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ABSTRACT: Despite the growing demand for long-range ENSO predictions beyond 1 year, quantifying the skill at these
lead times remains limited. This is partly due to inadequate long records of seasonal reforecasts that make skill estimates
of irregular ENSO events quite challenging. Here, we investigate ENSO predictability and the dependency of prediction
skill on the ENSO cycle using 110 years of 24-month-long 10-member ensemble reforecasts from ECMWF’s coupled
model (SEAS5-20C) initialized on 1 November and 1 May during 1901–2010. Results show that Niño-3.4 SST can be skill-
fully predicted up to ;18 lead months when initialized on 1 November, but skill drops at ;12 lead months for May starts
that encounter the boreal spring predictability barrier in year 2. The skill beyond the first year is highly conditioned to the
phase of ENSO: Forecasts initialized at peak El Niño are more skillful in year 2 than those initialized at peak La Niña,
with the transition to La Niña being more predictable than to El Niño. This asymmetry is related to the subsurface initial
conditions in the western equatorial Pacific: peak El Niño states evolving into La Niña are associated with strong upper-
ocean heat discharge of the western Pacific, the memory of which stays beyond 1 year. In contrast, the western Pacific re-
charged state associated with La Niña is usually weaker and shorter-lived, being a weaker preconditioner for subsequent
El Niño, the year after. High prediction skill of ENSO events beyond 1 year provides motivation for extending the lead
time of operational seasonal forecasts up to 2 years.

KEYWORDS: ENSO; Pacific Ocean; Climate prediction; Forecast verification/skill; Tropics;
Atmosphere-ocean interaction

1. Introduction

El Niño–Southern Oscillation (ENSO) is the most ener-
getic naturally occurring coupled ocean–atmosphere phe-
nomenon in the tropical Pacific (e.g., McPhaden et al. 2020)
and a strong driver of weather/climate variability around
the world via atmospheric teleconnections (Taschetto et al.
2020). ENSO is characterized by irregular episodes of anom-
alous sea surface temperature (SST) warming (El Niño) and
cooling (La Niña) in the eastern and central equatorial
Pacific from coupled dynamic and thermodynamic feed-
backs with a periodicity of 2–7 years (e.g., Philander 1990;
Timmermann et al. 2018). Owing to its profound global im-
pacts extending to the environment, food security, econo-
mies, and social stability, the application of reliable ENSO
prediction becomes a powerful way to provide meaningful
and reliable guidance to decision-makers (Plummer et al.

2018). With the noticeable progress in coupled model devel-
opments, and improvement in initialization schemes in the
recent decades, ENSO has become the most predictable cli-
mate mode at seasonal time scales (Tang et al. 2018), al-
though untangling the complexities of ENSO dynamics and
predicting ENSO precisely at longer lead time beyond a year
remains a major challenge.

Over the recent decades, considerable research efforts have
been dedicated to developing a hierarchy of dynamical fore-
cast models, from idealized coupled models (e.g., Cane et al.
1986; Chen et al. 2004; Chen and Cane 2008) to fully coupled
state-of-the-art general circulation models (GCMs) using
sophisticated data assimilation techniques to generate initial
conditions to predict ENSO evolution several seasons in ad-
vance (e.g., Alves et al. 2004; Jin et al. 2008; Luo et al. 2008,
2015; Balmaseda and Anderson 2009; Hendon et al. 2009;
Barnston et al. 2012, 2019; Xue et al. 2013; Kirtman et al.
2014; Gonzalez and Goddard 2016; Hudson et al. 2017;
Johnson et al. 2019; Wu et al. 2021a,b). Operational forecast
centers around the world routinely provide real-time forecasts
of ENSO events up to 9 months’ lead time, although some
models}such as from the North American Multi-Model
Ensemble (NMME) and the European Centre for Medium-
Range Weather Forecasts (ECMWF)}also provide ENSO
outlooks up to 12 months ahead. Limiting lead time to less
than a year derives, in part, from the inherent difficulty to
predict across the boreal spring predictability barrier (BSPB)
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when the signal-to-noise ratio (SNR) is small, and from the
large uncertainty driven by high-frequency atmospheric noise
and the inherent complexity of the climate system. Seasonal
variations of the coupled atmosphere–ocean mean state and
decadal variations in the tropical Pacific can also affect ENSO
prediction skill, with some decades showing skill limited to
much less than 9 months (Balmaseda et al. 1995; Kirtman and
Schopf 1998; Zhao et al. 2016; Weisheimer et al. 2020). Never-
theless, forecasting El Niño and La Niña events at a longer
lead time beyond 12 months has received limited attention
(Wu et al. 2021a,b).

Theoretically, ENSO is suggested to be potentially predict-
able a few years in advance as a result of the slowly varying
self-sustained nature of the tropical Pacific coupled ocean–
atmosphere system (e.g., Latif et al. 1994). Nonetheless,
only a handful of studies have demonstrated the potential of
predicting recent ENSO events beyond 1 year using long-
lead retrospective forecasts with coupled model prediction
systems (e.g., Luo et al. 2008, 2017; DiNezio et al. 2017a;
Park et al. 2018). Recently, Wu et al. (2021a) explored the
predictability of ENSO duration using coupled CESM1
model initialized hindcasts for the period 1954–2014 and
promoted the usefulness of extending the ENSO prediction
beyond one additional year. According to those previous
studies, the prospects of long-lead ENSO predictability
primarily lie in the subsurface ocean memory in the equato-
rial Pacific (e.g., Meinen and McPhaden 2000; DiNezio and
Deser 2014; Planton et al. 2018), although westerly wind
bursts (e.g., Vecchi and Harrison 2000) and the interaction be-
tween ocean preconditioning in the tropical Pacific Ocean and
subseasonal winds and SST variations in the subtropical Pacific
and adjacent oceans, such as through the heat flux–driven sea-
sonal footprint mechanism (e.g., Vimont et al. 2003) and ocean
dynamics–driven trade wind charging (Chakravorty et al.
2020), can also affect the ENSO predictability.

There is still limited consensus or baseline about a potential
dependence of long-lead (beyond 1 year) ENSO predictabil-
ity on initial ENSO state in a real-time prediction scenario.
Using a perfect model framework, Planton et al. (2021) found
the transition from El Niño to La Niña to be more predictable
than the transition from La Niña to El Niño. DiNezio et al.
(2017b), also using a perfect model framework, proposed that
it should be possible to predict the duration of La Niña events
up to 2 years ahead. Larson and Kirtman (2017), on the other
hand, found increased predictability for transitions toward El
Niño events, also in a perfect model framework. The study by
Larson and Pegion (2020), using a multimodel of operational
seasonal ENSO forecasts, did not find any conclusive evi-
dence of whether El Niño events are more predictable than
La Niña, or vice versa. Their statistics were limited by the
number of models providing long-lead predictions and by
the number of cases in their hindcast period (1982–2010). The
more recent work by Wu et al. (2021a), using a longer refore-
cast period (1954–2015), discusses the possibility of predicting
the duration of 1- and 2-yr El Niño or La Niña events, and
finds that the duration of La Niña can be predicted 2 years
ahead if initialized from the peak of a strong El Niño event,
consistent with DiNezio et al. (2017b).

Motivated by the growing demand for knowledge of the
likelihood of El Niño or La Niña in the following year and for
multiyear regional climate information, here we aim to assess
the potential of long-lead ENSO prediction up to 2 years us-
ing the latest 110-years of 24-month-long 10-member ensem-
ble retrospective forecasts for the period 1901–2010 from the
ECMWF coupled model (SEAS5-20C; Weisheimer et al.
2021). We explore the conditional long-range prediction skill
and predictability of ENSO, with focus on the dependence on
the phase of ENSO in the initial conditions. Unlike Wu et al.
(2021a), this study does not deal with the specific aspect of
predicting the duration of the events. With these 110 years of
hindcast, we overcome some of the limitations of previous as-
sessment with idealized modeling techniques that used sub-
stantially shorter historical analysis periods or hindcast
periods. Compared to previous idealized modeling studies of
long-lead ENSO prediction using hindcasts initialized over
the past ;100 years (e.g., Chen et al. 2004), the atmosphere
and ocean initial conditions are created with a state-of-the-art
assimilation system. Although this assimilation cannot make
up for the lack of in situ and satellite data during earlier peri-
ods, it does provide a consistent analysis using a fixed coupled
model system that optimally uses the available ocean and at-
mosphere observations. Hindcasts from a state-of-the-art cou-
pled model assimilation and prediction system spanning the
period 1901–2010 will provide an improved estimate of
ENSO predictability accounting for its large multidecadal var-
iation [as suggested by Weisheimer et al. (2022)] and differ-
ences in predictability of El Niño and La Niña based on a
much longer sample size.

