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Abstract: In this paper, one-dimensional integrated radial-basis-function networks (1D-IRBFNs) are intro-
duced into the Galerkin and point-collocation formulations to simulate viscoelastic flows. The computational
domain is represented by a Cartesian grid and IRBFNs, which are constructed through integration, are em-
ployed on each grid line to approximate the field variables including stresses in the streamfunction-vorticity
formulation. Two types of fluid, namely Oldroyd-B and CEF models, are considered. The proposed meth-
ods are validated through the numerical simulation of several benchmark test problems including flows in a
rectangular duct and in a corrugated tube. Numerical results show that accurate results are obtained using
relatively-coarse grids.
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1 Introduction

Numerical simulation of viscoelastic flows still faces a lotof challenges. Main difficulties, which numerical
methods have to deal with, are (i) complex material properties of fluids, (ii) mixed characters (elliptic for
momentum equations and hyperbolic for constitutive equations), and (iii) high degrees of freedom (DOF) (2D
problems: 6 DOFs/node and 3D problems: 10 DOFs/node). In thecase of large deformations, free/moving
surfaces and complex geometries, further numerical difficulties will be added. One can classify discretisation
methods into two categories: low order and high order. The former, e.g. traditional finite difference (FDMs),
finite element (FEMs), finite volume (FVMs) and boundary element (BEMs) methods, leads to a system matrix
that is generally sparse and banded (possibly block-bandedBEM), while the latter, e.g. spectral and RBFN
methods, can offer a significant saving on the computationalcost owing to their high-order rates of convergence.
Further details can be found in [Crochet and Walters (1983);Crochet, Davies, and Walters (1984); Crochet
(1989); Tanner and Xue (2002); Owens and Phillips (2002)].

The use of RBFNs for solving ordinary (ODEs) and partial (PDEs) differential equations has been an active
research area since Kansa’s first report in 1990 [Kansa (1990)]. For Kansa’s method (direct approach), the field
variable f in the ODE/PDE is first represented by an RBFN and this RBFN is then differentiated to obtain
approximate expressions for derivative functions off (differentiated RBFNs (DRBFN)). On the other hand,
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in order to avoid the reduction in convergence rate caused bydifferentiation, Mai-Duy and Tran-Cong (2001)
proposed an indirect approach in which the highest-order derivatives of f are first decomposed into RBFs,
and their lower-order derivatives and the functionf itself are then obtained through integration (integrated
RBFN (IRBFN)). Numerical experiments (e.g. [Mai-Duy and Tran-Cong (2001, 2003)]) showed that IRBFN
collocation methods yield better accuracy than DRBFN ones for both the representation of functions and the
solution of PDEs. In the early stages, both direct and indirect approaches used every RBF to construct the
approximations for the field variable at a nodal point, leading to a fully-populated system matrix. It was found
that the matrix condition number grows rapidly with respectto the increase in the RBF width and/or the number
of RBFs [Schaback (1995)]. Global RBF solutions to steady viscoelastic flows were reported in, e.g., [Tran-
Cong, Mai-Duy, and Phan-Thien (2002); Tran-Canh and Tran-Cong (2002); Mai-Duy and Tanner (2006)].
Later on, local RBF techniques, where the approximations are constructed using only a few nodal points, have
been developed (e.g. [Atluri, Han, and Shen (2003); Atluri,Han, and Rajendran (2004); Sǎrler (2005); Mai-
Duy and Tran-Cong (2009); Sellountos, Sequeira, and Polyzos (2010)]). In the context of IRBFNs, collocation
schemes, based on 1D-IRBFNs and Cartesian grids, for the solution of 2D elliptic PDEs were reported in, e.g.,
[Mai-Duy and Tran-Cong (2007)]. The 1D-IRBFN approximations at a grid node involve only nodal points that
lie on the grid lines intersecting at that point rather than the whole set of nodes. As a result, the construction
process is conducted for a series of small matrices rather than for a large single matrix (thus some degree of
local approximation is achieved).

1D-IRBFNs were successfully introduced into the point-collocation and Galerkin formulations for the simula-
tion of heat transfer and Newtonian-fluid flows (e.g. [Mai-Duy and Tran-Cong (2007); Mai-Duy, Ho-Minh, and
Tran-Cong (2009); Ho-Minh, Mai-Duy, and Tran-Cong (2009)]). It was shown that those methods are stable,
accurate and converge well. The 1D-IRBFN-based Galerkin method can obtain similar levels of accuracy for
both types of boundary condition, i.e. Dirichlet only and Dirichlet-Neumann. In addition, its resultant sys-
tem of algebraic equations is often symmetric and has a relatively-low condition number, which facilitates the
employment of a much larger number of nodes.

In this paper, we develop two methods (point collocation andGalerkin), which are based on 1D-IRBFNs and
Cartesian grids, for the simulation of flows of viscoelasticfluids. The governing equations are taken in the
streamfunction-vorticity formulation. A computational boundary condition for the vorticity is globally derived
with the help of the constants of integration [Ho-Minh, Mai-Duy, and Tran-Cong (2009)]. Three benchmark
test problems are considered to validate the proposed methods. In the first problem, fully-developed flows of
an CEF fluid in a rectangular duct are simulated. This problemis widely used to study secondary flows in a
straight tube of non-circular cross-section. It is noted that CEF is seen as an attractive constitutive model in the
numerical modelling of polymer flow systems owing to its low computational cost [Criminale, Ericksen, and
Filbey (1957)]. The second problem is concerned with the simulation of Poiseuille flows in a straight tube of
circular cross-section, where their analytic solutions are available. The third problem is about the motion of an
Oldroyd-B fluid in a corrugated tube - a standard test problemfor numerical methods in non-Newtonian Fluid
Mechanics [Burdette, Coates, Armstrong, and Brown (1989)]. In addition, this problem is also regarded as one
of effective models in the study of viscoelastic flows in porous media. The obtained 1D-IRBFN results agree
well with those produced by other techniques available in the literature.
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The remainder of this paper is organised as follows. In Section 2, a brief review of the governing equa-
tions for the motion of CEF and Oldroyd-B fluids is given. Section 3 presents the proposed 1D-IRBFN-based
Galerkin/collocation methods. Three test problems are simulated in Section 4. Section 5 concludes the paper.

