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Abstract

Internet of Things (IoTs) represents a networked collection of heterogeneous
sensors – enabling seamless integration between systems, humans, devices,
etc. – to support pervasive computing for smart systems. IoTs unify hard-
ware (embedded sensors), software (algorithms to manipulate sensors), and
wireless network (protocols that transmit sensor data) to develop and opera-
tionalize a wide range of smart systems and services. The Internet of Under-
water Things (IoUTs for short) is a specific genre of IoTs in which data about
ocean ecosystems is continuously ingested via underwater sensors. IoUTs re-
ferred to as context-sensing eyes and ears under the sea operationalize a
diverse range of scenarios ranging from exploring marine life to analyzing
water pollution and mining oceanic data. This paper proposes a layered ar-
chitecture that (i) ingests oceanic data as a sensing layer, (ii) computes the
correlation between the data as an analytics layer, and (iii) visualizes data
for human decision support via the interface layer. We unify the concepts of
software engineering (SE) and IoTs to exploit software architecture, under-
lying algorithms, and tool support to develop and operationalize IoUTs. A
case study-based approach is used to demonstrate the sensors’ throughput,
query response time, and algorithmic execution efficiency. We collected IoUT
sensor data, involving 6 distinct sensors from two locations including the Ara-
bian Sea, and the Red Sea for 60 days. Evaluation results indicate (i) sensors’
throughput (daily average: 10000 - 20000 KB data transmission), (ii) query
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response time (under 30 milliseconds), (iii) and query execution performance
(CPU utilization between 60 - 80%). The solution exploits SE principles
and practices for pattern-based architecting and validation of emerging and
next-generation IoUTs in the context of smart oceans.

Keywords: Internet of Things, Software Engineering, Ocean Mining, Data
Analytics, Smart Systems

1. Introduction1

Internet of Things (IoTs) is a sensor-driven platform and an enabling in-2

frastructure that orchestrates heterogeneous things such as systems, services,3

devices, and humans that coordinate autonomically in smart systems and en-4

vironments [1]. Increased adoption of IoTs at a global scale is pinpointed by5

a recent report by Statista indicating that at the end of the year 2022, there6

existed a total of 13.14 billion IoT-connected devices worldwide, and the7

number is expected to touch 29.42 billion by 2030 (i.e., more than doubled in8

less than ten years) [2]. Moreover, from a commercial perspective, increased9

adoption of IoTs by enterprises in the context of smart healthcare, intelligent10

transportation, industrial automation, etc. indicates that worldwide revenue11

from IoT applications, platforms, and services is expected to reach $750 bil-12

lion by 2025 [3]. The rapid adoption of IoT technologies in smart systems can13

be attributed to portable devices that unify hardware (embedded sensors),14

software (applications that control sensors), and wireless networking (pro-15

tocols connecting sensors) that enable things to collect, process, and share16

contextualized data [4]. Typical examples of IoT-driven contextualized data17

can be health analytics or crowd-sensed traffic congestion that can be col-18

lected by pervasive and context-sensitive sensors, manipulated by software19

applications, and distributed over wireless networks. Software-intensive sys-20

tems and services in IoTs are the backbones for data-driven smart systems21

initiatives across the globe such as the ones adopted by the United States22

[5], Europe [6], and Asia [7].23

The Internet of Underwater Things (IoUTs) is a specific genre of IoTs24

that is designed to operate in an oceanic environment, ingesting data from25

underwater sources, and transmitting it to off-shore servers for data-driven26

intelligence and human decision support [8]. IoUTs are considered as the ears27

and eyes in the deep blue (sea) that provide useful insights by operationalizing28

scenarios such as monitoring of marine life, measuring underwater pollution,29
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and analyzing the correlation between various factors such as impacts of tem-30

perature and acidity on water [9]. While the blooming applications of IoT in31

different domains (e.g., smart homes, farms) have been extensively discussed32

[9, 10]. A recently published report on ‘Smart Ocean Technologies’ indicates33

that despite the expected revenues of IoTs and strategic benefits of IoUTs,34

such sensor-driven systems entail some critical challenges [10]. These chal-35

lenges include but are not limited to resource poverty of sensors, stability of36

wireless networks, and performance of networked things along with data se-37

curity and privacy, etc. which can hinder the trustworthiness and mass-scale38

adoption of such IoUTs. There is a need to synergize engineering knowledge39

and practices from other domains of IoTs such as smart home, intelligent40

transportation, pervasive healthcare, etc. that can be tailored and applied41

in the context of IoUTs for smart oceans [8].42

Research context: Engineering software applications and services for IoT43

systems require a multitude of software development expertise in the con-44

text of programming context-sensitive sensors and devices to operationalize45

and manipulate the internet of things. Specifically, Software Engineering46

for IoTs (SE for IoTs in short) as an emerging discipline aims to apply the47

methods, principles, and practices of engineering software-intensive systems48

to design, develop, deploy, and evolve sensors and things-driven applications49

effectively and efficiently [11, 12]. From a system engineering point of view,50

hardware and/or networking novelties are vital, however; true potential for51

IoT systems in general and for IoUTs in a particular lies with software sys-52

tems that contain data and logic to manipulate hardware devices for offering53

services to end-users [12]. For example, IoT sensors and devices that mine54

oceanic data – collecting data via underwater sensors – rely on underlying55

software that contains necessary algorithms and logic to compute the cor-56

relation between oceanic variables such as temperature (◦C) and acidity of57

the water (pH) and their impacts on marine life [10]. A recent roadmap of58

SE for IoTs [13] organizes experimental evidence from developing IoT appli-59

cations to highlight that engineering artifacts such as software architecture,60

patterns, frameworks, and tool support can empower engineers and devel-61

opers to architect IoT-driven systems in an automated and efficient manner.62

However, employing SE-specific processes and practices in IoT-based systems63

requires understanding the constraints and limitations of sensor-driven de-64

vices and software services [11]. Specifically, an IoUT sensor that collects65

underwater temperature supports portable and context-sensitive comput-66

ing, however; such pervasive systems inherit limitations relating to resource67
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poverty (limited processor and battery) and network stability that needs to68

be compensated [9, 10]. Moreover, the volume and velocity of oceanic data69

collected by the sensors require efficient processing to ensure robust per-70

formance while computing insights from the collected data [10, 12]. While71

prior studies [12, 9, 14] have proposed analytic solutions for underwater data,72

semi-automated and decision-based support of oceanic data predictive ana-73

lytics is yet unnoticed in the existing literature. In recent years, software74

engineering processes and architectures have been gaining much attention to75

address the issues pertaining to the development and operationalization of76

software-intensive IoT systems [11, 15].77

Novelty and contributions: DeepBlu project aims to unify SE and IoTs to78

enable architecting, developing, and validating a sensors-based solution that79

continuously ingests multifaceted data from underwater and processes it to80

provide critical insights to end-users for human decision support. A high-81

level view of the proposed solution is illustrated in Figure 1 which highlights82

