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A B S T R A C T

Due to the increasing cyber-attacks, various Intrusion Detection Systems (IDSs) have been proposed to identify
network anomalies. Most existing machine learning-based IDSs learn patterns from the features extracted from
network traffic flows, and the deep learning-based approaches can learn data distribution features from the raw
data to differentiate normal and anomalous network flows. Although having been used in the real world widely,
the above methods are vulnerable to some types of attacks. In this paper, we propose a novel attack framework,
Anti-Intrusion Detection AutoEncoder (AIDAE), to generate features to disable the IDS. In the proposed frame-
work, an encoder transforms features into a latent space, and multiple decoders reconstruct the continuous and
discrete features, respectively. Additionally, a generative adversarial network is used to learn the flexible prior
distribution of the latent space. The correlation between continuous and discrete features can be kept by using the
proposed training scheme. Experiments conducted on NSL-KDD, UNSW-NB15, and CICIDS2017 datasets show
that the generated features indeed degrade the detection performance of existing IDSs dramatically.
1. Introduction

Cyber attacks are ever-present threats around the world. Some of the
typical attack methods, such as the denial of service, unauthorized ac-
cess, and malicious code, cause tremendous damage to governments,
enterprises, and organizations [1]. Consequently, various Intrusion
Detection Systems (IDSs) and network traffic classification systems based
on Machine Learning (ML) or Deep Learning (DL) techniques have been
proposed to detect anomaly attacks and analyze network traffic [2,3].
However, both ML and DL techniques are feature-based methods, where
the ML techniques learn the patterns from handcraft features, and the DL
techniques learn data distribution features from the raw data to classify
the traffic flows. Therefore, if the attackers can mimic the benign
network flow features, they can disable the classifier and bypass the IDS
to initiate attacks.

Traditionally, the IDS consists of three main components: the pre-
processor, the detector, and the response module [4]. The preprocessor
captures the raw network traffic and transforms it into the data, which
can be handled by the detector. Then the detector consists of one or more
predefined classification models for differentiating the anomaly from
normal network events. If an intrusion is detected, the response unit is
triggered. Currently, researchers mainly focus on how to improve the
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detection performance of the detector.
Based on the detection mechanism, the IDS can be categorized into

three main types: misused detection, anomaly detection, and hybrid
detection [5]. The misuse detection uses previous knowledge about
anomaly patterns to identify network intrusions, which can achieve good
detection performance with low false alarm rates for known vulnerabil-
ities. However, this type of approach can not be used to detect zero-day
attacks whose patterns are unknown to the detector. For example, if one
IDS does not have or update the associated knowledge about a novel
attack, it can not identify this attack. The anomaly detection identifies
anomalies by comparing the network traffic with a predefined normality
model. In the detecting process, the network traffic that does not fit the
normality model is considered as an anomaly by the IDS. The hybrid
detection mechanism integrates the misuse and anomaly detection
methods in the anomaly detection procedure.

Although having been successfully deployed in commercial and in-
dustrial environments, IDSs are still affected by threats from attackers.
Recent research results demonstrate that the adversarial attacks limit the
effectiveness of the ML-based or DL-based detectors in real scenarios [6].
For example, the attackers created elaborately manipulated samples of
Android malware to induce the detector to produce outputs they ex-
pected [7]. Moreover, the Generative Adversarial Network (GAN) was
17 November 2020
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used to generate features to disable the IDS [8]. A series of solutions have
been proposed to mitigate the adversarial attacks against ML/DL tech-
niques. To defend attacks in the training phase, data sanitization [9] was
used to identify and remove the poisoned data from the training dataset.
To defend attacks in the testing phase, feature selection [10], adversarial
training [11], and robust optimization methods [12] were proposed by
researchers.

In the network security field, the conflict between the attackers and
the defenders leads to an escalating arms race, where both attacks and
defenses continually evolve to achieve their goals and overcome their
opponents [13,14]. The ML-based and DL-based detectors learn the
normal or anomalous data features to identify malicious network traffic
such that the attackers can generate network traffic flows with specific
patterns to disable the IDS.

