Galerkin/Collocation methods baseﬁl on 1D-integrated-RBRs for viscoelastic
ows

D. Ho-Minh!, N. Mai-Duy! and T. Tran-Cong?

Abstract: In this paper, one-dimensional integrated radial-basietion networks (1D-IRBFNs) are intro-
duced into the Galerkin and point-collocation formulatidn simulate viscoelastic flows. The computational
domain is represented by a Cartesian grid and IRBFNs, whietcenstructed through integration, are em-
ployed on each grid line to approximate the field variableduising stresses in the streamfunction-vorticity
formulation. Two types of fluid, namely Oldroyd-B and CEF mats] are considered. The proposed meth-
ods are validated through the numerical simulation of sdveenchmark test problems including flows in a
rectangular duct and in a corrugated tube. Numerical eshiow that accurate results are obtained using
relatively-coarse grids.
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1 Introduction

Numerical simulation of viscoelastic flows still faces a édtchallenges. Main difficulties, which numerical
methods have to deal with, are (i) complex material proeertf fluids, (ii) mixed characters (elliptic for
momentum equations and hyperbolic for constitutive equa)i, and (iii) high degrees of freedom (DOF) (2D
problems: 6 DOFs/node and 3D problems: 10 DOFs/node). Ircdke of large deformations, free/moving
surfaces and complex geometries, further numerical diffesuwill be added. One can classify discretisation
methods into two categories: low order and high order. Thenéo, e.g. traditional finite difference (FDMSs),
finite element (FEMs), finite volume (FVMs) and boundary eéein(BEMs) methods, leads to a system matrix
that is generally sparse and banded (possibly block-baBdd), while the latter, e.g. spectral and RBFN
methods, can offer a significant saving on the computatioosti owing to their high-order rates of convergence.
Further details can be found in [Crochet and Walters (1988ychet, Davies, and Walters (1984); Crochet
(1989); Tanner and Xue (2002); Owens and Phillips (2002)].

The use of RBFNSs for solving ordinary (ODES) and partial (RPéifferential equations has been an active
research area since Kansa'’s first report in 1990 [Kansa JL92@ Kansa’s method (direct approach), the field
variable f in the ODE/PDE is first represented by an RBFN and this RBFNés tdifferentiated to obtain

approximate expressions for derivative functionsf didifferentiated RBFNs (DRBFN)). On the other hand,
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in order to avoid the reduction in convergence rate causatiffgrentiation, Mai-Duy and Tran-Cong (2001)
proposed an indirect approach in which the highest-ordevatees of f are first decomposed into RBFs,
and their lower-order derivatives and the functibritself are then obtained through integration (integrated
RBFN (IRBFN)). Numerical experiments (e.g. [Mai-Duy andiirCong (2001, 2003)]) showed that IRBFN
collocation methods vyield better accuracy than DRBFN opned6th the representation of functions and the
solution of PDEs. In the early stages, both direct and ictlisgproaches used every RBF to construct the
approximations for the field variable at a nodal point, legd a fully-populated system matrix. It was found
that the matrix condition number grows rapidly with respgedhe increase in the RBF width and/or the number
of RBFs [Schaback (1995)]. Global RBF solutions to steadgaelastic flows were reported in, e.g., [Tran-
Cong, Mai-Duy, and Phan-Thien (2002); Tran-Canh and TrangC(2002); Mai-Duy and Tanner (2006)].
Later on, local RBF techniques, where the approximatioasanstructed using only a few nodal points, have
been developed (e.g. [Atluri, Han, and Shen (2003); Atldan, and Rajendran (2004)afer (2005); Mai-
Duy and Tran-Cong (2009); Sellountos, Sequeira, and Psl{2@10)]). In the context of IRBFNSs, collocation
schemes, based on 1D-IRBFNs and Cartesian grids, for thémobf 2D elliptic PDEs were reported in, e.g.,
[Mai-Duy and Tran-Cong (2007)]. The 1D-IRBFN approximatsoat a grid node involve only nodal points that
lie on the grid lines intersecting at that point rather tham whole set of nodes. As a result, the construction
process is conducted for a series of small matrices ratlaer fior a large single matrix (thus some degree of
local approximation is achieved).

1D-IRBFNs were successfully introduced into the pointaxdtion and Galerkin formulations for the simula-
tion of heat transfer and Newtonian-fluid flows (e.g. [Maiyfand Tran-Cong (2007); Mai-Duy, Ho-Minh, and
Tran-Cong (2009); Ho-Minh, Mai-Duy, and Tran-Cong (2009)f was shown that those methods are stable,
accurate and converge well. The 1D-IRBFN-based Galerkithagecan obtain similar levels of accuracy for
both types of boundary condition, i.e. Dirichlet only andiEhlet-Neumann. In addition, its resultant sys-
tem of algebraic equations is often symmetric and has avelgtiow condition number, which facilitates the
employment of a much larger number of nodes.