2 Governing equations

The equations for the conservation of momentum and mass of anincompressible fluid take the forms

ρ
(

∂v
∂ t

+v ·∇v
)

= ∇ ·σ + f, x ∈ Ω, (1)

∇ ·v = 0, x ∈ Ω, (2)

wherev is the velocity vector,f the body force vector per unit volume,ρ the density,σ the Cauchy stress tensor,
t the time,x the position vector andΩ the domain of interest. The stress tensor can be decomposed into

σ = −pI + τ , (3)

wherep is the pressure,I the unit tensor andτ the extra stress tensor. In this paper, the working fluids areof
the CEF and Oldroyd-B types.

For the CEF model, the extra stress tensor is defined as

τ = 2µ (d)d−Φ1
∇
d+4Φ2d ·d, (4)

whered = 1/2(∇v+(∇v)T) is the rate of deformation tensor,d =
√

2tr (d ·d) the scalar magnitude ofd (tr
the trace operation),µ (d) = k|d|n−1 the viscosity (k the consistency factor andn the power law index),Φ1 and

Φ2 the first and the second normal stress coefficients, respectively, and
∇
[ ] the upper convected derivative given

by

∇
[ ] =

∂ [ ]

∂ t
+v ·∇[ ]− (∇v)T · [ ]− [ ] ·∇v. (5)

For the Oldroyld-B model, the extra stress tensor is computed as

τ = 2µnd+ τv, (6)

τv + λ
∇
τv = 2µpd, (7)

whereµn is the “Newtonian-contribution” viscosity,µp the “polymer-contribution” viscosity,τv the extra stress
tensor due to viscoelasticity, andλ the relaxation time of the fluid. The Oldroyd-B model reducesto the UCM
model whenµn is set to zero and to the Newtonian model whenλ = 0.
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In this study, we consider the steady state of flows only and adopt the streamfunction-vorticity formulation.
Eq. 1 - Eq. 3 thus reduce to

∇2ψ + ω = 0, (8)

∇2ω = F(v ·∇ω ,τ , f), (9)

whereψ is the streamfunction,ω the vorticity, and the RHS of Eq. 9 the function ofv, ω , τ andf. Numerical
examples to be presented are solved in two coordinate systems, namely Cartesian and cylindrical.

The velocity components are related to the streamfunction via

ux = −
∂ψ
∂y

, uy =
∂ψ
∂x

(Cartesian coordinates), (10)

ur = −
1
r

∂ψ
∂z

, uz =
1
r

∂ψ
∂ r

(cylindrical coordinates). (11)

For the CEF model, simulations are to be carried out using Cartesian coordinates and Eq. 4 is taken in the form

Txx = 2µdxx−Φ1

(
ux

∂dxx

∂x
+uy

∂dxx

∂y
+

∂ux

∂x
dxx+

∂uy

∂x
dxy+

∂uz

∂x
dxz+dxx

∂ux

∂x

+dxy
∂uy

∂x
+dxz

∂uz

∂x

)
+(Φ1 +4Φ2)

(
d2

xx+d2
xy+d2

xz

)
, (12)

Txy = 2µdxy−Φ1

(
ux

∂dxy

∂x
+uy

∂dxy

∂y
+

∂ux

∂x
dxy+

∂uy

∂x
dyy+

∂uz

∂x
dyz+dxx

∂ux

∂y

+dxy
∂uy

∂y
+dxz

∂uz

∂y

)
+(Φ1 +4Φ2)(dxxdxy+dxydyy+dxzdyz) , (13)

Txz = 2µdxz−Φ1

(
ux

∂dxz

∂x
+uy

∂dxz

∂y
+

∂ux

∂x
dxz+

∂uy

∂x
dyz+

∂uz

∂x
dzz+dxx

∂ux

∂z

+dxy
∂uy

∂z
+dxz

∂uz

∂z

)
+(Φ1 +4Φ2)(dxxdxz+dxydyz+dxzdzz) , (14)

Tyy = 2µdyy−Φ1

(
ux

∂dyz

∂x
+uy

∂dyz

∂y
+

∂ux

∂y
dyx+

∂uy

∂y
dyy+

∂uz

∂y
dyz+dxy

∂ux

∂y

+dyy
∂uy

∂y
+dyz

∂uz

∂y

)
+(Φ1 +4Φ2)

(
d2

yx+d2
yy+d2

yz

)
, (15)

Tyz = 2µdyz−Φ1

(
ux

∂dyz

∂x
+uy

∂dyz

∂y
+

∂ux

∂y
dxz+

∂uy

∂y
dyz+

∂uz

∂y
dzz+dxy

∂ux

∂y

+dyy
∂uy

∂y
+dyz

∂uz

∂y

)
+(Φ1 +4Φ2) (dyxdxz+dyydyz+dyzdzz) , (16)
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where

µ = k

(
2

((
∂ux

∂x

)2

+

(
∂uy

∂y

)2
)

+

(
∂ux

∂y
+

∂uy

∂x

)2

+

(
∂uz

∂x

)2

+

(
∂uz

∂y

)2
)( n−1

2 )

, (17)

and




dxx dxy dxz

dyx dyy dyz

dzx dzy dzz


=




∂ux
∂x

1
2

(
∂ux
∂y +

∂uy

∂x

)
1
2

(
∂ux
∂z + ∂uz

∂x

)

1
2

(
∂uy

∂x + ∂ux
∂y

)
∂uy

∂y
1
2

(
∂uy

∂z + ∂uz
∂y

)

1
2

(
∂uz
∂x + ∂ux

∂z

)
1
2

(
∂uz
∂y +

∂uy

∂z

)
∂uz
∂z


 . (18)

The Oldroyd-B fluid flow is simulated using cylindrical coordinates and one thus has Eq. 7 in the form

Trr + λ
(

ur
∂Trr

∂ r
+uz

∂Trr

∂z
−2

(
∂ur

∂ r
Trr +

∂ur

∂z
Trz

))
= 2µp

∂ur

∂ r
, (19)

Trz + λ
(

ur
∂Trz

∂ r
+uz

∂Trz

∂z
−

∂ur

∂ r
Trz−

∂ur

∂z
Tzz−

∂uz

∂ r
Trr −

∂uz

∂z
Trz

)
= µp

(
∂ur

∂z
+

∂uz

∂ r

)
, (20)

Tzz+ λ
(

ur
∂Tzz

∂ r
+uz

∂Tzz

∂z
−2

(
∂uz

∂ r
Trz +

∂uz

∂z
Tzz

))
= 2µp

∂uz

∂z
, (21)