The rest of the paper is organized as follows: section 2
briefly presents the model and hindcast experiments, data
used for verifications and methods used for this study. In
section 3, we assess ENSO predictability, focusing on the
skill dependency of ENSO on initial ENSO states, the pre-
dictability of El Niño versus La Niña events and underlying
climate processes affecting the predictability. The summary
of key findings and the implications for future operational
use are provided in section 4.

2. Model, data, and methods

a. SEAS5-20C hindcast experiments

In this study, we use the SEAS5-20C dataset (ECMWF
2021; Weisheimer et al. 2021), a suite of 2-yr-long ensemble
hindcast experiments spanning the period 1901–2010. The fore-
cast model used is a low-resolution configuration of ECMWF’s
fifth-generation operational coupled model seasonal forecasting
system, SEAS5, documented in Johnson et al. (2019). The per-
formance of the model, as well as the sensitivity to resolution,
has been further assessed in the ocean–atmosphere coupled
simulations in Roberts et al. (2018). They found that the model
could reasonably reproduce various aspects of observed ENSO
behavior, including magnitude, periodicity, asymmetry of
ENSO variability, coupled feedback, and teleconnections in the
historical simulations.
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The initial conditions for SEAS-20C are provided by
ECMWF’s first Coupled Reanalysis of the 20th century
(CERA-20C; Laloyaux et al. 2018) which has an ensemble of
10 members. CERA-20C aims at reconstructing the weather
and climate of the coupled atmosphere, ocean, land, ocean
waves, and sea ice system for the past period 1901–2010.
CERA-20C assimilates observed subsurface temperature and
salinity profiles in the ocean and conventional surface observa-
tions (surface pressure and marine winds) in the atmosphere,
while no satellite-derived data went into the reanalysis. In
CERA-20C, SSTs are constrained via relaxation toward the
monthly HadISST2 analysis (Titchner and Rayner 2014).
Weisheimer et al. (2022) have shown that the skill of SEAS5-
20C for ENSO prediction during the recent 1981–2010 period
is comparable to that of the operational system SEAS5 (see
Fig. S1 in the online supplemental material).

The experiments for generating hindcasts were run at the
atmospheric resolution Tco199 (;50 km) horizontally with
91 vertical levels and with a 18 horizontal ocean resolution
using 42 vertical levels. “Tco” stands for triangular–cubic–
octahedral grid (the shortest wave resolution is represented
by four grid points), commonly used in lower-resolution at-
mospheric experiments at ECMWF. Historical constructions
of greenhouse gases (CMIP5) and volcanic stratospheric
sulfate aerosols were used as radiative forcings similar to
SEAS5. All experiments have an ensemble size of 10 members,
sampling the 10 realizations of each set of ocean ICs. The refor-
ecasts were started on each 1 November and 1 May from 1901
to 2010 and have a lead time of 24 months. Recent studies
show that an ensemble size of 10 is sufficient to estimate the
ensemble mean and spread for 2-yr lead forecasts for predic-
tions of El Niño and La Niña (Wu et al. 2021a), although
likely more ensemble members will be needed for conditions
where the SNR is lower. We have used the words hindcast,
forecast, reforecast, and prediction synonymously throughout
the remainder of this paper.

b. Data for forecast verification

We have utilized certain observational and reanalyses
datasets to validate the model forecasts for the period of
1901–2010. For the assessment of SST forecasts, we used

the ERSST.v5 monthly averaged gridded analyses with a
horizontal resolution of 2.08 3 2.08 for the period 1901–2010
(Huang et al. 2017). The CERA-20C ocean heat content
analyses for the upper 300 m (OHC300; Laloyaux et al.
2018) and ERA-20C monthly 10-m wind gridded reanalyses
with a horizontal resolution of 18 3 18 for 1901–2010 (Poli
et al. 2016) have also been used to verify reforecasts at each
lead month.

c. Diagnostics for verification

Before assessing the 2-yr lead reforecasts, we remove the
model climatology of each variable at each lead month by av-
eraging the ensemble mean (averaged over 10 members) fore-
casts across all start years as a function of lead month for the
period of 1901–2010. We computed the climate drift-adjusted
forecast anomalies of each variable by subtracting the calcu-
lated model climatology of that variable for each lead month
from each ensemble member forecast lead month and then
we assessed their performance compared to observed anoma-
lies that are similarly formed by subtracting the observed cli-
matology of the same study period.

We have utilized various statistical approaches and skill scores/
metrics to assess the skill and predictability of ENSO events.
ENSO events are selected based on the observed SST anomalies
averaged over theNiño-3.4 region (58S–58N, 1708–1208W,defined
as the Niño-3.4 index or N34) for 1901–2010. The year when an
ENSO event first develops is denoted as year 0; herein Nov0 is
used to refer to the month of November in the same year when
the mature phase of ENSO starts and May0 denotes the month
of May of the same calendar year. For instance, for the
1997/98 El Niño event, Nov0 and May0 refer to November
and May of 1997. To assess the state-dependency and long-
lead prediction skill of ENSO from November-initialized
(Nov0) forecasts, individual near mature or peak El Niño
(La Niña) events are selected when the normalized Niño-3.4
index in Nov0 is $10.5 (#20.5). The identified El Niño
(EN_All) and La Niña (LN_All) years and their transition
subsets are listed in Table 1.

To quantify overall long-lead prediction skill and predict-
ability of ENSO in SEAS5-20C, we have applied both deter-
ministic and probabilistic approaches. The ensemble-mean

TABLE 1. Lists of identified El Niño and La Niña events and the subset of ENSO years transitioning to opposite phases for the
period 1901–2010, denoted by the years when detected in November.

El Niño years (EN_All) La Niña years (LN_All)

All cases 1902, 1904, 1905, 1911, 1913, 1914, 1918,
1923, 1925, 1930, 1940, 1941, 1951, 1957,
1963, 1965, 1968, 1969, 1972, 1976, 1977,
1979, 1982, 1986, 1987, 1991, 1994, 1997,

2002, 2004, 2006, 2009

1903, 1906, 1909, 1910, 1912, 1915, 1916,
1917, 1922, 1924, 1933, 1938, 1942, 1944,
1947, 1949, 1954, 1955, 1956, 1964, 1970,
1971, 1973, 1974, 1975, 1983, 1984, 1988,

1995, 1998, 1999, 2007, 2010

El Niño to La Niña (EN " LN) La Niña to El Niño (LN " EN)

Transition subset 1902/03, 1905/06, 1911/12, 1914/15,
1923/24, 1941/42, 1963/64, 1969/70,
1972/73, 1982/83, 1987/88, 1994/95,

1997/98, 2006/07, 2009/10

1903/04, 1910/11, 1917/18, 1924/25,
1956/57, 1964/65, 1971/72, 1975/76
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anomaly correlation coefficient (ACC) is used to quantify
forecast accuracy, which is corroborated using the root-mean-
square error (RMSE). Forecast uncertainty is quantified using
ensemble spread and signal-to-noise ratio (SNR; the ratio of
the ensemble mean divided by the ensemble spread). We use
composite analysis to measure the capability of SEAS5-20C to
predict the temporal evolution of Niño-3.4 SST anomalies and
other oceanic/atmospheric variables of El Niño and La Niña
events and their transitions starting from Nov0-initialized fore-
casts compared to the observations.

