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Abstract: Parkinson’s disease (PD) is globally the most common neurodegenerative movement
disorder. It is characterized by a loss of dopaminergic neurons in the substantia nigra of the brain.
However, current methods to diagnose PD on the basis of clinical features of Parkinsonism may lead
to misdiagnoses. Hence, noninvasive methods such as electroencephalographic (EEG) recordings of
PD patients can be an alternative biomarker. In this study, a deep-learning model is proposed for
automated PD diagnosis. EEG recordings of 16 healthy controls and 15 PD patients were used for
analysis. Using Gabor transform, EEG recordings were converted into spectrograms, which were used
to train the proposed two-dimensional convolutional neural network (2D-CNN) model. As a result,
the proposed model achieved high classification accuracy of 99.46% (±0.73) for 3-class classification
(healthy controls, and PD patients with and without medication) using tenfold cross-validation. This
indicates the potential of proposed model to simultaneously automatically detect PD patients and
their medication status. The proposed model is ready to be validated with a larger database before
implementation as a computer-aided diagnostic (CAD) tool for clinical-decision support.

Keywords: Parkinson’s disease (PD); classification; electroencephalogram (EEG); deep learning;
CNN; Gabor transform; spectrograms

1. Introduction

Parkinson’s was defined in the early 1800s, and further refined in the late 1800s by
Jean-Martin Charcot, as a neurological syndrome characterized by slowness of movement
(bradykinesia), involuntary tremors, rigidity, and postural instability [1,2]. Patients with
PD also have nonmotor symptoms including depression, loss of smell, constipation, and
sleep problems [3]. These prodromal symptoms often precede motor symptoms even by
10 years [4].

The two pathological hallmarks of PD are the loss of dopamine-containing (dopaminer-
gic) neurons that arise in the part of the midbrain called the substantia nigra pars compacta
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and project to the striatum, and the accumulation of misfolded alpha-synuclein proteins in
intracytoplasmic inclusions called Lewy bodies. The nigrostriatal pathway is considered to
be critical for the control of movement, and the replacement of dopamine is the mainstay of
current therapies aimed at improving motor symptoms for PD [5–7]. However, dopamine
replacement does not tackle the underlying neurodegenerative process.

As shown in Figure 1, the amount of dopamine transmitted across synapses is re-
duced within the striatum of PD patients as compared to that of healthy individuals [8].
Although no neuroimaging technique is yet specifically recommended for routine use
in clinical practice for PD, molecular imaging with positron emission tomography (PET)
and single-photon emission compute tomography (SPECT) can detect in vivo changes in
presynaptic dopaminergic function within the brains of individuals with PD compared to
those of healthy controls [9]. For example, PET and SPECT imaging can demonstrate a
marked reduction in the striatum of molecules related to dopamine synthesis and transport,
namely, dopamine transporters (DAT); vesicular monoamine transporter 2 (VMAT2), a
membrane protein that transports dopamine from the cytosol into synaptic vesicles; and
L-aromatic amino acid decarboxylase (L-AAAD), an enzyme important in the conversion
of the precursor L-DOPA to dopamine. The reduction in dopamine transporters (DAT)
demonstrated by SPECT is schematically depicted in Figure 2.
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Figure 2. Schematic drawing of Single-photon emission compute tomography (SPECT) scan of (left)
healthy controls and (right) PD patients. Availability of dopamine transporters (DAT) in the striatum
represented by the highlighted portion in the brain.

The most important risk factor for PD is advancing age [10]. Men are more likely to
be at risk than women are [11]. Some environmental factors, such as certain pesticides and
solvents, were linked to the risk of PD [12,13]. In industrialized countries, the estimated
prevalence of PD is 0.3% of the general population, rising to 3% for those over 80 years.
Between 1990 and 2016, the number of globally affected individuals by PD increased from
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2.5 million to 6.1 million [13]. This figure is expected to continue to rise due to aging
populations and exposure to harmful chemical pollutants [13]. Hence, PD is one of the
fastest growing neurological disorders that require more efficient disease management,
including the early precise detection and, ideally, prevention of disease [14].