In this paper, we propose a feature generative framework against the
IDS. Different from existing adversarial attacks that carefully craft
adversarial perturbations to samples, the proposed method learns the
distribution of the normal features and can generate features that follow
the distribution of the normal features to bypass the IDS. Our purpose is
not to promote cyber attacks and crimes, but rather to explore the limits
of the IDS and improve the robustness of the detector. Our contributions
can be summarized as follows:

� We propose a novel feature generative model, namely, the Anti-
Intrusion Detection AutoEncoder (AIDAE), to learn the distribution
of normal features and randomly generate features that can be used
by attackers to generate real network traffic flows to bypass the
existing IDSs.

� The multi-channel decoders are separated into continuous and
discrete channels to generate continuous and discrete features,
respectively. Moreover, the generated features can keep the correla-
tion between continuous and discrete parts via the same well-trained
encoder. Thus the generated features can follow the original distri-
bution of normal features.

� We evaluate the AIDAE on three representative network anomaly
detection datasets (NSL-KDD, UNSW-NB15, and CIC-IDS-2017) with
the ML and DL baseline IDSs. Experimental results show that the
features generated by the proposed framework indeed disable the
baseline IDSs.

The rest of this paper is organized as follows: we introduce the related
work in Section 2. The attack model is given in Section 3. In Section 4, we
describe the proposed AIDAE framework. The experimental evaluation is
presented in Section 5, and the potential defense mechanisms are dis-
cussed in Section 6. In Section 7, we give the conclusion. To improve
readability, the main acronyms used in this paper are listed in Table 1.

2. Related work

Cybersecurity has attracted widespread attention from research
communities, and numerous anomaly detection methods based on ML/
DL have been proposed [15]. The ML/DL techniques are strong and
effective learning frameworks for complex classification tasks, and these
Table 1
Acronyms used in the manuscript.

Acronym Definition

AIDAE Anti-intrusion Detection Autoencoder
AE Autoencoder
GAN Generative Adversarial Network
ARAE Adversarially Regularized Autoencoder
LR Logistic Regression
k-NN k-Nearest Neighbor
DT Decision Tree
RF Random Forest
ML/DL Machine/Deep Learning
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techniques have advanced radically in the past years. However, they are
vulnerable to the adversarial attacks, where the adversaries initiate at-
tacks to compromise the detector [16].

The adversaries can modify the input instances to evade detection
from the IDS. The evasion attacks can be divided into two categories: 1)
problem space attacks that generate malicious instances for the specific
detection system, and 2) feature space attacks where the attackers
manipulate the features used by ML/DL to bypass the detection [17]. For
the problem space attacks, Biggio et al. [18] used a gradient-based
approach to systematically assess the security of several classification
algorithms against the evasion attacks. For the feature space attacks,
different approaches have been proposed. Yu et al. [19] used a
semi-Markov model to simulate four user browsing behavior parameters
to initiate attacks. However, the simulated parameters are simple, and
the second-order statistical metrics can detect this attack.

In computer vision research, the GAN and AutoEncoder (AE) have
shown their powerful ability in generating high-quality fake images or
videos. Inspired by the success of the GAN and AE, some researchers used
the generative model to disable the IDS. A self-adapting malware
communication framework [20] was proposed, where a GAN was
deployed to generate parameters. The malware received the generated
parameters and used them to mimic the normal Facebook chat network
traffic. The generative model can only generate three continuous features
and does not divide the features into discrete features and continuous
features, so it is hard to generate real network traffic with the generated
features. Another method, namely, MalGAN [21], used the GAN to
generate binary malware features to disable the black-box ML malware
detection system, but these generated binary features are hard to repre-
sent complex network traffic features. Additionally, Lin et al. [8]
designed the IDSGAN to generate features to deceive and evade the IDS.
Because this method needs the outputs of the IDS to calculate the loss in
each training epoch, the IDS can easily identify this adversarial training
pattern and block it. Different from other evasion attack methods, the
proposed AIDAE learns the distribution of the normal features to
generate features randomly and does not need the feedback of the IDS in
the training procedure. Moreover, the AIDAE takes into account the
correlation between continuous features and discrete features in the
feature generation process. Therefore, the AIDEA can be used by at-
tackers in real scenarios.