Tθ θ + λ
(

ur
∂Tθ θ

∂ r
+uz

∂Tθ θ

∂z
−2

ur

r
Tθ θ

)
= 2µp

ur

r
. (22)

3 Proposed 1D-IRBFN-based Galerkin/Collocation techniques

The computational domain is simply represented by a Cartesian grid. On each grid line, 1D-IRBFNs are
employed to approximate the field variables, i.e.ψ , ω , Txx, Txy, Tyy, Txz, Tyz, Trr , Trz, TzzandTθ θ . The governing
equations Eq. 8 - Eq. 9, Eq. 12 - Eq. 16 and Eq. 19 - Eq. 22 are discretised by means of point collocation (the
residual set to zero at the collocation points) or Galerkin formulation (the residual set to zero in the mean). In
the following, details are presented for three main parts ofthe proposed methods. In the first part, the use of
1D-IRBFNs to represent the field variables is discussed. In the second part, the implementation of boundary
conditions is described. In the third part, 1D-IRBFs are incorporated into the Galerkin and point-collocation
formulations as the trial functions.

3.1 One-dimensional IRBFN representation of the field variables

It can be seen that Eq. 8 - Eq. 9 involve second-order derivatives of the field variables including stresses.
As a result, the second-order integral RBF scheme [Mai-Duy and Tran-Cong (2003)] is applied in this work.
Processes of constructing the 1D-IRBFN approximations forthe field variables can be conducted in a similar
fashion. For brevity, we introduce the notationf to representψ , ω , Txx, Txy, Tyy, Txz, Tyz, Trr , Trz, Tzzor Tθ θ , and
the notationη to denotex or y (Cartesian coordinates) andr or z (cylindrical coordinates).
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On aη grid line, the field variablef and its derivatives with respect toη can be represented as follows.

d2 f (η)

dη2 =
Nη

∑
i=1

wigi (η) =
Nη

∑
i=1

wiI
(2)
i (η) , (23)

d f (η)

dη
=

Nη

∑
i=1

wiI
(1)
i (η)+c1, (24)

f (η) =
Nη

∑
i=1

wiI
(0)
i (η)+c1η +c2, (25)

whereNη is the number of nodes on the grid line,{wi}
Nη
i=1 the set of network weights,{gi (η)}

Nη
i=1 ≡

{
I (2)
i (η)

}Nη

i=1

the set of RBFs,I (1)
i (η) =

∫
I (2)
i (η)dη , I (0)

i (η) =
∫

I (1)
i (η)dη , andc1 andc2 are the constants of integration.

Evaluation of Eq. 23 - Eq. 25 at every node on the grid line leads to

d̂2 f
dη2 = Î

(2)α̂ , (26)

d̂ f
dη

= Î
(1)α̂ , (27)

f̂ = Î
(0)α̂ , (28)

where the superscript(.) is used to denote the order of the corresponding derivative function,

Î
(2) =




I (2)
1 (η1) , I (2)

2 (η1) , · · ·, I (2)
Nη

(η1) , 0, 0

I (2)
1 (η2) , I (2)

2 (η2) , · · ·, I (2)
Nη

(η2) , 0, 0
...

...
. . .

...
...

...

I (2)
1

(
ηNη

)
, I (2)

2

(
ηNη

)
, · · ·, I (2)

Nη

(
ηNη

)
, 0, 0




,
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Î
(1) =




I (1)
1 (η1) , I (1)

2 (η1) , · · ·, I (1)
Nη

(η1) , 1, 0

I (1)
1 (η2) , I (1)

2 (η2) , · · ·, I (1)
Nη

(η2) , 1, 0
...

...
. . .

...
...

...

I (1)
1

(
ηNη

)
, I (1)

2

(
ηNη

)
, · · ·, I (1)

Nη

(
ηNη

)
, 1, 0




,

Î
(0) =




I (0)
1 (η1) , I (0)

2 (η1) , · · ·, I (0)
Nη

(η1) , η1, 1

I (0)
1 (η2) , I (0)

2 (η2) , · · ·, I (0)
Nη

(η2) , η2, 1
...

...
. . .

...
...

...

I (0)
1

(
ηNη

)
, I (0)

2

(
ηNη

)
, · · ·, I (0)

Nη

(
ηNη

)
, ηNη , 1




,

α̂ =
(
w1,w2, · · ·,wNη ,c1,c2

)T
,

and

d̂k f
dηk =

(
dk f1
dηk ,

dk f2
dηk , · · ·,

dk fNη

dηk

)T

, k = {1,2} ,

f̂ =
(

f1, f2, · · ·, fNη

)T
,

in which dk f j
/

dηk = dk f (η j)
/

dηk and f j = f (η j) with j = {1,2, · · ·,Nη}.

The relations between the RBF-coefficient spaceα̂ and the physical spacêf can be established as

(
f̂
ê

)
=

[
Î (0)

K̂

]
α̂ = Ĉ α̂ , (29)

α̂ = Ĉ
−1
(

f̂
ê

)
, (30)

where ê = K̂ α̂ is used to represent extra information (derivative data), which would otherwise be wasted
resulting in less accurate solutions, and̂C the conversion matrix. In Eq. 29 - Eq. 30, owing to the presence
of the two integration constants, the vectorê can have up to two entries. Since the conversion matrixĈ is not
over-determined, extra valuesei are incorporated into the IRBFN approximations in an exact manner. We will
utilise this capability to impose normal derivative valuesat the two end-points of the grid line as well as to
derive a computational boundary condition for the vorticity.

Making use of Eq. 30, the values off and its derivatives at an arbitrary pointη on the grid line will be computed
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by

f (η) =
(

I (0)
1 (η) , I (0)

2 (η) , · · · , I (0)
Nη

(η) ,η ,1
)

Ĉ
−1
(

f̂
ê

)
, (31)

∂ f (η)

∂η
=

(
I (1)
1 (η) , I (1)

2 (η) , · · · , I (1)
Nη

(η) ,1,0
)

Ĉ
−1
(

f̂
ê

)
, (32)

∂ 2 f (η)

∂η2 =
(

I (2)
1 (η) , I (2)

2 (η) , · · · , I (2)
Nη

(η) ,0,0
)

Ĉ
−1
(

f̂
ê

)
. (33)

They can be rewritten in compact form

f (η) =
Nη

∑
i=1

ϕi (η) fi + ϕNη+1(η)e1 + ϕNη+2(η)e2, (34)

∂ f (η)

∂η
=

Nη

∑
i=1

∂ϕi (η)

∂η
fi +

∂ϕNη +1(η)

∂η
e1 +

∂ϕNη +2(η)

∂η
e2, (35)

∂ 2 f (η)

∂η2 =
Nη

∑
i=1

∂ 2ϕi (η)

∂η2 fi +
∂ 2ϕNη +1(η)

∂η2 e1 +
∂ 2ϕNη +2(η)

∂η2 e2, (36)

where{ϕi}
Nη +2
i=1 is the set of IRBFN basis functions in the physical space.