Currently, PD is clinically diagnosed according to the diagnostic criteria of the Move-
ment Disorders Society, which include the essential criteria of bradykinesia with at least
one feature of rest tremor or rigidity, symptoms closely linked to dopaminergic neurons,
and the absence of certain exclusion criteria and presence of supportive criteria, the main
being a clear and dramatic beneficial response to dopaminergic therapy [15,16]. The set of
supportive and exclusion criteria are complex, and misdiagnosis is not uncommon due to
an array of differential diagnoses, many of which are not accompanied by a decrease in
dopamine levels [4,17].

Moreover, by the time that PD is typically diagnosed, it was estimated that over 60%
of dopaminergic neurons are already lost [18]. To exacerbate the matter, waiting lists to
see expert neurologists can be long and are set to worsen due to aging populations [19],
thus prolonging the time of diagnosis for individuals affected by PD. Some nonmotor
symptoms (referred to as prodromal or premotor symptoms) may start even 10 years before
diagnosis can be made on the basis of motor symptoms. The earlier accurate diagnosis of
this prodromal period might allow for a critical therapeutic window for neuroprotective
treatments to halt or even reverse the neurodegenerative process [4].

Therefore, a more efficient diagnostic approach that does not rely on the detection of
clinical motor features is critically important to improve outcomes for individuals with
PD. An alternative diagnostic approach utilizes electroencephalographic (EEG) recordings
of PD patients [20,21]. EEG reflects the electrical activity of the brain, and in the case of
a patient with PD, Soikkeli et al. [22] reported that the EEG frequency of PD patients is
abnormally slow compared to that of age-matched controls. As EEG signals are naturally
nonlinear, the nonlinear time-series method or Fourier transform can be employed for the
analysis of EEG signals [20,23]. As a result, several studies observed abnormality in the
EEG rhythm of PD patients [22,24–26].

In this study, the spectrogram images of EEG recordings are used to train a proposed
deep convolutional-neural-network (CNN) model for automated PD detection.

Related Works

To date, several studies explored computer-aided diagnostic (CAD) tools that can
learn the EEG characteristic features of PD patients, and automatically distinguish PD
patients from healthy controls. These studies are summarized in Table 1.

Table 1. List of automated Parkinson’s disease (PD)detection studies from 2016 to 2021.

Author Input Feature Approach Dataset Accuracy (%)

Gunduz [27] 2021 Deep relief features SVM - 91.60

Khare et al. [28] 2021 Time–frequency
representation (TFR) CNN 16—Healthy

15—PD 100.00

Khare et al. [29] 2021 Multiple EEG subbands Least-squares SVM 16—Healthy
15—PD 97.65

de Oliveira et al. [30] 2020 Partial directed
coherence Random forest 12—Healthy

35—PD 99.22

Khoshnevis et al. [31] 2020 High-order statistical
feature of EEG

RUS
Boosted trees ensemble

20—Healthy
20—PD 87.00

Anjum et al. [32] 2020 Power spectra density Linear-predictive-coding EEG
Algorithm for PD (LEAPD)

27—Healthy
27—PD 93.30
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Table 1. Cont.

Author Input Feature Approach Dataset Accuracy (%)

Oh et al. [23] 2020 End-to-end 13-layer 1D-CNN 20—Healthy
20—PD 88.25

Bhurane et al. [21] 2019 linear and
self-similarity features SVM 20—Healthy

20—PD 99.10

Liu et al. [33] 2017 Discrete wavelet
transform (DWT)

Three-way decision model
(O_CCA)

25—healthy
17—PD 92.86

Yuvaraj et al. [34] 2016 High-order spectra SVM 20—Healthy
20—PD 99.62

Eight out of ten automated PD detection studies in Table 1 proposed conventional
machine-learning models [21,27,29–34], and half of these studies employed a support-
vector-machine (SVM) classifier. The highest classification accuracy obtained using a
machine-learning methodology was by Yuvaraj et al. [34]. They extracted high-order
spectra (HOS) bispectral features from EEG signals and fed them into the SVM classifier,
obtaining a high classification accuracy of 99.62%. Apart from SVM, another machine-
learning study by de Oliveira et al. [30] proposed a random-forest classifier fed with
significant features of EEG that was extracted using partial directed coherence, and they
obtained a high classification accuracy of 99.22%. However, conventional machine-learning
approaches require tedious feature-extraction and -selection procedures that might result
in the information loss of EEG signals [35,36]. In addition, feature-extraction and -selection
methods can only be carried out manually by experienced experts, such that an accurate
judgement can be made [35,36]. Thus, an alternative to machine-learning approaches are
deep-learning models that can greatly reduce the burden of machine-learning algorithms
by eliminating the need for feature extraction.

