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A B S T R A C T   

Schizophrenia (ScZ) is a chronic mental disorder affecting the function of the brain, which causes emotional, 
social, and cognitive problems. This paper explored the functional brain network and deep learning methods to 
detect ScZ using electroencephalogram (EEG) signals. Functional brain network analysis was proposed and 
implemented using a multivariate autoregressive model and coherence connectivity algorithm. The three ma-
chine learning techniques and 3D-convolutional neural network (CNN) models were applied to classify the ScZ 
patients and health control subjects, and then the public LMSU database was utilized to assess the performance. 
The proposed 3D-CNN method achieved the performance of a 98.47 ± 1.47 % in accuracy, 99.26 ± 1.07 % in 
sensitivity, and 97.23 ± 3.76 % in specificity. Moreover, in addition to the default mode network region, the 
temporal and posterior temporal lobes of both right and left hemispheres were found as the significant difference 
areas in ScZ brain network analysis.   

1. Introduction 

Schizophrenia (ScZ) is a mental neuropsychiatric disorder of the 
brain, which affects emotional behaviours, persistent delusions, and 
cognitive deficit symptoms [1–3]. Regarding to the report of World 
Health Organization in 2022, approximately 24 million people suffered 
from ScZ disease [4]. In clinical detection, electroencephalogram (EEG) 
is an auxiliary approach to detect brain’s electronic signal, which can 
provide high accuracy detection without any physical intrusion [5]. 
Compared with other two popular brain detection techniques, func-
tional magnetic resonance imaging (f-MRI) and magnetoencephalogra-
phy (MEG), EEG presents two prominent advantages: it demands less 
extensive training for operators, making it more accessible for medical 
professionals, and it involves significantly lower equipment costs, 
making it a cost-effective option for brain monitoring and research 
[6,7]. 

Majority of researchers, in recent years, detected the ScZ diseases 
through functional brain network analysis using f-MRI data because the 
f-MRI technique can directly solve the space resolution problem [8–10]. 
Long, Q, et al. utilized independent vector analysis to extract common 
subspace components from fMRI data in individuals with ScZ and health 
control (HC) participants [8]. They found significant differences in 

functional brain networks between the two groups. The results of their 
study contribute to our understanding of the neural mechanisms un-
derlying ScZ and provide insights into the potential biomarkers or tar-
gets for diagnosis and treatment. Fu, Z et al. applied a brain activity- 
connectivity algorithm to fMRI data from individuals diagnosed with 
ScZ [9]. This algorithm involved estimating brain activity fluctuations 
and assessing connectivity patterns between different brain regions. By 
covarying the brain activity with connectivity measures, the researchers 
investigated how changes in brain activity related to fluctuations in 
network efficiency. Zhang, G et al. applied the Joint directed acyclic 
graph estimation model to detect abnormal fMRI connectivity in ScZ 
[10]. Their findings revealed decreased functional integration, dis-
rupted hub structures, and characteristic edges in ScZ subjects. These 
results contribute to the understanding of the neural underpinnings of 
ScZ and provide insights into the specific connectivity abnormalities 
associated with the disorder. Inspired by the deep understanding of ScZ 
diseases through functional brain network analysis in f-MRI data, the 
functional brain network analysis is explored into EEG signal in this 
study. 

The default mode network (DMN) has been found to exhibit signif-
icant differences in resting-state brain activity between individuals with 
ScZ and HC subjects [11]. The DMN is a network of brain regions that 
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are consistently active during rest and are involved in self-referential 
thinking, introspection, and mind-wandering. The DMN consists of 
several key areas, including the mesial prefrontal cortex (MPC), the 
lateral posterior cortex (LPC), and the posterior cingulate cortex/pre-
cuneus (PCC) [11]. Zhang, S et al. applied the DMN region as a node of f- 
MRI data to detect abnormal ScZ connectivity [12]. F-MRI DMN func-
tional connectivity analysis was also utilized via Fan. J et al to detect ScZ 
and obsessive–compulsive disorder [13]. However, the study conducted 
by Phang et al. focused on the functional brain network analysis of ScZ 
[14]. They employed whole brain connectivity analysis, which involves 
investigating the connections and interactions among all brain regions, 
rather than focusing solely on local brain networks. Based on the in-
formation provided, the study highlights the importance of considering 
the entire brain’s functional connectivity, including regions within the 
DMN, to gain a more complete understanding of the abnormal brain 
activity in ScZ. 

