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Abstract: In this paper, a novel Siamese network-based lightweight framework is proposed for
automatic tomato leaf disease recognition. This framework achieves the highest accuracy of 96.97%
on the tomato subset obtained from the PlantVillage dataset and 95.48% on the Taiwan tomato leaf
disease dataset. Experimental results further confirm that the proposed framework is effective with
imbalanced and small data. The backbone network integrated with this framework is lightweight with
approximately 2.9629 million trainable parameters, which is second to SqueezeNet and significantly
lower than other lightweight deep networks. Automatic tomato disease recognition from leaf images
is vital to avoid crop losses by applying control measures on time. Even though recent deep learning-
based tomato disease recognition methods with classical training procedures showed promising
recognition results, they demand large labeled data and involve expensive training. The traditional
deep learning models proposed for tomato disease recognition also consume high memory and
storage because of a high number of parameters. While lightweight networks overcome some of
these issues to a certain extent, they continue to show low performance and struggle to handle
imbalanced data.

Keywords: plant disease; tomato disease; Siamese network; lightweight; imbalanced data

1. Introduction

In the next 30 years, food production needs to be increased approximately by 60%
to feed the expected population of 10 billion people on the earth [1]. Various natural and
artificial activities significantly reduce food production while anticipating reaching the
expected level. The hike in food production with potential losses should meet the global
demand for food. In general, plant diseases are a major threat to the modern agricultural
industry, heavily reducing the production and food quality [2]. The crop pests and diseases
cause a considerable loss of global yields, approximately 21.5% and 17.2% in wheat and
potato plants, respectively [3].

Tomato is one of the most economically and nutritionally essential vegetables, which
is cultivated all around the globe. The worldwide tomato production has already exceeded
187 million tonnes by 2020, with China being the largest producer, followed by India and
the United States of America [4]. Tomato crops can be easily affected by numerous diseases
that can cause dramatic economic losses and food shortages. Hence, farmers need to
diagnose tomato diseases as early as possible to reduce the risk of losing yields. Apart
from preventing tomato diseases by annually testing the garden soil and maintaining an
adequate level of potassium, in the past farmers used manual inspection of affected leaves
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to identify tomato diseases [5]. However, the manual diagnosis of tomato disease is a
tedious and time-consuming practice, requiring plant disease-related expertise.

Recently, proposed computational methods to automatically recognize tomato diseases
from leaf images used both handcrafted [6] and deep learning [5,7–10] based feature
extraction techniques. The handcrafted feature extraction is a process of learning the most
informative features to train the classifiers for recognition tasks. The methods adapting
the handcrafted feature extraction scheme contain multiple steps in the pipeline, such
as pre-processing, feature extraction and classification. Even though handcrafted feature
extraction techniques are faster in comparison to deep learning methods, they often show
poor performance in unfamiliar conditions. Additionally, the handcrafted techniques are
generally not end-to-end trainable, increasing the intricacy of the overall tomato disease
recognition system.

On the other hand, very recently proposed deep learning-based image classification
techniques showed promising performance across several application domains [11]. Medi-
cal, affective computing, social and agriculture are some popular domains where image
classification techniques are extensively utilized. Similar to the other image classification
tasks, the automated feature extraction-based deep learning techniques have become the
benchmarks in tomato disease recognition [5]. Researchers not only utilized the state-of-
the-art deep networks [12] but also proposed tailor-made deep networks [7,9] for tomato
disease recognition. The majority of the traditional training process of deep networks often
demands high computational requirements and large labeled data for training as they use
very deep networks. Further, they are not feasible for real-time solutions as they consume a
considerable amount of time in both the training and inference phases.

As a potential solution, lightweight deep networks have been widely used for tomato
disease recognition, which facilitates smooth mobile deployment and training with small
data [13]. However, lightweight network-based tomato disease recognition methods often
show limited performance with real-world samples, which is one of the major limitations
that hinder its widespread applicability. To enhance the performance, they predominantly
rely on additional mechanisms like an attention scheme that further complicate the resultant
model [14]. Commonly, lightweight networks with traditional training schemes suffer in
obtaining expected classification accuracy with imbalanced data.