So far, only two studies proposed deep-learning models [23,28], and they both pro-
posed CNN models for automated PD detection. The highest classification accuracy was
100%, obtained by Khare et al. [28], who trained their proposed CNN models using the
time–frequency representation (TFR) of EEG signals, which were extracted using smoothed
pseudo-Wigner Ville distribution. The other deep-learning study, by Oh et al. [23], used
entire EEG signals to train their proposed CNN model without prior extraction of features
and obtained a relatively high classification accuracy of 88.25%. Thus, this study proposes
a CNN model for automated PD detection using spectrogram images of EEG signals to
promote the efficacy and ease of PD detection with a deep-learning model.

2. Materials and Methods
2.1. Dataset Acquisition

The publicly available PD dataset used in this study was downloaded from Open-
Neuro [37]. This PD dataset contained the EEG recordings of 16 healthy controls and 15 PD
patients whose EEG recordings were recorded off and on dopaminergic medications. The
healthy control group consisted of 7 males and 9 females (mean age = 63.5 ± 9.6), while
the PD group consisted of 7 males and 8 females (mean age = 63.2 ± 8.2) [38–42]. All PD
patients were on either Stage 2 or 3 on the Hoehn and Yahr scale. Participants were told
to focus on a cross-image presented on the computer screen while their EEG signals were
recorded at sampling frequency of 512 Hz for approximately 3 min. For each participant,
a total of 32 EEG channels were recorded using Biosemi ActiveTwo EEG system [38–42].
Table 2 summarizes the characteristics of the healthy controls and PD patients in the PD
dataset. Scores from the North American Adult Reading Test (NAART) and Mini-Mental
Status Exam (MMSE) were utilized to match the PD patients to the healthy controls [38].
The United Parkinson’s Disease Rating Scale for motor section (UPDRS III) reflects greater
motion impairment with a higher score [38].
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Table 2. Summary of subjects’ clinical characteristics in the PD dataset used in this study. Values are
represented as mean (standard deviation).

Healthy Controls (n = 16) PD Patients (n = 15)

No. of males 7 7
No. of females 9 8

Age 63.5 ± 9.6 63.2 ± 8.2
NAART 49.1 ± 7.1 46 ± 6.3
MMSE 29.2 ± 1.1 28.4 ± 1.0

UPDRS III
Without medication - 45.5 ± 13.0

With medication - 33.7 ± 10.9
UPDRS III: It is a separate category to represent UPDRS ratings of PD patients with and without medication.
Hence, it have no values associated to it. Underlined to distinguish the difference.

2.2. Experimental Setup

The workflow of this study is illustrated in Figure 3. EEG recordings were split in
half before applying Gabor transform to obtain respective spectrograms. Hence, each
EEG recording generated two spectrogram images, and the summary of the number of
spectrogram images in the healthy control group, PD without medication, and PD with
medication is shown in Table 3.
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proposed model.

Table 3. Number of spectrograms generated for the respective groups.

Healthy Control PD with Medicine PD without Medicine

Subject No. 16 15 15
No. of channels 32 32 32

No. of EEG recordings
(Subject no. X no. of channels) 512 480 480

No. of Spectrograms
(1 EEG recording = 2 spectrograms) 1024 960 960

Subsequently, four experiments were conducted with the proposed 2D-CNN model:

• Experiment 1: 3-class classification, namely, healthy control, PD without medication,
and PD with medication (total no. of spectrogram images = 2944).

• Experiment 2: healthy control versus PD patients without medication (total no. of
spectrogram images = 1984).

• Experiment 3: healthy control versus PD patients with medication (total no. of
spectrogram images = 1984).