In this paper, we develop two methods (point collocation @aderkin), which are based on 1D-IRBFNs and
Cartesian grids, for the simulation of flows of viscoeladlidgds. The governing equations are taken in the
streamfunction-vorticity formulation. A computationadundary condition for the vorticity is globally derived
with the help of the constants of integration [Ho-Minh, M2iry, and Tran-Cong (2009)]. Three benchmark
test problems are considered to validate the proposed neetho the first problem, fully-developed flows of
an CEF fluid in a rectangular duct are simulated. This prolilemidely used to study secondary flows in a
straight tube of non-circular cross-section. It is noteat tDEF is seen as an attractive constitutive model in the
numerical modelling of polymer flow systems owing to its loangputational cost [Criminale, Ericksen, and
Filbey (1957)]. The second problem is concerned with theukition of Poiseuille flows in a straight tube of
circular cross-section, where their analytic solutioresavailable. The third problem is about the motion of an
Oldroyd-B fluid in a corrugated tube - a standard test prodi@mmumerical methods in non-Newtonian Fluid
Mechanics [Burdette, Coates, Armstrong, and Brown (1988)addition, this problem is also regarded as one
of effective models in the study of viscoelastic flows in pgganedia. The obtained 1D-IRBFN results agree
well with those produced by other techniques available éniterature.



The remainder of this paper is organised as follows. In 8ecd, a brief review of the governing equa-
tions for the motion of CEF and Oldroyd-B fluids is given. $act3 presents the proposed 1D-IRBFN-based
Galerkin/collocation methods. Three test problems areailsited in Section 4. Section 5 concludes the paper.

2 Governing equations

The equations for the conservation of momentum and massiaotampressible fluid take the forms

p(%—kvﬂv) = [0.0+4f, xXeQ, @

0-v

0, xeQ, (2

wherev is the velocity vectorf the body force vector per unit volume the densityg the Cauchy stress tensor,
t the time,x the position vector anf the domain of interest. The stress tensor can be decompateed i

0:_p|+T’ (3)

wherep is the pressurd, the unit tensor and the extra stress tensor. In this paper, the working fluidsore
the CEF and Oldroyd-B types.

For the CEF model, the extra stress tensor is defined as

0
T=2u(d)d - ®1d+4d,d - d, 4)
whered = 1/2(0v+ (Ov)") is the rate of deformation tensat,= /2tr (d-d) the scalar magnitude af (tr
the trace operation)y (d) = k|d|"~* the viscosity k the consistency factor amtthe power law index)s; and

0
®, the first and the second normal stress coefficients, respictand| | the upper convected derivative given
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For the Oldroyld-B model, the extra stress tensor is contpbase

T

2und + Ty, (6)
0
wherep, is the “Newtonian-contribution” viscosity, the “polymer-contribution” viscosityr, the extra stress

tensor due to viscoelasticity, aidthe relaxation time of the fluid. The Oldroyd-B model reduteethe UCM
model whenu, is set to zero and to the Newtonian model whes: 0.



In this study, we consider the steady state of flows only armptathe streamfunction-vorticity formulation.
Eq. 1 - Eq. 3 thus reduce to

Y+w = 0, (8)
Pw = F(v-Oow,T,f), 9)

wherey is the streamfunctionp the vorticity, and the RHS of Eq. 9 the functionwfw, T andf. Numerical
examples to be presented are solved in two coordinate systexmely Cartesian and cylindrical.

The velocity components are related to the streamfunctian v
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U = g u, = Tar (cylindrical coordinates) (12)

For the CEF model, simulations are to be carried out usingeSian coordinates and Eq. 4 is taken in the form
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The Oldroyd-B fluid flow is simulated using cylindrical coordtes and one thus has Eq. 7 in the form
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3 Proposed 1D-IRBFN-based Galerkin/Collocation technigas

The computational domain is simply represented by a Cartegiid. On each grid line, 1D-IRBFNs are
employed to approximate the field variables, ig.w, Tux, Txy: Tyy, Txz, Tyz, Trr, Trz, T.zandTgg. The governing
equations Eq. 8 - Eq. 9, Eq. 12 - Eq. 16 and Eq. 19 - Eq. 22 areetiged by means of point collocation (the
residual set to zero at the collocation points) or Galerkimmfulation (the residual set to zero in the mean). In
the following, details are presented for three main partthefproposed methods. In the first part, the use of
1D-IRBFNs to represent the field variables is discussedhénsecond part, the implementation of boundary
conditions is described. In the third part, 1D-IRBFs areviporated into the Galerkin and point-collocation
formulations as the trial functions.

