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Abstract—This paper provides a new formula for dimensioning
of a link fed by fractional Brownian input. This formula is
obtained based on another new approximate result for the
stationary workload distribution of a queue loaded by fractional
Brownian input. An efficient approach to simulate such a queue
is also presented. Agreement between the analytical and the
simulation results has been demonstrated numerically.

Index Terms—fractional Brownian noise, fractional Brownian
motion, long range dependence, quality of service (QoS), link
capacity dimensioning.

I. INTRODUCTION

It has been well established that Internet traffic exhibits long
range dependence (LRD) characteristics [1]–[5]. Furthermore,
core and metropolitan Internet links are shared by a large
number of users, so by the central limit theorem, the traffic on
such links which represents multiplexing of traffic generated
by many users can be assumed to follow a Gaussian process
for the purpose of performance evaluation and link capacity
dimensioning [6]. In addition, Internet traffic is transported
based on the store and forward principle, where packets are
stored in router buffers before they are forwarded towards their
destination. Therefore, a queue fed by fractional Brownian
motion (fBm) input has been considered a fundamentally
important model for Internet queueing performance analysis
and capacity assignment and has attracted significant attention
[7]–[15]. To date, despite the effort, only asymptotic results
are available for queueing performance of fBm queues.

This paper has two distinguishable parts. The first part
comprises sections II, III and IV, where we consider the
theoretical single server queue fed by fBm traffic. In Section II,
a new approximation for the stationary workload distribution
of an fBm queue is provided. In Section III, we describe an
efficient method to simulate an fBm queue. Numerical results
are presented in Section IV to demonstrate the accuracy of our
new fBm queue workload distribution formula.

In the second part, sections V and VI, we aim to provide
a first step towards bridging the gap between theory and
practice, where we apply the theoretical results of the first
part to link dimensioning and explain the limitations of the
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theory. In particular, in Section V we use our new queueing
performance approximation to derive an elegant new formula
for link dimensioning that gives the capacity required to meet
QoS measured as the proportion of time that the workload
distribution is above a given threshold. Then in Section VI we
discuss a limitation of the practical application of the model
due to the presence of significant quantities of negative traffic
in the theoretical model in some situations.

II. A NEW ANALYTICAL RESULT OF AN FBM QUEUE

We consider a single server queue with an infinite buffer fed
by an fBm input process with Hurst parameter H , variance
σ2
1 and drift λ. Specifically, the variables σ2

1 and λ are the
variance and the mean of the amount of work arriving during
a time interval of length 1. The service rate, denoted by τ , is
assumed constant. Let µ be the mean net input during a time
interval of length 1, i.e., µ = λ − τ . For stability we assume
µ < 0. Henceforth, a time interval of length 1 will be called
1 second [sec.]. Let Q be the steady state queue size.

For the case H = 0.5, the complementary distribution
function of Q, namely, the probability that the fBm queue size
exceeds x, denoted P (Q > x), is well known and is given by
[16]:

P (Q > x) = exp
2µ

σ2
1

x, x ≥ 0. (1)

For H 6= 0.5, despite considerable efforts, there is no exact
result for P (Q > x).

Of the known results, a first approximation/bound for the
complementary distribution function is from [9]:

P (Q > x) ≈ exp

(
−x

2−2H(1−H)2H−2|µ|2H

2H2Hσ2
1

)
, x ≥ 0.

(2)
The authors of [8] showed that this approximation holds in
the sense that

lim
x→∞

1

x
log (LHS/RHS) = 0. (3)

A second approximation results from from [14, Theorem
1, Equation (9)] with α = 2H , β = 1, together with the
asymptotic approximation for the tail of a Normal distribution,

1− Φ(x) ∼ x−1 exp

(
−x

2

2

)
,



giving
P (Q > x) ≈

C̃x
2H2−3H+1

H e

(
− x

2−2H (1−H)2H−2|µ|2H

2H2Hσ2
1

)
, x ≥ 0, (4)

where C̃ is a certain constant. This approximation holds in the
sense that

lim
x→∞

LHS/RHS = 1. (5)

The authors of [14] did not provide a way to compute C̃.
Therefore we estimate this constant by numerically fitting (4)
to simulation results.