the application of various SE concepts that are applied to design and develop83

IoUTs with complementary tool support to automate system development.84

As in Figure 1, a layered software architecture pattern is applied [15] to85

help system developers maintain the separation of concerns, i.e., layering86

to organize different operational aspects at different layers of the system87

that also enables modularization for algorithmic specifications. Precisely,88

the layered pattern rooted in software architecture consists of three layers (i)89

a sensing layer having sensors that ingest underwater data (ii) an analytics90

layer that processes the sensed data (iii) an interface layer that presents data91

for human interpretation.92

We have used the ISO/IEC-9126 model for software quality [16] for quali-93

tative and criteria-based evaluation of the solution’s functionality and quality94

to validate the solution. In addition to a case study-based demonstration,95

we measure and evaluate sensors throughput (i.e., stability), query response96

(i.e., performance), and algorithmic execution (i.e., efficiency) for the solu-97

tion. The novelty and contributions of this research are:98

• Application of software engineering principles and practices to archi-99

tect, implement, and validate an IoT-driven solution that systemizes100

the development and operationalization of IoUTs to analyze oceanic101

data.102

• Development of a layered software architecture that modularizes the103
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Figure 1: Overview of the Proposed Solution (SE for IoUTs)

solution, supports patterns as best practices of development and pro-104

vides a set of algorithms that enable automation and parameterized105

customization of the solution.106

• Validation of the solution based on a real-world case study that pro-107

vides a scenario-driven approach to evaluate the quality of the solution108

in terms of sensors’ throughput, query response, and algorithmic exe-109

cution time.110

The solution overview as in Figure 1 pinpoints architecting and developing111

IoUTs - synergizing SE practices with IoTs system development - as a specific112

genre of the IoTs [9, 11]. This research aims to provide a solution and set of113

guidelines that can help IoT researchers and practitioners engineer emerging114

and next-generation (software-intensive) IoT applications in the context of115

smart ocean systems.116

Structure of the paper: This paper is organized as follows. Section 2117

presents background details and related work. Section 3 presents the research118

methodology and architectural design. Section 4 details algorithmic details119

and solution implementation. Section 5 discusses case studies, evaluations,120
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and validity threats. Section 6 concludes the paper and highlights the need121

for future research.122

2. Background and Related Work123

This section presents the background details to contextualize the building124

blocks of IoUT systems and elaborates on software engineering approaches to125

develop IoUTs (Section 2.1). We also review and compare the most relevant126

existing research to justify the scope and contributions of the proposed solu-127

tion (Section 2.2). The concepts and terminologies introduced in this section128

are also used throughout the paper.129

2.1. Smart Oceans and the Internet of Underwater Things130

In the broader context of smart systems, the concept of smart oceans is131

a relatively new term and it represents a promising paradigm for research132

and development in areas including but not limited to maritime monitor-133

ing, oceanography, emergency search and rescue, and protection of marine134

life [17]. Developing tools and technologies that support smart ocean re-135

quires a synergy between pervasive systems and context-sensitive applica-136

tions to sense, monitor, and identify underwater objects connected wirelessly137

to transmit oceanographic data. Traditional (land-based) IoT systems may138

lack capabilities in terms of sensors’ configurations, their deployment, and139

software modules that have the capability to compute data ingested from140

the ocean [18]. Figure 2 conceptualizes the building blocks smart ocean in141

terms of data sensing, data analytics, and data presentation. To operational-142

ize smart ocean systems, a number of wirelessly connected sensors from the143

underwater things are connected to a bridge node, i.e., a Scientific Instru-144

ment Interface Module (SIIM), for coordinating data to the backend server,145

expressed as (SA, SB, . . . , SN) located at different locations. In addition to146

the oceanic data, each sensor [S] also adds information about the sensor’s147

identity and location. The information is sent to the bridge so that it can be148

analyzed. In order to be able to aggregate all of the data from all sensors,149

the bridge acts as an intermediary between the sensors (i.e., a data collec-150

tor and a data store) and the server (i.e., a data repository). Examples of151

oceanic data include a multitude of information such as types and levels of152

contamination, sunlight, temperature, dissolved oxygen, and water acidity.153

For example, assume the sensor having an identity ST captures the value of154
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temperature (◦C) at specific time intervals and transmits the required in-155

formation to the sensors’ bridge. The bridge is responsible for collecting all156

sensor data and transmitting it to the backend server, where it is then pro-157

cessed. As in Figure 2, the server is managed as a cloudlet to send the data158

for offshore processing and storage. A large part of the offshore processing159

takes place in order to pull together the necessary data from various sources160

of oceanic information in order to analyze the correlation between various161

types of oceanic data such as the impact of temperature and acidity on ma-162

rine life. Finally, the analytics results are presented to end-users for necessary163

actions and human decision support in the context of smart oceans.164

2.1.1. Designing IoUT Systems165

The software engineering standard (represented as ISO/IEC 12207:2008)166

provides a structured approach and process life-cycle to engineer software-167

intensive systems. Moreover, the architecture model (i.e., ISO/IEC/IEEE168

42010:2011) provides a standardized approach to architect, develop, and169

evolve software services and applications effectively and efficiently [19]. The170

architectural models for IoTs are designed to abstract the complex implemen-171

tation specific details (i.e., source code modules and procedural calls) with172

a high-level (component and connector) view of the system. Specifically,173

modules can be abstracted and represented as architectural components and174

architectural layers to conceptualize a system model [20]. There has been175

an increased focus on exploiting architectural models to design, develop, and176

evolve IoT systems in the context of smart homes, transportation, healthcare,177

and urban services [15]. As in Fig. 2, a simplified view of the architectural178

layers for IoUT is presented based on layered architecture pattern [12, 15].179

Each later the concept of IoUT in terms of data and its computation.180

Sensor-based data sensing refers, for example, to the capture and represen-181

tation of data that is obtained from underwater objects and sent to a server182

via sensors. The architectural modeling facilitates developers to design the183

system landscape while abstracting away from the implementation-centric184

and technical details (i.e., algorithm spec), which can be operationalized in185

later stages. For example, a recently proposed solution named ThingsML186

provides an architecture for high-level modeling of things in IoTs where the187

low-level executable specification can be generated in an automated manner188

using model-driven software engineering [20].189
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Figure 2: Building Blocks and Architecture Layers of IoUT for Smart Ocean Systems