3. Results and discussion

a. State dependency of ENSO prediction skill

We start with assessing the overall ENSO prediction skill of
SEAS5-and how the prediction skill varies with selected hind-
cast periods. Figure 1 shows the ACC skill of the Niño-3.4
index as a function of forecast lead month initialized on
1 November (Fig. 1a) and 1 May (Fig. 1b) respectively for
three different hindcast periods, the entire 1901–2010 period
(110 years; green curve), the most recent 50 years (1961–2010;
blue curve), and the most recent 30 years (1981–2010; red
curve). We refer to the forecast accuracy as being skillful as
long as the ACC is significantly different from zero. Here,
ACC $ 0.4 is significant at 95% confidence level for a sample
size $ 30 using a standard t test. For Nov0 initialized forecasts
(Fig. 1a), the ENSO skill varies from 6 to 18 months lead for
selected hindcast periods but performs best in the most recent
30-yr period as might be expected due to increased availabil-
ity of observations used to initialize the forecasts. All hind-
cast periods exhibit a skill drop associated with BSPB and
subsequent skill recovery, but with different magnitudes.
Forecasts initialized in May, which is around the peak of
BSPB, show comparatively lower ACC than those initial-
ized in November. The forecasts from May remain skillful
only out to 10–13 lead months, which coincides with the
BSPB in the second year. The possible role of any exter-
nally forced trends for causing the skill variation across the
three epochs considered here was explored by recomputing
the ACC using detrended data and no appreciable difference
in skill was found (See in supplemental Fig. S2).

We additionally complement the analysis using ACC with
corresponding RMSE and ensemble spread and standard devia-
tion over the three hindcast periods (supplemental Fig. S3). The
model is seen to consistently simulate too weak ENSO variabil-
ity in year 2 and beyond, which presumably limits the seasonal
recovery of skill after the BSPB. For the most skillful recent pe-
riod (1981–2010), the ensemble spread follows the RMSE during
the first year for November-initialized forecasts, indicating a reli-
able ensemble, but then remains underdispersed in year 2. There
is also an indication of recovery of skill from Aug11 onward,
which matches well the seasonal increase in observed standard
deviation. The ACC is seen to reach ,0.4 when the RMSE is
nearly equal to the observed standard deviation around the
BSPB in May–Jun12 in year 2 beyond lead month 18. However,
RMSE grows rapidly after lead month 7 during other historical
periods. Further analysis reveals that the model consistently

simulates too weak ENSO variability in year 2 and beyond, and
weaker wind variability at the early stage of the seasonal fore-
casts (supplemental Figs. S3 and S4), which presumably limits
the seasonal recovery of skill after the BSPB.

Although the results in Fig. 1 seem to indicate that the best
skill is achieved in the most recent epoch, when presumably
the initial conditions are best constrained, the story is not that
simple. Recently, Weisheimer et al. (2022) highlighted distinct
periods of enhanced long-range ENSO skill at the beginning
and at the end of the twentieth century, and an extended multi-
decadal epoch of reduced skill during the 1930s to 1950s in
SEAS5-20C. Their study suggests that the nonmonotonic skill
modulation (e.g., Zhao et al. 2016) is largely driven by multi-
decadal variations in the dynamical characteristics of ENSO
rather than the data coverage and quality of the observations.
Their results show that forecast skill in the first decades of the
record was similarly good as that achieved during the most re-
cent decades, thus justifying extension of the hindcasts back
to the early 1900s. In this context, the strength of coupling be-
tween the extratropics and tropics during those epochs could also
influence the prediction skill (Pivotti and Anderson 2021).

Next, we quantify the state-dependency of ENSO predic-
tion skill (Fig. 2) by computing the ACC scores separately for
forecasts initialized in Nov0 at near peak El Niño (denoted as
EN_All, Nov0) and La Niña (denoted as LN_All, Nov0) based
on the events listed in Table 1. Forecasts are skillful up to
18 months when initialized near peak El Niño (Fig. 2a, red

FIG. 1. Anomaly correlation coefficient (ACC) skill scores of
ensemble-mean monthly Niño-3.4 anomaly as a function of fore-
cast lead months initialized at (a) 1 Nov and (b) 1 May for selected
three hindcast periods: 1901–2010, 1961–2010, and 1981–2010.
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curve), with the skill bouncing back after the BSPB (i.e., be-
yond lead time 7 months). In contrast, a larger drop in ACC
score below the 0.4 threshold is evident during boreal spring
for the forecasts initialized from La Niña conditions (Fig. 2a,
blue curve) and does not recover afterward. The skill differ-
ence between El Niño and La Niña initial states is statistically
significant at lead times . 7 months (skill difference at 5%
significance level are highlighted). Here the effective sample
size has been estimated following Bretherton et al. (1999) and
the significance of skill difference is computed using a t test.
We further analyze the results with RMSE score, which matches
well with the overall ACC score (supplemental Fig. S5). When
the forecasts are initialized in May0 from an El Niño or La Niña
state, the differences in skill between El Niño and La Niña
events are not statistically significant (supplemental Fig. S6).
Note that, in this case, the subsets of El Niño and La Niña initial
states are identified based on a similar normalized Niño-3.4
index but for the month of May, and mostly are at the decaying/
onset stage. In both cases, the ACC skill recovery after the
BSPB can sustain ACC values larger than 0.4 for about
12 months.

In Fig. 2b, we further quantify the skill for predicting the
development of La Niña and El Niño in Nov0 (and onward)
from initial conditions in the previous year (Nov21). Results
show that predicting the onset and development of La Niña in
Nov0 from Nov21 is more skillful (over 18 months lead) than

predicting the development of an El Niño, consistent with the
fact that La Niña generally more robustly follows an El Niño
event rather than vice versa. A similar assessment was made
using May initialized forecasts (May0) to predict peak El Niño
and La Niña in Nov0 at 6-month lead (Fig. 2c) and 18-month
lead (from May21; Fig. 2d). The results indicate that May
initialized forecasts are skillful up to a 12-month lead. At
short lead times (Fig. 2c), the skill is significantly larger for
predicting mature El Niño (Nov0) than La Niña (Nov0),
with the former having a weaker BSPB. In contrast, the
BSPB of the second year is stronger for El Niño conditions.
The latter is consistent with the increased skill for predicting
La Niña (Nov0) during the first 12 months in forecasts ini-
tialized in May21 in Fig. 2d. These results indicate that
SEAS5-20C has high predictive skill for ENSO events with
a lead time beyond a year when initialized at the 1 November
near mature El Niño state.

b. Predictability of El Niño and La Niña in
Nov0 forecasts

To illustrate the results of the skill scores discussed above,
Fig. 3 shows the typical capability of SEAS5-20C 24-month
forecasts in predicting the deterministic temporal evolution
of Niño-3.4 SST anomalies when forecasts are initialized at
Nov0 near the peak of El Niño (EN_All; Fig. 3a, red) and of
La Niña (LN_All; Fig. 3b, blue). The figure shows composites of

FIG. 2. ACC score-based skill dependency of model forecasts when initialized at (a) El Niño (Nov0, EN_All; red)
and La Niña (Nov0, LN_All; blue) states for a 1 November start (Nov0), and corresponding prediction skill of El
Niño (Nov0; red) and La Niña (Nov0; blue) when initialized from (b) Nov21 (12-month lead), (c) May0 (6-month
lead), and (d) May21 (18-month lead) as a function of forecast lead months. The ACC scores for the whole pe-
riod (all years, 1901–2010; as in Fig. 1) for both November and May starts are shown in green for reference. Skill
differences between El Niño and La Niña significantly different from zero at the 5% level are highlighted with
shading. El Niño (Nov0) and La Niña (Nov0) denote the near peak El Niño and La Niña state, respectively.
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observations and the corresponding ensemble-mean forecasts
for the identified ENSO years (Table 1a). The ensemble
mean will only capture the deterministic component of the
predictability, so even a perfect forecast could underestimate
the amplitude of the observations. In Fig. 3a, the composited
time series of observed Niño-3.4 SST anomalies shows that
El Niño events typically decline after their peak and evolve
to near La Niña conditions within 6 months in the next year.
We find that the model predicts well the duration of the
warm event from peak to termination, as well as the onset
of La Niña conditions in the next year, providing successful
predictions of the ENSO cycle beyond 1.5 years, consistent
with Fig. 2a.

The figure also shows the composite evolution for forecasts
initialized in May0 (6-month lead; yellow) and Nov21 (12-month
lead; green) for transitions to peak El Niño (Nov0) (Table 1).
For these longer lead times, the ensemble mean can capture the

sign of the warm anomaly at Nov0, but it largely underestimates
the observed amplitude of El Niño, consistent with a substantial
random component in the onset of a warm event (we will come
back to this point later). The ensemble mean struggles to cap-
ture the transition to cold conditions in the second year. This
result fits the interpretation that the transition to a cold state is
conditioned to the intensity of a preceding warm event, which
is not easy to predict in a deterministic sense from May0 and
Nov21 initial conditions.