In this paper we propose the following approximation,
which is expressed in terms of the density rather than the
complementary distribution function. Let

P (Q > u) ≈
∫ ∞
u

cf(x)dx. (6)

where

f(x) = x
1−2H
H e

(
− x

2−2H (1−H)2H−2|µ|2H

2H2Hσ2
1

)
, x ≥ 0, (7)

and

c−1 =

∫ ∞
0

f(x)dx

=

∫ ∞
0

xβ−1e−αx
ν

dx

in which

α =
(1−H)2H−2|µ|2H

2H2Hσ2
1

,

ν = 2− 2H

and
β =

1−H
H

;

so if we set
y = xν ,

hence
x = y

1
ν ,

and
dx =

1

ν
y

1
ν−1dy,

c−1 =

∫ ∞
0

y
β−1
ν e−αy

1

ν
y

1
ν−1dy

=
1

ν

∫ ∞
0

y
β
ν−1e−αydy

= ν−1α−
β
ν Γ(

β

ν
),

in which
Γ(z) = kz

∫ ∞
0

tz−1e−ktdt.

The approximation (6) holds in the sense that
limx→∞ LHS/RHS = B for some constant B. This
follows from (5) because the RHS of (7) is the derivative
of the RHS of (4), up to a constant multiple. Although the

constant B here may not be equal to 1, which means that (6)
may be less accurate than (4) for large x, the new formula
has the advantage that it is a distribution. In particular,
whereas (4) cannot be accurate for small x unless H = 0.5,
it is feasible that (6) is accurate for small x. The simulation
results appear to confirm that this is the case. Another benefit
of (6) over that of (4) is that we provide a way to derive c
while (4) does not provide a way to derive C̃. In section IV
below we compute C̃ by fitting (4) to simulation results for
large x.

III. SIMULATION OF AN FBM QUEUE

The challenge in simulating an fBm queue is how to adapt
the continuous time concept of fBm to the discrete-time
implementation of a computer simulation that considers the
queue size at the endpoints of consecutive intervals each of
size ∆t [sec.]. This forces us to consider a limit, namely, the
queueing performance limit as we perform a sequence of such
simulations where ∆t becomes smaller and smaller.

A simulation of an fBm queue requires the generation of a
long fractional Brownian noise (fBn) sequence which is time
consuming. There is a significant body of work on how to
generate fBm traffic [17]–[21]. We do not intend to contribute
in this area here. Instead we use an fBn sequence obtained
by the Hosking recursive method using the code of Dieker
[22]. For computational efficiency, we do not generate a new
fBn sequence for each simulation, but instead use the same
sequence. For each scenario (given H value), we use an
independent fBn sequence of length 222 seconds. The fBn
sequence is characterized by its Hurst parameter H and its
variance v. As we reduce ∆t we still use the same sequence,
which implies that we must have the same H and v. Clearly,
the variance of the work arrived is reduced as ∆t is reduced, so
to maintain the same numerical value of v for the variance, we
need to scale down the “units” of work. As a consequence, in
every simulation we will change some simulation parameters
so that each remains consistent with the same continuous time
model.

As is often the case in queueing simulations, the basic
algorithm of our discrete-time queue simulation is Lindley’s
equation,

Qn+1 = max(0, Qn + Un +m), (8)

in which Qn denotes the queue length at the end of the nth
time-interval and m = m(∆t) is the net mean input per time-
interval. The variable Un denotes the difference between the
value of the fBm at the end of the time-interval n and the
value of the fBm at the beginning of the time-interval n. Un
can be negative.

The problem tackled in this section is as follows. Given that
the vector U contains a fractional Brownian noise process with
Hurst parameter H , and variance v, what value of m should be
used, and what scaling of Qn should be adopted to interpret
equation (8) as an fBm queue in which the time interval is ∆t
[sec.], the net mean input is µ units of work per one [sec.],
and the variance in one [sec.] is σ2

1?



