large) for the basic flow blocking effect to be reduced on
one hand and for the two disturbance waves propagating near the walls to re-appear
on the other. We also note that although overall magneto-induction effect Σm2 is
always stabilising, the energy integrand Em2 for points 3, 4 and 7 is positive in the
centre of the layer (between the counter-propagating thermo-magnetic waves) and
thus it contributes to the overall de-stabilisation across the layer.

Points 6 and 8 in Figure 1 belong to the third type of stability boundary which
is disjoint from the two segments discussed so far. The physical mechanism causing
this instability is of purely thermo-magnetic type: Em2 is strongly positive while
EGr is close to zero. Therefore the gravitational buoyancy plays essentially no role
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in these regimes of convection. Major de-stabilisation occurs near the middle of
the layer where basic flow velocity is zero. As a consequence, these corresponding
instability patterns are stationary [4]. They take the form of vertical rolls similar to
the ones seen in the left photograph in Figure 1.

In conclusion, our analysis of perturbation energy distribution across the layer
shows that the instability in a vertical ferro-fluid layer is caused by two physical
mechanisms: thermo-gravitational (buoyancy) and thermo-magnetic. These mecha-
nisms result in three distinct types of perturbed flow patterns: counter-propagating
thermal waves (large Gr, small Grm), counter-propagating thermo-magnetic waves
(large Grm, intermediate Gr) and stationary magneto-convection rolls (intermedi-
ate to large Grm, small Gr). The transition between thermal and thermo-magnetic
waves is continuous and occurs when Gr and Grm are of comparable sizes while
magneto-convection rolls appear independently and dominate the flow for small
values of Gr. We also note in passing that a spatial orientation of the detected in-
stability patterns is strongly related to the physical mechanisms causing them: the
propagating thermal or thermo-magnetic instability waves form horizontal or in-
clined convection rolls, while stationary magneto-convection rolls are vertical. The
reader is referred to [4] for detailed discussion of the spatial structure of instability
patterns.
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