2.1.2. Challenges for IoUT System Design190

Despite the strategic benefits of IoUTs, architecting, operationalizing,191

and deploying underwater sensors remains a challenging task. The adoption192

of smart ocean technologies highlights that pervasive sensors entail several193

hardware, network, and software limitations [9, 10]. In terms of hardware,194

there is a lack of computation, storage, and energy resources, rooted in the195

pervasive and mobile nature of the sensors. The network instability leads196

to frequent disconnections and deteriorating sensor throughput can lead to197

anomalous data transmission. Further, from the software point of view, the198

performance of IoT data analytics in terms of algorithmic efficiency and query199

processing are among the primary challenges to be addressed [12, 13]. No-200

tably, the adoption of software engineering life-cycle can enable architects and201

developers to (i) design IoUTs using patterns for an incremental and reusable202

development [12], (ii) develop parameterized algorithms to customize the so-203

lution [9], (iii) utilize software tools and technologies to automate the solution204

[20], and (iv) evaluate system functionality and quality based on standardized205

criteria (i.e., ISO/IEC-9126 model) for software validation [16].206
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2.2. Related Work207

This section overviews the most relevant related work to analyze existing208

solutions, their underlying techniques, and limitations that justify the scope209

and contributions of the proposed solution. Table 1 acts as a structured210

catalogue to objectively compare and summarise the proposed solution in211

the context of the most relevant existing work.212

2.2.1. Software-Intensive IoT-driven Systems213

In recent years, many research and development initiatives have been put214

forward that advocate software engineering methods for the development215

of IoT-driven applications [11, 13]. Precisely, the initiative in [11] aims to216

organize IoT researchers’ and practitioners’ communities that can leverage217

academic research on software engineering for IoTs and its application and218

validation in an industrial context. Several similar efforts aim to establish219

the foundations that unify state-of-the-art software engineering principles220

with emerging and futuristic challenges of IoT systems [21, 22]. The study221

in [21] organizes key concepts and develops abstractions that revolve around222

the design and development of IoT systems to start shaping-up the guide-223

lines of a new IoT-oriented software engineering discipline [20]. Some of the224

pioneering studies [11, 13, 20] laid the foundations for later work that goes225

beyond academic researchers to analyze practitioners’ views and industry-226

specific processes for IoT systems. For example, an empirical study in [23]227

conducted a survey on IoT systems and practitioners from 35 countries across228

6 continents with 15 different industry backgrounds. It can be considered a229

pioneering work on analyzing practitioners’ views on key tasks, challenges,230

and software engineering methods for software-intensive IoT systems. In a231

similar work [12], the authors analyze multiple software engineering processes232

and practices that are used in industrial systems for IoT-driven data analyt-233

ics. The study’s results highlight the critical tasks, most relevant challenges,234

and recommended practices for developing IoT-driven systems for industrial235

analytics.236

Usually, software architecture-centric techniques have been used to model237

and develop IoT applications. A recently conducted mapping study in [15]238

reviews qualitatively selected research studies to identify the challenges, ar-239

chitectural solutions, patterns, and areas of emerging research in software-240

defined IoTs. In a similar work, the authors have presented Things ML [20] as241

a model-driven, architecture-centric approach that empowers architects and242

developers via a model-driven software engineering approach to implement243
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IoT systems iteratively. The existing research and development on IoT-driven244

applications in [12, 15, 20, 23] complement a recently proposed roadmap for245

software engineering of IoTs that streamlines the essential aspects related to246

specification, design, and implementation of software-intensive IoT systems247

and applications [13].248

2.2.2. IoT-driven Oceanic Data Mining249

In the context of the smart system, there is a growing interest in tailoring250

IoT solutions for intelligent computing [1, 5, 7] (e.g., smart healthcare, intelli-251

gent transportation, home automation) that can be applied to sensor-driven252

mining of oceanic data [8, 9]. A new generation of satellites has provided253

oceanographers with a new means to acquire synoptic observations of ocean254

surface conditions at unprecedented time and space scales. This depends on255

the usage of satellites; see Halpern 2000 Satellites for more information [24].256

Oceanographers have gathered information on critical parameters over time,257

including sea surface, temperature, worldwide high spatial, high accuracy,258

chlorophyll, and sea surface height (SSH). To allow a web-based platform for259

data collection, retrieval, interpretation, and visualization of oceanic data,260

Osen et al. [25] suggest a method to coordinate IoT data. The web-based261

framework has been introduced to provide distributed and interactive real-262

time data streams for detecting underwater oil detector resources. However,263

the underwater marine environment has increased the privacy and security264

issues of data collection, transmission, and retrieval. The authors in [14] have265

proposed an IoT-based architecture for a secure and efficient data compres-266

sion algorithm to address these issues.267

IoUTs are characterized as a worldwide network of intelligent, intercon-268

nected underwater objects that allow large unexplored water areas to be269

monitored [9, 10]. However, to process the collected oceanic data, such data270

must be transmitted to the storage infrastructure. In [26], the authors high-271

light some challenges related to storing and analyzing the data highlighting272

the fact that monitoring of ingested data from underwater sensors is still273

an open challenge for the research community. In [27, 28], authors have pro-274

posed a Deep learning-based approach called UIoT (underwater IoT) with an275

improved stability method to categorize acoustic sounds to automate marine276

sound processing in large data architectures [29]. The proposed UIoT archi-277

tecture discusses the different scenarios to address critical challenges, includ-278

ing the increasing problems of long-distance underwater communication [9].279

Some of the challenges mentioned above and alike constraints hamper the280
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widespread adoption of IoUT systems and enable engineers and developers281

to architect emerging and futuristic challenges of ocean data mining. By282

deploying tens of thousands of inexpensive, intelligent floats that serve as283

a distributed sensor network over huge ocean regions, the Ocean-of-Things284

program [30], aims to close the marine knowledge gaps. In [31], the authors285

discussed maritime awareness and a cost-effective way of predicting ocean286

circulation and marine mammal tracking. The technology is based on con-287

sumer electronics off the shelf and involves a central controller with various288

sensors connected to it [32].289

Critical Challenges for Oceanic Data Mining and Analytics – The de-290

sign and implementation of efficient data mining algorithms represent one291

of the critical challenges due to the operational environment and coordi-292

nation between data collected from IoT sensors and devices. However, to293

enhance system performance, marine organizations explore machine learning294

systems that can adapt to the complex environment [33]. Notably, data an-295

alytics techniques are mostly used to develop dynamic models through data296

interactions leveraging several layers of information received through IoT297

networks [34]. The analytics based on deep learning techniques are used for298

data extraction, transformation, classification, and pattern analysis [35, 36].299

However, marine data poses unique challenges, including but not limited to300

the incompleteness of data, multi-sourced data ingestion, and complexity301

of analytics. The existing techniques focus primarily on quantifying data302

efficiently and reliably [37]. The recent studies explore problems such as303

infrastructure [38], storage [39], security [40], analysis [41], etc. to manage304