3.1 One-dimensional IRBFN representation of the field vabikes

It can be seen that Eq. 8 - Eq. 9 involve second-order derestdf the field variables including stresses.
As a result, the second-order integral RBF scheme [Mai-Dhg/ Bran-Cong (2003)] is applied in this work.
Processes of constructing the 1D-IRBFN approximationgterfield variables can be conducted in a similar
fashion. For brevity, we introduce the notatibno representy, w, Tux, Txy, Tyys Txzs Tyz, Trr, Trz, T2z 01 Tgg, and
the notationn to denotex or y (Cartesian coordinates) anar z (cylindrical coordinates).



On an grid line, the field variabld and its derivatives with respect tpcan be represented as follows.

o N ™
# = Ywa(m =3 will? (n), (23)
df(n) N ()
an 2 Wili ™ () +c1, (24)
Ny
tm) = Swl®n) +an+c, (25)

N
whereN;, is the number of nodes on the grid Iir{es’/vi}i'\':”1 the set of network weightgg; (n) i'\ﬁl = {Ii(2> (n)}_ nl

1=
the set of RBFsI,i(l) (n)= fli(z) (n)dn, Ii(o) (n)= fli(l) (n)dn, andc; andc; are the constants of integration.
Evaluation of Eq. 23 - Eq. 25 at every node on the grid line ¢ad
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where the superscrigt) is used to denote the order of the corresponding derivativetion,
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in whichd®f; /dnk = d*f (n;) /dnk and f; = f (n;) with j = {1,2,--- N, }.
The relations between the RBF-coefficient spacand the physical spad%can be established as
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where@ = 74 is used to represent extra information (derivative datd)icvwould otherwise be wasted
resulting in less accurate solutions, &idhe conversion matrix. In Eq. 29 - Eq. 30, owing to the presenc
of the two integration constants, the vecéxran have up to two entries. Since the conversion mé&trig not
over-determined, extra valuesare incorporated into the IRBFN approximations in an exaahmer. We will
utilise this capability to impose normal derivative valssthe two end-points of the grid line as well as to
derive a computational boundary condition for the voricit

Making use of Eg. 30, the values bfand its derivatives at an arbitrary poipion the grid line will be computed

Q)
Il
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They can be rewritten in compact form

Np
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where{(pi}i'\':”l+2 is the set of IRBFN basis functions in the physical space.

3.2 Imposition of boundary conditions

Dirichlet boundary conditions: Assume thatf is given atn; andn,. In the conversion process, Eq. 29 -

Eq. 30, the matrix#” and the vectog are simply set to null. The 1D-IRBFN expressions Eq. 34 - EqthBis
reduce to

Np
fm) = 3o, 37
of(n) _ Vagn),
- 5 £ (38)
Ny ,
a2t (n) 9%¢i(n) o (39)

a2~ 2 on?
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Neumann boundary conditions: Assume that f /dn is given atn; andny,. The matrix.#” and the vecto
in Eg. 29 - Eq. 30 take the form
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The 1D-IRBFN expressions Eg. 34 - Eg. 36 thus become

v oty oy,
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Dirichlet and Neumann boundary conditions: Assume thaff andd f /dn are given at); andny,, respec-
tively. The latter is imposed by taking the mattiK and the vectogin Eg. 29 - Eqg. 30 as

—

A= P ) ). e 1 (), 10,
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One thus has Eq. 34 - Eq. 36 in the form

Ny of
fm) = 3 ) fit dnya () (43)
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3.3 Incorporating 1D-IRBFNSs into Galerkin and point-colloation formulations

Each governing equation in Eq. 8 - Eq. 9, Eq. 12 - Eq. 16 and &g EQ. 22 can be rewritten in the following
form

Z((f) = 0, xeQ, (46)
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where Z is a differential operator. 1D-IRBFN expressions Eq. 34 - Bgjare utilised here to construct the
approximations forf over Q. On a 2D rectangular domain, this construction process icaplys be done by
means of Kronecker products. The use of tensor products teaébr instance,

Ne Ny

foxy) = 3 5 67 0007 () (47)
i=1]=

for the case of Dirichlet boundary conditions only, and

N ik o, Al
foy) =3 6" (%) ( 3 070 i+ 0Na ) 5+ 0o () a—y“y> . (48)
i= =

for the case of Dirichlet and Neumann boundary conditionisi¢Blet conditions prescribed on the two ver-
tical boundaries while Neumann conditions on the two haiabboundaries). In Eq. 47 and Eq. 48, is
the value of the variabld at the intersection of théh horizontal grid line andth vertical grid line, and

dfhl/dy anddeNy/dy are nodal boundary derivative values. The prodldéf%(pj(y) are usually referred to as
the trial/basis/approximating functions.

It is noted that the independent variableandy in Eq. 47 - Eq. 48 will be replaced withandz if cylindrical
coordinates are employed.

