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Abstract

This paper considers multivariate simple regression model under normally distributed
errors, for both realized and future responses, with unknown regression parameters (β)
and covariance matrix (Σ). The prediction distributions of the future regression matrix
(FRM) and future residual sum of squares matrix (FRSSM) for the future regression
model are obtained. Conditional on the realized responses, the FRM follows a matrix
T distribution whose shape parameter depends on the sample size and the dimension
of the regression parameters in the model, and the FRSSM follows a scaled general-
ized beta distribution. The same results have been obtained by both the classical and
Bayesian methods under uniform prior.
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1 Introduction

When several response variables are associated with one single value of an explanatory
variable the use of the simple or multiple regression model is inappropriate. Then a multi-
variate simple regression model can be used to analyze the data. The multivariate simple
regression model is different from both the simple and multiple regression models. It is a
more general model than the commonly used simple linear regression model. In the simple
regression model there is only one response variable corresponding to a specific value of
the explanatory variable. Whereas in a multivariate simple regression model there are a
set of values of several (p ≥ 2) response variables corresponding to a single value of the
explanatory variable. Thus the simple regression model is a special case of the multivariate
simple regression model when p = 1. It is used to analyze data from studies where there
are more than one response variables for a particular value of the explanatory variable. For
example, if patients are given the same dose of a medicine to observe responses on p ≥ 2



16 Shahjahan Khan

characteristics of every subject, then, for one particular value of the explanatory variable,
there will be p different values on p different response variables. The model can also be
applied to any other experimental or observational studies where several response variables
are generated for one particular value of the independent variable. Khan (2005) studied
different improved estimators for the multivariate simple regression model. For details on
the multivariate simple regression model see Saleh (2006).

Contrary to the commonly available prediction of observables, following Khan (2004),
here we propose the prediction distribution of the FRM and FRSSM for the multivariate
simple regression model. Although traditionally predictive inference is directed towards in-
ference involving the observables rather than the parameters, Khan (2002, 2004) proposed
predictive inference for the future parameters. In general, predictive inference uses the
realized responses from the performed experiment to make inferences about the behavior
of the unobserved future responses of the future experiment (cf. Aitchison and Dunsmore
(1975, p.1)). The outcomes of the two experiments are connected through the same struc-
ture of the model and indexed by the common set of parameters. The prediction distribution
forms the basis of all predictive inferences. For details on the predictive inference methods
and wide range of applications of prediction distribution interested readers may refer to
Aitchison and Sculthorpe (1965) and Geisser (1993). Predictive inference for a set of fu-
ture responses of a model, conditional on the realized responses from the same model, has
been derived by many authors including Fraser and Haq (1969), Aitchison and Dunsmore
(1975), and Haq and Khan (1990). The prediction distribution of a set of future responses
from the model has been used by Haq and Rinco (1976) to derive β-expectation tolerance
region. Guttman (1970) and Aitchison and Dunsmore (1975) obtained different tolerance
regions from the prediction distribution.

There has been many studies in the area of predictive inference mainly for multiple
regression models with independent and normal errors. The pioneering work in this area
includes Fraser and Haq (1969), Guttman (1970), and Haq and Khan (1990). The Bayesian
works include Aitchison (1964), and Aitchison and Sculthorpe (1965). Aitchison and Dun-
smore (1975) provide an excellent account of the theory and application of the prediction
methods. Fraser and Haq (1969) and Khan and Haq (1994) obtained prediction distribution
for the multivariate normal and Student-t models, respectively, by using the structural distri-
bution approach. Haq (1982) used the structural relations, rather than the structural density
function, to derive the prediction distribution. Geisser (1993) discussed the Bayesian ap-
proach to predictive inference and discussed a wide range of real-life applications in many
areas. This includes model selection, discordancy, perturbation analysis, classification,
regulation, screening and interim analysis.

This paper considers the widely used multivariate simple regression model with cor-
related normal responses for the realized as well as the future models. The two sets of
responses are connected through the common set of regression and scale parameter matri-
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ces. Following Khan (2002, 2004), we pursue the predictive approach to derive the distri-
bution of the FRM and FRSSM for the future responses, conditional on a set of realized
responses. The distribution of the FRM and FRSSM of the future responses, conditional
on the realized responses, are obtained. The predictive distribution of the FRM follows
a matrix T distribution, and the FRSSM of the future regression follows a scaled gener-
alized beta distribution. The distribution of the statistics for the future regression model,
conditional on the realized responses, are dependent, and hence their joint density can’t be
factorized. Identical prediction distributions, for both the FRM and ERSSM, are obtained
by both the classical and Bayesian approaches under uniform prior. For a good comparison
of Bayesian and classical prediction see Ren et al. (2004).