In EEG analysis, traditional signal processing and machine learning, 
as well as deep learning models, have been widely employed in classi-
fying EEG ScZ signals. Baygin, M et al. proposed collatz pattern tech-
nique and K-nearest neighbour (k-NN) classifier to detect EEG ScZ 
patients and achieved 99.47 % and 93.58 % in accuracy using two public 
ScZ databases [15]. Akbari et al. calculated ScZ features through phase 
space dynamic features and employed the k-NN model for classification 
[16]. Their research reported an accuracy of 94.80 %, sensitivity of 
94.30 %, and specificity of 95.20 %. Lillo et al. utilized a convolutional 
neural network (CNN) to identify ScZ diseases and achieved a success 
rate of 93 % in accuracy [17]. They also highlighted the ability of their 
study to achieve computer-assisted diagnosis in just 3 min. Supakar et al. 
proposed a deep learning model that combines recurrent neural network 
(RNN) and long short-term memory (LSTM) network to detect ScZ using 
the Lomonosov Moscow State University (LMSU) dataset [18]. They 
achieved an accuracy of 98 % in their experiment. Sairamya et al. 
employed the discrete wavelet transform (DWT) and relaxed local 
neighbour difference pattern (RLNDiP) technique to detect ScZ in the 
LMSU database [19]. Their approach yielded a maximum accuracy of 
100 % in their experiment. Hassan et al. applied CNN to extract ScZ 
signal features and classified the features using the logistic regression 
method [20]. They obtained accuracies of 90 % and 98 % on subject- 
based and non-subject-based testing, respectively. Gosala et al. utilized 
the wavelet scattering transform (WST) as a signal processing method to 
detect ScZ EEG signals [21]. They reported accuracy rates of 97.98 %, 
sensitivity of 98.2 %, specificity of 97.72 %, and a Kappa score of 95.94 
% in SVM classification. 

The functional brain network is also applied to provide biomarkers of 
the ScZ diseases. Wang, J et al. investigated the left frontal-parietal/ 
temporal networks and found biomarkers of auditory verbal hallucina-
tions (AVH) in ScZ diseases through phase locking value (PLV) con-
nectivity algorithm. They also achieved a classification result of 80.95 % 
accuracy in AVH patients and non-AVH patients [22]. Prieto-Alcantara 
et al. explored neurophysiological differences in different cognitive 
states between ScZ patients and HC subjects using the EEG coherence 
connectivity method [23]. Their study provided evidence of these dif-
ferences and highlighted the potential of functional connectivity anal-
ysis in understanding ScZ. In our previous work, dynamic functional 
connectivity analysis using the cross mutual information (CMI) algo-
rithm with a 3D CNN was applied to identify ScZ EEG signals [24]. The 
results showed an accuracy of 97.74 ± 1.15 %, sensitivity of 96.91 ±
2.76 %, and specificity of 98.53 ± 1.97 %. Furthermore, the fuzzy 
localization of ScZ diseases was investigated in this study as well. 

The multivariate auto-regressive model (MVAR) coherence func-
tional brain network method with 3D-CNN model is applied to detect the 
EEG ScZ signal in this Study. The MVAR coherence method was utilized 
to estimate the connectivity between different brain regions based on 
EEG data. This method allows for the extraction of frequency domain 
features, enabling the identification of abnormal connectivity areas 
associated with ScZ. After that, the 3D-CNN model was designed to 

classify functional brain network features between ScZ patients and HC 
subjects. This model leverages the extracted features from the MVAR 
coherence brain network to differentiate between the two groups. The 
sliding window technique was employed to capture the dynamic 
changes in ScZ by considering the time-varying nature of the functional 
brain network. This technique allows for the analysis of EEG signals in 
small overlapping windows, considering temporal variations and 
improving the accuracy of the experiment. Moreover, the study analysed 
different brain rhythms to reduce computational costs. It found that the 
α band (8–12 Hz) demonstrated the best performance in testing data. 
This suggests that focusing on the α band frequency range yields 
meaningful results in the context of ScZ analysis. Furthermore, the study 
performed statistical analysis on the whole brain connectivity to verify 
abnormal connectivity areas. Specifically, abnormal connectivity areas 
were identified in the DMN region, as well as the temporal lobe and 
posterior temporal lobe of both hemispheres. All the experiments are 
simulated in MATLAB 2021b software on a Dell workstation with an 
NVIDIA 3080TI GPU. 

In this paper, Section 1 introduces the research background and the 
related works in recent years. The objectives this study is also included 
in this section. Section 2 describes the proposed methodology, which 
includes the data pre-processing, signal processing method, functional 
brain network analysis and classification models. The dataset details are 
also report in this section. The results and comparison of the experiment 
are listed in Section 3. In Section 4, statistical analysis of whole brain 
connectivity, dynamic analysis and the comparison with previous work 
are discussed while the conclusion is made in Section 5. 