The composites of observed Niño-3.4 SST anomalies for
LN_All events shown in Fig. 3b indicate that in general La
Niña decays more slowly than El Niño, remaining in cold-
neutral conditions for the following year, whereas El Niño
tends to transition to a cold state within the first year. This
is consistent with previous studies (e.g., Kessler 2002; Oku-
mura and Deser 2010), and points to a clear asymmetry in the
ENSO evolution. The forecasts initialized around peak La Niña

FIG. 3. Time evolution of Niño-3.4 index (8C) in observations (black curves) and ensemble-mean forecasts (colored
curves) composited for (a) EN_All and (b) LN_All, and the (c) EN " LN and (d) LN " EN transitions for the pe-
riod 1901–2010. The forecasts are initialized in Nov21 (green), May0 (yellow), and Nov0 (red for EN; blue for LN).
Nov0 denotes the peak of identified El Niño and La Nina events. (e),(f) Probabilistic aspects of forecast ensembles in
predicting Nov11 Niño-3.4 index from all ensemble forecast members of each composite for forecast initialized in
Nov0 and May0, respectively, are expressed in percentages.
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provide good predictions up to ;10 lead months, after which
SST anomalies remain neutral and so there is no signal to pre-
dict. This can explain the lower correlation values of the blue
curve in Fig. 2a. Forecasts initialized in May0 and Nov21 before
the peak La Niña (Nov0), overall capture the negative sign of
the SST anomalies, a noticeable difference with the equivalent
composite for equivalent lead times for EN_All events in
Fig. 2a.

We further use a subset of ENSO events that directly transi-
tion to the opposite phase (Table 1b). Compared with EN_All,
for the transition subset El Niño (Nov0) to La Niña (Nov11)
(denoted as EN" LN) the model predicts better the amplitude
of SST anomalies associated with the typical evolution of ma-
ture El Niño (Nov0) transitioning to La Niña (Nov11) and its
continuation beyond 1.5 years lead (Fig. 3c). We repeat the ex-
ercise for the LN " EN events (although the number of cases
is small) initialized during La Niña events (Nov0) with direct
transition into El Niño (Nov11) (Fig. 3d). For these subsets, the
model is able to capture the change of sign from cold to warm
conditions but struggles to capture the timing of the rapid termi-
nation of La Niña and the transition to El Niño (Nov11) in the
subsequent boreal spring. It largely underestimates the ampli-
tude of warm phase SST anomalies in the second year, although
arguably not as much as for the LN_All events (e.g., Nov21

starts in Fig. 3a).
The probabilistic performance of the model for the differ-

ent composites is illustrated in Figs. 3e and 3f for May0 and
Nov0 initialization. The figure shows the probability (relative
number of ensemble members) of having a cold or warm
event for the different composites in Nov11. The forecast pro-
duces higher probabilities of cold events in Nov11 when start-
ing from El Niño conditions, and successfully captures the
increased probability of cold conditions in the EN " LN sub-
set with respect to the EN_All subset, both for Nov0 and
May0 initialization. In contrast, for the La Niña initialized
forecasts, the distribution between cold and warm anoma-
lies in Nov11 is more similar, although again the model suc-
cessfully increases the probability of warm anomalies in the
LN" EN subset compared with those in LN_All when initial-
ized in Nov0. Notably, this is not the case for forecasts initial-
ized in May0, where the model tends to produce an increased
probability of cold anomalies in Nov11. While high probabili-
ties of cold anomalies in the subset LN_All (initialized in
May0) can be a manifestation of the skewness of the ENSO
cycle, with La Niña condition lasting longer than 1 year, the
higher probabilities of cold anomalies in LN " EN subset
show a model deficiency.

The results confirm that forecasts initialized near the ma-
ture El Niño state have the longest-range prediction skill,
with the model being able to predict the occurrence of La
Niña beyond 12 months. In contrast, when initialized from La
Niña conditions, the deterministic prediction skill of the am-
plitude of warm events at lead months longer than 12 appears
modest, although at these lead times the forecasts initialized
in Nov0 are able to predict the termination of the cold condi-
tions with probability larger than 60% (table not shown). In
the following subsections, we will consider only the forecasts

initialized in Nov0. Given that a robust probabilistic verifica-
tion of the skill from different subsets is difficult with the lim-
ited number of samples and ensemble members, we will focus
the discussions on the processes leading to the different levels
of predictability.

c. Physical processes contributing to the predictability in
forecasts initialized in the mature ENSO phase (Nov0)

Both oceanic and atmospheric processes play roles in the pre-
dictability of various aspects of ENSO. Here we explore the in-
terplay between these processes in the predictability of onset,
amplitude, and duration of ENSO events, and we explore the
model’s capacity to predict the oceanic and atmospheric climate
processes that could contribute to the differences in long-lead
predictability for El Niño and La Niña events in Nov0 initialized
forecasts. Figures 4 and 5 compare the composited spatial maps
of 2-month-averaged observed (left column) and predicted
(right column) fields for forecasts initialized from the mature
phases of El Niño (EN_All) and La Niña (LN_All) conditions,
respectively. The top panels show the 2-month-averaged SST
and surface wind anomalies (Figs. 4a and 5a) and the bottom
panels show the upper ocean heat content (OHC300) (Figs. 4b
and 5b) anomalies initialized at 1 November, both at lead
month 0 (Nov0/Dec0) and lead month 12 (next year,
Nov11/Dec11).

For both El Niño and La Niña initialized states, the SST
anomalies in the tropical Pacific and adjacent oceans are well
captured in Nov0/Dec0 (top panels of Figs. 4a and 5b) al-
though there is a westward shift in the ENSO SST anomalies
and weaker wind anomalies. The westward displacement of
ENSO-related equatorial anomalies is associated with the erro-
neous westward penetration of the Pacific cold tongue in the
SEAS5-20C model simulation, a common issue in the current
state-of-the-art climate models (see, e.g., Wu et al. 2022). The
model also predicts well the recharge/discharge dipole in the
OHC300 anomalies between western and eastern equatorial
Pacific region (top panels of Figs. 4b and 5b). At lead month 12,
the model could predict the structure of changes in the oceanic
and wind anomalies in transitioning to La Niña–like conditions
in the next year Nov11Dec11 from an El Niño initialized state
Nov0Dec0 (bottom panels of Fig. 4a), consistent with the model
being able to capture the duration of the warm phase through
the first year (see also Fig. 3). However, when initialized from
La Niña conditions (bottom panels of Figs. 5a,b), the model
seems to transition to neutral condition faster than observa-
tions, with faster than observed release of heat from the equa-
torial western Pacific to the central/eastern Pacific, which
manifests on weaker than observed positive OHC300 anoma-
lies in the western Pacific, and stronger than observed warm
conditions in the equatorial eastern Pacific in both OHC300
and SST. This can be seen more clearly by following the time
sequence of spatial maps from Nov0Dec0 to Nov11Dec11,

shown in supplemental Figs. S7 and S8.
We further assess the equatorial physical processes contrib-

uting to the predictability difference between the time evolu-
tion of El Niño and La Niña initialized states. Figure 6 shows
the composited spatiotemporal evolution of SST, surface
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wind, and OHC300 anomalies averaged over the equatorial
Pacific (58S–58N) region for El Niño events (EN_All) in obser-
vations (Figs. 6Ia,c) starting from Nov21, and Nov0-initialized
ensemble mean forecasts (Figs. 6Ib,d). Observations show the
OHC300 recharge state from Nov21 and gradually induced
surface westerlies in the western-to-central equatorial Pacific
acting as the precursors of the developing El Niño warming in
the eastern equatorial Pacific (Figs. 6Ia,c). Near the peak El
Niño phase (Nov0), westerly wind anomalies around the date
line are evident, consistent with the idea that by this time the
Bjerknes feedback is already well established. The western
Pacific has started discharging the heat, with the peak of
OHC300 positive anomalies now confined to the east of the
date line. The OHC300 negative anomalies will gradually
propagate eastward to encompass the whole equatorial basin
for the duration of the warm event, creating favorable conditions
for the termination of El Niño and transition to the cold phase in
the following year.

The Nov0 initialized forecasts predict well the warmer SST
anomalies and the eastward propagation of subsurface heat
related to the mature stage of El Niño (Figs. 6Ic,d) and cap-
ture the transition to the cold phase the following year.