• Experiment 4: PD patients with and without medication (total no. of spectrogram
images = 1920).
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For multiclass classification, i.e., Experiment 1, the softmax activation function was
used in the last output layer of the proposed 2D-CNN model. In the remaining binary-
classification experiments, the sigmoid activation function was used instead of softmax.
Tenfold cross-validation was used to evaluate the performance of the proposed model.

2.3. Preprocessing (Gabor Transform)

Gabor transform was developed by Dennis Gabor as an improvement to Fourier
transform [43]. The issue concerning Fourier transform is that only the frequency domain
of the signal is provided, but the time when the frequencies occur is not included [44].
Hence, Gabor transform is a combination of Fourier transform and Gaussian distribution
function that can be used to produce a spectrogram that plots frequency against time. The
Gaussian distribution function in Gabor transform plays the role of a kernel that moves
along one-dimensional signals and computes the multiplication of Fourier transform
and Gaussian function within its window, thereby providing information on time where
different frequencies occur. The equation of Fourier transform ( f̂ ) and Gaussian distribution
function (ga) are shown in Equations (1) and (2), respectively, and their combination that
leads to Gabor transform (G) is shown in Equation (3) [44]. The time and frequency
domains are represented by ((t, ω)), while τ and a represent the center and the spread of
the window in Gaussian function, respectively.

f̂ (ω) =
∫ ∞

−∞
f (x)e−iωxdx (1)

ga(t) = e−(t−τ)2/a2
(2)

G( f )(t, ω) =
∫ ∞

−∞
f (τ)e−iωτ gα(τ − t)dτ (3)

In this study, EEG signals were split into half, and Gabor transform was applied to
each half. The window of the Gabor transform was 1024 timesteps with 128 timestep
overlaps. The resulting spectrograms of the healthy controls, and PD patients with and
without medication are shown in Figure 4.
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2.4. Model Architecture

In this study, we propose a deep 2D-CNN model to recognize the EEG characteristics
of healthy controls, and PD patients with and without medication from their spectrograms.
CNN models became known for their image-recognition ability when Krizhevsky et al. [45]
achieved top five in the ImageNet Large Scale Visual Recognition Competition with their
proposed CNN model. A typical CNN model comprises three layers: the convolutional,
pooling, and fully connected layers. Convolutional layers convolve the input images with
multiple kernels to produce different types of feature maps, as shown in Figure 5. Pooling
layers follow the convolutional layer to reduce the complexity of the feature maps, so as to
prevent CNN models from overfitting. In our proposed model, zero padding was used to
prevent information loss at the edges of the image; hence, the dimensions of the feature map
were the same as those of the input image, 217 × 334 (Table 2) [46]. The operation of the
convolutional and pooling layers (hl

xy) is illustrated in Equations (4) and (5), respectively.
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The input image (S) with the dimension of (i, j) undergoes a discrete convolution operation
(∗) with (W), which is the convolutional kernel that updates its weight each time the kernel
slides across the input image [46,47].

(S ∗ W)(i, j) = ∑
m

∑
n

S(m, n)W(i − m, j − n) (4)

hl
xy = maxi=0,...,s,j=0,...,shl−1

(x+i)(y+j) (5)
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Figure 5. Model architecture of proposed 2D-CNN model.

After the pooling layers, the feature maps were flattened into single-list vectors that
were fed into the fully connected layers. The fully connected and output layers contain
nodes that are neurons that are trained to recognize and classify the single-list vectors.
The number of nodes at the output layer differed according to the type of experiments
conducted in this study. For multiclass classification in Experiment 1, the softmax activation
function was used at the output layer, which require 3 nodes, as shown in Figure 5. For
binary classification in Experiments 2 to 4, the sigmoid activation function was used, which
requires only 1 node. The softmax activation function computes the probability scores for
each single-list vector that has a chance of being classified into each of the three classes, and
single-list vectors are classified into the class where they achieved the highest probability
score. On the other hand, sigmoid activation function output a value between 0 and 1 for
each single-list vector. Taking Experiment 2 as an example, single-list vectors with output
values nearer to 0 were classified as healthy controls, and values nearer to 1 were classified
as PD patients without medication. The operation of the sigmoid and softmax activation
functions are shown in Equations (6) and (7), respectively [48].