3. Attack model

A network intrusion is an unauthorized penetration of the target
network, where the attackers transmit malicious information or misuse
network resources. The IDS is a protector of the target network, which
plays an adversarial game with the intruders in the network world. To
facilitate understanding of the intrusion attack, it is necessary to disclose
the goal, knowledge, and capability of the attacker. Fig. 1 presents the
evasion attack scenario, where the network traffic of attacker 1 is iden-
tified as anomaly traffic and is blocked by the IDS, and attacker 2 by-
passes the IDS through the network traffic camouflage technique.
Fig. 1. Attack scenario.



Fig. 2. The framework of the AIDAE (anti-intrusion detection autoencoder).
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Attacker’s goal. In this attack setting, the attacker’s goal is to keep
communication with the target network so that the IDS can not detect the
network traffic with malicious content. To achieve this goal, the attacker
needs to generate traffic following the distribution of the normal fea-
tures, which can disable the IDS.

Attacker’s knowledge. The attacker’s knowledge about the target
IDS is vital for launching an evasion attack. According to Kerckhoffs’s
principle, the attacker knows the details about the IDS [22]. Such
knowledge may include the training data, detection algorithm, sample
features, detection procedure, and others. In this scenario, the attackers
can manipulate their network packets to bypass the specific detection
algorithms. However, the IDS struggles to protect itself from attacks in
the real world, so the attacker can not know everything about the IDS. In
this paper, we assume that the attacker knows the features extracted from
the network traffic by the IDS.

Attacker’s capability. The attacker’s capability is limited to spoof or
disguise the network traffic in the network intrusion scenario because the
attacker has no permission to access andmodify the IDS. As the encrypted
protocols (TLS) are widely used in network transmission, the traffic
classifiers based on Deep Packet Inspection (DPI) make it hard to identify
the traffic by the packet payload [23]. Therefore, the attacker can hide
the malicious information in the encrypted traffic, and make the
flow-level features and statistical-level features of the generated traffic
obey the normal distribution, thereby initiating attacks.

4. Proposed framework

4.1. Overview of AIDAE

In this section, we present the framework and training procedure of
the proposed method. To process discrete data, the Adversarially Regu-
larized AutoEncoders (ARAE) [24] was proposed to learn more robust
discrete-space representations. Based on ARAE, we design the AIDAE
with the multi-channel decoders where each discrete decoder represents
one discrete feature, and the continuous decoder represents all contin-
uous features. According to Ref. [24], the model performance is strongly
dependent on the choice of prior distributions of latent space, and the
Gaussian distribution Nð0;1Þ used as the prior distribution may lead to
mode collapse in practice. Therefore, we also use a GAN to learn the
Table 2
The network structures of AIDAE.

Encoder Continuous decoder Discrete de

Linear(input_size, 256) Linear(z_size, 128) Linear(z_si
LeakyReLU() LeakyReLU() LeakyReLU
Linear(256, 128) Linear(128, 256)) Linear(256
LeakyReLU() LeakyReLU() LeakyReLU
Linear(128, 64) Linear(256, 512) Linear(512
LeakyReLU() LeakyReLU() GumbelSo
Linear(64, z_size) Linear(512, 128)

LeakyReLU()
Linear(128, con_size)
ReLU()
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flexible prior distribution of latent space in the proposed method. The
AIDAE learns the distribution of the traffic flow features and then uses
latent space codes to reconstruct the features that follow the distribution
of the normal features by multi-channel decoders.

The proposed framework is composed of two major parts, the AE and
the GAN. The encoder of the AE transforms the traffic features into a
latent space code, and the decoders reconstruct the features from the
code. The discriminator of the GAN discriminates whether the code is
real or fake, and the generator generates a fake code via a random vector
input and tries to disable the discriminator. The structure of the AIDAE is
presented in Fig. 2. After training, the generated fake codes are sent to
decoders to reconstruct the features. Because the fake code is generated
from a random vector z, and the fake code c

0
is random, the features

reconstructed by decoders are random.
The network structures of the AIDAE are shown in Table 2, where

input size is the dimension of the features, z size is the dimension of the
code c, di represents the dimension of the i-th one-hot encoded discrete
feature, con size represents the dimension of continuous features, and
noise size is the random vector size of the generator.