3.2 Imposition of boundary conditions

Dirichlet boundary conditions: Assume thatf is given atη1 andηNη . In the conversion process, Eq. 29 -

Eq. 30, the matrixK̂ and the vector̂e are simply set to null. The 1D-IRBFN expressions Eq. 34 - Eq. 36 thus
reduce to

f (η) =
Nη

∑
i=1

ϕi (η) fi, (37)

∂ f (η)

∂η
=

Nη

∑
i=1

∂ϕi (η)

∂η
fi, (38)

∂ 2 f (η)

∂η2 =
Nη

∑
i=1

∂ 2ϕi (η)

∂η2 fi . (39)
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Neumann boundary conditions:Assume that∂ f/∂η is given atη1 andηNη . The matrixK̂ and the vector̂e
in Eq. 29 - Eq. 30 take the form

K̂ =

[
I (1)
1 (η1), I (1)

2 (η1), · · · , I (1)
Nη

(η1), 1, 0

I (1)
1

(
ηNη

)
, I (1)

2

(
ηNη

)
, · · · , I (1)

Nη

(
ηNη

)
, 1, 0

]
,

ê =

( ∂ f1
∂η

∂ fNη
∂η

)
.

The 1D-IRBFN expressions Eq. 34 - Eq. 36 thus become

f (η) =
Nη

∑
i=1

ϕi (η) fi + ϕNη+1(η)
∂ f1
∂η

+ ϕNη+2(η)
∂ fNη

∂η
, (40)

∂ f (η)

∂η
=

Nη

∑
i=1

∂ϕi (η)

∂η
fi +

∂ϕNη +1(η)

∂η
∂ f1
∂η

+
∂ϕNη +2(η)

∂η
∂ fNη

∂η
, (41)

∂ 2 f (η)

∂η2 =
Nη

∑
i=1

∂ 2ϕi (η)

∂η2 fi +
∂ 2ϕNη +1(η)

∂η2

∂ f1
∂η

+
∂ 2ϕNη +2(η)

∂η2

∂ fNη

∂η
. (42)

Dirichlet and Neumann boundary conditions: Assume thatf and∂ f/∂η are given atη1 andηNη , respec-

tively. The latter is imposed by taking the matrix̂K and the vector̂e in Eq. 29 - Eq. 30 as

K̂ =
[

I (1)
1

(
ηNη

)
, I (1)

2

(
ηNη

)
, · · · , I (1)

Nη

(
ηNη

)
, 1, 0

]
,

ê =
(

∂ fNη
∂η

)
.

One thus has Eq. 34 - Eq. 36 in the form

f (η) =
Nη

∑
i=1

ϕi (η) fi + ϕNη+1(η)
∂ fNη

∂η
, (43)

∂ f (η)

∂η
=

Nη

∑
i=1

∂ϕi (η)

∂η
fi +

∂ϕNη +1(η)

∂η
∂ fNη

∂η
, (44)

∂ 2 f (η)

∂η2 =
Nη

∑
i=1

∂ 2ϕi (η)

∂η2 fi +
∂ 2ϕNη +1(η)

∂η2

∂ fNη

∂η
. (45)

3.3 Incorporating 1D-IRBFNs into Galerkin and point-collocation formulations

Each governing equation in Eq. 8 - Eq. 9, Eq. 12 - Eq. 16 and Eq. 19 - Eq. 22 can be rewritten in the following
form

L ( f ) = 0, x ∈ Ω, (46)
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whereL is a differential operator. 1D-IRBFN expressions Eq. 34 - Eq. 36 are utilised here to construct the
approximations forf over Ω. On a 2D rectangular domain, this construction process can simply be done by
means of Kronecker products. The use of tensor products leads to, for instance,

f (x,y) =
Nx

∑
i=1

Ny

∑
j=1

ϕ (x)
i (x)ϕ (y)

j (y) fi, j , (47)

for the case of Dirichlet boundary conditions only, and

f (x,y) =
Nx

∑
i=1

ϕ (x)
i (x)

(
Ny

∑
j=1

ϕ (y)
j (y) fi, j + ϕ (y)

Ny+1(y)
∂ fi,1
∂y

+ ϕ (y)
Ny+2(y)

∂ fi,Ny

∂y

)
. (48)

for the case of Dirichlet and Neumann boundary conditions (Dirichlet conditions prescribed on the two ver-
tical boundaries while Neumann conditions on the two horizontal boundaries). In Eq. 47 and Eq. 48,fi, j is
the value of the variablef at the intersection of theith horizontal grid line andjth vertical grid line, and
∂ fi,1

/
∂y and∂ fi,Ny

/
∂y are nodal boundary derivative values. The productsϕ (x)

i ϕ (y)
j are usually referred to as

the trial/basis/approximating functions.

It is noted that the independent variablesx andy in Eq. 47 - Eq. 48 will be replaced withr andz if cylindrical
coordinates are employed.

One can find the unknown nodal values off by constructing a scheme to minimise the following residual

R= L( f ) . (49)

This process can be stated mathematically as
∫

Ω
WRdΩ = 0, (50)

whereW is the weighting function to be chosen. In the point-collocation approach, the weighting function is
chosen as the Dirac delta function, i.e.Wi = δ (x− xi). In the Galerkin approach, the weighting function is
chosen from the set of trial functions, i.e.Wi = φi (x), and the volume integrals in Eq. 50 can be numerically
evaluated using Gauss quadrature.

As mentioned earlier, Neumann boundary conditions are presently imposed in an exact manner. This is numer-
ically demonstrated here through the solution of the following ODE

d2 f
dx2 + f +x = 0, 0≤ x≤ 1, (51)

subject to a Dirichlet and Neumann boundary condition atx = 0 andx = 1, respectively.