2. Methodology 

Five main procedures in ScZ detection based on the EEG signal are 
briefly summarized in Fig. 1. There are two pre-processing steps, 
including denoised the EEG raw data and the sliding window size se-
lection, to remove the artifacts and extend dynamic research. MVAR 
model is introduced to transform data from the time domain into the 
frequency domain, which can provide more spectrum information in 
different brain rhythms. To extract the brain graph features, the 
coherence algorithm is applied to construct the functional brain 
network. Machine learning models and 3D-CNN are used to classify the 
ScZ subjects and HC subjects using their brain graph features. Finally, 
three parameters are proposed to evaluate the designed method in this 
study. 

2.1. Datasets and pre-processing 

In the evaluation of the proposed methodology for EEG ScZ detec-
tion, the researchers utilized a publicly available database called LMSU 
[25,26]. This database consisted of EEG recordings from a total of 84 
subjects, including 45 individuals diagnosed with ScZ and 39 HC sub-
jects. The LMSU dataset provided EEG signals collected from 16 chan-
nels, namely F7, F3, F4, F8, T3, C3, Cz, C4, T4, T5, P3, Pz, P4, T6, O1, 
and O2. The sampling rate of the EEG signals in this dataset was 128 Hz. 

By using a sliding window with a 30-second size and a 1-second 
overlap, the study considered short-term variations in the EEG signal, 
which can provide insights into the dynamic changes in brain activity 
associated with ScZ. The choice of these parameters indicates that the 
proposed methodology can potentially be applied in real-time applica-
tions, as it allows for continuous monitoring and analysis of the EEG 
signal. To prepare the EEG data for analysis, a 6th-order Butterworth 
zero-phase filter was applied to the raw data. This filter had a passband 
frequency range of 1–50 Hz. The purpose of this filtering step was to 
denoise the EEG signals and remove any artifacts that may have been 
present. 
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2.2. Multivariate auto-regressive model 

The MVAR model is used to analyse multivariate time series data, 
such as EEG signals, by representing the relationships between vari-
ables, which is applied to convert the denoised EEG data into frequency 
domain features within the α band (8–12 Hz). The algorithm of MVAR 
model is illustrated in formula (1). 

X(n) =
∑p

k=1
A(k) × X(n − k) + W(n) (1)  

where A(k) are M × M coefficient matrix which calculates the linear 
interaction in lag k from xj(n − k) to xi(n), (i, j = 1, ...,M) of MVAR 
model. W(n) represents a column vector of model errors or innovations 
in the form of Gaussian noise, characterized by a covariance matrix Σ. To 
calculate the coefficient matrix A(k) and covariance matrix Σ, the Yule- 
Walker equation is used to describe the relationship between two 
matrices [27]. p is the order of the MVAR model and calculated via the 
Akaike Information Criterion (AIC) algorithm. The AIC can select the 
order number fitting effect of the model and avoid the phenomenon of 
overfitting when the p is too large. The formula of AIC is shown in 
equation (2). 

AIC(p) = − ln(̂l)+ 2k (2)  

In equation (2), k is the total parameters used for model fitting and ln(̂l)
is the maximum likelihood estimations of log likelihood. To convert the 
EEG data into frequency domain spectrum, the Fourier transform is 
employed. The transfer matrix of MVAR model H(f), and cross-spectrum 
matrix S(f) are estimated in equation (3) and (4). 

H(f ) =

(
∑p

k=0
− Ake− jk2πf

)− 1

(3)  

S(f ) = H(f )
∑(

HH(f )) (4)  

where H(f) is the spectral matrix at frequency ‘f’, HH(f) is the conjugate 
transpose of H(f),Σ is the noise covariance matrix. Ak is the parameter of 
M × M coefficient matrix, ‘p’ is the model order and ‘j’ represents the 
imaginary unit. 

2.3. Functional brain network analysis 

The coherence connectivity based MVAR model is applied to 
construct the functional brain network in the corresponding frequency 
domain. The algorithm of magnitude-squared coherence between two 
different channels is shown in equation (5): 

cohxy(f ) =

⃒
⃒
⃒
⃒
⃒

Sxy(f )
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
Sxx(f )Syy(f )

√

⃒
⃒
⃒
⃒
⃒

2

(5)  

where the Sxx(f)H(Fi) is the power spectrum density of x, the Syy(f)H(Fi)

is the power spectrum density of y, and Sxy(f)H(Fi) is the cross-spectral 
power spectrum density between x and y. 