However, the western Pacific heat discharge is weaker. We
speculate that this weak discharge is associated with the fore-
cast error in the first few months, related to the model weak
interannual variability of the zonal wind (which appears in
the first month; see supplemental Fig. S4) and/or the west-
ward displacement of ENSO SST/wind anomalies and warmer
OHC300 in the warm pool region (supplemental Fig. S8).
Thus, a westward displacement of the SST anomaly in the fore-
casts weakens the westerly anomaly around the date line, which
can weaken the OHC300 discharge in the western Pacific during
the first year and results in warmer equatorial conditions in the
second year. We note that the westward displacement of the
anomaly error is visible in other models (e.g., Wu et al. 2021a,
2022) and is likely related to the mean-state error of westward
displacement of the cold tongue and easterly wind bias
(supplemental Fig. S8). The too-strong easterly wind bias
may also be related to the weak wind variability. Thus, er-
rors in the zonal winds and cold-tongue position in the first
months of the forecasts can affect the prediction skill be-
yond year one, as discussed in Wu et al. (2022).

Given these general forecast deficiencies associated with
the cold tongue and weak El Niño discharge, can we expect

FIG. 4. Two-month-averaged (Nov0Dec0 and Nov11Dec11) maps of composited (a) SST (shading) and surface winds
(vectors) and (b) OHC300 based on all El Niño events from (left) observations and (right) ensemble-mean forecasts
initialized at El Niño states (Nov0).
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the forecast to be able to predict the transition from El Niño
to La Niña? In Fig. 3c above we have seen that the model
composites for the ENSO indices behave better for these sub-
sets of cases. Figure 6II shows the composites of El Niño
events transitioning to La Niña events (EN " LN events in
Table 1b). Compared to the observed EN_All composite, the
observed EN" LN composite (Fig. 6IIa) shows stronger SST
anomalies in the first year and stronger and faster heat dis-
charge in the equatorial western Pacific. The forecasts can
capture the difference between the EN_All and EN " LN,
being able to predict the stronger amplitude of the El Niño,
its termination and transition to La Niña in the next year, pre-
ceded by strong OHC discharge associated in the western Pa-
cific region and subsequent eastward propagation. The ability
of the model to distinguish between transition and standard
events implies that this information is contained in the initial
conditions. Indeed, there are noticeable differences in the pre-
cursors of the El Niño to La Niña subset (EN " LN) with re-
spect to EN_All events in the Nov0 initial conditions: both the
negative OHC300 anomaly over the western Pacific OHC300

and the positive SST anomalies east of the date line are stron-
ger than in the EN_All. These conditions seem to have been
developing during the preceding year (from Nov21). These
precursors favor the occurrence of a stronger than average El
Niño event from Nov0 to May11 and appear to affect the pre-
dictability of La Niña (Nov11) in the second year. Based on
this information in the initial conditions, the forecasts can dis-
cern the properties of these strong El Niño leading to La Niña
from the standard moderate El Niño events. But we also note
that the predicted La Niña SST anomalies (Nov11) in the east-
ern Pacific are weaker than observed. This can be a consequence
of the probabilistic nature of the forecasts (the ensemble mean
amplitude can be weaker than observations, particularly in the
most extreme cases), or a consequence of model error (e.g.,
weak discharge associated with western displacement of the
cold tongue, or weak interannual wind variability in the model,
as discussed above).

We further assess what controls the predictable component
in Nov0 forecasts from La Niña initialized states. Composites
of the LN_All cases and subset of LN " EN are shown in

FIG. 5. (a) Two-month-averaged (Nov0Dec0 and Nov11Dec11) maps of composited SST (shading) and surface
winds (vectors) and (b) OHC300 based on all La Niña events from observations and ensemble-mean forecasts initial-
ized at La Niña states (Nov0).
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Fig. 7. Composited LN_All observations (Figs. 7Ia,c) show
that La Niña tends to develop around May0 in the central-
eastern equatorial Pacific, and easterly wind anomalies over
the western-central equatorial Pacific force an eastward-
propagating signal, inducing cold OHC300 anomalies in the
eastern equatorial Pacific around the peak of La Niña. The
Nov0 initialized forecasts (Figs. 7Ib,d) predict well the cold
SST and OHC anomalies related to the mature stage of La Niña
in the central-to-eastern Pacific and positive OHC anomalies in
the western Pacific in the first year. Compared with the observa-
tions, the model predicts a more westward displacement of cold
ENSO anomalies in the second year, as well a premature initia-
tion of the warm phase (consistent with Fig. 3b), associated with
a faster recharge of the equatorial Pacific heat content.

We further investigate the LN " EN subset, comprising La
Niña events transitioning to El Niño (Fig. 7II). Observations
show that in these cases, El Niño is preceded by more persis-
tent and stronger than normal La Niña events (Fig. 7IIa). These
La Niña events are accompanied by enhanced recharge of
OHC300 in the equatorial Pacific (generally via meridional
Sverdrup transport; Meinen and McPhaden 2000), which leads
to deepening of the thermocline, the appearance of stronger
westerly wind events, and development of anomalous SST
warming through recharge process (Jin 1997), thus transitioning
to El Niño in the following year through the Bjerknes feedback.
The Nov0 forecasts predict well the initial La Niña–related SST
anomalies in the equatorial Pacific in year 1 but underestimate
the magnitude of oceanic and atmospheric conditions while

FIG. 6. Longitude–time evolution of composited (a),(b) SST (shading) and surface winds (vectors) and (c),(d) OHC300 averaged over
equatorial region (58S–58N) for (I) all El Niño events (EN_All) and (II) transition from El Niño (Nov0) to La Niña (EN" LN) in observa-
tion (starting from previous year) and ensemble-mean forecasts initialized at El Niño states (Nov0).
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evolving to a warm phase a year after. The warm SST anoma-
lies in the central-eastern Pacific during Nov11 is largely under-
estimated, affected by weaker westerlies in the western-central
equatorial Pacific around May11

–Aug11, coupled with weaker
OHC recharge in the eastern equatorial OHC300. The weaker
amplitude of the forecast compared with the observed compos-
ite is consistent with El Niño events being triggered by stochas-
tic forcing during boreal spring (e.g., Dommenget et al. 2013;
Planton et al. 2021). This will lead to reduction in amplitude
of the ensemble mean El Niño–related SST anomalies in the
equatorial Pacific and hence weaker long-lead deterministic
predictability of ENSO states from peak La Niña initialized
conditions. Still, compared with the standard La Niña cases in
Fig. 7I, when the forecasts are initialized from long-lasting La
Niña conditions, they favor the occurrence of warmer condi-
tions in the second year, so the model is able to differentiate
between the LN_All and LN" EN subsets.

d. The impact of western equatorial Pacific recharge–
discharge on ENSO predictability

In this section, we try to characterize the different subsets and
their predictability in terms of ocean heat content variations,
which can give some insight into the ENSO energy cycle and
role of the ocean initial conditions. The equatorial Pacific
OHC is regarded as a key ocean memory for ENSO predict-
ability at seasonal time scales, but so far it remains unclear if it
can be used as a predictor at time scales beyond 1 year. Recent
studies indicate that subsurface OHC anomalies in the western
equatorial Pacific better encompass the lower-frequency
ENSO dynamics and could be more promising precursors of
ENSO events beyond a year (Planton et al. 2018, 2021; Izumo
et al. 2019). We first estimate the deterministic skill of both
the western equatorial Pacific OHC (OHCW; averaged over
58S–58N, 1208–2058E) and the entire equatorial Pacific OHC

FIG. 7. As in Fig. 6, but for La Niña (Nov0) initialized forecasts.
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(OHCEQ; averaged over 58S–58N, 1208–2808E) using ACC
scores for El Niño and La Niña initialized forecasts (Fig. 8). It
is evident that both quantities exhibit a clear asymmetry re-
garding prediction skill, with forecasts initialized during peak
El Niño providing significant and skillful predictions beyond
1.5 years, compared to La Niña initialized forecasts (up to
1 year), consistent with Fig. 2a. The figure also shows that the
BSPB in the first year is mostly apparent in the OHCW in fore-
casts initialized from peak La Niña conditions, a feature that
may be related to the BSPB in SST predictions. The OHCEQ

does not exhibit any obvious BSPB in the first year, which is
likely related with the subsequent skill recovery in SST (e.g.,
Balmaseda et al. 1995).