One can find the unknown nodal valuesfdby constructing a scheme to minimise the following residual
R=L(f). (49)

This process can be stated mathematically as
/ WRQ =0, (50)
Q

whereW is the weighting function to be chosen. In the point-colta@a approach, the weighting function is
chosen as the Dirac delta function, i¥ = d(x—x). In the Galerkin approach, the weighting function is
chosen from the set of trial functions, i = @ (x), and the volume integrals in Eg. 50 can be numerically
evaluated using Gauss quadrature.

As mentioned earlier, Neumann boundary conditions areeptBsimposed in an exact manner. This is numer-
ically demonstrated here through the solution of the foilmpnODE

d?f
qe tirx=0 0<x<1 (51)

subject to a Dirichlet and Neumann boundary conditior-at0 andx = 1, respectively.

In the case of conventional Galerkin methods, the appramdor f can be constructed to satisfy the Dirichlet
condition atx = 0. The Neumann boundary conditioif /dx =g atx = 1 is imposed through the following
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statement

dfdw
/(&d——(”x) >dx:[qW]X_l, (52)
0

which is obtained by applying integration by parts on Eq.A9shown in [Brebbia, Telles, and Wrobel (1984)],
by differentiating the approximate functidh one has

df

dx

= 1.22E-1+ (1+ 1.22E-1)q,
x=1

which clearly indicates that the Neumann boundary contisdmposed in an approximate manner.

In the present Galerkin technique, the IRBFN approximatsononstructed to satisfy not only the Dirichlet
condition atx = 0 but also the Neumann boundary conditibfydx=gatx = 1. Using Eq. 43, the solutiof
is expressed as

Ny —
FO) =121 i) fi + dnra(X)0 (53)
This approximation is then forced to satisfy the ODE through
d?f
/ T X Wax=0, (54)
0

from which one is able to obtain the nodal valued oBy differentiating Eq. 53, one has

oM d¢| X— l) _ d¢NX+1(X: l) _
dx 1 =2 fi+ dx 4
With Ny = 5, it reduces to
ﬂ = (-1.87E-14 + (1+5.07E-14q ~ T,
dx x=1

which clearly shows that the Neumann boundary conditiomi®ised in an exact manner.

4 Numerical results

The proposed methods are validated through the simulafiaiscoelastic flows in rectangular ducts (with
Galerkin formulation), and in straight and corrugated tuf@oint collocation). Fluid models under considera-
tion here are CEF and Oldroyd-B. We employ uniform Cartegidals to represent the computational domain
and implement 1D-IRBFNs with the multiquadric (MQ) fungtio

g(n)=1/(n—c)’+a, (55)

wherec; andg; are the centre and the width/shape-parameter oftthMQ-RBF, respectively. The latter is
simply chosen to be the grid size.
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4.1 Problem 1: Fully-developed flows of CEF fluid in rectangar ducts

The flow of a viscoelastic fluid in a rectangular duct has rembia great deal of attention because of its
fundamental and practical importance. Such a flow was siedilaith different constitutive models (e.qg.
Reiner-Rivlin [Green and Rivlin (1956)], CEF [Gervang araréen (1991); Mai-Duy and Tanner (2006)] and
modified PTT (MPTT) [Xue, Phan-Thien, and Tanner (1995)@s®&ts by Gervang and Larsen (1991), where
the CEF model is employed and simulations are conductedriutierically and experimentally, are often cited
in the literature for comparison purposes. In this studyailse consider the CEF model and its parameters are
taken to be the same as those in [Gervang and Larsen (19%gdverning equations are expressed in terms
of streamfunction, vorticity, pressure and primary velpeis

2 2
R R )
(22, 20) (2020 2000)_ STy ST Ty) 0T, -
ax2  9y? dy dx  0x dy ox2 axay ay? "’
2%u, 0%y, ap Yoy, dYau,\ dT Ty
(W+ dy2> = 9z <a—yW‘Wa—y) Tx oy (58)

where the functiori in Eq. 9 is now given explicitly. The flow is generated by a ptee dropdp/dz and

the computation domain is only a 2D region (cross-section)he x — y plane. Lety be the aspect ratio. We
consider four values gf, namely 1, 1.56, 4 and 6.25.

Non-slip boundary conditions lead tb= 0, u, = 0 anddy//dn = 0 on the wall (i is the coordinate direction
normal to the wall). The conditiody/dn = 0 is used to derive a computational boundary conditioncdor
This process is carried out here with the help of the intégnatonstants; the reader is referred to our previous
work [Ho-Minh, Mai-Duy, and Tran-Cong (2009)] for the dé&al implementation. Eq. 56 - Eq. 58 fgr, w
andu, are thus all subject to Dirichlet boundary conditions.