IoT data. Data mining approaches need further exploration to overcome305

challenges that include but are not limited to multi-source data streaming,306

complex marine data, performance enhancement [42], identifying trends from307

ambiguous data [43, 44], multi-source data mining algorithms [45], and ad-308

vanced data mining and stream data processing methods [46].309

2.2.3. Conclusive Summary310

Table 1 provides a structured catalog to document criteria-based compar-311

ison of existing vs proposed solutions to present the scope and contributions312

of the proposed work objectively. We adopted the guidelines for classify-313

ing the existing research (IoT-driven data analytics and IoUTs [10, 12]) to314

shortlist five criteria that include (1) engineering method applied for IoT315

systems, along with the capability of the systems to exploit IoTs for (2) real-316

time data collection, (3) data analytics, (4) data mining and analytics, and317
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Table 1: Criteria-based Comparative Analysis of Existing Research vs Proposed Solution

Study Reference Engineering
Method/Solu-
tion

Real-Time
IoT Data
Collection

Data An-
alytics

F
o
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si
g
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ts
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n
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n

Y
e
a
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Waterston et al. [31] ✓ × × × × 2019
Tziortzioti et al. [47] × ✓ ✓ × × 2019
Hu et al. [14] ✓ ✓ × × × 2020
Qiu et al. [9] ✓ × × × × 2020
Ahmad et. Al. [12] ✓ × ✓ × × 2021
Our Scheme ✓ ✓ ✓ ✓ ✓

(5) predictive analytics. The year of publication is complementary informa-318

tion to highlight the years in which a particular solution was put forward.319

For example, the existing solution (Ahmad et. al. [12]) focuses on IoT-320

driven data analytics for industrial systems. The solution follows SE process321

life-cycle to develop and evaluate IoT systems that support real-time data322

collection and analysis. However, this solution lacks data mining and predic-323

tive analysis. Considering the overall comparison criteria in Table 1, we can324

conclude that a number of research studies have exploited SE for IoT-based325

data mining in the context of smart systems. However, there does not exist326

any solution that leverages SE methods and techniques (e.g., architecture,327

algorithms, patterns, tool support) for a systematic engineering and devel-328

opment of IoTs in the context of IoUTs. There is a need for solutions where329

software algorithms and applications can orchestrate the deployed sensors330

to ingest and analyze underwater data [25, 8, 9] to support software-defined331

IoTs. Technical details of the proposed solution are discussed in subsequent332

sections of this paper.333

3. Research Method and Software Architecture334

We now present research methodology (Section 3.1) that follows details335

of the software architecture for the proposed solution (Section 3.2).336

3.1. Research Methodology337

An overview of the research method is presented in Figure 3 that consists338

of four steps, following an incremental approach to analyze, design, imple-339

ment and validate the solution, as detailed below.340
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Figure 3: Overview of the Research Methodology

• Step 1 – Analysis of Multi-vocal Literature focuses on critical341

analysis of a diverse collection of existing literature (e.g., peer-reviewed342

published research, technology road maps, technical reports, etc.) [1,343

9, 10, 11, 21] to pinpoint existing solutions and their limitations. We344

followed the guidelines to conduct the systematic literature review [48]345

to review the most relevant existing research (detailed in Section 2.2).346

Analysis of existing research and development solutions helped us to347

streamline the needed solutions and define the scope for this research348

(Table 1).349

• Step 2 – Design of Software Architecture represents the design350

phase of methodology that aims to model the solution before its imple-351

mentation. We followed the guidelines and recommendations to model352

IoT systems from [15] and adhered to ISO/IEC/IEEE 42010:2011 stan-353

dard for architecting software systems to design the proposed solution354

[6]. A layered software architecture is developed that acts as a blueprint355

to implement the solution (detailed in Section 3).356

• Step 3 – Implementation of Algorithms represents an implemen-357

tation of the solution in the form of computation and storage-intensive358

steps. An algorithmic solution represents a modular decomposition359

of a solution that can be customized based on parameterized inputs360

by the users. Algorithmic details and underlying source code produce361

executable specifications for the architecture (detailed in 4).362
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• Step 4 – Validation of Solution is the last step that aims to evaluate363

the functionality and quality of the proposed solution. We have used364

the ISO/IEC-9126 [16] model to evaluate system quality. Specifically,365

we focus on measuring various aspects of system usability and efficiency366

based on a number of well-established evaluation metrics (detailed in367

5).368

As in Figure 3, the initial two steps are purely manual activities re-369

quiring human intellect and decision support for their completion. In370

comparison, the last two steps involve human intervention and tool371

support to (semi-) automate the solution development. Iterations be-372

tween steps (Step 4, 3, 2) may be required, in case there is any needed373

refinement(s) of the previous step. For example, Step 4, i.e., solution374

validation may suggest the refinement of algorithms to increase their375

efficiency or alter their functionality.376

3.2. Architectural Representation for the Proposed Solution377

We now present software architecture that represents a blueprint - com-378

prising of the building blocks - for the overall solution. As discussed ear-379

lier, architecture for software-intensive systems is represented as an IEEE380

standard [19] that abstracts complex implementation-specific details of the381

system represented as architectural components (e.g., computational com-382

ponents or data stores) and connectors (i.e., component interconnections).383

The architectural view of the proposed solution is presented in Figure 4. Ar-384

chitectural specifications are presented independently of specific tools and385

implementation technologies to generalize the solution. Tools and technolo-386

gies for architectural implementation are discussed later once the algorithms387

have been presented. The architecture model as in Figure 4 highlights:388

• Layered solution that employs 3-layered architecture pattern [19, 21]389

to support the separation of functional concerns based on (1) sensing390

layer, (2) data analytics layer, and (3) data presentation layer, each391

detailed below. In the software development life-cycle, the separation392

of functional concerns, a.k.a. divide and conquer, allows architects393

and developers to engineer and develop a specific concern (e.g., data394

analytics or data presentation) in a parallel way.395

• Modularization of solution represented as implemented algorithms, where396

each of the architectural layers can be represented as an individual mod-397
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ule of the solution that supports customization based on user-specified398

input to the algorithms.399

• Architectural pattern as reusable knowledge and recommended best400

practices provide a frequent design solution to recurring problems dur-401

ing the system development phase [15]. Pattern-based architecture402

enabled the reuse of design decisions, maintained the separation of403

concerns during development, and enhanced system extensibility and404

maintainability.405
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Figure 4 shows two views (a) domain view and (b) architecture view across406
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three layers of the solution. Specifically, Figure 4 (a) domain view highlights407

a real-world representation of the system in terms of different functional as-408

pects and building blocks. In contrast to the domain view, Figure 4 (b)409

highlights the system’s component and connector-based architectural view410

of the system based on the UML component diagram [19]. Components of411

the architecture represent computation and storage-intensive units, whereas412

connectors represent the interconnection between components. For exam-413

ple, the component named packagedData gets accumulated sensor data from414

another component named dataSIIM using a connector storePackagedData at415

Data Sensing layer. In an architectural concern, layers only represent a log-416

ical separation of different functional aspects of the solution each of which is417