In the described experiment, to extract more information from the 

MVAR coherence connectivity matrix, the functional brain network is 
computed for each frequency range within the α band. Specifically, the 
frequency ranges of 8–9 Hz, 9–10 Hz, 10–11 Hz, and 11–12 Hz are 
considered. Since the experiment involves EEG data from 16 channels, 
the resulting matrix has dimensions of 16 × 16. For instance, the 4-level 
functional brain network of a subject ‘022w′ in ScZ case is illustrated in 
Fig. 2. 

2.4. Classification 

After the features of the functional brain network have been 
extracted from the EEG raw signal, the next task is to classify the features 
between ScZ patients and HC subjects through machine learning and 
deep learning methods. In this study, three machine learning methods 
include SVM, k-NN and decision tree (DT) models, and the proposed 3D- 
CNN were used to classify the testing data. 

2.4.1. Leaving one group out training method 
By using the leaving one group out method, the experiment aims to 

assess the generalizability and performance of the model on unseen 
data. It helps to ensure that the model is not biased or overfitted to a 
specific group of subjects. Therefore, five models have been established 
in this study. The details of the 5-group dataset are summarized in 
Table 1. 

2.4.2. Machine learning methods 
The Classification Learner Toolbox in MATLAB 2021b is applied in 

this part. In training progress, 80 % of the data is used for training, and 
the remaining 20 % is set aside for validation. The training set is used to 
train the models, while the validation set is used to evaluate their per-
formance and tune any hyperparameters. The validation accuracy is 
listed in the Table 2. 

In the functional brain network, the matrix is symmetrical and the 
coherence value between the same node equals 0. To reduce the 
computational cost, about (16 × 16–16) / 2 × 4 = 480 values of the 4- 
layer functional brain network matrix are selected as input. 

2.4.3. Deep learning method 
In functional brain network analysis, the brain is regarded as a large- 

scale network, which is also known as the brain graph that consists of the 
nodes and edges. The nodes here are the EEG channels, and the edges are 
the brain connectivity. CNN is an advanced deep learning method that 
has been successfully applied in photograph classifications, such as 
Google-net CNN, VGG-net CNN, and Alex-net CNN. Therefore, the 3D- 
CNN is designed and employed to classify the brain graph data in this 
study. The architecture of the 10-layer 3D-CNN is shown in the Fig. 3. 

The designed 3D-CNN model in the experiment consists of four 
convolution layers, three ReLU layers, one max pooling layer, and one 
fully connected layer. The architecture aims to classify subjects with ScZ 
and HC subjects. To address overfitting, batch normalization is applied 
in the four convolution layers. Batch normalization helps stabilize and 
normalize the activations within each mini batch during training, 
reducing the likelihood of overfitting. The first convolution layer has a 
kernel size of 3 × 3 × 3 and 64 channels. After this layer, a max pooling 
layer is employed to reduce the dimensions of the 3D-image input into 

Fig. 1. The progress of ScZ automatic identification.  
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2D-image data. The subsequent three convolution layers all have a 
kernel size of 3 × 3 × 1 and 64 channels. The purpose of these layers is to 
capture relevant features from the input data. A max pooling layer with 
a size of 2 × 2 × 2 and a stride of 2 × 2 × 2 is used to down sample the 
feature maps and reduce the computational cost during training. ReLU 
layers follow each convolution layer. The ReLU activation function in-
troduces non-linearity to the model by setting negative values to zero, 
allowing the network to learn complex patterns and improve its repre-
sentational power. Since the experiment focuses on classifying ScZ and 

HC subjects, the fully connected layer is designed for two-class classi-
fication. This layer aggregates the learned features and performs clas-
sification based on the extracted information. The last layer of the 
architecture is a Softmax classifier, which provides the prediction results 
of the proposed method. The Softmax function assigns probabilities to 
each class, indicating the model’s confidence in its predictions. The 
details of the input size and output size of each layer are summarized in 
Table 3. 

The same validation method with 50 iterations validation frequency 
is used in the designed 3D-CNN model and achieved 100 % validation 
accuracy using the leaving one group out training method. The opti-
mizer of the proposed deep learning model in MATLAB 2021b is shown 
in Fig. 4. 

3. Results and comparison 

In the evaluation of the proposed method for EEG ScZ detection using 
the LMSU database, accuracy, sensitivity, and specificity are calculated 
as performance metrics. Accuracy represents the proportion of correctly 
classified samples (both true positives and true negatives) out of the 
total number of samples. Higher accuracy values indicate better per-
formance in classifying ScZ and HC subjects. The formula of accuracy is 
described in equation (6). 

Acc =
TP + TN

TP + TN + FP + FN
(6)  

where ‘TP’, ‘TN’, ‘FP’, ‘FN’ correspond to the true positive, true negative, 
false positive and false negative. 