In the case of conventional Galerkin methods, the approximation for f can be constructed to satisfy the Dirichlet
condition atx = 0. The Neumann boundary conditiond f/dx = q at x = 1 is imposed through the following
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statement

1∫

0

(
d f
dx

dW
dx

− ( f +x)W

)
dx= [qW]x=1 , (52)

which is obtained by applying integration by parts on Eq. 50.As shown in [Brebbia, Telles, and Wrobel (1984)],
by differentiating the approximate functionf , one has

d f
dx

∣∣∣∣
x=1

= 1.22E-1+(1+1.22E-1)q,

which clearly indicates that the Neumann boundary condition is imposed in an approximate manner.

In the present Galerkin technique, the IRBFN approximationis constructed to satisfy not only the Dirichlet
condition atx = 0 but also the Neumann boundary conditiond f/dx= q at x = 1. Using Eq. 43, the solutionf
is expressed as

f (x) = ∑Nx

i=1ϕi(x) fi + ϕNx+1(x)q̄. (53)

This approximation is then forced to satisfy the ODE through
∫ 1

0

(
d2 f
dx

+ f +x

)
Wdx= 0, (54)

from which one is able to obtain the nodal values off . By differentiating Eq. 53, one has

d f
dx

∣∣∣∣
x=1

= ∑Nx

i=1

dϕi (x = 1)

dx
fi +

dϕNx+1(x = 1)

dx
q̄.

With Nx = 5, it reduces to
d f
dx

∣∣∣∣
x=1

= (-1.87E-14)+ (1+5.07E-14)q≃ q,

which clearly shows that the Neumann boundary condition is imposed in an exact manner.

4 Numerical results

The proposed methods are validated through the simulation of viscoelastic flows in rectangular ducts (with
Galerkin formulation), and in straight and corrugated tubes (point collocation). Fluid models under considera-
tion here are CEF and Oldroyd-B. We employ uniform Cartesiangrids to represent the computational domain
and implement 1D-IRBFNs with the multiquadric (MQ) function

gi (η) =

√
(η −ci)

2 +a2
i , (55)

whereci andai are the centre and the width/shape-parameter of theith MQ-RBF, respectively. The latter is
simply chosen to be the grid size.
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4.1 Problem 1: Fully-developed flows of CEF fluid in rectangular ducts

The flow of a viscoelastic fluid in a rectangular duct has received a great deal of attention because of its
fundamental and practical importance. Such a flow was simulated with different constitutive models (e.g.
Reiner-Rivlin [Green and Rivlin (1956)], CEF [Gervang and Larsen (1991); Mai-Duy and Tanner (2006)] and
modified PTT (MPTT) [Xue, Phan-Thien, and Tanner (1995)]). Results by Gervang and Larsen (1991), where
the CEF model is employed and simulations are conducted bothnumerically and experimentally, are often cited
in the literature for comparison purposes. In this study, wealso consider the CEF model and its parameters are
taken to be the same as those in [Gervang and Larsen (1991)]. The governing equations are expressed in terms
of streamfunction, vorticity, pressure and primary velocity as

∂ 2ψ
∂x2 +

∂ 2ψ
∂y2 + ω = 0, (56)

µ
(

∂ 2ω
∂x2 +

∂ 2ω
∂y2

)
= ρ

(
∂ψ
∂y

∂ω
∂x

−
∂ψ
∂x

∂ω
∂y

)
−

∂ 2Txy

∂x2 +
∂ 2 (Txx−Tyy)

∂x∂y
+

∂ 2Txy

∂y2 , (57)

µ
(

∂ 2uz

∂x2 +
∂ 2uz

∂y2

)
=

∂ p
∂z

+ ρ
(

∂ψ
∂y

∂uz

∂x
−

∂ψ
∂x

∂uz

∂y

)
−

∂Tzx

∂x
−

∂Tzy

∂y
, (58)

where the functionF in Eq. 9 is now given explicitly. The flow is generated by a pressure drop∂ p
/

∂z and
the computation domain is only a 2D region (cross-section) on thex− y plane. Letχ be the aspect ratio. We
consider four values ofχ , namely 1, 1.56, 4 and 6.25.

Non-slip boundary conditions lead toψ = 0, uz = 0 and∂ψ/∂n = 0 on the wall (n is the coordinate direction
normal to the wall). The condition∂ψ/∂n = 0 is used to derive a computational boundary condition forω .
This process is carried out here with the help of the integration constants; the reader is referred to our previous
work [Ho-Minh, Mai-Duy, and Tran-Cong (2009)] for the detailed implementation. Eq. 56 - Eq. 58 forψ , ω
anduz are thus all subject to Dirichlet boundary conditions.

We apply the Galerkin formulation to discretise the governing equations and a Picard iterative scheme to handle
the resultant nonlinear system of algebraic equations. Allthe terms on the RHS of Eq. 57 and Eq. 58 are lumped
together in the “pseudo-body forces”. The solution procedure can be summarised as follows.

1. Discretise spatial derivatives using 1D-IRBFNs, resulting in a high-order approximation scheme in space

2. Guess values ofψ , ω anduz, and their first-order spatial derivatives

3. Compute the pseudo-body forces and the boundary values for ω . It is noted that the CEF stress compo-
nents are simply obtained through direct calculation of Eq.12 - Eq. 16

4. Solve the coupled linearised governing equations Eq. 56 -Eq. 58, where the system matrix is generated
from the linear terms on their LHS
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5. Check to see whether the solution has reached a steady state

√
∑N

i=1

(
ψ(k)

i −ψ(k−1)
i

)2
+ ∑N

i=1

(
ω(k)

i −ω(k−1)
i

)2
+ ∑N

i=1

(
u(k)

zi −u(k−1)
zi

)2

√
∑N

i=1

(
ψ(k)

i

)2
+ ∑N

i=1

(
ω(k)

i

)2
+ ∑N

i=1

(
u(k)

zi

)2
< ε , (59)

wherek indicates the iteration number andε is a prescribed tolerance

6. If it is not satisfied, for every interior node, relax the solution fields

ψi = γψ(k)
i +(1− γ)ψ(k−1)

i , (60)

ωi = γω(k)
i +(1− γ)ω(k−1)

i , (61)

uzi = γu(k)
zi +(1− γ)u(k−1)

zi , (62)

whereγ is the relaxation factor (0< γ < 1), and then repeat from step 3. Otherwise, stop the computation
and output the results.