detailed below.418

3.2.1. Layer 1 - Data Sensing419

This layer deals with collecting data from the deployed sensors in the420

sea. Figure 4 illustrates a typical example of data sensing with deployed421

sensors (Sensor-ID) and their data collection. Each of the deployed sensors422

has a unique identifier referred to as Sensor-ID A or Sensor-ID B, shown in423

Figure 4, to collect different types of oceanic data, as highlighted in Table424

2. Table 2 provides the kind of information that was gathered, the unit used425

to represent the data, and the specific sensor that was used to acquire the426

data. For instance, the sensor known as Sensor-ID A gathers information427

known as DO (dissolved oxygen), which aids in measuring the amount of428

dissolved oxygen in the water. Scientific Instrument Interface Module (SIIM),429

which serves as a conduit between sensors (data collection) and data servers,430

supports sensor deployment and data collecting (data management). As a431

link between the two levels, SIIM unifies hardware and its control software to432

gather data from deployed sensors, package it with SIIM data, and send it to433

the server. For instance, in Figure 4 (a), the SIIM gathers data from Sensor434

A such as dissolved oxygen at a specific time (Dissolved Oxygen (DO): 7.93,435

DateTime: 22-09-20::13:05:37) and packages it with the SIIM’s identity and436

the geolocation of the data collected (SIIM-ID X, GeoLocation). Periodically,437

based on a minute-based time interval, the data collecting and transmission438

procedure occurs. Figure 4 (b) illustrates how the packagedData component439

at the Data Sensing layer transmits data to the dataStore component at the440

Data Analytics layer via the storePackagedData connection.441
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3.2.2. Layer 2 - Data Analytics442

This layer primarily focuses on managing and analyzing the data col-443

lected from the underwater sensors (i.e., data transmitted from SIIM). First444

of all, sensors’ data packaged in a predefined format is stored in respective445

data stores. The data relating to sensors and SIIM identification (SIIM X,446

Sensor A, Sensor B) is stored separately compared to other data such as447

geolocation, time-stamp, and DO. Furthermore, this layer supports data an-448

alytics such as DO oxygen patterns at a specific time, various sea levels, and449

their impacts on the acidity of water. Two main types of analytics are per-450

formed based on the types of data including (i) historical data determined451

by specific data collected between two-time intervals, and (ii) current data.452

Moreover, a correlation between two or more data items, as in Table 2, is453

computed such as the effects of temperature (◦C) on the acidity of the water454

(pH) at a specific time. Analytics is performed through data processing and455

computations (further elaborated in the next section).456

3.2.3. Layer 3 - Data Presentation457

The final layer of the architecture presents key insights and results of458

data to the end-users. An end-user is an interested party who is interested459

in analyzing oceanic data, such as ocean explorers or marine scientists, etc.460

In this layer, which is also known as the user interface layer, a customized461

report is generated and various statistics are visualized in order to empower462

end-users (stakeholders and decision-makers) to make informed decisions. It463

is possible to see, as an example, over a specific period of time, the dissolved464

oxygen content, the underwater temperature, and the acidity of the water465

using the visualizations given here. At this layer (b), according to Figure 4,466

the architectural component named Dashboard can provide customised views467

to the users via the component named userViews.468

4. Algorithms and Technologies for Solution Implementation469

This section discusses the underlying algorithms and the technologies to470

modularise and implement the architecture-centric solution. By highlighting471

the tools and frameworks that are accessible to software and system devel-472

opers, the topic of implementation technologies is introduced to support the473

algorithmic requirements.474
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Table 2: List of Data Collected by the Sensors

Data Unit of Measurement Intent
Temperature (◦C) ◦C Degree Celsius To read the current temperature
Dissolved Oxygen
(mg/L) (DO)

measure the amount of dissolved
oxygen

To measure the dissolved oxygen in the
water

pH (moles/L) moles per liter To determine the water’s acidity
Salinity (ppt) Parts per Thousand to gauge how ”salty” saltwater is
Turbidity (NTU) Nephelometric Turbidity unit To quantify the quantity of light dis-

persed by water’s suspended solids.
Chlorophyll (mg/L) mg chlorophyll per liter of water

wavelength.
Chlorophyll levels in water are mea-
sured by the fluorometer.

Sea Level (m) measurement in meters To measure the depth.

4.1. Algorithms for IoUT-based Ocean Data Mining475

Interpretation of the Algorithms: Figure 5 illustrates the algorithms’ com-476

putational steps, data storage activities, and flow. The consistency between477

the proposed architecture (Figure 4) and algorithmic specifications (Figure 5)478

is maintained by mapping the architectural components with algorithmic479

steps across three layers. For example, the architectural component named480

DataPackaging inside the sensor layer in Figure 4 is mapped with the Data481

Packaging activity in Figure 5, implemented in Algorithm 1 - Send( F ,B482

) at Line 09. To facilitate customization and user input, the oceanic data483

items from Table 2 serve as parameterized input to algorithms. For instance,484

the sensor identification S is supplied as a parameter to Algorithm 1 Input:485

S at Line 01 in order to start data collection from that particular sensor. As486

shown in Figure 5, the accumulated data (Sensor ID, Sensor Data, Time and487

Location) from the sensor layer is packaged for its transmission to the data488

analytics layer, i.e., packagedData component in Figure 4. After performing489

the analytics, the data (Sensor ID, Location and List of Sensors, and Data490

Correlation from Multiple Sensors) is unified into the Analytics Log for its491

transmission to the interface layer, i.e., analyticsLog component in Figure492

4. The inputs, processing, and outputs for each of the three layers of algo-493

rithms are presented in the remaining paragraphs of this section. Comments494

are made in an effort to clarify and make the text easier to understand by495

elaborating on certain algorithmic processes.496

4.1.1. Algorithm 1: Sensors’ Data Collection497

This section explains the sensors’ data collection mechanism as listed in498

Algorithm 1. In this algorithm, the data is packed in a specific format before499

forwarding to the server for processing. As stated before, the data collec-500
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Figure 5: A Visual Overview of the Algorithms

tion and processing module contains a set of deployed sensors to perceive the501

environmental conditions and send their measurements. The SIIM is the con-502

troller module, responsible for data packaging and transmitting it wirelessly.503

It sends sensors’ data to the backend server, where the data is processed.504

The data packaging is performed to consolidate a diverse set of data having505

ID, the value of oceanic data, sensor location, and date/time as a unified506

record for necessary analytics.507

• Input(s): The input to the algorithm is the identity of a specific sensor508

being used to trigger the data collection (Input: S - Line 01).509

• Processing: Data is ingested through sensors iteratively which is pro-510

cessed on a time slot basis, repeated frequently (Line 4, 5). However,511

four data categories are fed into the algorithm 1, sensor ID, SIIM ID,512

sensing value, and date time (Line 6). Initially, the data is buffered and513

later packaged (DPDATA PACKEGE). The DPDATA PACKEGE is514

further sent to the IoT server (Line 9) and the timer is reset (Time Reset515

()) to start a new interval to repeat the process (Line 8).516

• Output: The output of the algorithm is the packaged data that has to517

be transmitted to the server (Output: B - Line 02)518

4.1.2. Algorithm 2: Data Analytics519

The data analytics module comprises multiple algorithms that include the520

Time Series, and Random Forecast Model applied to custom data sets. The521
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Algorithm 1 Data Sensing Algorithm