4.2. Continuous and discrete features

Features extracted from traffic flows can be categorized into contin-
uous and discrete features. Fig. 3 shows the features of the NSL-KDD
dataset.

Such numbers as “507”, “437”, and “14,421” in black represent the
features of “duration”, “sources bytes”, and “destination bytes”, respec-
tively. The values of these features are continuous. Thus, we consider
these kinds of features as continuous features. Moreover, numbers in red
such as “1”, “12”, and “10” represent discrete features. The values of
these types are within certain ranges. For example, “1” represents the
feature “protocol type”, whose range is from integer 1 to integer 3 to
indicate different protocols.

4.3. Training algorithm

As shown in Algorithm.1, there are two steps for training the pro-
posed method. First, we train the encoder, generator, discriminator, and
continuous feature decoder. The input of the encoder is all the features
coder Generator Discriminator

ze, 256) Linear(noise_size, 256) Linear(z_size, 256)
() ReLU() LeakyReLU()
, 512) Linear(256, 128) Linear(256, 512)
() ReLU() LeakyReLU()
, di) Linear(128, z_size) Linear(512, 256)
ftmax() LeakyReLU()

Linear(128, 1)
Sigmoid()



Fig. 3. Features of one traffic flow in the NSL-KDD dataset.

Fig. 4. The features concatenating process.
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(continuous and discrete features). Thus, the raw continuous and discrete
features can be represented by a latent space code via the encoder. Then,
we train the discrete feature decoders.

Algorithm 1. AIDAE Training

The loss function of the AIDAE is described as follows: consider F as
the set of input features, F ¼ ff 1; f 2;…; fmg where m is the number of
instances. f ⋄k and f *k ¼ ff *k;1; f *k;2;…; f *k;ng represent continuous features
and discrete features of the k-th instance, respectively, where n is the
number of discrete features. E andD are the encoder and the decoder, and
parameters φ and θ⋄ indicate the parameters of the encoder and the
continuous decoder, respectively. P⋄

data represents the distribution of
continuous features. For the continuous features, the Mean Square Error
(MSE) loss L ⋄ can be represented as Eq. (1).

L ⋄ðφ; θ⋄Þ¼ Ef ⋄eP⋄
data

������f ⋄ � Dθ⋄ ðEφðf ÞÞ
���j2 (1)

For each discrete decoder, the result can be represented as Dθ*i
ðEφðf ÞÞ,

where θ*i is the parameters of the i-th discrete decoder (i 2 f1;ng). Thus,
all results from each discrete decoder will be concatenated based on their
original positions through function M, which is as shown as follows:

Dθ* ¼M
�
Dθ*1

ðEφðf ÞÞ;Dθ*2
ðEφðf ÞÞ;…;Dθ*n

ðEφðf ÞÞ
�

Each discrete feature f *k;t can be represented with a one-hot encoded

vector xt . The cross-entropy loss of the discrete features L * can be rep-
resented as Eq. (2) to minimize the reconstruction error:

L *ðφ; θ*Þ¼
Xn

t¼1

Xdt
j¼1

�xjt logbxjt (2)

where dt is the dimension of xt . x
j
t and bxj

t are the real and generated
values of j-th dimension, respectively.

A GAN is used to learn the flexible prior distribution of the latent
space in the AIDAE. c is the code from the encoder, and z is a random
vector. The proposed GAN training scheme can ensure the generated
code c

0
follows the code distribution from the encoder. The min-max

optimization for the GAN can be written as follows:

min
G

max
D

EcePðcÞ½logD ðcÞ� þ EzePðzÞ½logð1�D ðG ðzÞÞÞ�
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4.4. Feature concatenating

In the feature generation process, the GAN generator generates and
sends a fake code to both continuous and discrete decoders. The decoders
reconstruct continuous features and discrete features by the fake code,
respectively. After that, the generated features will be concatenated ac-
cording to their positions, as shown in Fig. 4. The combination of
continuous and discrete features follows the distribution of the original
training features. Therefore, the correlation between the continuous and
discrete features will be kept.