σ(zi) =
1

1 + e−zi
(6)

so f tmax(zi) =
ezi

∑j ezj
(7)

The complete details on the layer parameters of the proposed model are listed in
Table 4. The used optimizer for the proposed model was the Adam optimizer with a
learning rate of 0.001 and a decay rate of 0.01. The model was constructed using Keras
with the Tensorflow back-end in Python programming.
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Table 4. Complete details of layer parameters of proposed 2D-CNN model.

No. Layer Filter No. Kernel Size Unit Size Parameter Output Shape

1 2Dconv1 16 5 × 5 - ReLu,
constraint = 3 217 × 334

2 Dropout - - Rate = 0.2 217 × 334

3 2Dconv2 32 3 × 3 - ReLu,
constraint = 3 217 × 334

4 MaxPool - - - - 108 × 167
5 Flatten - - - - 1 × 577,152

6 Dense - - 512 ReLu,
constraint = 3 1 × 512

7 Dropout - - - Rate = 0.7 1 × 512
8 Dense - - 3/1 Softmax/sigmoid 1 × 3/1 × 1

3. Results

The performance of the model was evaluated with tenfold cross-validation, and results
are summarized in Table 5. All experiments achieved promising results. The correctly
identified samples from each experiment are visualized with a confusion matrix in Figure 6,
where the correctly identified samples are in dark-colored boxes.

Table 5. Various performance values for each experiment. Standard deviation for all ROC–AUC
scores was less than 0.01.

Experiment No. Accuracy (%) Precision (%) Sensitivity (%) F1 Score (%) ROC–AUC

1 99.46 ± 0.73 99.48 ± 0.01 99.46 ± 0.01 99.46 ± 0.01 -
2 99.44 ± 1.02 99.79 ± 0.43 99.06 ± 1.83 99.42 ± 1.08 1.000
3 98.84 ± 1.59 98.99 ± 1.76 98.65 ± 2.84 98.79 ± 1.69 0.999
4 92.60 ± 6.05 88.37 ± 9.10 99.58 ± 0.51 93.38 ± 5.15 0.997
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The proposed model achieved the highest classification accuracy of 99.46% in the
multiclass classification of Experiment 1 (Table 5). The breakdown of performance metrics
for each class in Experiment 1 is shown in Table 6. The highest model precision (99.90%) was
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observed for PD without medication, indicating that the proposed model could correctly
distinguish more cases of PD without medication as compared to other classes (healthy
and PD with medication). This can be seen from the confusion matrix of Experiment 1 in
Figure 6, where the vertical axis for predicted PD without medication shows 952 correctly
predicted cases, while only 1 case from healthy control was wrongly predicted as PD
without medication. On the other hand, PD with medication achieved the highest model
sensitivity (100%), which means that the proposed model could correctly distinguish all
cases of PD with medication. This was also observed from the confusion matrix where the
proposed model correctly distinguished all 960 cases of PD with medication (Figure 6).

Table 6. Multiclass performance values for each class in Experiment 1. Drugs refer to the dopaminer-
gic medications taken by PD patients.

Classes Precision (%) Sensitivity (%) F1 Score (%) Samples

Healthy 99.52 ± 0.01 99.22 ± 0.02 99.36 ± 0.01 1024
PD w/o drugs 99.90 ± 0.00 99.17 ± 0.01 99.53 ± 0.01 960
PD w/drugs 99.01 ± 0.02 100.00 ± 0.00 99.49 ± 0.01 960