We further assess the SST and OHC forecasts of the tran-
sition subsets by using diagnostics of the SNR, which is an
important factor in determining variations in predictability
and prediction skill of the ENSO cycle following Larson and
Pegion (2020). By applying this diagnostic to the EN " LN
and LN" EN, we aim at quantifying if the forecasts show dif-
ferent degree of predictability, such as noticeable differences
in the SNR (we remind the reader that comparing the skill
independently for different subsets is not possible, given the
limited number of cases in some of them). Figure 9 shows
the ensemble mean (solid curves) of Niño-3.4 SST (Fig. 9a)
and OHCW anomaly (Fig. 9b), as well as ensemble spread
(61 standard deviation; shaded) as a function of lead months
for the Nov0 initialized forecasts subsets of EN " LN (in red)
and LN " EN (in blue). The figures also show the SNR in
Dec11, for easier comparison with Larson and Pegion (2020).
The first noticeable feature is the larger SNR in OHCW (2.7 vs
1.5 and 1.0 vs 0.8) compared with SST, a clear indication of the
longer predictability of this variable. The second feature is that
the SNR is consistently larger in EN " LN than in LN " EN
subsets, in terms of both SST (1.5 vs 0.8) and OHCW (2.7 vs
1.0), with the asymmetry between subsets being more notice-
able in OHCW than in SST. We also note that the differences
in subsets are also present at the initial state, with larger

amplitudes of SST and OHCW anomalies in the LN" EN sub-
set. The different estimation of predictability in our reforecast
contrasts with the results by Larson and Pegion (2020), who did
not find any indication of increased predictability of the EN "
LN cases by applying the SNR diagnostic to a different set of
seasonal reforecasts spanning a shorter period. One possible ex-
planation is that our reforecasts allow a greater number of inde-
pendent cases compared to Larson and Pegion (2020); also,
they used predictions from multiple models.

To corroborate the relative role of OHCW in affecting ENSO
predictability, Fig. 10 illustrates the phase-space diagrams of ob-
servations (top panels) and forecast (Nov0-initialized; bottom
panels) trajectories in the (OHCW, OHCEQ) phase space. We
use the normalized OHC anomalies of the composites for
the different subsets. The left panels are for the EN_All and
EN " LN subsets (Figs. 10a,c), while the corresponding dia-
grams for LN_All and LN " EN are shown in Figs. 10b and
10d. In these diagrams, the ENSO-related OHC cycle follows
clockwise trajectories, where the x axis (y axis) indicates rechar-
ge/discharge of OHCW (OHCEQ). The observed trajectory dur-
ing the preceding year (Nov21

–Nov0) is shown as gray dots in
the observational panels (Figs. 10a,b).

FIG. 8. ACC of ensemble-mean monthly OHC300 anomaly as a
function of forecast lead months averaged over entire equatorial
Pacific (OHCEQ; 58S–58N, 1208–2808E; dashed curve) and western
Pacific (OHCw; 58S–58N, 1208–2058E; solid curve) initialized at
Nov0 near peak El Niño state (red) and La Niña state (blue).

FIG. 9. Ensemble mean (solid curve) and spread (61 standard
deviation; shaded) of Nov0 initialized forecasts for all transition
years and all ensemble members from El Niño (Nov0) to La Niña
(Nov11; red) and La Niña (Nov0) to El Niño (Nov11; blue). The
ensemble spread (61 standard deviation) from all individual mem-
bers of subset EN " LN (LN " EN) events for Nov0 forecasts is
indicated in pink (blue) shading. The Nov11 Niño-3.4 (12-month
lead) signal-to-noise ratios (SNR) for both transitions are shown at
the top-right corner of each plot.
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The observed trajectories of EN_All and EN" LN (magenta
and red curves in Fig. 10a), share similar precursor in Nov21

(gray dots), with a weak positive heat anomaly in both the west-
ern and equatorial regions a year prior to the El Niño (Nov0; red
dots). From Nov21 to Nov0 the two trajectories diverge, with a
gradual increase (decrease) in OHCEQ(OHCW) evident in both
but it is stronger in the EN " LN subset. A strong OHCW dis-
charge (peak around Mar11) is observed following El Niño ma-
ture phase (Nov0–May11), while OHCEQ also swings to
discharge state (i.e., the trajectory moves toward the lower-left
quadrant) until reaching the cold phase the following year. Until

Nov11, OHCW remains in a discharged state and starts to stabi-
lize close to neutral afterward, while the eastern Pacific starts
gaining heat. The observed OHC phase space diagram clearly
shows the difference between EN_All (magenta curve) and
EN " LN (red curve), in terms of initial conditions and evolu-
tion: the initial conditions for EN" LN have a more discharged
state in the whole Pacific, especially noticeable in the western
side. This more discharged state places the system in an outer or-
bit in the two dimensional phase space. The fact that the ob-
served trajectories for EN_All and LN_All evolve in parallel
orbits is indicative of the memory of the system. The model

FIG. 10. Phase portrait diagram of entire equatorial Pacific OHC300 (OHCEQ; 58S–58N, 1208–2808E) vs west-
ern Pacific OHC300 (OHCw; 58S–58N, 1208–2058E) for warm/cold ENSO initial conditions–all El Niño (EN_All,
Nov0; magenta curve) and El Niño to La Niña (EN " LN, Nov0; red curve) and all La Niña (LN_All, Nov0;
cyan curve) and La Niña to El Niño (LN " EN Nov0; blue curve) from (top) observations and (bottom) the en-
semble-mean Nov0 initialized forecasts. The OHC anomalies are normalized by observed standard deviation at
each lead month.
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forecasts in Fig. 10c are able to exploit the memory of the initial
conditions, showing also parallel orbits for more than 1 year,
which start converging (decaying) well after Nov11.

The precursors for the observed trajectories for LN_All
and LN " EN (light and dark blue curves in Fig. 10b) show
differences already in Nov21 (gray dots): a recharged state for
the LN " EN state and a weakly discharged one for LN_All
for both OHCW and OHCEQ. During the subsequent year,
the LN_All gradually moves from the weekly discharged
state to recharged OHCW, while increasing the discharge in
the OHCEQ, which reaches its minimum by the time the peak
La Niña conditions (Nov0), when the trajectory is clearly in
the upper-left quadrant with a sizable discharged OHCEQ, This
contrasts with the Nov0 initial conditions for the LN " EN
case, where the trajectory is neutral in OHCEQ, but visibly re-
charged in the western Pacific. So, the OHCEQ appears as a
distinctive feature for the transition LN " EN, which is fa-
vored by not having a heat deficit in equatorial Pacific. After
Nov0 both trajectories increase OHCEQ from Nov0 to May11,
by approximately similar amounts, bringing the OHCEQ

to weakly recharged for LN_All and strongly recharged for
LN " EN. After that, LN_All eventually decay toward the
origin, while the LN" EN trajectory continues clockwise in a
large orbit, transitioning to the El Niño state by Nov11 (with
fully recharged OHCEQ but deficit in the OHCW), and termi-
nating the El Niño cycle by Nov12. The forecast counterparts
are shown in the lower right panels. The forecast ensemble
mean trajectories are similar to the observations until May11.
After that, both LN " EN and LN_All decay toward zero, in
contrast with the observations, where the LN " EN trajec-
tory continued in its quasi-circular orbit. By the Nov11 time
the LN" EN are still distinguishable from the LN_All trajec-
tory but compared to the observations it has lost energy (orbit
with smaller radius) and has slowed down (failed to amplify/
retain the OHCEQ and not enough discharge of heat on the
western Pacific). In summary, the difference between the
transition subsets (EN " LN and LN " EN) appears clearly
distinctive in the (OHCW, OHCEQ) phase space, evolving
in outer orbits (e.g., more energetic) than the nontransition
events. For the EN" LN transition, this difference appears in
the Nov0 initial conditions for those peak El Niño states where
the negative OHCW anomaly exceeds one standard deviation
of the interannual variability, and it is well maintained by the
model forecasts beyond 1 year. For LN " EN transition the
positive anomaly in OHCW is also larger than for the nontran-
sition events, but its amplitude does not exceed the 1 standard
deviation, and the forecast trajectory decays substantially
faster than in observations after May11.