Compared with other methods, the proposed framework can mimic
the complicated features and ensure that the continuous features and
discrete features keep the correlation. Thus, the generated features can be
used to generate real network traffic flows.

5. Evaluation

5.1. Datasets

To evaluate the AIDAE, we conducted experiments on three typical
intrusion detection datasets, namely, NSL-KDD, UNSW-NB15, and
CICIDS2017. The details of the features of these datasets are shown in
Table 3.

NSL-KDD [25] is refined from the KDD99 dataset, and it is still a
benchmark dataset for testing different intrusion detection methods.
Since the feature “num_outbound_cmds” only has a unique value, we
removed this feature in the experiments. Therefore, there are 1 label, 33
continuous features, and 7 discrete features in the NSL-KDD dataset.

UNSW-NB15 [26] is a well-known network intrusion detection
dataset, which is released by the Australian Centre for Cyber Security.
UNSW-NB15 provides the training dataset and testing dataset in the CSV
format. There are 1 label, 37 continuous features, and 5 discrete features
in the dataset.

CICIDS2017 [27] is another state-of-art dataset proposed by Cana-
dian Institute for Cybersecurity in 2017. This dataset consists of benign
network events and six up-to-date common attacks, which are produced
by realistic background traffic. We removed the flag features, such as
“Fwd PSH Flags” and “Fwd URG Flags”. For the discrete feature(desti-
nation port), we selected common application port numbers as its range
of values, such as port 21, port 53, port 80, and so on. We selected 1 label,
59 continuous features, and 1 discrete feature from the CICIDS2017
dataset.

For all datasets, discrete features are one-hot encoded, and each
continuous feature is logarithmically transformed and then is scaled by
Min-Max normalization (Eq. (3)) to eliminate the impact of different
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values range between features.

x
0 ¼ x� xmin

xmax � xmin
(3)

where x is a feature value, xmin is the minimum logarithm value of this
particular feature, xmax is the maximum logarithm value, and x

0
is the

value after normalization.
For each dataset, 100,000 records were randomly selected to create

new datasets, which are composed of a training set Dtrain and a testing set
Dtest , to evaluate the proposed model. Dtrain includes 30,000 normal re-
cords and 30,000 anomaly records, and Dtest includes 20,000 normal
records and 20,000 anomaly records. All experiments were conducted by
using Python and PyTorch on an RHEL7.5 server with Intel Xeon W-2133
3.6 GHz CPU and Nvidia Quadro P5000 GPU.
5.2. Effectiveness of AIDAE

In this evaluation, we focused on whether the generated features can
disable the IDS. For evaluating the evasion ability of the generated fea-
tures, the Detection Rate (DR) and the Evasion Increase Rate (EIR) [8]
were measured, showing the effectiveness of the proposed features
generative model directly. The DR means the proportion of the correctly
detected anomaly features by the IDS to all detected anomaly features.
The EIR reflects the evasion ability by comparing the adversarial DR and
the original DR, which is formulated as Eq. (4).

EIR¼ 1� Adversarial DR
Original DR

(4)

In the training phase, Dtrain was used to train the intrusion detection
classifiers, and the proposed AIDAE was trained only by the normal re-
cords in Dtrain. In the testing phase, the 20,000 anomaly records in Dtest

were fed to the intrusion detection classifiers to obtain the original DR.
Then, we evaluated the DR of 20,000 generated records that were labeled
as anomalies. We repeated the experiments five times, and randomly
reselected records from the original dataset to create the D for each
evaluation.