Computations are carried out usingγ = 0.01 and grids of{11× 11,21× 21, · · · ,61× 61}. Fig. 1 and Fig. 2
show the convergence behaviour of the streamfunction and vorticity fields atχ = 1, respectively. It can be seen
that the flow is symmetric about the vertical and horizontal centreline and the two fields converge very fast
with grid refinement. There are eight vortices in total, where secondary circulations have the same magnitude
but different signs (i.e. one vortex is in opposite direction to its two adjacent vortices). Fig. 3 and Fig. 4
show patterns of the secondary flow forχ = {1.56,4,6.25} on one quarter of the cross-section. Each quadrant
has two vortices, whose patterns and strength strongly depend on the aspect ratio for a given mean primary
velocity. Unlike the case ofχ = 1, where the two vortices are symmetric about the diagonal plane, the case
of χ > 1 produces two vortices of different sizes. The vortex near the long wall moves towards the short wall
with increasingχ , while the vortex near the short wall is reduced in size. Fig.5 and Fig. 6 show patterns of the
primary flow and the second normal stress difference for all aspect ratios. The 1D-IRBFN Galerkin results are
similar to those reported in [Gervang and Larsen (1991); Xue, Phan-Thien, and Tanner (1995)].

4.2 Problem 2: Fully-developed flows of Oldroyd-B fluid in circular tubes

This problem is concerned with the so-called Poiseuille flowin a circular tube. LetR be the radius of the
tube. The governing equations Eq. 1 - Eq. 2 and Eq. 19 - Eq. 22 are made dimensionless by scaling lengths
by R, velocity components byQ/R2, and stress components and pressure by(µn + µp)Q/R3 in which Q is the
flow rate. In a cylindrical coordinate system, the non-dimensional form of Eq. 8 - Eq. 9 for the motion of an
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Oldroyd-B fluid is given by [Pilitsis and Beris (1989)]

(
∂ 2ψ
∂ r2 +

∂ 2ψ
∂z2 −

1
r

∂ψ
∂ r

)
+ ω = 0, (63)

α
(

∂ 2ω
∂ r2 +

1
r

∂ω
∂ r

−
ω
r2 +

∂ 2ω
∂z2

)
=

∂ 2Trz

∂ r2 −
∂ 2Trr

∂z∂ r
−

∂ 2Trz

∂z2

−
1
r

(
∂Trr

∂z
−

∂Tθ θ

∂z

)
+

∂ 2Tzz

∂ r∂z
−

1
r2 Trz +

1
r

∂Trz

∂ r
, (64)

whereα = µn/(µn + µp) and the inertia terms are set aside. The velocity and stress fields can be obtained
analytically and their exact forms are

ũz = 1− r2, ũr = 0, (65)

T̃zz= We(1−α)
(

∂ ũz
∂ r

)2
, T̃rz = (1−α)∂ ũz

∂ r , T̃rr = 0, (66)

whereWe= λQ
/

R3 is the Weissenberg number. In the present simulation, the length and the radius of the tube
are all chosen to be 1. Boundary conditions are prescribed asfollows.

• On the centreline:

ψ = ω = Trz =
∂Trr

∂ r
=

∂Tzz

∂ r
=

∂Tθ θ

∂ r
= 0 (symmetrical conditions)

• On the wall: Through Eq. 11 (uz = 1/r(∂ψ/∂ r)), the streamfunction value is determined asψ = Q/2π.
GivenQ = π/2, one hasψ = 1/4. The vorticity value can be obtained using the same procedure as in
Problem 1.

• On the inlet and the outlet:

ψ i = ψo,
∂ψ i

∂n
=

∂ψo

∂n
, ω i = ωo,

∂ω i

∂n
=

∂ωo

∂n
,

T i
rr = To

rr , T i
rz = To

rz, T i
zz= To

zz, T i
θ θ = To

θ θ ,

where periodicity is taken into account, and superscriptsi ando denote the inlet and outlet, respectively.

Unlike Problem 1, the point-collocation formulation is employed here. We takeα = 0.85 and also apply a
Picard iterative scheme to handle the nonlinearity of the system. Results obtained are presented in Tab. 1 and
Fig. 7. Tab. 1 is concerned with the study of grid convergenceat We= 9. Errors are consistently reduced
as the grid density increases. Fig. 7 shows profiles of the velocity, the shear stress and the first normal stress
difference on the middle plane (z= 0.5) for the Weissenberg number in the range of 0.5 to 10. It can be seen
that the 1D-IRBFN collocation results agree well with the analytic solutions.
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4.3 Problem 3: Flows of Newtonian and Oldroyd-B fluids in corrugated tubes

The 1D-IRBFN collocation method is further validated through the simulation of flows in corrugated tubes. It
is well known that such flows, where their solutions are smooth and there are no inflow/outflow boundary con-
ditions applied, are chosen as a benchmark test problem for validating new solvers in computational rheology.
Solutions to these flows were reported for several numericalmethods, e.g. the pseudospectral finite difference
method (PSFD), pseudo-spectral cylindrical finite difference method (PCFD) and full pseudo-spectral method
(FCC) by Pilitsis and Beris (1989, 1991, 1992), the spectralmethod (SM) by Momeni-Masuleh and Phillips
(2004), EMME/FEM by Burdette, Coates, Armstrong, and Brown(1989); Rajagopalan, Armstrong, and Brown
(1990), EVSS/FEM by Szady, Salamon, Liu, Bornside, and Armstrong (1995), BEM by Zheng, Phan-Thien,
Tanner, and Bush (1990), and 2D-IRBFN by Mai-Duy and Tanner (2006).

Fig. 8a shows the flow geometry, where the radius of the corrugated tube along thez axis is given by

rw = R(1− ε cos(2πz
/

L)), (67)

whereR is the average radius of an equivalent straight tube,ε the amplitude of the corrugation andL the
wavelength. In addition toε , two more characteristic dimensionless numbers are also used. They are the aspect
ratioN = R/L and the wave numberl ; their relation isN = l/(2π). Since the flow is axisymmetric and periodic,
only a reduced domain (Fig. 8b) needs be considered for the numerical study.

The streamfunction and vorticity equations as well as the boundary conditions here are similar to those in
Problem 2. The governing equations are solved in a stretchedcylindrical coordinate system(r̂ ,θ , ẑ), where
r̂ ≡ r/rw andẑ≡ z. One important measure for corrugated tube flows is the flow resistance defined as

f Re=
2π∆PR4

L(µn + µp)Q
, (68)

where∆P is the constant pressure drop per unit cell.