Sensitivity, also known as true positive rate or recall, measures the 
proportion of ScZ subjects that are correctly identified as positive by the 
classification model. It indicates the ability of the method to correctly 
detect ScZ cases. Higher sensitivity values indicate a lower rate of false 
negatives, suggesting a better ability to identify true positive ScZ sub-
jects. The algorithm of sensitivity is shown in equation (7). 

Fig. 2. Functional brain network of subject ‘022w’ in ScZ case.  

Table 1 
Five-group data for classification.   

ScZ dataset HC dataset 

Group 
A 

022w, 32w, 219w, 221w, 387-02w, 
387-03w, 510-1w, 515w, 642w 

s10w, s12w, s43w, s47w, s78w, 
s85w, s158w, s174w 

Group 
B 

33w, 088w, 249w, 276w, 401w, 
423w, 517w, 683w, 719w 

s18w, s20w, s50w, s94w, 
s163w, s164w, s176w, s177w 

Group 
C 

103w, 113w, 307w, 312w, 429w, 
454-1w, 540w, 548w, r229w 

s26w, s53w, s55w, s152w, 
s153w, s165w. s167w, s178w 

Group 
D 

155w, 156w, 314w, 485w, 508w, 
573w, 575w, r416w, s083w 

s27w, s31w, s59w, s60w, 
s154w, s169w, s170w, s179w 

Group 
E 

192w, s084-1w, 342w, 382w, 509w, 
s351w, 585w, 586w, s425w 

s42w, s72w, s155w, s157w, 
s173w, s182w, s196w  

Table 2 
The Validation accuracy of SVM, k-NN and DT.   

Test group SVM KNN DT 

Validation accuracy 
(%) 

Group A 99.52 100.00 98.21 
Group B 100.00 100.00 97.98 
Group C 100.00 100.00 99.41 
Group D 99.08 100.00 98.33 
Group E 99.73 100.00 99.03 
Mean ±
Std 

99.67 ±
0.38 

100.00 ±
0.00 

98.59 ±
0.60  
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Sen =
TP

TP + FN
(7)  

Specificity measures the proportion of HC subjects that are correctly 
identified as negative by the classification model. It represents the 
ability of the method to correctly identify HC cases. Higher specificity 
values indicate a lower rate of false positives, indicating a better ability 
to correctly identify true negative HC subjects. 

Spe =
TN

TN + FP
(8)  

3.1. Results of the proposed method 

Three machine learning methods, SVM, k-NN and DT, and the pro-
posed 3D-CNN are used to detect EEG ScZ functional brain network. 
From Table 4, the proposed 3D-CNN has achieved the best performance 
in this study, which reports the results of 98.47 ± 1.47 % accuracy, 
99.26 ± 1.07 % sensitivity, and 97.23 ± 3.76 % specificity of testing 
data. 

According to Table IV, these three machine learning models achieve 
very high validation result, but they could not overcome the robustness 
problem. Furthermore, the standard deviation of the proposed method is 
significantly smaller than the machine learning methods, which implies 
that every subject can be detected stably through the 3D-CNN model. It 
also indicates that the proposed 3D-CNN model can be used in the 
clinical applications. 

3.2. Comparison with different complex brain network methods 

Based on the MVAR model, five other connectivity algorithms are 
used to evaluate the proposed method, which includes the directed 
coherence (DC), directed transform function (DTF), PDC, generalized 
partial directed coherence (GPDC) and partial coherence (PCO). The 
details of the comparison are shown in Table 5. 

The effective connectivity methods, including DC, DTF, PDC, GPDC 
algorithm, consider the directionality of brain connectivity, which can 
determine the causality information between the connectivity. Howev-
er, it cannot obtain high-accuracy detection results in this study as 
shown in Table 5. 

Fig. 3. 10-layer 3D-CNN architecture, ‘Conv’ is the convolution layer and ‘FC’ 
is the fully connected layer. 

Table 3 
The details of deep learning method architecture.  