Table 4 shows the DRs on different datasets. Both the DRs of ML/DL
baseline IDS methods decrease dramatically. For the NSL-KDD dataset,
The DR of CNN þ LSTM decreases from 98.71� 0.86% to 1.44� 0.39%.
Moreover, LR has the minimum decrease, which is from around 87.51
�3.73% to around 5.53 � 1.02%. For the UNSW-NB15 dataset, CNN þ
LSTM has the maximum decrease from around 98.83�0.61% to around
1.51�0.46%, and k-NN has the minimum decrease from around
97.14�0.70% to around 7.11�1.38%. For the CICIDS2017 dataset, the
maximum decrease happens in CNN þ LSTM which decreases from
99.15�0.06% to 0.94�0.11%, and the minimum decrease appears in LR,
Table 3
Feature number.

Dataset Continuous Features Discrete Features

NSL-KDD 33 7
UNSW-NB15 37 5
CICIDS2017 59 1

Table 4
Detection Rate(%) on different datasets.

Methods NSL-KDD UNSW-NB

Original DR Adversarial DR Original D

LR 87.51�3.73 5.53�1.02 96.52�1.
k-NN 91.64�3.16 2.42�0.82 97.14�0.
DT 95.88�2.14 3.01�0.33 98.50�0.
AdaBoost 93.53�1.42 2.45�1.24 95.21�1.
RF 95.15�0.75 1.56�0.61 98.78�0.
CNN þ LSTM 98.71�0.86 1.44�0.39 98.83�0.
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which is from 93.47�2.53% to 3.02�1.28%. The results show that the
features generated by the AIDAE successfully disable the baseline IDS.

Fig. 5 shows the evasion increase rates of the baseline algorithms on
different datasets. According to Eq. (4), a higher evasion rate indicates
that more adversarial examples can evade the IDS. The experimental
results show that all EIRs of different baseline detectionmethods on three
datasets are higher than 0.9, which indicates that the proposed method
can generate features to evade the IDS.
5.3. Performance of AIDAE

The performance of generating features is another important aspect of
evaluating the proposed AIDAE. Therefore, we evaluated whether the
model can efficiently generate diverse features.

For the feature generation model, the greater diversity of features
means the larger range of the feature value. Because the values of the
discrete features are from a fixed set, we only evaluate the diversity of
continuous features. To obtain diverse feature values, we used ReLU as
the activation function of the last layer in the continuous feature decoder.
The diversity rate ϝ can be formulated as Eq. (5).

F¼ f
0
max � f

0
min

fmax � fmin
(5)

where f
0
max is the maximum value of the generated feature f

0
, and f

0
min is

the minimum value of f 0 . fmax and fmin are the maximum value and the
minimum value of the original feature f, respectively. We used ϝ to
evaluate the proposed model’s ability to generate continuous features. If
ϝ is greater than 1, it means that the value range of f

0
is greater than the

value range of f, and vice versa.
Fig. 6 provides the diversity rates of the continuous features gener-

ated in the NSL-KDD dataset. Except for feature 13, all diversity rates are
higher than 0.95. The uneven value distribution is the reason for the
anomalous diversity rate. For feature 13, the number of samples whose
original values are higher than f 0max is only 0.65% of the total sample
number, and the generated value can cover 99.35% training samples’
15 CICIDS2017

R Adversarial DR Original DR Adversarial DR

42 2.54�1.07 93.47�2.53 3.02�1.28
70 7.11�1.38 98.25�0.36 1.83�0.17
31 4.72�2.64 97.18�0.85 3.94�1.45
25 2.13�0.63 96.57�1.33 1.39�0.24
04 2.77�1.41 98.72�0.34 2.14�1.07
61 1.51�0.46 99.15�0.06 0.94�0.11

Fig. 5. Evasion increase rates of baseline algorithms.



Fig. 7. Diversity rates of generated continuous features of UNSW-NB15.

Fig. 8. Diversity rates of generated continuous features of CICIDS2017.

Fig. 6. Diversity rates of generated continuous features of NSL-KDD.

J. Chen et al. Digital Communications and Networks 7 (2021) 453–460
values. Moreover, some features’ diversity rates are higher than 1, which
means that the AIDAE generates new values for some features. According
to Table 4, the generated features can disable the IDS so that the attackers
can use these new values. Therefore, the proposed generative framework
can learn well the manifolds of continuous features. Figs. 7 and 8 show
the diversity rates of the generated continuous features on the UNSW-
NB15 dataset and the CICIDS2017 dataset, respectively. The diversity
rates of the two experimental results are all higher than 92%, which
means the generated features have a wide range of values, and the pro-
posed method can be used to generate features.