1: Input: S ▷ sensor data
2: Output: B ▷ data block on time interval
3: procedure DataPacking
4: while true do
5: Si ← Read() ▷ read sensor data
6: B ← AddBlk(ϕid, Si, t) ▷ develop data block
7: if t < tp then
8: t ← Reset() ▷ Reset timer for next interval
9: Send(F , B)
10: B = null
11: end if
12: end while
13: end procedure

data mining algorithms and data storage is placed on-premises i.e. backend522

server. The data processing module is invoked on user-defined custom criteria523

in the data analytics part. The user can select one or more sensors to see524

the useful insights and make a correlation with other sensors to observe525

the impact of sensors. The output of sensors presents data from individual526

sensors or a correlation of data among more than one sensor, detailed below.527

• Input(s): The algorithm takes five parameters as input (Input: σ, ψ,528

ϑ, ρ, L) - Line 01). These parameters include a specific sensor, type of529

data sensed, date, time, and location of the sensor.530

• Processing: The model is trained to provide insights and predictions531

using packaged data. It can be seen in Algorithm 2, the inputs are the532

Selected Type (selected type), Sensor ID (s id), Correlation Sensor IDs533

(co ids), Location (location), and Date Range (date range). The data534

is retrieved from the database server and processed according to the535

selected requirements based on the defined custom selection.536

• Output: The output of the algorithm is the trained data model for537

data insights and predictions (Output: Pset - Line 02). The algorithm538

output is a set of values (PPREDICTIONS).539

4.1.3. Algorithm 3: User Interface540

The user interface functionality is illustrated in algorithm 3 and specified541

in this section. The interface is used to highlight data insights based on542
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Algorithm 2 Data Analytics Algorithm

1: Input: σ, ψ, ϑ, ρ, L ▷ sensor, data type, date, time, location
2: Output: Pset ▷ prediction set
3: procedure DataAnalytics(ψ, σ, ϑ=Null, ρ=Null)
4: if ψ == C || ψ == H then ▷ Analytic on Streaming OR Historical data
5: if σl > 0 then
6: if Q.σl > 0 then ▷ Correlation is not null
7: if L != NULL then ▷ location is not null
8: while j < σl do
9: while i < Q.σl do
10: P ← GetValue(σl[j], Q[i], L, ϑ, ρ)
11: if P != null then
12: R ← GetImpact(P)
13: end if
14: i++
15: end while
16: j++
17: end while
18: else
19: while j < σl do
20: while i < Q.σl do
21: P ← GetValue(σ[j], Q[i],ϑ,ρ)
22: if P != null then
23: R ← GetImpact(P)
24: end if
25: i++
26: end while
27: j++
28: end while
29: end if
30: else
31: while j < σl do
32: P ← GetValue(σ[j], L, ϑ,ρ)
33: j++
34: end while
35: end if
36: end if
37: return P
38:

given user input. The category of data insight includes current data type,543

and historical data type with a set of input variables (Selected Type, Sensor544

ID, Correlation of Sensor ID, Date & Time, Location.545
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Algorithm 3 Data Presentation Algorithm

1: Input: U ▷ user selection
2: Output: R ▷ Display analytics
3: procedure InterfaceModule ▷ Event based function
4: ψ ← UserSelection()
5: if ψ == S then
6: σ ← Analytics(S) ▷ call analytical module on sensor type
7: end if
8: if ψ == D then
9: σ ← Analytics(D) ▷ call analytical module on date specific
10: end if
11: if ψ == L then
12: σ ← Analytics(L) ▷ call analytical module on location specific
13: end if
14: R ← UpdateDashboard(σ) ▷ Update analytics on user screen
15: end procedure=0

• Input(s): The input to the algorithm is used to retrieve the data based546

on the required data type selection (Input: U - Line 01).547

• Processing: The analyzed data is stored on the server. The stored data548

is used for training the data model. This process is repeated frequently;549

however, for the incoming data, we trained the number of models in550

accordance with the number of correlation sensors. The output of the551

algorithm is data insights. Further, the variable data categories that552

are fed into algorithm 3 with Selected Type (Current Data, or Historical553

Data), Sensor ID, Correlation of Sensor ID, Date & Time, and location.554

• Output: The output of the algorithm is the data insights and predic-555

tions that are to be transmitted to the user interface server (Output:556

R - Line 02)557

4.2. Tools and Technologies for Algorithmic Implementation558

This section summarizes the complementary role of relevant tools and559

technologies to implement the algorithms. The intent of the discussion here560

is to contextualize the tools and technology perspective used to implement561

the algorithms that realize the IoUT architecture. The tools and technolo-562

gies are layered as in Figure 6. For example, the accumulated data at the563

sensor layer from SIIM, implemented as Raspberry Pi, is packaged as a CSV564

(Comma-separated values) file. The CSV file is transmitted to the server for565
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analytics, where data is stored and managed using MS-SQL (Microsoft SQL)566

server. From a technical perspective, a direct SQL SERVER on-premises567

machine using Windows Operating System (OS) is utilized. A server-side568

application is developed using .NET platform (Visual Studio 2019) for user569

authentication. PyCharm IDE is used to perform server-side data analyt-570

ics and Jupyter Notebook is for making the environment of data training.571

Python language is used to train the data model including these libraries572

(Numpy, Pandas, Matplotlib, Sklearn). Similarly, the user interface is imple-573

mented with a client-side scripting language like JS (Java Script). The data574

for the user interface layer is queried and managed via server-side scripting575

language C# (C-Sharp) and Python. As in Figure 6, the data packaging at576

the sensor layer and analytics log at the analytics layer are managed as CSV577

files that are processed and transmitted using C#578

Figure 6: Abstract view of the proposed system with tools and technology interactions.