To adapt (8) to the continuous time model, fBm, we need
to envisage a limit as we alter our interpretation of the
discrete time of our simulation to correspond to shorter and
shorter time intervals. Since the time consuming aspect of the
simulations is the generation of fractional Brownian motion
(or noise – the two are related by differencing or cumulative
integration), we shall assume that a discrete-time fractional
Brownian motion process has been generated in advance and
our plan is to re-use this fixed dataset for multiple purposes
of the following sort:

(i) more and more accurate simulation of an fBm queue, in
the sense that the loss of accuracy due to discretising
time is reduced successively;

(ii) simulation of queues with different variance or net mean
input.

To clarify, v is the variance per unit time of the fBm
sequence and σ2

1 is the variance of the amount of work
arriving within one second in the simulated model. In our
first simulation, ∆t = 1 [sec.] so v = σ2

1 . In the second
∆t = 0.1 [sec.], etc. Again, we always use the same original
fBn sequence, but in each simulation we change m, and we
interpret work using a different scale factor.

A. Choice of m

According to the Hurst formula, the variance in an interval
of length ∆t should be σ2

1(∆t)2H , but actually it is v, so
we must interpret each nominal unit of work as representing
σ1(∆t)H/

√
v. Therefore we should set

m =
µ∆t
√
v

σ1(∆t)H
.

B. Interpretation of Q

We now completed the simulation using a new m and
obtained the function P (Q > x) based on that new m. But
this is not the correct function because the work arrives has
also to be scaled. To do this we need to divide x by a scaling
factor S.

As discussed above, the units in the simulated system
actually correspond to σ1(∆t)H/

√
v units of work in the

model we are trying to simulate, so we should divide the x
values by

S =
σ1(∆t)H√

v

in order to be able to interpret them as applicable to the
intended fBm model. Then we consider the function P (Q >
x/S) instead of the function P (Q > x).

IV. VALIDATION OF THE WORKLOAD DISTRIBUTION

In this section we present numerical results that demonstrate
the accuracy of our simulation and of our approximation. All
simulation results are provided with 95% confidence intervals
based on the Student-t distribution.

A. Validation of the simulation

To validate the simulation, in Figure 1 using the known
exact result (1) for the case H = 0.5, we demonstrate how
the sequence of simulations as described above approach the
exact result using only one fBn sequence. We note that in the
case ∆t = 0.01 the analytical results are within the simulation
confidence intervals.

B. Validation of the analytical formula

In Figures 2 – 5, we present results for H = 0.3, 0.4,
0.6, and 0.7, respectively, that demonstrate the accuracy and
robustness of our approximation. In most instances the approx-
imation is within the confidence intervals of the simulation
over the entire range and in all instances the discrepancies
which do exist are quite small. We also demonstrate that, as
expected, the existing asymptotes are not accurate for the full
range of parameters in all cases. Figures 6 and 7 present clearer
results for H = 0.3 and 0.4 with x > 1. Results for x ≥ 4 are
not presented due to limitation of simulation accuracy. Notice
the increase length of the confidence intervals as we approach
x = 4. Figure 8 that our approximation is quite significantly
more accurate that the previoius results for H = 0.7 when x
is small.

C. Discussion of results

First of all it should be observed that the formula presented
here, based on comparison with simulation, appears to be
more accurate than the existing alternative formulae in all the
situations which have been tested, up to now.

Secondly, the new formula has good accuracy for the full
range of parameters.

Thirdly, although it might appear that the Husler-Piterbarg
asymptote [14] also provides adequate accuracy over the full
practical range of the parameters (for our purposes, for exam-
ple, its weakness when H and x are small is not practically
important), this formula cannot readily be used independently
of simulations because it makes use of a constant for which
there is no clear method of calculation. In order to use the
Husler-Piterbarg asymptote in the above comparisons, this
constant was estimated by simulations as discussed in Section
II.

V. LINK DIMENSIONING

Having validated the analytical formula we have derived for
the workload distribution of a queue fed by fBm traffic, we are
now in position to evaluate the capacity required C to serve a
link fed by fBm traffic such that the probability ε = P (Q > q)
for a given queue threshold q is below a given margin. Hence,
we are interested in the link capacity required C to meet our
QoS measures ε and q.