The multivariate simple regression model with independent normal errors has been in-
troduced in Section 2. Some notations and preliminaries are provided in Section 3. The
multivariate simple regression model for the future responses is discussed in Section 4. The
predictive distributions of the FRM and FRSSM, conditional on the realized sample, are
derived in Section 5 by the classical approach. In Section 6, the same prediction distribu-
tions are obtained by Bayesian method under uniform prior. Some concluding remarks are
included in Section 7.

2 The Multivariate Simple Regression Model

Let yj be a p-dimensional column vector of the values of the jth response on a set of
p dependent variables associated with a single value of the explanatory variable xj from
a multivariate simple regression model. Then yj can be represented by the set of linear
equations

yj = β0 + β1xj + Γej for j = 1, 2, . . . , n (2.1)

where β0 and β1 are the p-dimensional intercept and slope parameters respectively, Γ is a
p×p non-singular scale parameter matrix, and ej is the vector of error variables associated
with the responses yj . Assume that each component of the error vector, ej , is identical
and independently distributed as a normal variable with location 0 and scale 1, that is,
ej ∼ N(0, Ip) in which Ip is an identity matrix of order p. The equation in (2.1) can be
written in a more precise form as

yj = βzj + Γej (2.2)

where β = [β0,β1], a p×2 dimensional matrix of regression parameters; and zj = [1 xj ]′,
a 2 × 1 dimensional design matrix of known values of the regressor for j = 1, 2, . . . , n.
Therefore, the joint density function of the error vector ej can be written as

f(ej) = [2π]−
p
2 e−

1
2 e′jej . (2.3)
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and that of the response vector yj as

f(yj |β,Γ) = [2π]−
p
2 |Σ|−1e−

1
2 (yj−βzj)

′Σ−1
(yj−βzj) (2.4)

where Σ = ΓΓ′, the covariance matrix of the response vector yj . Now, a set of n > p

responses, Y = [y1,y2, . . . ,yn], from the above multivariate simple regression model can
be expressed as

Y = βZ + ΓE (2.5)

where Y is the response matrix of order p×n; Z = [z1,z2, . . . ,zn] is a 2×n dimensional
design matrix of known values of the regressor; and E is a p×n dimensional matrix of the
random error components associated with the response matrix Y . It may be noted here that
the nonconventional representation of responses as row vectors, rather than column vectors,
is adopted in line with Fraser (1968 and 1979) to facilitate straightforward comparison of
results.

Since each of the p-dimensional response column vector, yj , follows a multivariate
normal distribution, the joint density function of the p×n order response matrix Y follows
a matrix normal distribution with the density function

f(Y |β,Σ) = [2π]−
pn
2 |Σ|−n

2 e
− 1

2 tr
n
Σ−1(Y −βZ)(Y −βZ)′

o
(2.6)

where tr(Ω) is the trace of the matrix Ω. Although each column of E is independent
of other columns, the columns of Y are not independent. The above multivariate simple
regression model represents a set of responses as the independent realizations of the per-
formed experiment. We term the responses from the performed experiment as the realized
responses. Our aim is to derive the prediction distribution of the FRM and FRSSM based
on a set of nf unrealized future responses from the future experiment, conditional on the
realized responses.

3 Some Notations and Preliminaries

In this Section we introduce some useful notations to facilitate the derivation of the
results in the forthcoming Sections. Let the regression matrix of E on Z be BE and the
residual sum of squares matrix of the error regression be SE . Then we have

BE = EZ′(ZZ ′)−1 and SE = [E −BEZ][E −BEZ]′. (3.1)

Let CE be a positive definite nonsingular matrix such that SE = CEC ′
E . Then define

standardized residuals matrix, based on the error regression, as RE = C−1
E [E −BEZ].

So, we can write the error matrix, E, as a function of BE and CE in the following way:

E = BEZ + CERE and hence EE′ = BEZZ ′B′
E + SE (3.2)
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since RER′
E = Ip, inner product of two orthonormal matrices, and ZR′

E = 0, as Z and
RE are orthogonal matrices. In the next Section, we define similar regression matrix and
residual sum of squares matrix for the future regression model.