To address these issues, in this paper, a novel Siamese network-based lightweight
tomato disease recognition framework is proposed. Figure 1 illustrates the overall archi-
tecture of the proposed tomato disease recognition framework, which is further explained
in Section 3.1. By adopting the key characteristics of lightweight networks and Siamese
training, the proposed framework can effectively recognize tomato diseases using imbal-
anced and small data. Achieving benchmark accuracies with imbalanced and small data is
significant for enhancing real-world applicability. The key contributions of this paper are
given as follows:

1. A novel Siamese network-based lightweight framework with a contrastive loss is
proposed to recognize tomato diseases from small and imbalanced leaf data.

2. A testing procedure dedicated to Siamese networks using majority voting is proposed
to enhance the tomato disease recognition accuracy.

3. A set of extensive experiments was carried out on two tomato leaf datasets (https:
//data.mendeley.com/datasets/ngdgg79rzb/1 (access on 1 January 2024)), including
the tomato subset of the PlantVillage dataset and the Taiwan tomato leaves dataset, to
show the feasibility of the proposed framework in effectively recognizing diseases.

4. The comparative study shows that the proposed framework can show better perfor-
mances with small and imbalanced data, in comparison to existing tomato disease
recognition from leaf images.

https://data.mendeley.com/datasets/ngdgg79rzb/1
https://data.mendeley.com/datasets/ngdgg79rzb/1
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Figure 1. The overall architecture of the proposed tomato disease recognition framework. The I1 and
I2 are the input images. The weights w are shared between two streams (G) of the Siamese network.
Figure 2 illustrates the architecture of the backbone network G. The distance D is estimated as the
Euclidean distance between the outputs G(I1) and G(I2). The contrastive loss L is then calculated
based on D.
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Figure 2. The block diagram of the lightweight deep network used as the backbone of the proposed
framework. The layer configuration details are further given in Table 1.

Table 1. Configurations of the backbone CNN architecture integrated with the proposed Siamese
network. In this table, w = width, h = height, c = channels, f = number of filters (output channels), ks
= kernel size, s = stride, p = padding, sz = amount of neighboring channels, α = multiplicative factor,
β = exponent, a f = additive factor, pr = probability of an element to be zeroed, i = size of each input
and o = size of each output.

Block Layers Configuration

0 Input w = 128, h = 128, c = 3
1 Conv 1 c = 3, f = 64, ks = 5, s = 1, p = 1

ReLU 1
Norm 1 sz = 5, α = 0.0001, β = 0.75, a f = 2
Pool 1 ks = 3, s = 2

2 Conv 2 c = 64, f = 96, ks = 3, s = 1, p = 2
ReLU 2

3 Conv 3 c = 96, f = 128, ks = 3, s = 1, p = 2
ReLU 3

4 Conv 4 c = 128, f = 96, ks = 3, s = 1, p = 2
ReLU 4
Norm 4 sz = 5, α = 0.0001, β = 0.75, a f = 2
Pool 4 ks = 3, s = 2
Drop 4 pr = 0.2

5 Conv 5 c = 96, f = 64, ks = 1, s = 1, p = 1
ReLU 5
Drop 5 pr = 0.2
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Table 1. Cont.

Block Layers Configuration

6 Conv 6 c = 64, f = 32, ks = 1, s = 1, p = 1
ReLU 6
Pool 6 ks = 3, s = 2
Drop 6 pr = 0.2

7 FC 7 i = 32 × 324, o = 256
ReLU 7
Drop 7 pr = 0.5

8 FC 8 i = 256, o = 64
ReLU 8

9 FC 9 i = 64, o = 32

The rest of the paper is organized as follows. A comprehensive analysis of the tomato
leaf disease recognition is provided in Section 2. Next, the proposed Siamese network-
based framework is presented in Section 3. A set of experimental results is discussed in
Section 4. Section 5 concludes the paper with a few future directions on automated tomato
leaf disease recognition.

2. Related Work

Diagnosing plant diseases on time in an automatic manner by utilizing the latest
information processing techniques has been actively researched lately in the pursuit of
supporting the agricultural industry to address its emerging challenges [15]. Over the
years, the domain experts in agriculture considered effective recognition of diseases for
different crop types, such as citrus [16], apple [17] and pearl millet [18]. Despite the fact
that contemporary research has primarily focused on advanced deep learning techniques,
in this section, some of the most significant tomato disease recognition techniques cover-
ing both traditional and deep learning approaches are reviewed. However, readers are
advised to read the recent surveys [19–21], to acquire comprehensive knowledge about
more generic plant disease recognition techniques. The comparative study [22], offers
insights into the functioning of state-of-the-art deep neural networks in the context of plant
disease recognition.