Regarding binary classification in Experiments 2 to 4, high classification accuracies
of 99.44% and 98.84% were observed for Experiments 2 and 3, respectively (Table 5).
The lowest classification accuracy of 92.60% was observed for Experiment 4 (Table 5).
Nonetheless, Experiments 2 to 4 achieved a high receiver operating characteristics—area
under the curve (ROC–AUC) score of near 1, which indicates that the proposed model
could correctly identify the positive and negative classes for the respective experiments
(Table 5). The interpretation of performance values differs slightly for binary classification.
For example, the highest model precision of 99.79% was observed in Experiment 2, which
indicates that it was highly unlikely for the proposed model to misclassify healthy cases
(negative class) as PD without medication (Table 5). As such, only 2 cases of healthy
controls in Experiment 2 were wrongly classified as PD without medication (Figure 6).
Experiment 4, despite having the lowest classification accuracy of 92.60%, achieved the
highest sensitivity score of 99.58% (Table 5). This result shows that the proposed model
could correctly detect the majority of PD with medication cases, where 956 out of 960 cases
of PD with medication were correctly predicted in Experiment 4 (Figure 6). On the other
hand, Experiment 4 had the lowest model precision of 88.37% due to the misclassification
of 138 cases of PD without medication (Table 5 and Figure 6). This is also reflected in the
performance graph of Experiment 4 in Figure 7, where overfitting and a large deviation in
model validation accuracy were observed. Experiments 1, 2, and 3, however, exhibited no
signs of overfitting. Nonetheless, all experiments achieved a high F1 score of >90%, which
means that the proposed model could successfully balance the trade-off between model
sensitivity and precision score in all experiments (Table 5).
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4. Discussion

This study utilized the EEG recordings of 16 healthy controls and 15 PD patients
with mild to moderate (Hoehn and Yahr Stages 2/3) severity, which are considered to
be prodromal PD. As a result, EEG is a good biomarker for automated PD detection
with high classification accuracy achieved in all Experiments (1 to 4). Since the EEG
recordings of prodromal PD patients were considered, this study also demonstrated that
EEG biomarkers can diagnose PD in early stages. This is also supported by a few studies
that observed EEG abnormalities in the rapid-eye-movement (REM) sleep of prodromal
PD patients [49–52]. Therefore, EEG is a promising noninvasive method used for the
early diagnosis of PD with a low error rate, and is strongly considered to assist medical
professionals in clinical decisions.

The automated PD detection model proposed in this study involves the conversion
of subject’s EEG recordings into spectrograms via Gabor transform, and the proposed
2D-CNN model automatically classified spectrograms into healthy controls, and PD pa-
tients with or without dopaminergic medications. As a result, the proposed 2D-CNN
model displayed exemplary classification ability when the task involved distinguishing
healthy controls from PD patients (with or without dopaminergic medication). However,
the proposed model was weak in differentiating between PD patients on medication versus
those who were not on medication. This was within expectations because the effectiveness
of dopaminergic medication differs in each PD patient, which was reflected in their EEG
recordings. Swann et al. [39], who had developed the dataset, also mentioned that they
observed elevated phase-amplitude coupling in PD patients not on medication, and this
phenomenon was seen in 14 out of 15 of their PD patients. Hence, some of the spectro-
grams of the PD patients may have been ambiguous due to different drug responses to the
dopaminergic medications. This, in turn, hindered the proposed model from recognizing
PD patients who were on or off medications. Fortunately, Experiment 1 (multiclass classi-
fication), which involved all three classes of subjects, showed that, with the inclusion of
healthy controls, the proposed model could better distinguish the two types of PD patients.

In addition, the dataset used in our study is relatively new, as it was only made
publicly available in 2020. Apart from our study, two other studies were used this dataset
for automated PD detection (Table 7) [28,29]. Khare et al. [29] proposed a machine-learning
approach by using tunable Q wavelet transform to automatically decompose EEG signals
into multiple sub-bands for automatic PD detection with a least-square SVM classifier. Their
approach achieved classification accuracy of 97.65% for the binary classification between
healthy controls and PD patients with medication. Khare et al. [28], in another study,
obtained the highest classification accuracy of 100% (healthy control versus PD patients
with medication) with a deep-learning model. They employed the smoothed pseudo-
Wigner Ville distribution (SPWVD) of EEGs with a deep CNN model. However, their
study only utilized this dataset for binary classifications. In their study, they segmented
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EEG recordings into 2 s epochs, which allowed for them to capture more significant
characteristics from time–frequency images to train their proposed CNN model. Having
more sample images resulted in higher classification accuracy for their model, but the
disadvantage was that the CNN was computationally intensive; hence, the number of
images to train the model was limited. Therefore, the study by Khare et al. [28] was
restricted to binary classification.

Table 7. Summary of automated PD detection studies that used the same publicly available PD dataset from OpenNeuro [37].