For the multivariate simple regression model, the density of the error matrix in (2.5)
can be written as

f (E) = [2π]−
pn
2 e−

1
2 tr{EE′}. (3.3)

The abode density represents a matrix normal distribution, that is, E follows a p × n

dimensional matrix normal distribution with location 0 and covariance matrix Ip

⊗
In.

Each row (or column) of E independently follows a multivariate normal distribution of
appropriate dimension.

To find the joint distribution of BE and SE from the distribution of the error matrix E

we note the following differential relation (cf. Fraser 1979, p.114 or Eaton, 1983, p.194-
204)

dE = |SE |
n−p−2−1

2 dBEdSEdRE . (3.4)

This invariant differential relation allows us to derive the joint distribution of the error
statistics BE and SE from the joint distribution of the error matrix E.

3.1 Distribution of BE and SE

Applying the relation in (3.2) and the differential in (3.4), from the above join density
of the realized error matrix, the density function of BE and SE , conditional on RE(·),
becomes

f (BE ,SE |RE(·)) ∝ |SE |
n−p−2−1

2 e−
1
2 tr{BEZZ ′B′

E+SE}. (3.5)

Since the above density does not depend on RE(·), the conditional distribution is the same
as the unconditional distribution. Also, the joint density of BE and SE factors and hence
BE and SE are independently distributed. The marginal distribution of the error regression
matrix is

f (BE)) = [2π]−
2p
2

∣∣ZZ ′∣∣−1
e−

1
2 tr{BEZZ ′B′

E}. (3.6)

Thus BE follows a p× 2 dimensional matrix variate normal distribution with location ma-
trix 0 and variance-covariance matrix [ZZ ′]−1

⊗
I2 in which

⊗
is the Kronecker product

of two matrices and I2 is the unit matrix of order 2. Note that each column of BE follows
a p-variate normal distribution. Similarly, the marginal distribution of the residual sum of
squares matrix of the error regression is

f (SE) =
1

[2]
(n−2)p

2 Γp

(
n−2

2

) |SE |
n−p−2−1

2 e−
1
2 tr{SE} (3.7)
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where Γp(a) is the generalized gamma function defined as

Γp(a) = [π]
a(a−1)

4

a∏
i=1

Γ
(

a− 1
2
[i− 1]

)
. (3.8)

Clearly SE follows a p-dimensional Wishart distribution with (n− 2) degrees of freedom
and variance Ip.

3.2 Distribution of BY and SY

To find the distribution of the sample regression matrix (SRM), BY , and sample resid-
ual sum of squares matrix (SRSSM), SY , of the response regression we use the relations
(cf. Fraser, 1979, p.115)

BE = Γ−1(BY − β), and SE = Σ−1SY , (3.9)

where BY = Y Z ′(ZZ ′)−1 and SY = [Y −BY Z][Y −BY Z]′ are the sample regres-
sion matrix of Y on Z, and the residual sum of squares matrix of the regression based on
the realized responses respectively. It may be mentioned here that both SE and SY have
the same structure from the definitions of SE in (3.1) and that of SY above. It can easily
be shown that RE = C−1

Y [Y −BY Z] = RY where CY is such that SY = CY C ′
Y .

Now using the relations in (3.9) along with the associated differentials

dBE = |Σ−1|dBY and dSE = |Σ−1|
p+1
2 dSY (3.10)

the joint density function of BY and SY becomes

f (BY ,SY ) ∝ |Σ|−n
2 e−

1
2 trΣ−1[(BY −β)ZZ ′(BY −β)′+SY ]. (3.11)

Once again, for the normal model under study, the above joint distribution of BY and
SY can be factored, and hence the two statistics, BY and SY , are independently dis-
tributed. However, this is not so for the same statistics based on the unobserved future
responses, conditional on realized responses (cf. Khan, 2004). The marginal distributions
of BY and SY are given, respectively, by

f (BY ) = [2π]−
2p
2 |Σ|−1|ZZ ′|

p
2 e−

1
2 trΣ−1[(BY −β)ZZ ′(BY −β)′] (3.12)

f (SY ) =
1

[2]
(n−2)p

2 Γp(n−2
2 )|Σ|n−2

2

|SY |
n−p−2−1

2 e−
1
2 trΣ−1[SY ]. (3.13)