The OHC phase diagram illustrates the asymmetry between
the peak states of EN and LN transition subsets in terms of
OHCW, with negative values during peak in El Niño twice as
large as the positive values in peak La Niña. This corroborates
the role of large OHCW discharge during the peak of some El
Niño events as a key component of the increased predictability
of La Niña next year, which can be explained simply by energy
conservation arguments: it will take stronger perturbations to
put the system into a substantially different energy level. This
is consistent with a recent modeling study using perfect model

framework (Planton et al. 2021) that suggests discharged west-
ern Pacific initial conditions evolve more predictably into a
neutral or La Niña state than recharged conditions into a neu-
tral or El Niño state, highlighting a potential asymmetry in the
link between preconditioning and ENSO predictability. Our
forecasts are able to capture the increased predictability and
translate it into actual prediction skill.

The OHC phase diagram also provides an interesting per-
spective of the phase locking of ENSO to the seasonal cycle:
we note that changes of direction in the OHCW tend to hap-
pen in spring tends to be zero in spring (e.g., OHCW starts re-
charging in the lower-left quadrant by May11 from peak Nov El
Niño states, and it starts discharging in the upper-right quadrant
in May11 from peak La Niña states). In this diagram (consistent
with Fig. 9), the spring predictability barrier is only visible in the
LN " EN forecasts (upper-left quadrant), while for the
EN " LN subset the forecasts do not seem to suffer that
barrier. There are several reasons that can explain that behav-
ior, and we refer to DiNezio and Deser (2014) and DiNezio
et al. (2017b) for discussion on mechanisms affecting the sta-
bility of the El Niño and La Niña states, and therefore their
sensitivity to stochastic perturbations.

4. Summary and perspectives

Skillful prediction of ENSO and its related climate impacts at
lead times beyond a year is crucial for effective management of
climate disasters. However, predicting ENSO skillfully beyond
a year remains a major challenge. Theoretically, ENSO is be-
lieved to be predictable beyond 2–3 years from the self-sustained
nature of the tropical Pacific coupled ocean–atmosphere system.
Despite the significant progress in predicting ENSO evolution
several seasons in advance using dynamical models, predic-
tions of ENSO beyond the 1-yr lead time remain unavailable
operationally. A handful of recent studies indicate the poten-
tial of predicting ENSO beyond 1 year using experimental
long-lead retrospective forecasts (e.g., Luo et al. 2008, 2017;
Planton et al. 2021; Park et al. 2018; Wu et al. 2021a), longer
than the typical 6–9-month lead time practiced at many opera-
tional centers. These studies also point out that the skill at
these long lead times may be conditioned by the phase of
ENSO.

Although there are growing demands for knowledge of the
likelihood of El Niño or La Niña beyond 1 year ahead, we
have limited consensus about a potential dependence of long-
lead ENSO predictability on initial ENSO state in a real-time
prediction scenario (Planton et al. 2021). Operational ENSO
prediction centers use relatively short reforecasts periods
(;30 years), and although initialized on a monthly basis, they
do not cover enough samples of independent El Niño or La
Niña events to assess the flow-dependent reliability of the long-
term ENSO predictions. In this study, we explore ENSO pre-
dictability using the 110 years of 24-month-long 10-member
ensemble retrospective forecasts (or hindcasts) from ECMWF’s
coupled model initialized on 1 November and 1 May with initial
conditions provided from CERA-20C for the period 1901–2010.
Even though the reforecast dataset contains a limited number
of ensemble members per initial date (10) and are initialized
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only twice a year, they offer the advantage of including more
samples of independent ENSO events. Our analyses show that
the model has a high predictive skill of ENSO events (based on
Niño-3.4 SST anomalies) with a lead time of ;18 months when
initialized on 1 November. The prediction skill drops to about
12 lead months when initialized on 1 May because the second
year’s boreal spring predictability barrier (BSPB) is encoun-
tered. ENSO prediction skill may also be affected by the sub-
stantial multidecadal variation and the best skill is obtained
during the recent 30 years (1981–2010; Weisheimer et al. 2022);
thus, the assessment of ENSO prediction skill may be sensitive
to the selection of appropriate hindcast period.

A systematic investigation of the general capability of the
ECMWF model to simulate and predict ENSO and the control-
ling processes reveals some insights that might be valuable for
developing future operational long-lead prediction systems.
Forecasts initialized on 1 November from an El Niño state pre-
dict well the temporal evolution of the El Niño event from peak
to termination, as well as evolving into La Niña condition in the
subsequent year, thus providing prediction beyond 1.5 years.
Forecasts initialized around the peak of La Niña (1 November
start) can skillfully predict temporal evolution of Niño-3.4
anomalies and related physical processes up to ;10 lead
months, at which time ENSO generally becomes neutral. More-
over, predicting the transition from La Niña to El Niño in the
subsequent months beyond the first year is difficult as the model
encounters the BSPB, which seems to be stronger for the transi-
tion to El Niño than for the transition to La Niña. Our results
confirm the asymmetry in the long-lead prediction skill between
El Niño and La Niña initialized forecasts, where forecasts ini-
tialized on 1 November at El Niño states have better skill at
lead times beyond 1 year than those initialized at La Niña
states. Hence, in the second year it is easier to predict the devel-
opment of a La Niña than the transition to El Niño.

The enhanced skill for the transition from El Niño to La
Niña appears related to the existing different preconditioned
OHC in the western (rather than equatorial) Pacific states, that
is, a stronger ocean heat content deficit over the western equa-
torial Pacific following peak El Niño compared to the heat gain
following peak La Niña. Thus, the large deficit of heat in the
western Pacific is a key precursor for predicting La Niña in the
second year. Our results agree with those of Planton et al.
(2018, 2021), who indicated the role of oceanic preconditioning
for higher 1-yr lead predictability when starting from discharged
rather than from recharged initial states from analyses of
CMIP5 models and perfect-model experiments.

In addition to the ocean heat content in the western Pacific,
the heat storage in the equatorial Pacific also appears as a dis-
tinctive feature to enable transition from La Niña to El Niño,
which is favored by not having a heat deficit in equatorial Pa-
cific. But for the predictions starting from peak La Niña, the
BSPB is more apparent in forecasts starting with a recharged
state and evolving toward El Niño than in those starting from a
discharged state evolving toward La Niña, consistent with the
discussion offered in DiNezio and Deser (2014) and DiNezio
et al. (2017b).

Furthermore, our results suggest that the prediction of
ENSO in the second year in the ECMWF system may be

further improved by correcting the representation of key pro-
cesses: the shorter duration of the cold events and the weak
discharge during the warm events; and the correct level of
wind variability at interannual time scales. These processes are
likely related to the model systematic tendency of producing a
westward shift of the cold tongue and easterly wind bias, as
discussed by Wu et al. (2022). We note that these errors in the
second-year forecasts are consistent with those of the coupled
ECMWF model versions in long coupled preindustrial integra-
tions, as reported by Roberts et al. (2018). Roberts et al. (2018)
also noted more symmetric distributions of warm and cool event
durations compared to the observed, which is consistent with
the findings in this study using initialized reforecasts. It was spec-
ulated that the ECMWFmodel might have a tendency to under-
estimate the persistence of longer-lasting warm and cool events
(.36–42 months) in the tropical Pacific. The challenge of simu-
lating multiyear La Niña events is especially prominent at
this current time when the third boreal winter La Niña sea-
son in a row has been announced and the ECMWF SEAS5
predictions failed the prolonged cold conditions in the previous
years. Therefore, more research should prioritize reducing model
biases, and increasing process-oriented understanding of climate
predictability that could lead to enhanced predictive skill and
higher degree of confidence in future real-time operational fore-
casts. Long reforecast records of 24-month-long predictions
constitute an invaluable test bed for further model develop-
ments and understanding of ENSO predictability, mechanisms,
and model errors. Since the samples of El Niño and La Niña
events used in this study includes both 1-yr and multiyear
events, we will further assess the SEAS5-20C’s ability to pre-
dict multiyear ENSO events using these same 110-yr hindcasts
following Wu et al. (2021a) in a future paper. Regardless of the
caveats discussed above, this comprehensive study provides cru-
cial insights into some fundamental issues of long-lead ENSO
predictability and dependence of ENSO prediction skill on the
initial state, which will be valuable for developing operational
long-lead ENSO forecasts beyond 1 year.