Traditionally, similar to image classification tasks in other domains, handcrafted
feature extraction schemes are most widely adopted in tomato disease classification using
leaf images [6]. For example, in [6], the color and texture features, along with the kernel
mutual subspace method (KMSM), are used for rapid recognition of tomato disease stages.
This method achieved an accuracy of 99.34% and 98.66% on a subset of the PlantVillage
dataset and AI Challenger 2018 dataset. Further, the proposed method is faster than VGG16
and support vector machine (SVM) in terms of average training and recognition time.
Further, various kinds of handcrafted feature extraction techniques have been used for
plant disease recognition, in general. However, as the handcrafted feature extraction scheme
is a manual process of extracting important features, the methods that use this scheme must
follow a series of phases, such as image pre-processing (including segmentation/cropping),
feature extraction and classification. This pipeline not only increases the complexity of the
tomato disease recognition method but also restricts the end-to-end trainability.

Recent advancements in deep learning for present-day pattern recognition tasks across
different domains resulted in creating better opportunities in plant disease recognition [20].
Several deep learning-based methods showed promising results in tomato disease recogni-
tion. For example, in an early work, pre-trained AlexNet and VGG16 deep networks were
utilized to classify crop diseases from tomato leaves and validated on tomato leaf images
taken from the PlantVillage dataset [23]. Both AlexNet and VGG16 deep networks consist
of a large number of trainable parameters, and thus they are deemed to be very heavy and
demand large training data. Chen et al. [24] proposed a novel Both-channel Residual Atten-
tion Network (B-ARNet) model for automated tomato leaf disease recognition. In this study,
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image denoising and enhancing processes along with background removal were performed
prior to extracting the features using the B-ARNet model, which is not ideal for end-to-end
system implementation. Unlike the methods discussed so far, a simple tailor-made deep
convolutional neural network (CNN) was proposed in [25] for accurate tomato leaf disease
detection. However, it showed comparatively poor performance with the lowest accuracy
of around 76%. Furthermore, the use of attention schemes has proven to improve the
classification accuracy of CNN-based tomato disease recognition models [26]. Attaching
additional modules to deep networks often caused increased trainable parameters.

The lightweight deep networks are well known for their reduced memory consump-
tion and real-time applicability. Some lightweight networks like MobileNets provide the
facility to find the trade-off between accuracy and latency with the help of tunable hyper-
parameters [27]. Most recent plant disease recognition methods have aimed at developing
lightweight networks because farmers predominantly expect in-the-wild applicability [28].
In [29], a pre-trained MobileNetv2 network was fine-tuned for a three-class tomato disease
recognition task. Although a considerable overall accuracy (>90%) was achieved, the
proposed method was validated with a simple three-class tomato disease dataset. Bhujel et
al. [14] proposed a lightweight model that showed increased overall accuracy and reduced
network parameters. In order to enhance the performance of the proposed lightweight
model, an attention module was embedded in the original network. One of the key chal-
lenges of lightweight architectures was they frequently showed limited performance due to
their low generalization capability. Further, the classical training of a network regardless of
whether it was heavy or lightweight not only demands a considerable amount of training
data but also fails to cope with imbalanced data.

In summary, the majority of the existing tomato leaf disease recognition methods
are not feasible to be adopted in real-time settings due to practical problems, such as
the unavailability of large and balanced data and the limited computational power and
memory. The lightweight Siamese architectures in recent years have shown immaculate
performances with small and imbalanced data [30]. Hence, there is a necessity to develop a
fully-fledged framework by realizing the advantages of Siamese architecture as the first
step toward addressing these challenges.

3. Proposed Method

In this section, the proposed lightweight tomato disease recognition framework using
the Siamese network is comprehensively elaborated. First, the overall architecture of the
novel Siamese network given in Figure 1 is explained. The proposed architecture is the
first one to tackle the imbalanced and small data problems in tomato leaf disease recogni-
tion. Second, the loss calculation procedure is elaborated. Third, the newly constructed
lightweight CNN that serves as the backbone is given in detail. The potential benefit of
this lightweight CNN is it can be trained with small data as it has fewer training param-
eters. Finally, the proposed novel testing procedure that can generate precise test results
is presented.