Therefore, BY follows a p×2 dimensional matrix normal distribution with location matrix
β and scale matrices Σ and [ZZ ′]−1, and independently SY follows a p-variate Wishart
distribution with (n − 2) degrees of freedom and variance Σ. However, as it is shown
later in the paper, the prediction distribution of the future regression matrix and the future
residual sum of squares matrix, conditional on the realized responses, are not independently
distributed.
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4 The Future Model

In this Section we introduce the multivariate simple regression model for the unreal-
ized future responses from the future experiment, and use both the realized sample and
unrealized future sample to derive the prediction distribution of the FRM and FRSSM.
First, consider a set of nf unrealized future responses, Y f = (yf1,yf2, · · · ,yfnf

), from
the same multivariate simple regression model in (2.1) with the same regression and scale
parameter matrices as defined in Section 2. Such a set of future responses can be expressed
as

Y f = βZf + ΓEf (4.1)

where Zf is a 2×nf dimensional matrix of the values of regressors that generate the p×nf

dimensional future response matrix Y f , and Ef is the matrix of future error components.
Similar to the error matrix of the realized model the future error matrix from the future
experiment follows independent and identical normal distribution. Our aim is to find the
prediction distribution of the FRM and FRSSM, conditional on the realized responses, by
the classical method as well as by the Bayesian method under the uniform prior.

Assuming that the future errors follow the same matrix normal distribution as the real-
ized errors, the density function of the future error matrix is given by

f(Ef ) = [2π]−
pnf
2 e−

1
2 tr{EfE

′
f}. (4.2)

From the specifications of the model, the future sample is independent of the realized
sample. Thus the join density function of the combined error matrix, that is, the errors
associated with the realized and that of the future responses, (E,Ef ), can be expressed as

f(E,Ef ) = [2π]−
p(n+nf )

2 e−
1
2 tr{EE′

+EfE
′
f}. (4.3)

This joint density function of the combined errors is used to derive the prediction dis-
tributions of the FRM and FRSSM based on a set of future responses of the future model
in the next Section.

5 Predictive Distribution of FRM and FRSSM

In this Section we derive the predictive distributions of the future regression matrix
(FRM) and future residual sum of squares matrix (FRSSM) based on the future multivariate
simple regression model, conditional on the realized responses.

The joint density function of the error statistics BE , SE , BEf
and SEf

, given R(·), is
derived from the above joint density of the combined error matrix in (4.3) by applying the
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properties of invariant differentials (see Eaton, 1983, p.194-206) as follows:

p
(
BE ,SE ,BEf

,SEf
|R(·)

)
∝ |SE |

n−p−2−1
2 |SEf

|
nf−p−2−1

2

×e−
1
2 tr{h1(BE ,Z)+h2(Bf ,Zf )} (5.1)

where h1(BE ,Z) = BEZZ ′B′
E ; h2(Bf ,Zf ) = BEf

ZfZ ′
fB′

Ef
. Note that the above

joint density does not depend on R(·) (cf. Fraser, 1968, p.132) so the conditional distri-
bution is the same as the unconditional distribution. Here BE , SE , BEf

and SEf
are

independently distributed. So, like BE , BEf
follows a matrix normal distribution. Simi-

larly, SEf
follows a Wishart distribution.

The joint distribution of β, Σ−1, BEf
, and SEf

is then obtained by using the Jacobian
of the transformation,

J
{

[BE ,SE ] → [β,Σ−1]
}
∝ |Σ−1|, (5.2)

as follows

p
(
β,Σ−1,BEf

,SEf

)
∝ |S|

n−p−2−1
2 |SYf

|
nf−p−2−1

2 |Σ−1|
n−p−1

2

e
− 1

2 tr
h
Σ−1{ξ(BY ,β)+S}+η(BEf

,β)+SEf

i
(5.3)

where ξ(BY ,β) = (BY −β)ZZ ′(BY −β)′; η(BEf
,β) = BEf

ZfZ ′
fB′

Ef
; B = BY

and S = SY .

5.1 Prediction Distribution of BYf

We are interested in the distributions of BYf
and SYf

, the future regression matrix and
future residual sum of squares matrix for the future regression, respectively, conditional on
the realized responses.