Acknowledgments. We thank the editor Prof Y. Okumura,
Dr. Sarah Larson, and three anonymous reviewers for con-
structive comments that helped improve the quality of the
manuscript. This research contributes to the Northern
Australia Climate Program (NACP) project, funded by the
Meat and Livestock Australia (MLA), the Queensland Govern-
ment through the Drought and Climate Adaptation Program
(DCAP), and the University of Southern Queensland (UniSQ).
The authors thank Drs. Eun-Pa Lim, Matthew Wheeler, and
David Jones for their helpful internal feedback at the Bureau.
SS also thanks Dr. S. Abhik for initial draft feedback and useful
discussion on significance tests of skill difference. The assis-
tance of resources from the National Computational Infra-
structure (NCI) supported by the Australian Government is
acknowledged. The authors have no conflicts of interest to
declare.

Data availability statement. All observational and reanaly-
sis data are publicly available. The hindcast datasets used in

S HARM I LA E T A L . 12831 MARCH 2023

Unauthenticated | Downloaded 01/18/24 01:50 AM UTC



this study are available from https://doi.org/10.21957/fzf9-te33
(ECMWF 2021). The data in this study were analyzed and
plotted using NCAR Command Language V6.6.2 (www.ncl.
ucar.edu).

REFERENCES

Alves, O., M. A. Balmaseda, D. Anderson, and T. Stockdale,
2004: Sensitivity of dynamical seasonal forecasts to ocean
initial conditions. Quart. J. Roy. Meteor. Soc., 130, 647–667,
https://doi.org/10.1256/qj.03.25.

Balmaseda, M. A., and D. Anderson, 2009: Impact of initialization
strategies and observations on seasonal forecast skill. Geophys.
Res. Lett., 36, L01701, https://doi.org/10.1029/2008GL035561.

}}, M. K. Davey, and D. L. T. Anderson, 1995: Decadal and
seasonal dependence of ENSO prediction skill. J. Climate, 8,
2705–2715, https://doi.org/10.1175/1520-0442(1995)008,2705:
DASDOE.2.0.CO;2.

Barnston, A. G., M. K. Tippett, M. L. L’Heureux, S. Li, and
D. G. Dewitt, 2012: Skill of real-time seasonal ENSO model
predictions during 2002-11: Is our capability increasing? Bull.
Amer. Meteor. Soc., 93, 631–651, https://doi.org/10.1175/
BAMS-D-11-00111.1.

}}, }}, M. Ranganathan, and M. L. L’Heureux, 2019: Deter-
ministic skill of ENSO predictions from the North American
Multimodel Ensemble. Climate Dyn., 53, 7215–7234, https://
doi.org/10.1007/s00382-017-3603-3.

Bretherton, C. S., M. Widmann, V. P. Dymnikov, J. M. Wallace,
and I. Bladé, 1999: The effective number of spatial degrees
of freedom of a time-varying field. J. Climate, 12, 1990–2009,
https://doi.org/10.1175/1520-0442(1999)012,1990:TENOSD.2.
0.CO;2.

Cane, M. A., S. E. Zebiak, and S. C. Dolan, 1986: Experimental
forecasts of El Niño. Nature, 321, 827–832, https://doi.org/10.
1038/321827a0.

Chakravorty, S., R. C. Perez, B. T. Anderson, B. S. Giese, S. M.
Larson, and V. Pivotti, 2020: Testing the trade wind charging
mechanism and its influence on ENSO variability. J. Climate,
33, 7391–7411, https://doi.org/10.1175/JCLI-D-19-0727.1.

Chen, D., and M. A. Cane, 2008: El Niño prediction and predict-
ability. J. Comput. Phys., 227, 3625–3640, https://doi.org/10.
1016/j.jcp.2007.05.014.

}}, }}, A. Kaplan, S. E. Zebiak, and D. Huang, 2004: Predict-
ability of El Niño over the past 148 years. Nature, 428, 733–
736, https://doi.org/10.1038/nature02439.

DiNezio, P. N., and C. Deser, 2014: Nonlinear controls on the per-
sistence of La Niña. J. Climate, 27, 7335–7355, https://doi.org/
10.1175/JCLI-D-14-00033.1.

}}, }}, A. Karspeck, S. Yeager, Y. Okumura, G. Danabasoglu,
and G. A. Meehl, 2017a: A 2 year forecast for a 60–80%
chance of La Niña in 2017–2018. Geophys. Res. Lett., 44,
11 624–11 635, https://doi.org/10.1002/2017GL074904.

}}, }}, Y. Okumura, and A. Karspeck, 2017b: Predictability
of 2-year La Niña events in a coupled general circulation
model. Climate Dyn., 49, 4237–4261, https://doi.org/10.1007/
s00382-017-3575-3.

Dommenget, D., T. Bayr, and C. Frauen, 2013: Analysis of the
non-linearity in the pattern and time evolution of El Niño
southern oscillation. Climate Dyn., 40, 2825–2847, https://doi.
org/10.1007/s00382-012-1475-0.

ECMWF, 2021: Global monthly reforecast sea surface tempera-
tures from 1901 to 2010 with 24-month lead time. ECMWF,
https://apps.ecmwf.int/research-experiments/expver/guxf/.

Gonzalez, P. L. M., and L. Goddard, 2016: Long-lead ENSO pre-
dictability from CMIP5 decadal hindcasts. Climate Dyn., 46,
3127–3147, https://doi.org/10.1007/s00382-015-2757-0.

Hendon, H. H., E. Lim, G. Wang, O. Alves, and D. Hudson,
2009: Prospects for predicting two flavors of El Niño.
Geophys. Res. Lett., 36, L19713, https://doi.org/10.1029/
2009GL040100.

Huang, B., and Coauthors, 2017: Extended Reconstructed
Sea Surface Temperature, version 5 (ERSSTv5): Upgrades,
validations, and intercomparisons. J. Climate, 30, 8179–8205,
https://doi.org/10.1175/JCLI-D-16-0836.1.

Hudson, D., and Coauthors, 2017: ACCESS-S1 The new Bureau
of Meteorology multi-week to seasonal prediction system. J.
South. Hemisphere Earth Syst. Sci., 67, 132–159, https://doi.
org/10.1071/ES17009.

Izumo, T., M. Lengaigne, J. Vialard, I. Suresh, and Y. Planton,
2019: On the physical interpretation of the lead relation be-
tween warm water volume and the El Niño Southern Oscilla-
tion. Climate Dyn., 52, 2923–2942, https://doi.org/10.1007/
s00382-018-4313-1.

Jin, E. K., and Coauthors, 2008: Current status of ENSO predic-
tion skill in coupled ocean–atmosphere models. Climate
Dyn., 31, 647–664, https://doi.org/10.1007/s00382-008-0397-3.

Jin, F.-F., 1997: An equatorial ocean recharge paradigm for
ENSO. Part I: Conceptual model. J. Atmos. Sci., 54, 811–829,
https://doi.org/10.1175/1520-0469(1997)054,0811:AEORPF.
2.0.CO;2.

Johnson, S. J., and Coauthors, 2019: SEAS5: The new ECMWF
seasonal forecast system. Geosci. Model Dev., 12, 1087–1117,
https://doi.org/10.5194/gmd-12-1087-2019.

Kessler, W. S., 2002: Is ENSO a cycle or a series of events? Geo-
phys. Res. Lett., 29, 2125, https://doi.org/10.1029/2002GL015924.

Kirtman, B. P., and P. S. Schopf, 1998: Decadal variability in ENSO
predictability and prediction. J. Climate, 11, 2804–2822, https://
doi.org/10.1175/1520-0442(1998)011,2804:DVIEPA.2.0.CO;2.

}}, and Coauthors, 2014: The North American multimodel en-
semble: Phase-1 seasonal-to-interannual prediction; phase-2
toward developing intraseasonal prediction. Bull. Amer.
Meteor. Soc., 95, 585–601, https://doi.org/10.1175/BAMS-
D-12-00050.1.

Laloyaux, P., and Coauthors, 2018: CERA-20C: A coupled reanal-
ysis of the twentieth century. J. Adv. Model. Earth Syst., 10,
1172–1195, https://doi.org/10.1029/2018MS001273.

Larson, S. M., and B. P. Kirtman, 2017: Drivers of coupled model
ENSO error dynamics and the spring predictability barrier.
Climate Dyn., 48, 3631–3644, https://doi.org/10.1007/s00382-
016-3290-5.

}}, and K. Pegion, 2020: Do asymmetries in ENSO predictabil-
ity arise from different recharged states? Climate Dyn., 54,
1507–1522, https://doi.org/10.1007/s00382-019-05069-5.

Latif, M., T. P. Barnett, M. A. Cane, M. Flügel, N. E. Graham, H.
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