Layer Level Input Size Output Size hyperparameters 

– 16 × 16 × 4 ×
1   

Level 1 (Conv) 16 × 16 × 4 ×
1 

14 × 14 × 2 ×
64 

Kernel size: 3 × 3 × 3 
Stride: 1 × 1 × 1 
Channel: 64 

Level 2 (ReLU) 14 × 14 × 2 ×
64 

14 × 14 × 2 ×
64  

Level 3 (Max 
Pooling) 

14 × 14 × 2 ×
64 

7 × 7 × 1 × 64 Pooling Size: 2 × 2 ×
2 
Stride: 2 × 2 × 2 

Level 4 (Conv) 7 × 7 × 1 × 64 5 × 5 × 1 × 64 Kernel size: 3 × 3 × 1 
Stride: 1 × 1 × 1 
Channel: 64 

Level 5 (ReLU) 5 × 5 × 1 × 64 5 × 5 × 1 × 64  
Level 6 (Conv) 5 × 5 × 1 × 64 3 × 3 × 1 × 64 Kernel size: 3 × 3 × 1 

Stride: 1 × 1 × 1 
Channel: 64 

Level 7 (ReLU) 3 × 3 × 1 × 64 3 × 3 × 1 × 64  
Level 8 (Conv) 3 × 3 × 1 × 64 1 × 1 × 1 × 64 Kernel size: 3 × 3 × 1 

Stride: 1 × 1 × 1 
Channel: 64 

Level 9 (FC) 1 × 1 × 1 × 64 1 × 1 × 1 × 2  
Level 10 (Softmax) 1 × 1 × 1 × 2   

* ‘Conv’ is the convolution layer and ‘FC’ the fully connected layer. 

M. Shen et al.                                                                                                                                                                                                                                    



Biomedical Signal Processing and Control 89 (2024) 105815

6

3.3. Comparison with different frequency bands 

In EEG studies focused on detecting ScZ and studying the neural 
markers of disorders, researchers typically investigate a range of brain 
rhythms, with a particular emphasis on deviations or abnormalities from 
normal patterns. Frequency band selection in EEG experiments related 
to ScZ is a critical step that allows researchers to focus their analyses on 
specific aspects of neural activity that are most relevant to the disorder. 
This targeted approach helps uncover meaningful insights and potential 
biomarkers associated with ScZ, facilitating both research and clinical 
applications. The frequency band selection is performed to optimize 
computing costs while maintaining the effectiveness of EEG ScZ iden-
tification in this experiment. The MVAR coherence is constructed in 
different frequency bands, namely δ band (0–4 Hz), θ band (4–8 Hz), α 
band (8–12 Hz), β-1 band (12–16 Hz), β-2 band (16–20 Hz), β-3 band 
(20–24 Hz), and β-4 band (24–28 Hz). The purpose is to identify the 
brain rhythms within these frequency bands that yield the best results in 
EEG ScZ identification. The results of this analysis are summarized in 
Table 6, which provides information on the performance metrics (such 
as accuracy, sensitivity, and specificity) achieved in each frequency 
band. 

According to Table 6, the α band brain rhythm has been verified as 
the best frequency band to detect the ScZ from EEG signal. The previous 
work stated that alterations in α rhythms have been reported in ScZ, 
potentially related to disruptions in sensory gating and attention pro-
cesses [28]. This comparison also proves that α rhythms, particularly in 
the resting state with eyes closed, can provide insights into the 

Fig. 4. The optimizer of self-designed 3D-CNN model of testing group A.  

Table 4 
The test results for SVM, k-NN, DT and 3D-CNN model.  

Results Test 
group 

SVM k-NN DT 3D-CNN 

Accuracy 
(%) 

Group A 89.92 77.22 74.19 98.59 
Group B 84.48 79.23 79.64 98.19 
Group C 79.81 74.80 79.44 96.17 
Group D 89.52 74.60 76.01 100.00 
Group E 84.48 80.44 77.22 99.40 
Mean ±
Std 

85.64 ±
4.18 

77.26 ±
2.60 

77.30 ±
2.31 

98.47 ± 
1.47 

Sensitivity 
(%) 

Group A 86.46 73.21 90.83 97.67 
Group B 76.72 79.52 76.42 100.00 
Group C 76.86 70.54 83.63 100.00 
Group D 86.34 71.16 84.03 100.00 
Group E 81.53 74.59 82.91 98.64 
Mean ±
Std 

81.58 ±
4.81 

73.80 ±
3.58 

83.56 ±
5.11 

99.26 ± 
1.07 

Specificity 
(%) 

Group A 91.24 75.58 45.62 99.07 
Group B 92.63 73.57 78.83 95.85 
Group C 80.52 72.81 65.90 91.24 
Group D 90.32 70.51 55.76 100.00 
Group E 83.41 83.87 60.37 100.00 
Mean ±
Std 

87.62 ±
5.33 

75.27 ±
5.14 

61.30 ±
12.31 

97.23 ± 
3.76  

Table 5 
The comparison between different connectivity methods.  