To derive the joint distribution of β, Σ−1, BYf
, and SYf

from the above joint density
of β, Σ−1, BEf

, and SEf
, note that from the structure of the future regression equation

we have
BEf

= Σ− 1
2 [BYf

− β] and SEf
= Σ−1SYf

(5.4)

where BYf
= Y Z ′

f (ZfZ ′
f )−1, SYf

= [Y f −BYf
Z ′

f ][Y f −BYf
Zf ]′. Therefore, the

Jacobian of the transformations become

J
{

[BEf
,SEf

] → [BYf
,SYf

]
}

= |Σ−1|
p+2+1

2 . (5.5)

So, the joint density of β, Σ−1, BYf
and SYf

is obtained as

p
(
β,Σ−1,Bf ,Sf

)
∝ |S|

n−p−2−1
2 |SYf

|
nf−p−2−1

2 |Σ|−
n+nf−p−1

2

e
− 1

2 tr
n
Σ−1

h
QY +QYf

+S+Sf

io
(5.6)
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where QY = (BY −β)ZZ ′(BY −β)′, QYf
= (Bf −β)ZfZ ′

f (Bf −β)′, Bf = BYf

and Sf = SYf
for notational convenience.

Such results can also be obtained by using the Bayesian approach (see Section 6). In
particular, the Bayes posterior density can be obtained by assuming uniform prior for the
regression and scale parameters of the model. However, the final results of this Section
will be the same as that obtained by the Bayesian approach under uniform prior. Interested
readers may refer to Fraser and Haq (1969) for further details.

To find the prediction distribution of the FRM and FRSSM we need to integrate out β

and Σ−1 from the above joint density in (5.6). First integrating out Σ−1 from the above
joint density, the marginal density function of β, BYf

and SYf
can be written as

p
(
β,Bf ,Sf

)
∝

[
SYf

]nf−p−2−1
2

∫
Σ−1

|Σ−1|
n+nf−p−1

2 e
− 1

2 trΣ−1
n
QY +S+QYf

+Sf

o
dΣ−1.

(5.7)
Note that Σ−1 follows a p variate Wishart distribution, that is, Σ−1 ∼ Wp(n +

nf , QY +S +QYf
+Sf ). Completion of the integration leads to the join density function

of β, BYf
and SYf

to be

p
(
β,Bf ,Sf

)
∝

∣∣SYf

∣∣nf−p−2−1
2

∣∣∣Q + S + Sf

∣∣∣−n+nf
2

(5.8)

in which Q = QY +QYf
. From the above density function, we derive the joint distribution

of the FRM and FRSSM, conditional on the realized responses, by integrating out β. To
facilitate such an integration, the terms involving the regression parameter matrix β in Q

can be expressed as follows:

Q = (B − β)ZZ ′(B − β)′ + (Bf − β)ZfZ ′
f (Bf − β)′

= (β − FA−1)A(β − FA−1)′ + (Bf −B)H−1(Bf −B)′ (5.9)

where

F = BZZ ′+BfZfZ ′
f , A = ZZ ′+ZfZ ′

f , and H = [ZZ ′]−1 +[ZfZ ′
f ]−1. (5.10)

The marginal density of Bf and Sf is derived by using the representation in (5.9) and
integrating out β from the joint density in (5.8). Thus, we have

p
(
Bf ,Sf

)
∝ |Sf |

nf−p−2−1
2

∫
β

∣∣S + Sf + (Bf −B)H−1(Bf −B)′

+(β − FA−1)A(β − FA−1)′
∣∣−n+nf

2 dβ. (5.11)

Note that β follows p× 2 dimensional matrix T distribution, that is,

β ∼ Tp×2

[
n + nf − p− 1,FA−1,A,S + Sf + (Bf −B)H−1(Bf −B)′

]
. (5.12)
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On completion of the integration using the matrix T integral, the marginal density of
Bf and Sf is obtained as

p
(
Bf ,Sf

)
= Ψ12 × |Sf |

nf−p−2−1
2

×
∣∣S + Sf + (Bf −B)H−1(Bf −B)′

∣∣−n+nf−p−1
2 (5.13)

where Ψ12 =
{
|H|−

p
2 Γp(

n+nf−p−1
2 )|S|

n−p−1
2

}{
(π)

2p
2 Γp(n−p−1

2 )Γp(
nf−2

2 )
}−1

is the
normalizing constant. This is the joint prediction distribution of the FRM and FRSSM of
the future responses. Unlike the join density of SRM, BY , and SRSSM, SY , in (3.11), the
above join density can’t be factored, and hence Bf and Sf are dependent.