3.1. Overall Siamese Architecture

Figure 1 provides the overview of the proposed Siamese network-based lightweight
tomato leaf disease recognition framework along with the contrastive loss calculation
procedure. The in-depth configuration details of the sub-networks (backbone networks)
are suppressed for brevity. In general, a Siamese architecture is a special kind of neural
network comprising two or more streams of identical backbone networks [30]. In Siamese
architectures, both identical sub-networks are constructed with the same parameter sets
and network configuration. The proposed Siamese framework consists of two streams of
sub-networks that take two different tomato leaf images as inputs at a time.

The output patterns (i.e., feature embeddings) obtained from both sub-networks are
compared to find the similarity measure (i.e., the distance), which is then used in the
decision-making process. The distance value is based on the pairwise Euclidean distance
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between the output feature vectors obtained by both streams of the Siamese network. In
mathematics, the length of a line segment connecting two points in Euclidean space is
referred to as the Euclidean distance, which is the most common distance measure used in
machine learning. Ideally, the distance is kept 0 for a similar pair of images and a value > 0
for a dissimilar pair of images. For example, the distance is 0 for both of the images taken
from Bacterial spot disease and a value > 0 for one image taken from Bacterial spot disease
and the other taken from Black mold disease. During the training phase, for each pair of
images, I1 and I2, the Euclidean distance D is derived through a parameterized distance
function D(I1, I2) defined as follows:

D(I1, I2) = ∥G(I1)− G(I2)∥2 (1)

where Euclidean distance D(I1, I2) is subsequently used as the energy in loss calculation.
In the rest of the paper, the Euclidean distance D(I1, I2) is referred to as D for conciseness.

3.2. Loss Calculation

In this method, a widely popular contrastive loss proposed in [31] is exploited. The
contrastive loss calculation is performed over the pairs of input samples, in contrast to
the conventional method, where the loss is calculated as the sum over input samples. In
the contrastive loss, the similar input pairs are pushed close by while the dissimilar input
samples are pulled apart. The contrastive loss calculation for the ith pair of input images is
given in Equation (2).

L(Y, [I1, I2]
i) = (1 − Y)Ls(Di) + (Y)Ld(Di) (2)

where, L(Y, [I1, I2]
i) is the loss for the ith image pair [I1, I2]

i with the label Y. The partial
loss for similar pairs Ls and dissimilar pairs Ld is designed in such a way that the overall
loss L is minimized. Correspondingly, the D fetch a small value for similar input pairs and
a large value for dissimilar input pairs. The resultant contrastive loss is given below.

L = (1 − Y)
1
2
(D)2︸ ︷︷ ︸

similar pair loss

+ (Y)
1
2
{max(0, m − D)}2︸ ︷︷ ︸

dissimilar pair loss

(3)

here, Y indicates a binary label given to an input image pair [I1, I2]. For similar and
dissimilar input pairs, Y has the values 0 and 1, respectively. m is the margin set to
a value greater than 0. For dissimilar pairs, any distance D within the margin m (i.e.,
m − D > 0) is penalized. In this case, the margin m is set to 2 and defines the loss tendency
of dissimilar pairs, as shown in the loss calculation fragment of Figure 1. Likewise, similar
pairs contribute to the contrastive loss if the distance D > 0.

3.3. Lightweight Backbone Network

In recent years, deep networks with fewer layers have become very popular in the
image classification domain due to their lightweight nature. As the primary focus of this
study is to develop the Siamese framework lighter, the number of layers is retained to
a small value, and so the trainable parameters of this network are ≈ 2.96 million. As
described in Figure 2 and Table 1, a nine-block deep CNN is proposed as the backbone
network. The in-depth details about the network configurations of the backbone CNN
architecture are provided in Table 1. This model architecture is designed purely based on a
heuristic way, where both empirical results and a trial-and-error approach are utilized. The
layer configurations are also continuously changed until the best performance is achieved.

The images of the size 3 × 128 × 128 (i.e., channel × width × height) can be fed as
the inputs, as seen in Table 1. This network consists of six convolution layers and three
connected layers to learn the most important feature representations. The receptive fields
of the convolution layers are kept very small (5 × 5, 3 × 3 and 1 × 1). More importantly, the
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receptive field of 1× 1 used in convolution layers 5 and 6 portrays the linear transformation
function that improves the non-linear property of the neural network. The rectified linear
(ReLU) layers are stacked after each convolution layer (i.e., convolution layers 1-6) and
after the first two fully connected layers (i.e., fully connected layers 7 and 8), as they also
consistently increase the non-linearity.