5. Evaluation of the Solution579

First, we present the case study in Section 5.1 and then discuss the580

environment and evaluation dataset in Section 5.2. Afterward, we perform581

criteria-based evaluation by evaluating sensors’ throughput (i.e., stability in582

Sections 5.3), query response (i.e., performance in Section 5.4), and algo-583

rithmic execution (i.e., efficiency in Section 5.5). The evaluation criteria584

are based on the ISO/IEC-9126 model used to evaluate software-intensive585

systems’ quality [16].586
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5.1. Case Study587

We now present the validation of the solution using a case study that588

is based on capturing ocean data for analysis from two distinct locations589

including (i) the Red sea, and (ii) the Arabian sea as shown in Figure 7. The590

case study is limited to data collection from two oceanic sites, however; as591

part of extending the basic proof-of-concept, in the future we plan for more592

diverse data to further validate the solution. Case study-based validation593

provides a practical context for scenario-based validation of the solution (see594

Figure7). Figure 7 illustrates a simplified view of the interface that allows595

the users to select three parameters (a) a specific sensor from the available596

list, (b) available locations for ocean data, and (c) correlation value/sensor.597

For example, the user selects the temperature and selects Arabian ocean and598

the pH value and the system shows the pH value of the data.599

22.400286, 39.063317

25.091540, 66.679709
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Figure 7: An Overview of Collected Data and Solution Interface

24



5.2. Evaluation Environment and Dataset600

The evaluation environment refers to a collection of hardware and soft-601

ware resources used to execute the solution and measure various execution602

steps and outputs. Specifically, from the hardware perspective, evaluation603

experiments have been conducted using TeraBlu sensors, and Raspberry Pi604

(SIIM) with data analytics experiments performed on the Windows Plat-605

form (core i7 with 16 GB of runtime memory). From software perspective,606

execution evaluation also referred to as evaluation scripts, automates system607

testing. Such scripts have been written in Python and executed in Jupiter608

Notebook. A number of existing libraries, including but not limited to Mat-609

plotlib and Sklearn are also used during the evaluation process. For example,610

the script written in Python is used to measure CPU utilization while com-611

puting the correlation of data among various sensors, i.e., Algorithm 2, and612

evaluation results are visualized using Matplotlib.613

The dataset used for evaluation consists of data collected from deployed614

sensors. The dataset includes a collection of data related to a list of sensors,615

current data (sensor throughput), historical data (query processing), and616

sensor correlation (system performance) along with the location and date/-617

time range of collected data. Further details about the dataset(s) being used618

are detailed in individual subsections below.619

5.3. Evaluations of Sensors’ Throughput620

The evaluation, following are types of sensors used for the evaluation,621

temperature, dissolved oxygen (DO), pH, salinity, turbidity, chlorophyll, and622

sea level ( as listed in Table 2). The temperature sensor is used to determine623

the ocean’s climate; the DO sensor measures oxygen in the water, pH is624

used to determine the acidity of the water, salinity is used to determine the625

saltiness of the water; turbidity determines the amount of light in the water626

and sea level is used to determine the depth of the ocean.627

At the data sensing layer, we evaluate the sensor’s throughput to analyze the628

stability of data transmitted out of each sensor, as in Figure 8. Measuring629

the throughput can help identify if there are any disruptions or significant630

variations in the transmission over a period of time. Specifically, as per the631

plotting in Figure 8, the vertical axis represents the volume of transmitted632

data in Kilobytes (KBs), whereas the horizontal axis represents the time633

duration (number of days) for data collection. The throughput for each of634

the seven sensors is represented as an individual graph plot that moves along635

both axes such that fluctuation on the vertical axis represents data being636
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transmitted, while progression on the horizontal axis represents successive637

days. For evaluation purposes, the throughput is measured for a period of638

60 consecutive days. Sensors send their collected data. The gateway at the639

sensing layer (i.e., SIIM in Figure 4) collected this data every 10 minutes and640

logged it into the server. Figure 8 highlights only the average of collected data641

per day. The results highlight the relative stability of the sensor’s throughput642

with occasional fluctuations. For instance, the data about Sea Level goes up643

on day 15 and down on days 26, 39, and 47.644
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5.4. Evaluations of Query Response Time645

Data querying is fundamental to retrieving oceanic data from the server646

for desired analytics. Evaluating the query response time helps to analyze647

the solution performance in terms of retrieving the recent and historical data648

from the server. Figure 8 highlights two views, i.e., (a) query response time649

for current data and (b) query response time for historical data. Specifically,650

Figure 8 represents average values for a total of 50 trials (average of 10 trials651

presented as 1 instance), where the vertical axis highlights the response time652

in milliseconds and the horizontal axis highlights the number of trials for653

1, 2, N sensors respectively. For the purpose of analytics, historical data654

could be essential to be queried. Besides, data analytics could be done on655

a customized set of fields or ranges. Therefore, the query could differ based656

on the system requirements. For example, historical data could be divided657

further based on a date range and a date range time combination. As per658

Figure 8 (b), based on the number of trials, query response time increases659

due to the number of accumulated queries to the deployed sensors.660

5.5. Evaluations of Algorithmic Execution661

One of the critical measures, especially in IoT, is the algorithm’s CPU662

usage. As shown in Figure 8(c), the CPU usage is computed for none of663

the sensors, one sensor, two sensors, and a number of sensors. The results664

indicate that in a normal case without executing the proposed algorithm, the665

CPU usage is 45% which means the board operating system and some other666

functionalities that are not related to the proposed algorithm are already667

consuming 45% of the CPU.668

As the system becomes more advanced with the addition of multiple sen-669

sors, the CPU usage increases significantly. The increase CPU processing670

demands is due to a number of factors, including the need for data process-671

ing and communication protocols. These protocols are necessary to keep672

track of each sensor’s state and activate the buffer for incoming data. Un-673

fortunately, this increase in processing demands can reveal limitations in the674

system’s ability to scale. The existing board may not have sufficient com-675

puting power to handle a large number of sensors, which could restrict the676

system’s scalability. As a result, it’s important to carefully consider the num-677

ber and type of sensors to be added to the system and to ensure that the678

CPU is capable of handling the increased demands.679
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L Key-points for Evaluation
Sensors’ Throughput is evaluated to assess the stability of data in-
gested and transmitted from the deployed sensors. The results show
that the sensors’ readings are relatively constant with the other pa-
rameters, such as temperature, pH, or sea level. The average data
transmission day remains at 20056 KB per day.

Query Response Time is used to understand the time it takes for
data retrieval from the deployed sensors. The maximum time required
for a query on the current data for one sensor is 15ms, while the maxi-
mum query time for two sensors is 18ms. At the same time, the maxi-
mum query time for a number of sensors is 27ms. Similarly, the query
time in the historical data doe one sensor, 2 sensors, and a number of
sensors are 43ms, 60ms, and 124ms, respectively. Our conclusion is that
the query execution time is reasonable in both current and historical
data cases.

Algorithmic Execution Time shows the performance of computa-
tion based on CPU utilization. The results of the evaluation highlight
that With a single sensor, the CPU utilization reached 60%, while in
the case of two sensors and a number of sensors, the percentage reached
65% and 80%, respectively. This indicates that the proposed algorithm
takes at max 35% of the CPU time, on average.