The prediction distribution of the future regression matrix, Bf = BYf
, can now be

obtained by integrating out Sf from (5.13). The integration yields

p
(
Bf

∣∣∣Y )
= Ψ1 ×

∣∣S + (Bf −B)H−1(Bf −B)′
∣∣−n+m−p−1

2 (5.14)

where Ψ1 = Ψ12 × B−1
p

(
nf−2

2 , n−p−1
2

)
. On simplification the normalizing constant be-

comes Ψ1 = {Γp(n+m−p−1
2 )|S|

n−p−1
2 }{(π)

2p
2 Γp(n−p−1

2 )|H|
p
2 }−1. The prediction dis-

tribution of Bf can be written in the usual matrix T distribution form as follows:

p
(
Bf

∣∣∣Y )
= Ψ6 ×

∣∣Ip + (Bf −B)[SH]−1(Bf −B)′
∣∣−n+2−p−1

2 . (5.15)

Since the density in (5.15) is a matrix T density, the prediction distribution of the future
regression matrix, Bf , conditional on the realized responses, follows a multivariate matrix
T distribution of dimension p× 2, and with (n− 2p) degrees of freedom. Thus, [Bf |Y ] ∼
Tp (n− 2p, B,H,S) where B is the sample regression matrix of realized responses and
H and S are the scale matrices. It is observed that the degrees of freedom parameter of
the prediction distribution of the future regression matrix Bf depends on the size of the
realized sample and the dimension of the regression parameter matrix of the model. Khan
(2001) obtained a similar result for the multiple regression model with normal errors.

5.2 Prediction Distribution of SYf

The prediction distribution of the FRSSM for the future regression model, SYf
, condi-

tional on the realized responses, Y , is obtained by integrating out Bf from (5.13). Since
Bf follows a matrix T distribution, using the matrix T integral the prediction distribution
of the FRSSM becomes

p
(
SYf

∣∣∣Y )
∝ Ψ2 × |SYf

|
nf−p−2−1

2
∣∣S + SYf

∣∣−n+nf−p−m−1
2 . (5.16)

The density function in (5.16) can be written in the usual form of the generalized beta
distribution as follows

p
(
Sf

∣∣∣Y )
= Ψ2 × [Sf ]

nf−p−2−1
2

∣∣Ip + S−1Sf

∣∣−n+nf−p−m−1
2 (5.17)
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where Ψ2 =
{

Γp(
n+nf−p−m−1

2 )|S|−
n−p−1

2

}{
Γp(n−p−1

2 )Γp(
nf−2

2 )
}−1

is the normal-
izing constant. This is the prediction distribution of the FRSSM based on the future re-
sponses, Y f , conditional on the realized responses, Y , from the multivariate simple re-
gression model with normal errors. The density in (5.16) is a modified form of the general-
ized beta density. However, it can be shown that S−1Sf is a generalized beta variable with
arguments (nf − 2)/2 and (n − p − 1)/2. Obviously, for the existence of the above pre-
diction distribution of Sf we must have nf > 2 in addition to n > p+1. Khan (2001) and
Khan (2004) obtained a similar prediction distribution of the FRSSM, conditional on the
realized responses, for the multiple regression model with multivariate normal and matrix
T errors respectively.

6 The Bayesian Approach

In this Section we consider the prediction distributions of the FRM and FRSSM under
the Bayesian approach. Here we assume that the joint prior distribution of the regression
matrix and inverse of the variance-covariance matrix is uniform. Such a prior is due to Jef-
freys (1961) and many scholars have used this prior for numerous studies (see for example
Bernardo and Rueda, 2002 and the references there in). Thus we adopt the following prior
distribution

p
(
β,Σ−1

)
∝

∣∣Σ−1
∣∣ p+1

2 . (6.1)

Interested readers may refer to Press (1989, p.134) or Rowe (2003, p.41) for details. From
(5.1) in the previous Section the joint density function of the error statistics BE , SE , BEf

and SEf
is

p
(
BE ,SE ,BEf

,SEf

)
∝ |SE |

n−p−2−1
2

∣∣SEf

∣∣nf−p−2−1
2

×e−
1
2 tr{h1(BE ,Z)+h2(BEf

,Zf)}. (6.2)

The inherent relation of the model in (3.9) yields the Jacobian of the transformation,