The local response normalization (LRM) function, referred to as Norm 1 and 4 in
Table 1, stimulates lateral inhibition that performs local contrast enhancement. Two LRM
layers are appropriately affixed in blocks 1 and 4 immediately after ReLU layers. Further,
two-dimensional max-pooling layers (indicated as Pool in Table 1) that estimate each
patch’s maximum value in every feature map are placed in blocks 1, 4 and 6. In blocks 4, 5,
6 and 7, three dropout layers with probability retention of 0.2, 0.2, 0.2 and 0.5 are stacked,
respectively. The final layer of the backbone CNN architecture is a fully connected layer
with 32 neurons.

3.4. Majority Voting-Based Testing Scheme

In order to obtain the testing accuracy of the proposed tomato disease recognition
approach, a querying mechanism involving support images and the query image is ex-
ploited, as illustrated in Figure 3. In most Siamese network-based architectures, the testing
is performed with the help of precisely one support image. This testing scheme has the
advantage of calculating the test accuracy using a majority voting with five support images,
which can alleviate the problems in test accuracy created by accidental causes.

Disease 1 Disease 2 Disease 3 Disease n-1 Disease n

d11

d12

d13

d14

d15

d21

d22

d23

d24

d25

d31

d32

d33

d34

d35

d(n-1)1

Query image

Support images

min(d11, d21, d31, ...,d(n-1)1, d(n)1)

min(d12, d22, d32, ...,d(n-1)2, d(n)2)

min(d13, d23, d33, ...,d(n-1)3, d(n)3)

min(d14, d24, d34, ...,d(n-1)4, d(n)4)

min(d15, d25, d35, ...,d(n-1)5, d(n)5)

Disease selection

d(n-1)2

d(n-1)3

d(n-1)4

d(n-1)5

d(n)1

d(n)2

d(n)3

d(n)4

d(n)5

Majority 
voting

Figure 3. A proposed testing scheme dedicated to Siamese network-based tomato plant disease
recognition. This scheme follows a majority voting mechanism.

Consider that there are n tomato disease types (Disease 1 to n) to be classified. For
each disease, five support images are arbitrarily selected. The distance di,j is estimated
between the query image and the jth support image of disease i, where j takes 1 to 5 and
i takes 1 to n. The disease type of the image with minimum distance amongst a row of
support images is selected as the predicted disease class, which is given by the following:

Diseasej = fdisease( min
i=1...n

(dij)) (4)

where, j is a constant that will take the values between 1 and 5 for multiple runs of this
equation. The fdisease(·) is a function that returns the disease type for the input given. For
example, the Disease1 = Disease(n − 1) if the d(n−1)1 shows the minimum distance for
j = 1.

Once the Diseasej for all j = 1 . . . 5 is decided, a majority voting scheme is applied to
make the final decision. To perform this, first, the occurrences of each tomato leaf disease
type selected within Diseasej are counted. Next, the tomato disease type with the highest
occurrence count is selected as the predicted tomato disease class. For instance, the tomato
leaf Disease3 can be fixed as the predicted class if it is selected three out of five times. In
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the case of two or more equal number of maximum occurrences, the average distances of
the disease types with maximum occurrences are used as the deciding factor. Precisely, the
predicted tomato disease type is selected as the one with a minimum average distance from
the maximum occurrents.

4. Experiments

In this section, the results obtained from a set of experiments performed in various
environments are discussed in detail. The primary focus of these experiments is to demon-
strate the feasibility of the proposed model with small and imbalanced data. First, the
tomato disease datasets are described, followed by implementation details. Next, the results
are discussed in detail, along with the comparison of existing state-of-the-art methods.

4.1. Datasets

To evaluate the proposed lightweight tomato leaf disease recognition framework, two
benchmark datasets, such as a subset of the PlantVillage dataset containing tomato leaf
disease samples and the Taiwan tomato disease dataset, are used [32]. Sample images
picked from each class of both datasets are given in Figure 4.

Bacterial spot Black mold Gray spot Healthy Late blight Powdery
mildew

Taiwan Dataset

Bacterial spot Early blight Healthy Late blight Leaf mold Septoria leaf
spot Target spot Mosaic virus Yellow leaf

curl virus
Two-spotted
spider mite

PlantVillage Dataset

Figure 4. Sample images taken from the PlantVillage and Taiwan datasets for each tomato
disease class.