We apply the Galerkin formulation to discretise the govwegréquations and a Picard iterative scheme to handle
the resultant nonlinear system of algebraic equationsthalterms on the RHS of Eqg. 57 and Eq. 58 are lumped
together in the “pseudo-body forces”. The solution procedan be summarised as follows.

1. Discretise spatial derivatives using 1D-IRBFNs, résglin a high-order approximation scheme in space
2. Guess values af, w andu,, and their first-order spatial derivatives

3. Compute the pseudo-body forces and the boundary values fib is noted that the CEF stress compo-
nents are simply obtained through direct calculation of B2 Eq. 16

4. Solve the coupled linearised governing equations Eq.Ex 58, where the system matrix is generated
from the linear terms on their LHS
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5. Check to see whether the solution has reached a stea€y stat

\/ s (0 0 ) s (@ - ) s ()

\/ZiN—l <‘l’i(k)> ’ +30N <°%(k)> ’ +3N, <u§'f)> ?

wherek indicates the iteration number aads a prescribed tolerance

<€, (59)

6. Ifitis not satisfied, for every interior node, relax théution fields

v = w4+ a-ye*Y, (60)
w = yq“¥+1-y) o Y, (61)
Ui = yuld 4 (a—yul?, (62)

wherey s the relaxation factor (& y < 1), and then repeat from step 3. Otherwise, stop the coniputat
and output the results.

Computations are carried out usigg= 0.01 and grids of11x 11,21x 21 --- ,61x 61}. Fig. 1 and Fig. 2
show the convergence behaviour of the streamfunction anidityp fields aty = 1, respectively. It can be seen
that the flow is symmetric about the vertical and horizon&itreline and the two fields converge very fast
with grid refinement. There are eight vortices in total, veheecondary circulations have the same magnitude
but different signs (i.e. one vortex is in opposite directto its two adjacent vortices). Fig. 3 and Fig. 4
show patterns of the secondary flow fipr= {1.56,4,6.25} on one quarter of the cross-section. Each quadrant
has two vortices, whose patterns and strength stronglyndiepe the aspect ratio for a given mean primary
velocity. Unlike the case of = 1, where the two vortices are symmetric about the diagoraaigylthe case

of x > 1 produces two vortices of different sizes. The vortex nbarldng wall moves towards the short wall
with increasingy, while the vortex near the short wall is reduced in size. &ignd Fig. 6 show patterns of the
primary flow and the second normal stress difference forsgeat ratios. The 1D-IRBFN Galerkin results are
similar to those reported in [Gervang and Larsen (1991);, Riman-Thien, and Tanner (1995)].

4.2 Problem 2: Fully-developed flows of Oldroyd-B fluid in cular tubes

This problem is concerned with the so-called Poiseuille flova circular tube. LeR be the radius of the
tube. The governing equations Eq. 1 - Eqg. 2 and Eqg. 19 - Eq.2ade dimensionless by scaling lengths
by R, velocity components b@/R?, and stress components and pressuréuay- up)Q/R3 in whichQ is the
flow rate. In a cylindrical coordinate system, the non-disienal form of Eq. 8 - Eq. 9 for the motion of an
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Oldroyd-B fluid is given by [Pilitsis and Beris (1989)]

2y %y 10y
(G + 52150 ) +o=0 ©9
%w 1w o Pw\ _ 0°T; T 9°T,

ar2 rodr rZ2 9z

- dr2 9zr 92

1/0T, 0Tge\ 0°T, 1 10Ty,
‘?( 0z oz >+drdz_r_2Trz+FW’ (64)

wherea = un/(Un+ Hp) and the inertia terms are set aside. The velocity and strelsis itan be obtained
analytically and their exact forms are

GZ: 1—r2, ﬁr :O7 (65)
~ o, \2 = o0, =
TZZ:We(l—a)<7) Te=(1-a)%% T, =0, (66)

whereWe= A Q/R3 is the Weissenberg number. In the present simulation, tiggheand the radius of the tube
are all chosen to be 1. Boundary conditions are prescribéallas.

* On the centreline:

aTrr . aTZZ . aTQQ

Y=w=T.= or or ar

=0 (symmetrical conditions)

* On the wall: Through Eq. 11ug = 1/r(dy/dr)), the streamfunction value is determinedyas- Q/2r.
GivenQ = 11/2, one hasp = 1/4. The vorticity value can be obtained using the same proeeaisi in
Problem 1.

* On the inlet and the outlet;

oyt oyP° - 0w dw°
i_ygo YY¥Y _ i_ 0 YW _
v=v an an’ Y= TGn on’

Trlr = Tr?v Trlz = Trgv Tzlz: Tz% Télle - Te?ev

where periodicity is taken into account, and supersciiptsdo denote the inlet and outlet, respectively.