Author Input Feature Approach No. Of Classes Classification Accuracy (%)

Khare et al. [28] 2021
Smoothed

pseudo-Wigner
Ville distribution

CNN 2

HC vs. PD 99.97

HC vs. PD w/o Med 99.84

HC vs. PD w/Med 100.00

Khare et al. [29] 2021 Multiple subbands
of EEG

Least square SVM 2
HC vs. PD w/o Med 96.13

HC vs. PD w/Med 97.65

This work
Gabor transform
(spectrograms) CNN

3 HC vs. PD w/o med
vs. PD w/med 99.46

2

HC vs. PD w/o Med 99.44

HC vs. PD w/Med 98.84

PD w/o Med vs.
PD w/Med 92.60

Our study is the first to explore this dataset for automated PD detection with three-
class classification to individually detect healthy controls, and PD patients off and on
dopaminergic medications. Multiclass classification is possible with our approach because
the number of EEG recordings was split in half instead of segmenting EEGs into 2 s epochs.
This helped to generate fewer spectrograms for our model training, but allowed for the
model to detect more classes. As a consequence, our proposed model could simultaneously
detect PD patients and identify which patients were on medication.

In summary, the notable aspects of this study are:

• Simple workflow.
• A new publicly available PD dataset was used.
• Spectrograms via Gabor transformation of EEG signals were used for analysis.
• Deep-learning model based of 2D-CNN was proposed for automated PD detection.
• High model performance for three-class classification: healthy controls, and PD

patients with and without dopaminergic medications.
• The proposed model could automatically detect PD patients and distinguish if each

patient was on medication or not.

However, our study comes with a few limitations:

• Two-dimensional CNN models are computationally demanding, which results in long
training times.

• Large computer memory is required, as the model may crash when it exceeds the
memory load due to the large number of images for model training.

• The small number of participants in the PD dataset used in this study may reduce the
generalizability of the proposed model.

In the future, we wish to improve the existing model, such that it can be a practical
CAD tool for clinical-decision support. The proposed model must be validated with a
huge database that has information on other brain abnormalities, such as sleep disorders,
depression, and autism. Hence, the proposed model can learn to detect various brain
disorders instead of detecting only one disease. Future work to modify the proposed
model into a cloud-compatible device is also under consideration, as deep-learning models
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require a huge memory space, and this can be provided by the cloud. As such, a software
application can easily access data from the cloud, and perform EEG analysis and diagnostic
prediction. An illustration of the process from the EEG recordings of patients to the
diagnosis of disease by medical professionals with the help of cloud computing is shown
in Figure 8.
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using EEG recordings.

In addition to EEG signals, we can also explore different methods of PD diagnosis.
For instance, speech impairment and dysgraphia are commonly observed in 90% of PD
patients. This opens the possibility of automatic PD diagnosis based on speech and
handwriting recognition [53–55]. Gait analysis is another alternative for PD detection, as
motion impairments are reflected in the gait features of PD patients, such as reduced arm
swing, balance, and postural control [56]. As such, inertial measurement units (IMUs)
are an indispensable tool for motion capture and data collection for gait analysis and the
diagnosis of PD [57]. The availability of various automated diagnostic methods for PD
increases the chance of the early diagnosis for individuals suspected to have PD and open
the door to potential novel therapies to reduce the severity of PD.

5. Conclusions

This study proposed a deep-learning model based on 2D-CNN architecture for au-
tomated PD detection using a new publicly available EEG database. The EEG recordings
of healthy controls, and PD patients with and without medication were converted into
spectrograms via Gabor transform for analysis. These spectrograms were utilized for the
model training of the proposed 2D-CNN model, and four experiments were conducted.
Experiment 1, which involved three-class classification, obtained the highest classification
accuracy of 99.46%, indicating that our proposed model could detect PD patients and
differentiate if patients had taken their medication or not. The limitation of this work is
that we used only 31 subjects (16 healthy controls and 15 PD). The high model performance
of the proposed model highlighted its potential as a CAD tool for clinical-decision support.
The proposed model requires further validation with a larger EEG database containing
information on other abnormalities, such that it can be developed into a versatile CAD tool.
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