The PlantVillage tomato subset consists of 14,531 image samples for ten classes, including
nine tomato leaf disease classes and one healthy class. The tomato leaf diseases included in
this dataset are Bacterial spot (1702), Early blight (800), Late blight (1528), Leaf mold (762),
Septoria leaf spot (1417), Target Spot (1124), Mosaic virus (299), Yellow leaf curl virus (4286)
and Two-spotted spider mite (1341). This is a highly imbalanced dataset with an uneven
distribution of image samples, where the majority class (4286 samples of Yellow leaf curl
virus disease class) consists of a fourteen times (14×) larger sample size than the minority
class (299 of Mosaic virus disease class). The image size of the original dataset is 227 × 227.

The original Taiwan tomato disease dataset is relatively small and used to evaluate
the proposed model, which has 622 leaf samples of the size 227 × 227 for six categories,
including healthy and diseased classes. Bacterial spot (100), Black mold (67), Gray spot
(84), Healthy (106), Late blight (98) and Powdery mildew (157) are the classes included
in this dataset. Furthermore, there is an enhanced dataset containing more samples for
each class that are generated using a range of augmentation functions, such as clockwise
rotation (by 90, 180 and 270 degrees), mirroring (horizontally and vertically) and changing
image brightness, which is also exploited. Figure 5 provides an example image with
all the augmented samples. There are 4976 tomato leaf images in the final dataset with
augmented samples.

4.2. Implementations and Evaluation Metrics

The proposed framework and the other compared methods are implemented using the
PyTorch (https://pytorch.org/ (access on 1 January 2024)) open source machine learning
framework and trained on Google Colab (https://colab.research.google.com/ (access on 1
January 2024)) notebook. The models are evaluated on Intel(R) Xeon(R) CPU @ 2.30 GHz
supported by NVIDIA Tesla T4 GPU with 13 GB RAM.

https://pytorch.org/
https://colab.research.google.com/
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Original Rotation 90 Rotation 180 Rotation 270

Brightened Darkened Horizontal Vertical

Figure 5. An example image taken from Black mold disease and its augmented samples. There are
seven different augmentation functions applied to the leaf images.

All the models are trained for 10 epochs with a batch size of 8. In the training phase,
the initial learning rate of the Adam optimizer is set to 0.001 with a weight decay of 0.0001.
Further, the results on the Taiwan tomato disease dataset are recorded for the dedicated
test set provided by the authors, while the results on the PlantVillage tomato subset are
presented using a 10-fold cross-validation technique. To present the experimental results, a
popular evaluation metric, average accuracy, is used. The closeness of the predicted tomato
disease class to the true tomato disease class can be effectively described through accuracy.
The equation to obtain accuracy is defined below.

Accuracy =
tp + tn

tp + tn + fp + fn
(5)

where, tp is true positive, tn is true negative, fp is false positive and fn is false negative.

4.3. Results

The testing framework illustrated in Figure 3 is exploited to obtain the testing accuracy
of the proposed tomato disease recognition approach. Figure 6 provides an example test
scenario where a Gray spot test image is queried against the support images. The query
image obtained smaller distances with all five Gray spot support images compared to the
query images of other classes. Hence, using the majority voting scheme, the query image is
correctly classified as the Gray spot diseased leaf on this occasion.

Figure 7 presents the loss observed for the model trained with 100% of the data from
the PlantVillage tomato leaf dataset. The loss curve demonstrates that the model learned
smoothly with the given parameters. Table 2 summarizes the overall accuracy obtained for
the proposed framework on the PlantVillage and both variations of the Taiwan tomato leaf
disease datasets. The results are presented for the models trained with 100%, 75% and 50%
training data. The proposed framework trained with the 100% training set obtained an
accuracy of 95.48%, 96.14% and 96.97% on the original Taiwan dataset, the Taiwan dataset
with augmentation and the PlantVillage dataset, respectively. In all three cases, an increase
in accuracy is noted for the Taiwan dataset with augmentation compared to the original
Taiwan dataset, which confirms that the augmentation enhances the performance of the
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proposed framework. Further, the overall accuracy is consistent even after reducing the
training data to 75% and 50%, with a maximum 4% accuracy drop recorded for the Taiwan
dataset. For the PlantVillage tomato leaf dataset, only a 1.5% drop is witnessed when
reducing the training set by 50%; it is convincing that the proposed framework can show
good performance with small data.