A. A theoretical formula for link dimensioning

Our formula is:

P (Q > q) ≈
∫ ∞
q

cf(x)dx.
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Fig. 1. Overflow probabilities based on exact formula vs. Simulation
results for H = 0.5, σ2

1 = 1, µ = −0.5 with ∆t =1, 0.1 and 0.01.
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Fig. 2. Overflow probabilities based on the asymptotes of [9]
and [14], and our approximation vs. simulation results for H =
0.3, σ2

1 = 1, µ = −0.5.
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Fig. 3. Overflow probabilities based on the asymptotes of [9]
and [14], and our approximation vs. simulation results for H =
0.4, σ2

1 = 1, µ = −0.5.
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Fig. 4. Overflow probabilities based on the asymptotes of [9]
and [14], and our approximation vs. simulation results for H =
0.6, σ2

1 = 1, µ = −0.5.
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Fig. 5. Overflow probabilities based on the asymptotes of [9]
and [14], and our approximation vs. simulation results for H =
0.7, σ2

1 = 1, µ = −0.5.
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Fig. 6. Overflow probabilities based on the asymptotes of [9]
and [14], and our approximation vs. simulation results when x is large
for H = 0.3, σ2

1 = 1, µ = −0.5.
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Fig. 7. Overflow probabilities based on the asymptotes of [9]
and [14], and our approximation vs. simulation results when x is large
for H = 0.4, σ2

1 = 1, µ = −0.5.
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Fig. 8. Overflow probabilities based on the asymptotes of [9]
and [14], and our approximation vs. simulation results when x is small
for H = 0.7, σ2

1 = 1, µ = −0.5.

Let us define the regularised incomplete Gamma function by

G(a, x) =

(∫ ∞
x

ta−1e−tdt

)
/Γ(a). (9)

By substituting kt for t, we find

Γ(a)G(a, x) = ka
∫ ∞
x/k

ta−1e−ktdt.

Then we can derive a dimensioning formula from (6) as
follows:

P (Q > q) ≈
∫ ∞
q

cf(x)dx

=
να

β
ν

Γ
(
β
ν

) ∫ ∞
q

yβ−1e−αy
ν

dy

which, using the substitution u = yν , in which case du =
νyν−1dy, or putting it another way, du = νu

ν−1
ν dy

=
α
β
ν

Γ
(
β
ν

) ∫ ∞
qν

u
β−1
ν u

1−ν
ν e−αudu

=
α
β
ν

Γ
(
β
ν

) ∫ ∞
qν

u
β
ν−1e−αudu

= G(
1

2H
,αqν) (10)

Let us define the inverse regularised incomplete Gamma
function, G−1(α, y), by the property

G−1(α,G(α, x)) = G(α,G−1(α, x)) = x. (11)

Now since we have defined ε = P (Q > q), and recall that
ν = 2− 2H , we obtain:

α ≈ G−1
(

1

2H
, ε

)
q2H−2. (12)

Let us now use the original defining equation for α, which
expresses it in terms of µ, to determine a formula for µ and

hence then C:

α =
(1−H)2H−2|µ|2H

2H2Hσ2
1

=⇒ (1−H)2H−2|µ|2H = 2αH2Hσ2
1

=⇒ |µ| =

(
2αH2Hσ2

1

(1−H)2H−2

) 1
2H

.

(13)

Now since µ = λ−C, where C is the capacity and λ denotes
denotes the mean rate of the traffic,

C − λ =

(
2αH2Hσ2

1

(1−H)2H−2

) 1
2H

so

C = λ+

(
2H2Hσ2

1G
−1 ((2H)−1, ε

)
(1−H)2H−2

) 1
2H

q−
1−H
H . (14)

We have obtained a simple and elegant formula for link
capacity loaded by fBm traffic. From this formula simple
relationships can be observed. One observation is that the
required spare capacity beyond the arrival rate (λ) is inde-
pendent of λ. Another simple observation is that the spare
capacity relates to σ1 according to σ

1/H
1 . In next subsection

we provide numerical results to illustrate such relationships.