Since the discrete feature value is from a fixed value set, we measured
the distribution similarity between the generated discrete features and
the original discrete features to evaluate the performance of the AIDAE.
The Jensen-Shannon Divergence (JSD) [28] was used in this evaluation.
For each dataset, we randomly sampled 20,000 normal records from
Dtrain as Tstandard, and sampled another 20,000 records from the generated
records as Tgen. We also sampled 20,000 normal records from Dtest as Treal.
We computed the Average Jensen-Shannon Divergence (AJSD) between
the discrete features from Tstandard and the Tgen, and compared it with the
AJSD between Tstandard and Treal. The AJSD is shown as Eq. (6).

AJSD¼ 1
n

Xn

i¼1

�
1
2

Xdi
j¼1

pi

�
j
�
log

piðjÞ
MiðjÞþ

1
2

Xdi
j¼1

qi

�
j
�
log

qiðjÞ
MiðjÞ

�
(6)

where n is the number of discrete features, and di is the dimension of the
i-th feature. piðjÞ and qiðjÞ represent the possibility of the j-th dimension
from the i-th discrete feature in different distributions, and MiðjÞ is equal
to ðpiðjÞ þ qiðjÞÞ=2.

Fig. 9 shows that the AJSD between Tstandard and Tgen is similar to the
AJSD between Tstandard and Treal, which means that the proposed method
can learn well the distribution of discrete features.

As shown in Table. 5, the time cost is another evaluation metric. The
400 epochs training time of NSL-KDD, UNSW-NB15, and CICIDS2017
datasets are 876.64 s, 639.79 s, and 714.28 s, respectively. The time of
generating 100,000 records by the trained models are 3.13 s, 2.76 s, and
2.92 s, respectively. The results suggest that the AIDAE has low compu-
tational complexity.
Fig. 9. Average Jensen-Shannon Divergence.

Table 5
Time cost(seconds) of both datasets.

Dataset Training of AIDAE Generating features

NSL-KDD 876.64 3.13
UNSW-NB15 639.79 2.76
CICIDS2017 714.28 2.92
5.4. Generating network traffic

To disable the IDS, the attackers can generate traffic flows with ma-
licious payloads from the generated features. Inspired by the patents in
Refs. [29,30], we introduce the network traffic generation procedure in
this section. We categorized the generated features as flow-level features
and statistic-level features. The flow-level features include packet size,
packet time features, protocol, etc. The statistic-level features include the
number of connections that contain the same service and the source
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address in 100 connections, etc. Note that the generated value of the
integer feature needs to be rounded in the generation procedure. The
generation procedure is as follows:

1. Determining the protocol and status of each layer;
2. Generating the payload according to the distribution of payload size;
3. Constructing the header of each layer protocol;
4. Determining the transmission time of packets and doing retrans-

mission operation according to the corresponding features;
5. Modifying the flows to fit the other flow-level features;
6. Modifying the flows to fit the statistic-level features in the generation

procedure.

Although NSL-KDD, UNSWNB-15, and CICIDS2017 are bidirectional
flows, we consider both unidirectional flow and bidirectional flow sce-
narios. The unidirectional flow can be used in the scenario where the
attackers send the traffic flows with malicious payloads to the target, and
the bidirectional flow can be used in the scenario where the attackers
communicate with malicious clients. The cost time and the number of
generated packets are presented in Fig. 10 and Fig. 11, respectively.