0/5 0/5 5/5 0/5 0/5 0/5

Bacterial spot Black mold Gray spot Healthy Late blight Powdery mildew

Gray spot

Support images

Query image

Figure 6. Querying a test sample from the Gray spot disease class of the Taiwan dataset.
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Figure 7. The loss observed for the model trained on the whole PlantVillage tomato leaf dataset.

Figure 8 shows the number of samples and accuracies obtained for each class in the
PlantVillage dataset. The results are recorded for the model trained on 100% data. In each
pair of bars, the left and right bars indicate the number of samples and the class-wise
accuracies, respectively. As can be seen, the tomato subset of the PlantVillage dataset is
highly imbalanced, where the Mosaic virus disease is the minority class with 299 samples
and the Yellow leaf curl virus is the majority class with 4286 samples (i.e., greater than
14× of the minority class). However, the proposed framework obtained higher class-
wise accuracies for minority classes. This demonstrates that the proposed framework can
consistently perform well on imbalanced data.
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Table 2. Average accuracy achieved on the benchmark tomato leaf disease datasets. The results are
separately recorded for the models trained with 50%, 75% and 100% of the training set.

Databases
Training Data

100% 75% 50%

Taiwan 0.9548 0.9262 0.9103
Taiwan/w
augmentation 0.9614 0.9434 0.9279

PlantVillage 0.9697 0.9609 0.9546
The accuracy presented for both variations of the Taiwan dataset is based on the dedicated test data provided by
the authors.
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Figure 8. Performance evaluation with imbalanced data: per class samples and class-wise accuracies
for the PlantVillage dataset are compared.

4.4. Comparison

Two types of comparisons are performed to show the superiority of the proposed
framework. In the first case, the backbone network of the proposed framework is replaced
by other state-of-the-art networks. The rest of the procedures are kept identical, including
the training and testing schemes. In the second case, some of the recently proposed tomato
disease recognition methods are compared. In this case, the same training and testing
environments are maintained for a fair evaluation.

Table 3 provides the comparison results obtained for the proposed lightweight network
and 11 state-of-the-art networks, as the backbone of the proposed framework. In this
comparison, both the heavy networks and lightweight networks are included. In order
to perform a fair evaluation, all the backbones are trained from scratch. The proposed
framework with the novel lightweight deep network achieved the best accuracy on all
tomato datasets with 100%, 75% and 50% data. In particular, the proposed framework with
a novel lightweight deep network showed only a slight depreciation in the accuracy when
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the data were reduced to 75% and 50%. This is a promising feature as the performance of
most of the existing state-of-the-art networks drops dramatically while reducing the training
data. Notably, another lightweight architecture MobileNetv2, also consistently performed
across all datasets with the second-best accuracy. However, its accuracy was significantly
lower than the proposed framework integrated with the novel lightweight network.

Table 3. Comparison of the average accuracies obtained on the PlantVillage, Taiwan and Taiwan with
augmentation tomato leaf disease datasets. The trainable parameters for each single stream network
are also compared.

Deep Networks Params
PlantVillage Taiwan Taiwan/w Augmentation

100% 75% 50% 100% 75% 50% 100% 75% 50%

AlexNet 61.1008 0.7128 0.6812 0.6137 0.6896 0.6039 0.5527 0.7064 0.6788 0.6438
VGG19 143.6672 0.7378 0.7031 0.6374 0.6931 0.6438 0.6078 0.7217 0.7033 0.6612
ResNet152 60.1928 0.8316 0.7812 0.7079 0.6018 0.5178 0.4538 0.7423 0.7164 0.6891
DenseNet201 20.0139 0.8134 0.7521 0.7215 0.6135 0.5730 0.5137 0.7239 0.6433 0.6138
Inceptionv3 27.1613 0.8436 0.8127 0.7513 0.6847 0.6037 0.5678 0.7869 0.7519 0.7238
SqeezeNet1_1 1.2355 0.7825 0.7436 0.7212 0.6622 0.6231 0.5972 0.7634 0.7439 0.7094
ShuffleNetv2 7.3940 0.7563 0.7103 0.6479 0.7231 0.6012 0.5678 0.7013 0.6833 0.6671
MobileNetv2 3.5049 0.9103 0.8563 0.8117 0.8236 0.7863 0.7631 0.8437 0.8032 0.7769

Ours 2.9629 0.9697 0.9609 0.9546 0.9548 0.9262 0.9103 0.9614 0.9434 0.9279

The accuracy presented for both variations of the Taiwan dataset is based on the dedicated test data provided by
the authors.