Unlike Problem 1, the point-collocation formulation is dioyed here. We taker = 0.85 and also apply a
Picard iterative scheme to handle the nonlinearity of thetesy. Results obtained are presented in Tab. 1 and
Fig. 7. Tab. 1 is concerned with the study of grid convergeatd&/e= 9. Errors are consistently reduced
as the grid density increases. Fig. 7 shows profiles of thecitg) the shear stress and the first normal stress
difference on the middle plane £ 0.5) for the Weissenberg number in the range of 0.5 to 10. It easeen
that the 1D-IRBFN collocation results agree well with thalgtic solutions.
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4.3 Problem 3: Flows of Newtonian and Oldroyd-B fluids in cargated tubes

The 1D-IRBFN collocation method is further validated thgbithe simulation of flows in corrugated tubes. It
is well known that such flows, where their solutions are simawid there are no inflow/outflow boundary con-
ditions applied, are chosen as a benchmark test problenmafiolating new solvers in computational rheology.
Solutions to these flows were reported for several numemethods, e.g. the pseudospectral finite difference
method (PSFD), pseudo-spectral cylindrical finite differe method (PCFD) and full pseudo-spectral method
(FCC) by Pilitsis and Beris (1989, 1991, 1992), the spectrathod (SM) by Momeni-Masuleh and Phillips
(2004), EMME/FEM by Burdette, Coates, Armstrong, and Br¢t®89); Rajagopalan, Armstrong, and Brown
(1990), EVSS/FEM by Szady, Salamon, Liu, Bornside, and Among (1995), BEM by Zheng, Phan-Thien,
Tanner, and Bush (1990), and 2D-IRBFN by Mai-Duy and Tan2e06).

Fig. 8a shows the flow geometry, where the radius of the cataajtube along theaxis is given by
rw=R(1—ecog2mz/L)), (67)

whereR is the average radius of an equivalent straight tubée amplitude of the corrugation andthe
wavelength. In addition te, two more characteristic dimensionless nhumbers are atxh 0$hey are the aspect
ratioN = R/L and the wave numbéytheir relation isN =1 /(2m). Since the flow is axisymmetric and periodic,
only a reduced domain (Fig. 8b) needs be considered for therical study.

The streamfunction and vorticity equations as well as thendary conditions here are similar to those in
Problem 2. The governing equations are solved in a stretchiéntirical coordinate systertr, 8,2), where
r=r/ry andZ=z One important measure for corrugated tube flows is the fleigtance defined as

2MAPR
fRe= ——— 68
© L(tn+ Hp)Q’ (68)

whereAP is the constant pressure drop per unit cell.
4.3.1 Newtonian fluid

The proposed method is first tested with the case of a Newtdhial. With the presence of the inertial term,
the vorticity equation Eq. 9 becomes [Pilitsis and Beriso{)P

Po, 100 o 0w\ mRe( Jw 00 u (69)
o2 "ror 2 92) 2 \az ' or 1 )
whereReis the Reynolds number defined as
2pQ
Re= 2=, 7
= TRy (70)

Results concerningRe forRe= 0 employed with several geometries by the present methothaidl, FCC,
PSFD and PCFD are presented in Tab. 2. It can be seen that aagm®ment is achieved for all cases. Fig. 9
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shows streamlines far = 0.5 andN = 0.5, whose structure can be seen to be similar to that in [Bilitsd
Beris (1991)]. As expected, the streamfunction field is swtmim about the widest cross-section of the tube,
ie.z=1/2.

ForRe> 0, we consider the tube witfz = 0.16,N = 0.3) andReup to a value of 783. Tab. 3 reportRe for

a wide range oRe Results obtained by the global spectral method [Lahbathi@Gmang (1986)], and by the
Galerkin finite element method (GFE) and FCC [Pilitsis andi8€1992)] are also included for comparison
purposes. The 1D-IRBFN results approach the FCC ones asithis gefined. Furthermore, they are in better
agreement with the FCC results than the GFE ones. Contots fudpbthe streamfunction and vorticity are
shown in Fig. 10, which look feasible in comparison with taesported in [Lahbabi and Chang (1986); Mai-
Duy and Tanner (2006)]. It can be seen that the flows are netosygnmetric. There appears a recirculation.
As Reincreases, its size grows and its centre moves towards lieeaixis.