Connectivity method Accuracy (%) Sensitivity (%) Specificity (%) 

DC 74.44 ± 6.78 77.24 ± 12.90 62.67 ± 18.17 
DTF 72.06 ± 4.31 71.30 ± 6.87 61.11 ± 5.41 
PDC 79.32 ± 6.12 85.37 ± 3.19 63.96 ± 17.44 
GPDC 78.87 ± 5.40 90.29 ± 12.93 62.03 ± 23.35 
PCO 81.29 ± 10.39 77.63 ± 11.86 80.55 ± 11.99 
Proposed method 98.47 ± 1.47 99.26 ± 1.07 97.23 ± 3.76  

Table 6 
The comparison between different frequency band.  

Frequency band Accuracy (%) Sensitivity (%) Specificity (%) 

δ band (0–4 Hz) 85.04 ± 5.30 80.42 ± 6.59 87.37 ± 5.76 
θ band (4–8 Hz) 90.20 ± 4.23 85.85 ± 2.60 92.81 ± 8.56 
α band (8–12 Hz) 98.47 ± 1.47 99.26 ± 1.07 97.23 ± 3.76 
β-1 band (12–16 Hz) 92.39 ± 4.49 91.78 ± 5.46 90.78 ± 5.21 
β-2 band (16–20 Hz) 92.42 ± 5.60 92.20 ± 7.49 90.60 ± 5.98 
β-3 band (20–24 Hz) 92.82 ± 5.34 92.58 ± 5.92 90.97 ± 8.71 
β-4 band (24–28 Hz) 91.17 ± 7.05 87.36 ± 8.76 93.73 ± 7.41  
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functional connectivity and synchronization of brain regions. 

4. Discussion 

4.1. Statistical analysis of MVAR coherence connectivity 

In functional brain network analysis, different brain regions corre-
spond to different functions. Through the statistical analysis of brain 
connectivity value, the biomarker of abnormal connectivity between the 
ScZ patients and HC subjects can be found. DMN region is the most 
significant part of the brain, which is related to the function of sensory, 
motor executive control and visual components [29]. There are three 
brain regions in DMN, including LPC, MPC and PCC [11]. In EEG 
analysis, Brodmann areas (BA) are applied to correspond to the DMN 
region with the EEG electrodes and the details shown in Table 7 [30,31]. 

Based on the derived mean value and standard deviation of the 
whole brain connectivity of the functional brain network, the abnormal 
connectivities with the major difference mean value (≥0.10) between 
ScZ subjects and HC subjects are listed in Table 8. 

From the statistical analysis results of Table VIII, not only the con-
nectivity of DMN regions but also the connectivity of T4 - T6 and T3 - T5 
are the biomarkers of the ScZ disease, which corresponds to the tem-
poral lobe and posterior temporal lobe area in both right and left side. It 
also indicates that the whole brain connectivity analysis of the func-
tional brain network is necessary. 

4.2. Dynamic analysis 

In dynamic connectivity analysis of EEG signal for ScZ detection, the 
selection of an appropriate sliding window size is critical for capturing 
the temporal dynamics of functional connectivity patterns in brain. 
Dynamic connectivity analysis aims to examine how the strength and 
patterns of functional connections between brain regions change over 
time. Considering the temporal characteristics of ScZ-related neural 
phenomena. ScZ is associated with both rapid and slower changes in 
brain activities. Larger window sizes tend to smooth out rapid changes 
and variations in EEG signal, potentially leading to a loss of important 
temporal information. This can make it challenging to cluster and 
analyse the dynamic patterns associated with ScZ accurately. On the 
other hand, the selection of a window too small can lead to decreased 
accuracy. Smaller window sizes might not capture sufficient information 
about the temporal dynamics of ScZ, and the analysis may be affected by 
noise or random fluctuations within shorter time intervals. This can 
result in decreased sensitivity and specificity of the method. As a result, 
the sliding window size of 3-second, 5-second. 10-second, 30-second and 
40-second are evaluated with the proposed method, and the results are 
shown in Table 9. 

The 30-second size can achieve the best performance in this study 
based on the above table. A smaller sliding window size makes it hard to 
capture the slower changes in brain function of ScZ diseases, and the 
maximum 40-second size segment creates a loss of temporal precision. 

4.3. Previous works comparison 

Comparisons with the related works in EEG ScZ detection are listed 

in Table 10. In this study, the proposed method receives 98.47 ± 1.47 % 
accuracy, 99.26 ± 1.07 % sensitivity, and 97.23 ± 3.76 % specificity 
results in the testing data. Compared with the previous related work, the 
proposed method can achieve satisfactory detection results using the 
public LMSU dataset. In addition, the biomarkers of abnormal connec-
tivity in DMN regions, temporal lobe and posterior temporal lobe area in 
both hemispheres are confirmed in this research. 