The trainable parameters of each backbone network are compared in Table 3. The
proposed lightweight network has nearly 2.9629 million trainable parameters, which is
less than many state-of-the-art deep networks. SqueezeNet has the lowest trainable pa-
rameters among the competitors, with approximately 1.2355 million. Another lightweight
network, namely ShuffleNet, has around 7.3940 million parameters. Except for these three
lightweight networks, all the other networks are very deep networks with larger trainable
parameters. For instance, the VGG19 has nearly 143,6672 parameters to tune during the
training, which is time-consuming and requires large data. The proposed framework is
faster and shows high performance with small data because the novel lightweight network
integrated into the proposed framework has few parameters.

A comparison between the proposed framework and other existing tomato leaf disease
recognition methods is given in Table 4. The results presented for the compared meth-
ods are not directly taken from the respective papers as the experimental environment
is entirely different. Hence, these methods are rerun on the tomato datasets under the
same environment with 100%, 75% and 50% data for comparison. As can be seen from
the comparison, the proposed framework comprehensively outperformed existing tomato
leaf disease recognition methods. The proposed framework showed a 13.16%, 25.33% and
14.05% accuracy improvement over its competitor [33], with 50% data on the PlantVil-
lage, Taiwan and Taiwan with augmentation tomato datasets, respectively. The proposed
framework showed a higher accuracy improvement (25.33%) with the Taiwan dataset,
which demonstrates that the proposed framework can better recognize tomato leaf disease
recognition with small data.
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Table 4. Comparison of existing tomato leaf disease recognition methods.

Methods PlantVillage Taiwan Taiwan/w Augmentation

100% 75% 50% 100% 75% 50% 100% 75% 50%

GoogLeNet and VGG16 [25] 0.8863 0.8136 0.7125 0.6821 0.6338 0.5822 0.8368 0.7791 0.7137
ABCK-BWTR and B-ARNet [24] 0.9012 0.8633 0.7473 0.8036 0.7191 0.6361 0.8672 0.7736 0.7236
CNN [34] 0.8463 0.7966 0.7138 0.7120 0.6731 0.6133 0.7463 0.7038 0.6477
Deep CNN [14] 0.9136 0.8817 0.7968 0.7934 0.7367 0.6982 0.8892 0.8367 0.7962
RF, LR, SVM, KNN [33] 0.9321 0.9068 0.8436 0.8463 0.7792 0.7263 0.9132 0.8766 0.8136

Ours 0.9697 0.9609 0.9546 0.9548 0.9262 0.9103 0.9614 0.9434 0.9279

The accuracy presented for both variations of the Taiwan dataset is based on the dedicated test data provided by
the authors.

5. Conclusions

Timely recognition of tomato leaf diseases with small and imbalanced data is essential
to overcome practical challenges related to tomato crop cultivation, such as unprecedented
losses. So far, only a few existing methods have studied tomato leaf disease recogni-
tion. However, none of them have explored the small and imbalanced data problems in
this domain. It is also important to develop a lightweight deep-learning approach that
can be deployed directly on resource-constrained devices. Consequently, our proposed
framework’s lightweight nature ensures compatibility with such devices. The preliminary
investigation confirmed that it can run effectively on devices with at least 2 GB RAM
and a CPU architecture equivalent to a 64-bit processor or higher. Hence, in this work, a
Siamese network-based lightweight framework is proposed to perform effective tomato
leaf disease recognition.

The proposed framework is integrated with a novel lightweight deep network as the
backbone. The proposed framework, along with the novel testing procedure, is tested
on three benchmark tomato leaf datasets, namely the PlantVillage, Taiwan and Taiwan
with augmentation. The results demonstrated that the proposed framework effectively
recognizes tomato diseases with small and imbalanced training data. In addition, during
the study, the overfitting was controlled by using data augmentation and dropout layers.
Furthermore, the proposed framework’s single-stream network consists of 2.9629 million
trainable parameters, which is significantly fewer than the existing state-of-the-art deep
networks. This reduction in processing power makes it a better approach compared to
other studies and represents a significant contribution to this research. Comparative
analysis confirms that the proposed tomato leaf disease recognition framework is superior
to recently proposed methods mentioned on the Table 4, achieving accuracies of 96.97%
and 95.48% on the tomato dataset obtained from PlantVillage and Taiwan tomato leaf
disease, respectively.

In the future, the proposed framework will be evaluated with the data collected in the
wild as it is significant to test the in-field applicability.
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