4.3.1 Newtonian fluid

The proposed method is first tested with the case of a Newtonian fluid. With the presence of the inertial term,
the vorticity equation Eq. 9 becomes [Pilitsis and Beris (1991)]

(
∂ 2ω
∂ r2 +

1
r

∂ω
∂ r

−
ω
r2 +

∂ 2ω
∂z2

)
=

πRe
2

(
uz

∂ω
∂z

+ur
∂ω
∂ r

−
ur

r
ω
)

, (69)

whereReis the Reynolds number defined as

Re=
2ρQ
πRµ

. (70)

Results concerningf Re forRe= 0 employed with several geometries by the present method andby SM, FCC,
PSFD and PCFD are presented in Tab. 2. It can be seen that a goodagreement is achieved for all cases. Fig. 9
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shows streamlines forε = 0.5 andN = 0.5, whose structure can be seen to be similar to that in [Pilitsis and
Beris (1991)]. As expected, the streamfunction field is symmetric about the widest cross-section of the tube,
i.e. z= 1/2.

For Re> 0, we consider the tube with(ε = 0.16,N = 0.3) andReup to a value of 783. Tab. 3 reportsf Re for
a wide range ofRe. Results obtained by the global spectral method [Lahbabi and Chang (1986)], and by the
Galerkin finite element method (GFE) and FCC [Pilitsis and Beris (1992)] are also included for comparison
purposes. The 1D-IRBFN results approach the FCC ones as the grid is refined. Furthermore, they are in better
agreement with the FCC results than the GFE ones. Contour plots for the streamfunction and vorticity are
shown in Fig. 10, which look feasible in comparison with those reported in [Lahbabi and Chang (1986); Mai-
Duy and Tanner (2006)]. It can be seen that the flows are no longer symmetric. There appears a recirculation.
As Reincreases, its size grows and its centre moves towards the tube axis.

4.3.2 Oldroyd-B fluid

The Oldroyd-B model is implemented withα = 0.85 that is widely used in the literature (e.g. [Pilitsis and Beris
(1989)]). Like in [Pilitsis and Beris (1989)], we only consider creeping flows. Taking non-slip and symmetrical
boundary conditions into account, the constitutive equations reduce to algebraic equations on the wall and to
ODEs on the centreline, respectively. As a result, the stress equations on these boundary lines can be solved
separately from the set of stress equations associated withthe interior nodes. On the other hand, the value ofuz

on the centreline can be obtained by means of L’Hospital’s rule.

In this work, instead of considering ODEs, the values ofTrr , Tzz andTθ θ on the centreline are computed by
directly employing 1D-IRBFNs (function interpolation). Those values are regarded as nodal unknowns and
they can be found using the symmetric conditions. On each radial grid line zi with i = (2, · · · ,Nz−1), through
Eq. 38, one has

∂Trr (zi , r = 0)

∂ r
=

Nr

∑
j=1

∂ϕ j (r = 0)

∂ r
(Trr )i, j = 0, (71)

∂Tzz(zi , r = 0)

∂ r
=

Nr

∑
j=1

∂ϕ j (r = 0)

∂ r
(Tzz)i, j = 0, (72)

∂Tθ θ (zi , r = 0)

∂ r
=

Nr

∑
j=1

∂ϕ j (r = 0)

∂ r
(Tθ θ)i, j = 0. (73)

Eq. 71 - Eq. 73 need be solved in conjunction with the set of stress equations associated with the interior
nodes. The advantage of this approach is that one can avoid computing velocity derivatives in the constitutive
equations on the centreline. We apply a coupled approach to handle the governing equations, in which the
resultant nonlinear algebraic set is solved by means of Newton iteration (trust region method).

In the case of moderate corrugation amplitude and small wavelength (ε = 0.1, N = 0.5), simulations are carried
out with four grids of 11× 11, 21× 21, 31× 31 and 41× 41. The obtained results are shown in Fig. 11 for
velocity, Fig. 12 and Fig. 13 for stress, and Fig. 14a for flow resistance. In Fig. 11, the distribution ofur at
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We= 2 is plotted showing the influence of the grid size. As the gridis refined, the smoothness of the computed
field is improved and the maximum and minimum values ofur remain unchanged. A grid density of 21×21
appears to be sufficient for computingur atWe= 2. Fig. 12 shows the behaviour ofTrz with increasingWe. At
high values ofWe, steep layers are formed in the area close to the wall. This behaviour can also be seen forTzz

as shown in Fig. 13. In Fig. 14a, the 1D-IRBFN solution is shown to converge up toWe= 6 and the values of
f Re are in good agreement with the benchmark solution [Pilitsis and Beris (1992)] (solutions in [Pilitsis and
Beris (1992)] reported only for three values ofWe, namely 0, 1.2071 and 3.6213). Denser grids are required
for higher-Wesolutions. It is noted that the two coarse grids, 11× 11 and 21× 21, fail to yield a convergent
solution for high values ofWe.

In the case of moderate corrugation amplitude and moderate wave length (ε = 0.1, N = 0.16), three grids of
11×11, 21×21 and 31×31 are employed. The plot off Re versusWeis shown in Fig. 14b. It can be seen that
a convergentf Re solution is obtained up toWe= 7 using 11×11,We= 8 using 21×21, andWe= 18 using
31×31. Other remarks here are similar to those in the previous case (ε = 0.1, N = 0.5).

5 Concluding remarks

In this paper, viscoelastic flows in rectangular ducts and instraight and corrugated tubes are simulated with
1D-IRBFN-based Galerkin/Collocation techniques. Instead of using low-order polynomials, the trial functions
in the Galerkin and point-collocation formulations are presently implemented with 1D-IRBFs. Boundary treat-
ments especially for those on the centreline using 1D-IRBFNs are discussed in detail. The 1D-IRBFN results,
which are obtained for a wide range of the Weissenberg number, are in good agreement with the exact/numerical
solutions available in the literature. Implementation of the constitutive equations in their matrix logarithm form
for higherWesolutions in the context of 1D-IRBFNs is currently under investigation and will be reported in
future work.

Acknowledgement: D. Ho-Minh would like to thank the CESRC, FoES and USQ for a postgraduate schol-
arship. This research is supported by the Australian Research Council.
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Table 1: Problem 2: Grid-convergence study atWe= 9.