4.3.2 Oldroyd-B fluid

The Oldroyd-B model is implemented with= 0.85 that is widely used in the literature (e.g. [Pilitsis aretiB
(1989)]). Like in [Pilitsis and Beris (1989)], we only codsr creeping flows. Taking non-slip and symmetrical
boundary conditions into account, the constitutive equistireduce to algebraic equations on the wall and to
ODEs on the centreline, respectively. As a result, the stegsiations on these boundary lines can be solved
separately from the set of stress equations associatedhgithterior nodes. On the other hand, the value,of

on the centreline can be obtained by means of L'Hospital&s. ru

In this work, instead of considering ODEs, the valueslef T,; and Tgg on the centreline are computed by
directly employing 1D-IRBFNs (function interpolation). hdse values are regarded as nodal unknowns and
they can be found using the symmetric conditions. On eadhlrgdd line z with i = (2,--- ,N,— 1), through

Eq. 38, one has

0Tr(z,r=0 _ Y 0¢;(r=0) B

B D Y Al (72)
0T Az,r=0) X 9¢;(r=0) B

— e = JZ:LT (Tzz)i’j =0, (72)
dng(zi,r :0) Ne 0¢j (r :O)

ar - Z (TGG)LJ' =0. (73)

& or

Eq. 71 - Eg. 73 need be solved in conjunction with the set @sstequations associated with the interior
nodes. The advantage of this approach is that one can avwiduting velocity derivatives in the constitutive
equations on the centreline. We apply a coupled approachndlé the governing equations, in which the
resultant nonlinear algebraic set is solved by means of dleweration (trust region method).

In the case of moderate corrugation amplitude and small Vesaggh € = 0.1, N = 0.5), simulations are carried
out with four grids of 11x 11, 21x 21, 31x 31 and 41x 41. The obtained results are shown in Fig. 11 for
velocity, Fig. 12 and Fig. 13 for stress, and Fig. 14a for fl@sistance. In Fig. 11, the distribution af at
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We= 2 is plotted showing the influence of the grid size. As the grictfined, the smoothness of the computed
field is improved and the maximum and minimum valuesiofemain unchanged. A grid density of 2121
appears to be sufficient for computingatWe= 2. Fig. 12 shows the behaviour &f with increasingVe At

high values oiVe steep layers are formed in the area close to the wall. Thiakeur can also be seen foy,

as shown in Fig. 13. In Fig. 14a, the 1D-IRBFN solution is shdw converge up t®We= 6 and the values of
fRe are in good agreement with the benchmark solution [Bilisd Beris (1992)] (solutions in [Pilitsis and
Beris (1992)] reported only for three values\Wie namely 0, 1.2071 and 3.6213). Denser grids are required
for higherWe solutions. It is noted that the two coarse grids, <111 and 21x 21, fail to yield a convergent
solution for high values diVe

In the case of moderate corrugation amplitude and moderate Wength § = 0.1, N = 0.16), three grids of
11x 11, 21x 21 and 31« 31 are employed. The plot dRe versu®Veis shown in Fig. 14b. It can be seen that
a convergenftf Re solution is obtained up ¥We= 7 using 11x 11,We= 8 using 21x 21, andWe= 18 using
31x 31. Other remarks here are similar to those in the previoss €a= 0.1, N = 0.5).

5 Concluding remarks

In this paper, viscoelastic flows in rectangular ducts anstiiaight and corrugated tubes are simulated with
1D-IRBFN-based Galerkin/Collocation techniques. Indtebusing low-order polynomials, the trial functions
in the Galerkin and point-collocation formulations aregenetly implemented with 1D-IRBFs. Boundary treat-
ments especially for those on the centreline using 1D-IR8Ei discussed in detail. The 1D-IRBFN results,
which are obtained for a wide range of the Weissenberg nyrabein good agreement with the exact/numerical
solutions available in the literature. Implementationt® tonstitutive equations in their matrix logarithm form
for higherWesolutions in the context of 1D-IRBFNs is currently underdstigation and will be reported in
future work.

Acknowledgement: D. Ho-Minh would like to thank the CESRC, FoOES and USQ for ag@sluate schol-
arship. This research is supported by the Australian Rels€&aouncil.
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Table 1: Problem 2: Grid-convergence stud\&= 9.

Grid

Relativel, errors

Uz

TZ z

Trz

11x11
21x21
31x31
41x 41
51x51

5.6228E-04
1.5928E-04
7.4343E-05
4.2581E-05
2.7541E-05

2.6259E-03
8.9349E-04
3.6953E-04
2.1614E-04
1.4178E-04

1.0973E-03
3.6454E-04
1.5495E-04
9.4571E-05
6.4001E-05




Table 2. Problem 3, Newtonian fluid: Comparison of the flowstasicefRe for Re= 0 computed for several values of

andN
£ 0.1 0.1 0.2 0.286 0.3 0.5
N 0.5 0.1592 0.1042 0.2333 0.1592 0.5
Present method
21x21 17.71385 16.91518 19.75360 26.33921 26.40423 95.18132
41x 41 17.73548 16.92656 19.76213 26.37003 26.42937 95.51616
61x61 17.74106 16.92760 19.76351 26.37759 26.43378 95.61778
sSMa& 17.7514 16.9290 19.7658 26.3724  26.437 95.6363
FCCP 19.765 26.383 26.437
PSFD° 19.765 26.383 26.436
PCFDY 19.761 26.377 26.432