J
{

[BE ,SE ] → [β,Σ−1]
}

=
∣∣Σ−1

∣∣ , (6.3)

so the joint distribution of β, Σ−1, BEf
, and SEf

becomes

p
(
β,Σ−1,BEf

,SEf

)
∝ |S|

n−2
2 |SYf

|
nf−p−1

2 |Σ−1|
n+nf−2

2

e−
1
2 trΣ−1{ξ(B,β)+S+η(BEf )+SEf } (6.4)

where ξ(B,β) = (B − β)ZZ ′(B − β)′; η(BEf
) = BEf

ZfZ ′
fBEf

; B = BY and
S = SY .
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Similarly, for the future model the inherent relation in (5.4) yields the Jacobian of the
transformations,

J
{

[BEf
,SEf

] → [β,Σ−1]
}

=
∣∣Σ−1

∣∣ . (6.5)

Therefore, the joint distribution of β, Σ−1, BYf
, and SYf

is obtained as

p
(
β,Σ−1,BYf

,SYf

)
∝

∣∣SYf

∣∣nf−p−2−1
2

∣∣Σ−1
∣∣n+nf−2p−2

2

e−
1
2 trΣ−1{ξ(B,β)+S+η(BEf

,β)+SEf }. (6.6)

Then incorporating the prior distribution in (6.1) for the parameters of the multivariate
regression model the joint posterior distribution of β, Σ−1, BYf

, and SYf
is obtained as

follows

p
(
β,Σ−1,Bf ,SYf

)
∝

∣∣SYf

∣∣nf−p−2−1
2

∣∣Σ−1
∣∣n+nf−p−1

2

e−
1
2 trΣ−1{ξ(B,β)+S+ζ(Bf ,β)+SYf } (6.7)

where ζ(Bf ,β) = (Bf − β)ZZ ′(Bf − β)′ in which Bf = BYf
and Sf = SYf

.
Now, as in the previous Section, integration of the above density with respect to Σ−1,

gives the joint distribution of β, Bf and Sf . Then using the same representation of[
ξ(B,β) + ζ(Bf ,β)

]
as for Q in (5.9) we integrate out β to obtain the joint density

function of the FRM and FRSSM as follows

p
(
Bf ,Sf

)
= Ψ12 × [Sf ]

nf−p−2−1
2

×
∣∣S + Sf + (Bf −B)H−1(Bf −B)′

∣∣−n+nf−p−1
2 (6.8)

where Ψ12 =
{
|H|− 1

2 Γp(
n+nf−p−1

2 )|S|
n−p−1

2

}{
(π)

2p
2 Γp(n−p−1

2 )Γp(
nf−2

2 )
}−1

is the
normalizing constant. This is the same distribution as obtained in (5.13) by the classical
approach. Following the same procedures as in the previous Section we get the prediction
distribution of FRM to be p × 2-variate matrix T and that of the FRSSM to be scaled
generalized beta distribution. Thus the Bayesian method with uniform prior produces the
same prediction distributions for the FRM and FRSSM as produced by the classical method
for the multivariate simple regression model with normal errors.

7 Concluding Remarks

The paper derives the prediction distribution of the FRV and FRSSM for the multi-
variate simple regression model with correlated normal responses. The distributions of the
FRM and FRSSM obtained by both the classical and Bayesian methods are the same. The
foregoing analyses reveal the fact that for the multivariate simple regression model with
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normal errors the distribution of the SRM is matrix variates normal, and it is independent
of SRSSM. But the predictive distribution of the FRV and FRSSM are not independently
distributed. Khan (2004) showed that the above statistics are not independently distributed
for the multiple regression model with multivariate normal as well as multivariate Student-
t errors. Furthermore, since the predictive distribution of the future regression matrix for
the normal model is a matrix T distribution, each column of BYf

follows a multivariate
Student-t distribution, and the components of the random vectors are dependent. Also,
the shape parameter of the prediction distribution of the future regression matrix depends
on the size of the realized sample as well as the number of regression parameter of the
multivariate simple regression model.

The distribution of the SRSSM, SY , is a Wishart distribution. But, the prediction
distribution of the future residual sum of squares matrix (FRSSM) of the future regression
model, conditional on the realized responses, follows a scaled generalized beta distribution.

Since the simple regression model is a special case of the multivariate simple regression
model when p = 1, the results in this paper generalizes those for the simple regression
model. In other words, setting p = 1 in this paper, the corresponding results for the simple
regression model are observed. Thus for the simple regression model with normal error the
prediction distribution of the future regression vector (intercept and slope) is a bi-variate
Student-t distribution and that of the future residual sum of squares is a beta distribution.
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