This EEG based ScZ detection study still has some limitations. Sliding 
window technique is not an advanced method to cluster the dynamic 
state of brain activity. In addition, it is difficult to use the statistical 
analysis of whole brain connectivity to achieve high precision localiza-
tion of ScZ disease. To overcome these limitations, the dynamic 
modelling analysis and source model reconstruction research will be the 
focus in our future research plan. 

5. Conclusion 

In contrast to existing research, this study distinguishes itself by 
furnishing invaluable biomarkers for ScZ and provides a high-accuracy 
detection approach of ScZ diseases. A new method proposed which in-
cludes the magnitude squared coherence algorithm and the MVAR 
model with a 1 Hz frequency resolution, coupled with the utilization of 

Table 7 
EEG electrodes in the Brodmann areas of DMN regions [32].  

DMN region Brodmann area EEG channel 

LPC BA39/40, Right P4 
LPC BA39/40, Left P3 
MPC BA08/09, Middle Cz 
MPC BA08/09, Right F4 
MPC BA08/09, Left F3 
PCC BA07, Middle Pz  

TABLE 8 
The mean value of connectivity values.  

Abnormal connectivity Connectivity values of ScZ Connectivity values of HC 

T4 - T6 0.496 ± 0.188 0.732 ± 0.134 
F3 - F4 0.287 ± 0.136 0.441 ± 0.156 
T3 - T5 0.558 ± 0.180 0.710 ± 0.147 
Cz - P4 0.421 ± 0.125 0.538 ± 0.169 
P4 - Pz 0.502 ± 0.137 0.609 ± 0.164 
Cz - Pz 0.548 ± 0.134 0.651 ± 0.167  

TABLE 9 
Dynamic analysis of functional brain network.  

Sliding window size Accuracy (%) Sensitivity (%) Specificity (%) 

3-second 87.91 ± 7.05 83.56 ± 6.99 90.00 ± 9.53 
5-second 89.11 ± 5.59 85.30 ± 5.13 90.66 ± 9.01 
10-second 90.20 ± 5.55 86.40 ± 5.78 92.10 ± 7.91 
30-second 98.47 ± 1.47 99.26 ± 1.07 97.23 ± 3.76 
40-second 90.89 ± 7.12 86.25 ± 8.62 94.56 ± 7.47  

TABLE 10 
Comparison of the related works in EEG ScZ detection.  

Related works Method Accuracy 
(%) 

Sensitivity 
(%) 

Specificity 
(%) 

Baygin, M et al 
(2021) [15] 

Collatz pattern 
technique + k-NN 

99.47 99.20 99.80 

Akbari, H et al. 
(2021) [16] 

Phase space 
dynamic features 
+ k-NN 

94.80 94.30 95.20 

Lillo, E et al. 
(2022) [17] 

CNN 93.00 – – 

Supakar, R et al. 
(2022) [18] 

RNN - LSTM 98.00 98.00 98.00 

Sairamya, N.J et 
al, (2022)  
[19] 

DWT + RLNDip 100 – – 

Hassan, F et al. 
(2023) [20] 

CNN + logistic 
regression 

98.05 ±
1.13 

99.00 ±
1.00 

97.00 ±
2.00 

Gosala, B et al. 
(2023) [21] 

WST + SVM 97.98 98.20 97.72 

Our previous 
work [24] 

CMI + 3D-CNN 97.74 ±
1.15 

96.91 ±
2.76 

98.53 ±
1.97 

Proposed 
method 

MVAR coherence 
+ 3D-CNN 

98.47 ±
1.47 

99.26 ±
1.07 

97.23 ±
3.76  
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the sliding window technique to capture dynamic brain connectivity. 
The magnitude squared coherence algorithm emerges as a standout 
performer in EEG ScZ detection, obtaining impressive metrics of 98.47 
% accuracy, 99.26 % sensitivity, and 97.23 % specificity during evalu-
ation and testing. In addition, the research identifies an optimal fre-
quency band (8–12 Hz) for EEG ScZ detection, not only economizing 
computational resources but also shedding light on the connection be-
tween ScZ and disruptions in sensory gating and attention processes. 
Most critically, this study’s findings illuminate the presence of irregular 
connectivity patterns in the DMN region, the temporal lobe, and the 
posterior temporal lobe, spanning both hemispheres of ScZ patients, 
thereby serving as promising biomarkers not only for the identification 
but also for the comprehension of neural anomalies associated with ScZ. 
The findings not only enrich the realm of ScZ research but also harbour 
significant potential for tangible clinical applications in the domain of 
ScZ detection and diagnosis. 
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