680

Summary of Comparison: Table 3 complements the results of evaluation681

in Figure 8 with a brief comparative analysis of the most relevant algorithmic682

solutions on IoT-driven data analytics in smart oceans context. The com-683

parative analysis is based on four main points that include (i) criteria for684

evaluation as the main objectives of solution validation, (ii) total numbers685

of IoT sensors for data collection, (iii) use case as the scenarios of evalu-686

ation, and (iv) environment being used for evaluation. For example, the687

algorithmic solution in [1] aims to evaluate energy efficiency and data trans-688

mission rate for underwater sensors. The number of sensors is not explicitly689

mentioned. The use case is digital twins in smart cities and more specifi-690

cally smart oceans context. The algorithmic evaluation is performed using691

MATLAB simulations. In conclusion, the majority of existing algorithmic692

solutions have concentrated on using machine learning models for predicting693

data in specific applications. These solutions which are indicated in Table 3694

on datasets assuming that the data is obtained from sensors.695
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Table 3: Comparison Summary of the Algorithmic Solutions for IoT-driven Data Analytics

Algorithmic

Solutions

Criteria for

Evaluation

Number of

IoT Sensors

Usecases of IoT

Analytics

Evaluation

Environment

Yang et al. [49]

2020
- Computation Efficiency

- Temperature

- Accuracy

Not available Predict Ocean blind zone
information

Custom developed

Deng et al. [50]

2020

Number of barrier paths 1 Ocean border environ-
mental surveillance

MATLAB

Hu et al. [51]

2020
- Computation Efficiency

- Data Size

5 Secure, efficient, collec-
tion, transmission, and
data storage for IoT in
smart ocean

Python Simulations

Wang et al. [52]

2021
- Gliding motion eluci-
dates,

- Locomotion

3 Under-water fish bot Custom developed

Li et al. [53]

2022
- Energy efficiency,

- Data transmission rate

Not available Smart city and Digital
Twin

MATLAB

Proposed Solution
- Sensors Throughput

- Query Response Time

- Processor Utilisation

6 Underwater Data Analyt-
ics

Custom developed

In contrast, our work is primarily focused on not only data collection but696

analyzing useful insights of the data ingested by 6 deployed sensors. How-697

ever, collecting data through sensors with limitations presents a significant698

challenge. In our work, we propose a framework to benchmark underwater699

data collection from various sensors. This approach enables us to address700

the challenge of data collection before preparing a predictive model that is701

mostly lacking in solutions on ocean data analytics. Based on the results of702

the evaluation for the proposed solution, we conclude that:703

• Based on the amount of data collected consecutively, 60 days from 6704

sensors, the sensors’ throughput indicates consistency, completeness,705

and validity of IoUT data.706

• The query execution time for one, two, and a number of sensors for707

both current and historical data are reasonable for IoUT-driven data708

analytics.709

• The algorithm execution and CPU utilization are relatively stable, i.e.,710
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consuming only 35% of the CPU, on average, in case a number of711

sensors are used. In the case of one and two sensors, only 20% of the712

CPU time is needed. Therefore, the proposed system and algorithms713

are evaluated as computationally efficient to operationalize the IoUT714

systems. The proposed system and algorithms are valid to be used and715

implemented in other systems as well.716

The query response time and CPU utilization are proportional to the717

number of sensors. As part of future work, i.e., incorporating additional718

sensors would result in increased query response time and CPU usage.719

5.6. Threats to Validity720

We briefly mention some potential threats to the validity of this research.721

Validity threats refer to some limitations or constraints that impact the so-722

lution’s design, implementation, and validation. Validity threats need to be723

minimized as part of future work to optimize the solution and its implica-724

tions.725

• Threats to Internal Validity: relate to any restrictions or limits that726

could have an effect on the development and use of the suggested solu-727

tion. For instance, the number of sensors used to gather oceanographic728

data, the number of trials needed to assess sensor correlation, and the729

platform used to assess the solution may all contribute to internal valid-730

ity (see Section 5). This means that calculating the correlation between731

more sensors, increasing the number and magnitude of trials, or using732

different platforms can produce different results in the evaluation. Fu-733

ture work needs to consider the diversity of sensors, significantly large734

datasets and validation on different platforms can help with minimizing735

the internal validity.736

• External Validity: It relates to the validation of solution on different737

related systems and case studies. As in the research method (see Figure738

3) and evaluation (Section 5), we have adopted a case study-based739

approach to demonstrate and validate the solution. However, a single740

case study may limit rationalizing the generalization of the solution and741

the rigor of its validation. Future work is required to accommodate742

more case studies and different systems to minimize the impacts of743

external validity.744
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6. Conclusions and Vision for Future Work745

Internet of Things (IoT) enable context-sensitive and pervasive compu-746

tations that are fundamental to operationalizing smart systems that range747

from smart healthcare to smart transportation and smart ocean technologies.748

IoUTs as a specific genre of traditional IoTs unify data sensors, wireless749

networking technologies, and software applications to ingest, process, and750

analyze oceanographic data. Considering SE for IoTs, in this research we751

presented our solution on architecting a software-intensive IoUT system that752

advocates for pattern-driven reuse and algorithmic modularisation of the so-753

lution. Specifically, as part of the DeepBlu project, our approach synergized754

the concepts of software engineering (SE) and IoTs to leverage software ar-755

chitecture, underlying algorithms, and tool support in the development and756

operation of IoUTs. To evaluate the solution, we used a case study to deploy757

IoUT sensors for collecting data from two locations including the Arabian758

Sea, and the Red Sea. Evaluation results indicated sensors’ throughput,759

query response time, and query execution performance to demonstrate the760

efficacy and efficiency of the solution.761

Primary Contributions and implications of the research: We outline the762

primary contributions of this research as:763

• Synergising the methods of SE and application of IoT systems to ar-764

chitect, develop, and validate an IoUT solution for analyzing oceanic765

data.766

• Demonstrating the role of software architecture that enables algorith-767

mic modularisation and case study-based validation of IoT systems.768

The research and its finding can inform academic researchers and practi-769

tioners to architect and implement IoUTs for smart ocean systems. Specifi-770

cally, academic researchers can further explore software engineering methods771

to research and develop emerging solutions based on IoT systems and tech-772

nologies. Practitioners can explore the algorithmic-based and tool-supported773

approach to develop IoTs for smart oceans.774

Needs for future research: The future research mainly focuses on extend-775

ing the scope of the proposed solution in terms of (i) incorporating more776

sensors and diverse case studies, and (ii) mining patterns for the data col-777

lected using the proposed IoUT solution.778
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We aim to incorporate more sensors to gather enriched data that also779

involves analyzing the concentration of marine life in a specific oceanic zone.780

Also, there is a need for incorporating more use cases and diverse case studies781

that can help us gather data from different oceanic locations. The use of782

additional case studies to evaluate the solution can help us to understand if783

the proposed architecture and implemented solution in terms of data sensing784

and data analytics can be scaled up based on the increased size of data. We785

also plan to extend the solution that can discover patterns in sensed data786

that could improve predictive analytics. Pattern mining in sensor-ingested787

oceanic data requires us to extend the current architecture and implement788

a solution that can discover recurring sequences (analytic layer) as potential789

patterns to improve human decision support (interface layer).790
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