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Abstract
Key message Single nucleotide polymorphism (SNP) markers in wheat and their prospects in breeding with special 
reference to rust resistance.
Abstract Single nucleotide polymorphism (SNP)-based markers are increasingly gaining momentum for screening and utiliz-
ing vital agronomic traits in wheat. To date, more than 260 million SNPs have been detected in modern cultivars and landraces 
of wheat. This rapid SNP discovery was made possible through the release of near-complete reference and pan-genome 
assemblies of wheat and its wild relatives, coupled with whole genome sequencing (WGS) of thousands of wheat accessions. 
Further, genotyping customized SNP sites were facilitated by a series of arrays (9 to 820Ks), a cost effective substitute WGS. 
Lately, germplasm-specific SNP arrays have been introduced to characterize novel traits and detect closely linked SNPs for 
marker-assisted breeding. Subsequently, the kompetitive allele-specific PCR (KASP) assay was introduced for rapid and 
large-scale screening of specific SNP markers. Moreover, with the advances and reduction in sequencing costs, ample oppor-
tunities arise for generating SNPs artificially through mutations and in combination with next-generation sequencing and 
comparative genomic analyses. In this review, we provide historical developments and prospects of SNP markers in wheat 
breeding with special reference to rust resistance where over 50 genetic loci have been characterized through SNP markers. 
Rust resistance is one of the most essential traits for wheat breeding as new strains of the Puccinia fungus, responsible for 
rust diseases, evolve frequently and globally.

Introduction

Wheat is one of the most important staple food crops, next 
to rice and maize (Erenstein et al. 2022). In 2022, the wheat 
production was 808 million tonnes harvested from a land 
area of 219 million hectares (FAO 2022). Asia contributes 
44% of the world's wheat production, followed by Europe 
(34%) and America (15%). China, India, Russia, the United 
States of America (USA) and France are the primary produc-
ers, contributing more than 50% of the global wheat produc-
tion (Erenstein et al. 2022). By 2050, the human population 
is expected to reach 9.7 billion, which implies the necessity 
for 132 million tonnes of additional wheat by 2050. Hence, 
there is a need for continued improvement in wheat yield 
in addition to the challenges posed by biotic and abiotic 
stresses (Erenstein et al. 2022). Diseases such as rust caused 
by the fungus Puccinia significantly threaten global wheat 
production. Rust in wheat is of three types: leaf (caused by 
P. triticina), stripe (P. striiformis f. sp. tritici) and stem (P. 
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graminis f. sp. tritici) rusts, each causing severe yield losses 
during peak epidemic.

Globally, rusts in wheat are controlled routinely through 
fungicide applications and genetic resistance, the innate abil-
ity to resist pathogen infection. The latter strategy is essential 
as they are durable, cost-effective and eco-friendly. Genetic 
resistance to rust is of two major types: all-stage resistance 
(ASR) and adult plant resistance (APR). ASR, also known 
as seedling resistance, is active at all growth stages from 
seedling emergence. ASR is race-specific, qualitative and 
controlled by major genes. In contrast, APR is quantitative, 
controlled by minor genes with cumulative effects. APR is 
further grouped as early-stage (APR I) and late-stage (APR 
II) APRs. APR I refers to resistance observed from the 
fourth leaf stage and is often race-specific, effective against 
selected races of the pathogen. In contrast, resistance in APR 
II is evident only at the flag leaf stage and may work against 
a particular or multiple pathogen(s) but is non-race-specific 
primarily (Norman et al. 2023).

More than 200 resistance (R) genes have been identified 
against rust, mainly by screening germplasm of cultivated 
wheat and its wild relatives (Kumar et al. 2022; McIntosh 
et al. 2022; Norman et al. 2023). To date, 920 quantitative trait 
loci (QTL) for rust resistance, with 406, 296 and 180 QTLs 
for stripe, leaf and stem rust resistance, respectively, were 
mapped in wheat (Tong et al. 2024). The number increases 
steadily as new pathotypes of Puccinia with virulence to 
widely deployed resistance genes evolve frequently; hence, 
replacing defeated genes is a routine task for wheat breeders. 
Further increase in gene discovery is due to the rapid ability to 
characterize new resistance genes by using molecular markers 
and comparative genomics. Historically, the intensive use of 
markers for wheat breeding began in 1990s with the use of 
hybridization-based restriction fragment length polymorphism 
(RFLP) markers (reviewed by Rasheed and Xia 2019). Here, 
DNA fragments of varying lengths produced due to differences 
at the restriction enzyme sites were distinguished using short 
DNA sequence probes. The RFLP markers were replaced with 
the advent of PCR-based markers such as randomly ampli-
fied polymorphic DNA (RAPD), amplified fragment length 
polymorphism (AFLP) and simple sequence repeats (SSR) 
that involve DNA sequence amplification using random or 
sequence-specific primers. Among them, SSRs have been the 
markers of choice for breeders owing to their locus specificity, 
codominant nature, high level of polymorphism and reproduc-
ibility (Rasheed and Xia 2019). Later, with next-generation 
sequencing (NGS), variation at a single or few nucleotide 
levels, called single nucleotide polymorphism (SNP) and 
insertions/deletions (InDels) gained popularity as markers. 
Naturally, SNPs arise through point mutations leading to 
transition (changes within purine or pyrimidine) and trans-
version (interchange between purine and pyrimidine) while 
InDels arise due to insertion or deletion of few nucleotides or 