RelativeL2 errors
Grid uz Tzz Trz

11×11 5.6228E-04 2.6259E-03 1.0973E-03
21×21 1.5928E-04 8.9349E-04 3.6454E-04
31×31 7.4343E-05 3.6953E-04 1.5495E-04
41×41 4.2581E-05 2.1614E-04 9.4571E-05
51×51 2.7541E-05 1.4178E-04 6.4001E-05
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Table 2: Problem 3, Newtonian fluid: Comparison of the flow resistance f Re forRe= 0 computed for several values ofε
andN

ε 0.1 0.1 0.2 0.286 0.3 0.5
N 0.5 0.1592 0.1042 0.2333 0.1592 0.5

Present method
21×21 17.71385 16.91518 19.75360 26.33921 26.40423 95.18132
41×41 17.73548 16.92656 19.76213 26.37003 26.42937 95.51616
61×61 17.74106 16.92760 19.76351 26.37759 26.43378 95.61778

SM a 17.7514 16.9290 19.7658 26.3724 26.437 95.6363
FCCb 19.765 26.383 26.437
PSFDc 19.765 26.383 26.436
PCFDd 19.761 26.377 26.432
a Spectral method [Phillips and Owens (1997)]
b Fourier-Chebyshev Collocation [Pilitsis and Beris (1991)
c Pseudospectral/finite difference method [Pilitsis and Beris (1989)]
d Modified PSFD in a stretched cylindrical coordinate [Pilitsis and Beris (1989)]



24
Table 3: Problem 3, Newtonian fluid,ε = 0.3, N = 0.16: comparison of the flow resistancef Re for a wide range ofRe

Re
0 12 22.6 51 73 132 207.4 264 387.2 783

Present method
21×21 26.49503 27.22021 28.59313 31.80464 33.48944 36.61126 39.04828 40.34471 42.48868 46.02994
31×31 26.47991 27.20798 28.57514 31.78472 33.46705 36.56876 39.00632 40.29224 42.40401 45.66516
41×41 26.46953 27.19921 28.56523 31.77200 33.45333 36.53881 38.99009 40.27630 42.38337 45.62292
51×51 26.46298 27.19314 28.55838 31.76329 33.44396 36.51618 38.97686 40.26089 42.37057 45.60680

2D IRBFN a 26.4445 27.1773 28.5535 31.7511 33.4538 36.5424 38.996 40.3044 42.4595 45.7402
GFEb 26.4193 27.0911 28.4433 31.6984 33.4039 36.5392 38.933 40.1544 42.1112 45.0734
FCCc 26.4484 27.1791 28.5536 31.7484 33.4488 36.5264 38.9607 40.2446 42.3479 45.5828

a 2D-Integated Radial basis function network [Mai-Duy and Tanner (2006)]
b Galerkin finite element method [Pilitsis and Beris (1992)]
c Fourier-Chebyshev Collocation [Pilitsis and Beris (1992)]
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11×11 21×21

31×31 41×41

51×51 61×61

Figure 1: Problem 1: Convergence behaviour of the streamfunction field with respect to grid refinement.
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11×11 21×21

31×31 41×41

51×51 61×61

Figure 2: Problem 1: Convergence behaviour of the vorticityfield with respect to grid refinement.
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a) χ = 1.56, 61×61

b) χ = 4, 81×61

c) χ = 6.25, 81×61

Figure 3: Problem 1: Streamlines of the secondary flow in one quarter of the cross-section computed for several
values of the aspect ratio.
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a) χ = 1.56, 61×61

b) χ = 4, 81×61

c) χ = 6.25, 81×61

Figure 4: Problem 1: Contour plots for the vorticity in one quarter of the cross-section computed for several
values of the aspect ratio.
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a) χ = 1, 61×61 b)χ = 1.56, 61×61

c) χ = 4, 81×61

d) χ = 6.25, 81×61

Figure 5: Problem 1: Contour plots for the primary velocity in one quarter of the cross-section computed for
several values of the aspect ratio.
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a) χ = 1, 61×61 b)χ = 1.56, 61×61

c) χ = 4, 81×61

d) χ = 6.25, 81×61

Figure 6: Problem 1: Contour plots for the second normal stress difference in one quarter of the cross-section
computed for several values of the aspect ratio.
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a) Velocity b) Shear stress
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Figure 7: Problem 2: Profiles of velocity and stress on the middle planez= 0.5 computed at several values of
Weusing a grid of 21×21. It is noted thatuz andTrz are independent ofWeand their corresponding computed
results are indistinguishable.
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a) Geometry

b) Reduced domain and discretisation

Figure 8: Problem 3: problem definition
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ψ

Figure 9: Problem 3, Newtonian fluid,ε = 0.5, N = 0.5, grid size = 41×41: Streamlines forRe= 0. Iso-values
used are 0, 0.02, 0.06, 0.1, 0.14, 0.15, 0.159. For 0.159157≤ ψ ≤ 0.15933 an increment of 5.767×10−5 is
used to resolve the recirculation region, which are the sameas those in [Pilitsis and Beris (1991)].
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Re= 0
ψ ω

Re= 132
ψ ω

Re= 397.2
ψ ω

Re= 783
ψ ω

Figure 10: Problem 3, Newtonian fluid,ε = 0.3, N = 0.16, grid size = 41×41: Contour plots of the stream-
function and vorticity for a wide range ofRe.
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Figure 11: Problem 3, Oldroyd-B fluid,ε = 0.1, N = 0.5: Contour plots forur atWe= 2 using several grids.
The maximum and minimum values ofur and their locations are also displayed.
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Figure 12: Problem 3, Oldroyd-B fluid,ε = 0.1, N = 0.5: Contour plots forTrz at four values ofWeusing a
grid of 41×41. The maximum and minimum values ofTrz and their locations are also displayed.



37
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Figure 13: Problem 3, Oldroyd-B fluid,ε = 0.1, N = 0.5: Contour plots forTzzatWe= 6 using grids of 31×31
and 41×41. The maximum and minimum values ofTzz and their locations are also displayed.
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a) ε = 0.1, N = 0.5

0 5 10 15
17.5

17.6

17.7

17.8

17.9

18

18.1

18.2

18.3

18.4

18.5

 

 
Present study (31 × 31)
Present study (41 × 41)
FCC (16 × 33)

We

fR
e

b) ε = 0.1, N = 0.16
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Figure 14: Problem 3, Oldroyd-B fluid: The variation of the flow resistance with respect to the Weissenberg
number for two geometrical configurations.