@ gpectral method [Phillips and Owens (1997)]

b Fourier-Chebyshev Collocation [Pilitsis and Beris (1991)

¢ Pseudospectral/finite difference method [Pilitsis and€Bgr989)]

d Modified PSFD in a stretched cylindrical coordinate [Pititand Beris (1989)]

€c
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Table 3: Problem 3, Newtonian fluid,= 0.3, N = 0.16: comparison of the flow resistané®e for a wide range dRe

Re
0 12 22.6 51 73 132 207.4 264 387.2 783
Present method
21x21 26.49503 27.22021 28.59313 31.80464 33.48944 36.6119604&28 40.34471 42.48868 46.02994
31x 31 26.47991 27.20798 28.57514 31.78472 33.46705 36.568B800632 40.29224 42.40401 45.66516
41x 41 26.46953 27.19921 28.56523 31.77200 33.45333 36.5388199(09 40.27630 42.38337 45.62292
51x51 26.46298 27.19314 28.55838 31.76329 33.44396 36.5168P7&86 40.26089 42.37057 45.60680
2D IRBFN?® 26.4445 27.1773 28.5535 31.7511 33.4538 36.5424 38.996 3044. 42.4595 45.7402
GFEP 26.4193 27.0911 28.4433 31.6984 33.4039 36.5392 38.933 154W. 42.1112 45.0734
FCcC¢ 26.4484 27.1791 28.5536 31.7484  33.4488 36.5264 38.9607.244® 42.3479 45.5828

& 2D-Integated Radial basis function network [Mai-Duy andffer (2006)]
b Galerkin finite element method [Pilitsis and Beris (1992)]
¢ Fourier-Chebyshev Collocation [Pilitsis and Beris (1992)
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11x11 21x 21

31x 31 41x 41

51x51 61x 61

Figure 1: Problem 1: Convergence behaviour of the streactibmfield with respect to grid refinement.
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Figure 2: Problem 1. Convergence behaviour of the vortifbitid with respect to grid refinement.
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a) x = 1.56, 61x 61

Figure 3: Problem 1: Streamlines of the secondary flow in armetgr of the cross-section computed for several
values of the aspect ratio.
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a) x = 1.56, 61x 61

b) x = 4, 81x 61

Figure 4. Problem 1: Contour plots for the vorticity in oneager of the cross-section computed for several
values of the aspect ratio.
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a)x =1, 61x 61 b)x = 1.56, 61x 61

/ ””””” )] — ~

c)x=4,81x61

d) x = 6.25, 81x 61

Figure 6: Problem 1: Contour plots for the second normakstdifference in one quarter of the cross-section
computed for several values of the aspect ratio.
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a) Velocity b) Shear stress
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Figure 7: Problem 2. Profiles of velocity and stress on thedieiglanez = 0.5 computed at several values of
Weusing a grid of 21 21. It is noted thati, andT,, are independent &eand their corresponding computed
results are indistinguishable.
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a) Geometry

AT

b) Reduced domain and discretisation

Figure 8: Problem 3: problem definition
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— T

Figure 9: Problem 3, Newtonian fluid,= 0.5, N = 0.5, grid size = 41x 41: Streamlines foRe= 0. Iso-values
used are 0, 0.02, 0.06, 0.1, 0.14, 0.15, 0.159. FbBIM57< ¢ < 0.15933 an increment of. 367 x 107> is
used to resolve the recirculation region, which are the sasrtbose in [Pilitsis and Beris (1991)].
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Re=0
Y w
Re=132
|
Re= 3972
Y )
‘_/—’/_/_\
Re= 783

e

Figure 10: Problem 3, Newtonian fluid,= 0.3, N = 0.16, grid size = 4% 41: Contour plots of the stream-
function and vorticity for a wide range &te
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11x11 21x 21

31x31 41x 41

Figure 11: Problem 3, Oldroyd-B fluid,= 0.1, N = 0.5: Contour plots fou, atWe= 2 using several grids.
The maximum and minimum values @af and their locations are also displayed.
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We=3 We=6

Figure 12: Problem 3, Oldroyd-B fluid, = 0.1, N = 0.5: Contour plots forT;, at four values oiNeusing a
grid of 41x 41. The maximum and minimum valuesBf and their locations are also displayed.
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Figure 13: Problem 3, Oldroyd-B fluid,= 0.1, N = 0.5: Contour plots foil,, atWe= 6 using grids of 3k 31

and 41x 41. The maximum and minimum values Bt and their locations are also displayed.
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Figure 14: Problem 3, Oldroyd-B fluid: The variation of thewfleesistance with respect to the Weissenberg
number for two geometrical configurations.