short DNA fragments. However, due to cost and limitations for 
high-throughput genotyping, SNPs have become popular than 
InDels in addition to their abundance in any given genome 
(Gupta et al. 1994; Brookes 1999; Rasheed and Xia 2019; 
Song et al. 2023).

Mapping of rust resistance genes using SNP 
markers

SNPs are used extensively in constructing genetic linkage 
maps for major genes and QTLs linked to rust resistance. It 
involves the positioning and identification of markers linked 
with resistance and is based on marker-trait association 
analysis performed using mapping populations. Second fil-
ial generation  (F2), recombinant inbred lines (RIL), doubled 
haploid lines (DHL), backcross inbred lines (BIL) and near-
isogenic lines (NIL) are the commonly used mapping popu-
lations for mapping rust resistance loci. So far, 296 genetic 
loci inclusive of 50 designated R genes for leaf rust, 406 loci 
with 39 designated R genes for stripe rust and 180 loci with 
65 designated R genes for stem rust have been mapped (Tong 
et al. 2024). Among these, 35 leaf rust resistance (Lr), 30 stem 
rust resistance (Sr), 17 yellow/stripe rust resistance (Yr) genes 
and numerous QTLs were mapped using SNPs and one of 
the above biparental mapping populations (Supplementary 
Table 1a, 1b, 1c and 2).

Genome-wide association study (GWAS) or linkage dis-
equilibrium (LD) mapping is commonly used for identifying 
novel QTLs, particularly from germplasm or multi-parent 
advanced generation inter-cross (MAGIC) and nested associa-
tion mapping (NAM)-based segregating populations (Supple-
mentary Table 3). Moreover, combining linkage and associa-
tion mapping approaches remains efficient for detecting novel 
QTLs (Zhou et al. 2022).

Recently, haplotype analysis has emerged as a practical 
approach to gene mapping (Bhat et al. 2021). A SNP haplotype 
refers to two or more polymorphic SNPs that inherit together 
and have strong LD between each other. The haplotype mark-
ers are more accurate than the single SNPs for trait prediction 
and are exploited to identify wheat rust resistance genes (Athi-
yannan et al. 2022a, 2022b; Bouvet et al. 2022).

Further, identification of the underlying candidate genes for 
Lr21, Lr42, Sr13, Sr21, Sr22b, Sr60, Sr62, Yr5 and Yr28 ASRs 
and two pleiotropic (Lr34/Yr18/Sr57 and Lr67/Yr46/Sr55) 
APR II genes has led to the identification of diagnostic SNP 
markers (Table 1).
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SNP identification in pre‑wheat genome 
sequencing era

Prior to the sequencing of genomes of crops and their wild 
species, SNP identification relied heavily on sequence 
information from RFLP probes and expressed sequence 
tags (ESTs) (Fig. 1). RFLP probes refer to DNA sequence 
tags used to distinguish size differences or presence/absence 
polymorphism among the restricted fragments, while ESTs 
refer to cDNA sequence of functional genes.

SNPs from RFLP probes

RFLP probes linked to traits of interest were the initial 
sources for SNP discovery. For instance, amplification, 
sequencing and analysis of RFLP probe, Xabc465-related 
sequences led to the identification of a SNP-based cleaved 
amplified polymorphic sequence (CAPS) marker (PS10R/
L2) for Lr47, derived from T. speltoides (Helguera et al. 
2000). Similarly, a SNP-based CAPS marker was also 
made available from probe cMWG682 for detecting Ae 

Table 1  Diagnostic SNP markers for cloned rust resistance genes

ASR Adult stage resistance, APR adult plant resistance, MutRenSeq mutagenesis resistance gene enrichment and sequencing, NLR nucleotide 
binding site leucine-rich repeats, STS sequence tagged sites, KASP kompetitive allele-specific PCR, CAPS cleaved amplified polymorphic 
sequences, STARP semi-thermal asymmetric reverse PCR, InDels insertions/deletions