B. Numerical results

Numerical results of link dimensioning for a range of
examples using the method developed above are presented in
Figures 9–13. The results presented are for the total capacity
C, but it is important to keep in mind the concept of spare
capacity C−λ. In all the figures except Fig. 12 we set λ = 1.
This could represent date rate in order of Gb/s, e.g., one OC-
192 or OC-768 with rate of 10 Gb/s or 40 Gb/s. Then q = 0.1
would represent QoS measure of 100 ms.

In Figure 9 we illustrate the total capacity C required as a
function of the second QoS measure ε within the range 10−5−
−1. As expected the spare capacity required, i.e. C − 1, is
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Fig. 9. Capacity versus ε by (14) for H = 0.8, σ1 = 0.05, λ = 1 and
q = 0.1.

0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1
1.08

1.09

1.1

1.11

1.12

1.13

1.14

1.15

1.16

1.17

H

C
ap

ac
ity

 (
C

)

Fig. 10. Capacity versus H by (14) for σ1 = 0.05, λ = 1, q = 0.1 and ε
= 0.001.

reduced with the QoS measure ε. For the case λ = 1, the
spare capacity C − 1 approaches zero as the QoS is further
and further relaxed.

In Figure 10 we illustrate that the total capacity C increases
with the Hurst parameter H . This is also expected as stronger
correlation in the traffic stream means higher queueing delay.

In Figure 11 we illustrate that the total capacity C increases
with the standard deviation parameter σ1. This is also expected
as stronger variation in the traffic stream, normally, means
higher queueing delay.

As observed in (14), total capacity C increases linearly with
λ. This is illustrated in Figure 12.

In Figure 13 we illustrate that the total capacity C de-
creases as the QoS parameter q increases. Namely, allowing
more delay and more buffering relaxed delay requirement, so
less capacity is expected to be required. The space capacity
required approached zero as queue is allowed to approach
infinity. This is consistent with known results in elementary
Markovian queues.

VI. DISCUSSION

The fractional Brownian motion model is not universally
appropriate to Internet traffic. An important weakness of this
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Fig. 11. Capacity versus σ1 by (14) for H = 0.8, λ = 1, q = 0.1 and
ε = 0.001.
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ε = 0.001.



model is that for certain ranges of the parameters it exhibits
the phenomenon of negative traffic to an excess. A small
amount of negative traffic will always be present in the fBm
model, but since real networks have no negative traffic at all,
it is inappropriate to use a model which has large amounts
of it. When σ1 is large relative to λ, or when H � 0.5,
and especially when both of these conditions hold, the model
will exhibit large amounts of negative traffic when observed
at small time scales.

It may be possible to re-interpret an fBm model in a manner
which alleviates this problem and enables us to use this model
for a wider range of parameters. However, in the absence of
such a strategy it will be necessary to confine the use of the
fBm model to situations where H ≥ 0.6, q > 0.1, and σ1 ≤
0.05. The constraint on H is quite reasonable, since H values
smaller than this are rarely if ever observed in real networks.
The constraint on σ1 means that we must confine applications
to core links of networks, where the traffic is relatively smooth.
This was indeed, always our intention. The constraint on q
means that we are assuming buffers large enough to hold the
traffic arriving in 0.1 seconds. The model can be used with
smaller buffers than this if the traffic is smoother, i.e. σ1 is
less.

VII. CONCLUSION

We have considered a queue fed by fBm input and derived
new results for queueing performance and link dimensioning.
We have also described an efficient approach to simulate such
a queue. Agreement between the analytical and the simulation
results have been demonstrated and a numerical comparison
with existing asymptotes has been presented. We have also
presented numerical results for a range of examples for link
dimensioning based on our queueing analysis.

Finally, we would like to comment that the work here is only
an initial step to bridge the gap between theory and practice.
Much work is still required to understand the limitations and
the usefulness of the fBm model in network design. Such
understanding must be established using more realistic models
and actual measurements.
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