It can be seen from the results that the time consumption and packet
number scale linearly as the flow number grows. For the unidirectional
flow, the time of generating 2,000 unidirectional flows (25,683 packets)
by using the generated features based on the NSL-KDD dataset is 41.76 s,
the time of generating 2,000 unidirectional flows (44,713 packets) by
using the generated features based on the UNSW-NB15 dataset is 77.61 s,
and the time of generating 2,000 unidirectional flows (26,579 packets)
by using the generated features based on the CICIDS2017 dataset is
52.17 s. Additionally, the time of generating 2,000 bidirectional flows
(35,640 packets) with the generated NSL-KDD features is 71.89 s, the
time of generating 2,000 bidirectional flows (95,963 packets) with the
generated UNSW-NB15 features is 204.96 s, and the time of generating
2,000 bidirectional flows (61,278 packets) with the generated
CICIDS2017 features is 159.53 s. We only calculated the time of con-
structing packets and sending the packets throughout the network in-
terfaces. The packet transportation time and the waiting time for fitting
the time features distribution were not calculated.

6. Discussion on defense mechanisms

Defenses against evasion attacks that identify and block nomalies to
reduce the effects of malicious network communications are challenging
tasks in cybersecurity. In this section, we focus on the potential defenses
against the proposed method and discuss how our attack evades them.

6.1. Feature selection

Feature selection is one of the core steps in ML/DL methods, which
selects a subset of relevant features to improve the classification perfor-
mance or reduce the computational complexity [31]. However, if the
Fig. 10. Time cost and packets number o
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algorithm designer does not consider the evasion attack, the feature se-
lection may degrade the detection performance of the model because the
attackers need to manipulate fewer features to initiate attacks. Zhang
et al. [10] proposed an adversarial feature selection method for evading
attacks to tackle the above issues, which used an optimization criterion to
maximize the classifier’s generalization capability and security to
evasion. Although outperforming traditional approaches in classifier se-
curity, the feature selection method is not suitable for the proposed
AIDAE. The AIDAE can generate features that conform to the normal
distribution, and can maintain the correlation between different features,
so the generated feature subsets also follow the distribution of normal
features. Thus, the generated features can evade the feature selection--
based defenses.
6.2. Adversarial attack detection

Adversarial attacks seriously compromise the security of ML/DL ap-
plications. In the past few years, researchers gave different explanations
for the adversarial examples. According to Ref. [32], the adversarial
examples are hard to find because adversarial examples represent
low-probability “pockets” in the examples manifold. Moreover, Good-
fellow et al. [33] demonstrated that the neural networks’ linear nature is
the primary cause of their vulnerability to adversarial examples.

To detect the adversarial attacks, substantial approaches have been
devised in recent literature. Kantchelian et al. [11] used a
prediction-based algorithm to create adversarial instances and added
them to the training data to harden the detection model for evasion at-
tacks. The robust optimization [12] is another solution, which smooths
the decision boundaries of the ML algorithm to limit the influence of
adversarial samples. The adversarial samples can be identified because
they are only similar to, but do not follow, the distribution of the normal
samples. Unlike the adversarial examples, we trained a generator to learn
normal features manifolds and generate features for the attackers to
generate network traffic with malicious payloads. Therefore, the adver-
sarial attack detection can not identify the proposed attacks.
6.3. Payload-based detection

Payloads are raw data encapsulated in network frames, such as the
contents of the removed IP header and TCP/UDP header in the datagram
structure. Analyzing payloads is an effective method of identifying
network anomalies because the malicious payload is an inevitable part of
the network attack traffic [34]. However, the encryption protocol is
widely used in real network communication that makes it hard to detect
the payloads. Although some researchers focus on encryption traffic
classification [35], these methods can only classify the network traffic
with known patterns, but can not detect the 0-day attacks. Consequently,
the attackers can use the proposed method to generate network traffic
with encrypted payloads to evade payload-based detection.
f the generated unidirectional flow.



Fig. 11. Time cost and packet number of the generated bidirectional flow.
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7. Conclusions

In this paper, we propose the AIDAE framework against the existing
IDSs. Compared with other generation methods, our proposed AIDAE can
not only generate features matching normal feature distribution, but also
keep the correlation between the generated continuous and discrete
features. The attackers can initiate attacks by using the generated fea-
tures to generate network traffic flow. Experiments prove that our pro-
posed framework can indeed generate features to disable the baseline
IDS. In our future work, we have a significant interest in defending
against this type of attack. Moreover, we will research the evasion attacks
based on the semantical level information.
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