Resistance 
Genes

Resistance 
type

Source spe-
cies

Chromo-
some

Method of 
cloning

Resistance 
gene type

Diagnostic SNP markers Assay type References

Lr9 ASR Aegilops 
umbellu-
lata

6U MutIsoSeq Tandem 
kinase

TA10438-F, Lr9-F, R KASP Wang et al. 
(2023)

Lr21 ASR Ae.
tauschii

1D Map based NLR KSUD14-STS
Lr21_

GQ504819_1346_C/T

STS
KASP

Huang et al. 
(2003), 
Neelam 
et al. (2013)

Lr42 ASR Ae. tauschii 1D Map based NLR pC43 KASP Lin et al. 
(2022)

Sr13 ASR Triticum 
turgidum 
ssp. turgi-
dum

6A Map based NLR T2200C-Sr13F/R CAPS Zhang et al. 
(2017)

rwgsnp7, rwgsnp37, 
rwgsnp38, rwgsnp39, 
rwgsnp40

STARP Sharma et al. 
(2019, Gill 
et al. (2021)

KaspSr13 KASP Sharma et al. 
(2019)

Sr21 ASR T. monococ-
cum

2A Map based NLR SNPC1228W CAPS Chen et al. 
(2018)

Sr22b ASR T. monococ-
cum

7A Map based NLR TM5TF2R2
pkw4974

InDels
CAPS

Luo et al. 
(2022)

Sr60 ASR T. monococ-
cum

5A Map based Tandem 
kinase

Sr60F2/R2, 
DK722976F5R5

CAPS Chen et al. 
(2020)

Sr62 ASR Ae. sharon-
ensis

1Ssh MutRNASeq Tandem 
kinase

S741_KASP-7
C03246_CAPS

KASP
CAPS

Yu et al. 
2022)

Yr5 ASR T. spelta 
album

2B MutRenSeq NLR Yr5_KASP KASP Marchal et al. 
(2018)

Yr28 
(YrAs2388)

ASR Ae. tauschii 4D Map based NLR HTM3g CAPS Zhang et al. 
(2019a)

KASP-E5 KASP-E6 KASP Hu et al. 
(2021)

Yr46/Lr67/Sr55 APR II T. aestivum 4D Map based Hexose 
trans-
porter

TM4, TM10 KASP Moore et al. 
(2015)

Yr18/Lr34/Sr57 APR II T. aestivum 7D Map based ATP 
binding 
cassette 
trans-
porter

cssfr6 CAPS Lagudah 
et al. (2009)
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ventricosa segment carrying Lr37/Sr38/Yr17 gene cluster 
(Helguera et al. 2003). Likewise, the MWG798 probe con-
tributed SNPs for marker-assisted selection (MAS) of Sr61 
stem rust resistance derived from Thinopyrum ponticum 
(Mago et al. 2019). While RFLP probes played a significant 
role in developing SNP-based markers for high-valued rust 
resistance genes derived from wild relatives of wheat, it was 
a tedious process in the pre-genome sequencing era due to 
the necessity to screen probes through DNA restriction and 
hybridization prior to sequencing, SNP detection and marker 
design.

SNPs from expressed sequence tags (ESTs)

ESTs are short cDNA fragments of a functional gene and are 
approximately 300-1000 bp long. ESTs are exploited for dis-
covering SNPs using in vitro and in silico-based approaches. 
The first approach involves SNP mining through cDNA syn-
thesis and sequencing, while the other approach involves 
in silico mining of SNPs directly from publicly available 

EST and cDNA databases (Allen et al. 2011). CAPS markers 
derived from SNPs of wheat ESTs played a vital role in map-
ping ASR stem rust resistance gene Sr35 (Zhang et al. 2010) 
and the widely used pleiotropic APR gene Lr34 (Lagudah 
et al. 2006). Although ESTs have been an essential reposi-
tory for identifying SNPs, being from the genic regions, they 
represent a very small fraction of the genome.

SNPs from genomic libraries

Genomic libraries refer to DNA collection where short to 
long DNA fragments representing the genome or cDNA of 
an organism are cloned into a DNA carrier [plasmids or on 
bacterial artificial chromosomes (BAC)] and maintained in 
bacterial cultures. Several species-specific BAC libraries 
for T. monococcum, T. dicoccoides, T. urartu, T. aestivum, 
Ae. taushii and Ae. speltoides are available, which serve as 
valuable resources in wheat genomics (Nilmalgoda et al. 
2003; Janda et al. 2004, 2006; Ling and Chen 2005; Gupta 
et al. 2008). Prior to whole genome sequencing (WGS), 

Fig. 1  Illustration of technological advancements for SNP discovery 
and genotyping and their influence on crop improvement. The left-
hand panel illustrates the growth in sequencing techniques, while the 

middle panel on the various resources used for SNP discovery and the 
right panel outlines the role of SNP in crop improvement
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these genomic libraries were the primary source for devel-
oping physical maps and cloning disease resistance genes. 
Subsequently, genomic clones were also critical for identi-
fying SNP markers linked to rust resistance. Screening and 
sequencing clones from genomic libraries was slow and 
tedious, particularly in wheat with highly repetitive DNA 
and polyploid genomes. But, with the successful isolation 
of individual chromosomes, the complexity was reduced 
to chromosome level by generating chromosome-specific 
libraries (Safár et al. 2004). Additionally, repeated screen-
ing of the libraries to detect specific clones was reduced 
through multidimensional pooling of the clones. A good 
example is the identification of 195,631 D genome-specific 
SNPs from the sequencing of 461,706 BAC clones of Ae. 
tauschii accession AL8/78, the D genome progenitor of 
bread wheat. Further, these SNP markers were genetically 
mapped using a mapping population derived from cross-
ing Ae. tauschii accessions AL8/78 and AS75 and used 
in mapping of the stem rust resistance gene SrTA10187 
(Luo et  al. 2013; Wiersma et  al. 2016). Subsequently, 
the generation of chromosome 3B-specific BAC libraries 
yielded SNPs that assisted in fine-scale mapping of widely 
deployed adult plant stem rust resistance gene Sr2 on chro-
mosome 3B (Mago et al. 2014). Although laborious, low 
throughput and cost-intensive, the genomic library-based 
approaches played a significant role in SNP identification 
during the pre-genome sequencing era.

SNP discovery in post‑wheat genome sequencing 
era

Soon after the workshop on wheat genome sequencing in 
Washington, USA, in November 2003, efforts were made 
to sequence the genome of the wheat variety Chinese 
Spring, which is used widely for genetic studies. Although 
the first comprehensive assembly of Chinese Spring was 
released in 2012, it was highly fragmented (Brenchley 
et al. 2012). However, the successful assembling of Chro-
mosome 3B of wheat through the generation of chromo-
some-specific BAC libraries initiated the formation of the 
International Wheat Sequencing Consortium (IWGSC) 
that led to the release of near-complete chromosome-level 
reference of Chinese Spring (IWGSC 2018). Similarly, ref-
erence genome was also made available for tetraploid and 
diploid ancestral species of wheat through the sequencing 
of wild emmer (AABB) “Zavitan’ (Avni et al. 2017) and 
Ae. tauschii (DD) accession AL8/78 (Luo et al. 2017; Zhao 
et al. 2017). Thus, the rapid release of reference genomes 
paved the way for the increasing discovery of SNPs and 
high-throughput arrays for mapping key traits including 
rust resistance in wheat (Fig. 1).

SNPs from whole genome short‑read sequencing

Genomic sequences generated using short-read sequencing 
platforms detected millions of SNPs from genic, repetitive 
and non-repetitive intergenic genome regions. For instance, 
the sequencing of two Ae. tauschii accessions AL8/78 and 
AS75 with Roche454 and SOLID captured 195,631, 155,580 
and 145,907 SNPs in gene sequences, uncharacterized non-
repetitive regions and repeat junctions of D genome, respec-
tively (You et al. 2011). Similarly, the generation of a high-
quality reference sequence of T. urartu (accession G1812), 
the A genome diploid wheat using BAC library, WGS and 
optical mapping resulted in the identification of 541,849 A 
genome-specific SNPs (Ling et al. 2018). In parallel, the 
WGS of eight elite wheat lines identified 3.3 million SNPs 
where 41, 49 and 10% were located on A, B and D genomes, 
respectively (Rimbert et al. 2018). WGS is also helpful in 
detecting SNPs specific to alien segments introgressed from 
wild species such as Ambylopyrum muticum  into bread 
wheat (Coombes et al. 2023).

SNPs from specific chromosome isolation 
and sequencing

While WGS may be a feasible technique for organisms with 
smaller genome sizes, it remains a costly affair for polyploid 
crops such as wheat with large genome sizes. Additional 
complexity arrives due to the high similarity between the 
sequences of the three homoeologous genomes. However, 
with the successful flow sorting of specific chromosomes, 
the intricacy was reduced as demonstrated through the isola-
tion and sequencing of chromosome 3B, where 1,835,214 
SNPs specific to chromosome 3B were identified from wheat 
cultivars Arina and Forno (Shatalina et al. 2013). SNPs from 
flow-sorted chromosome 4B of VL404 and WL711 have 
helped in increasing the marker density and resolution of the 
Lr49 region (Nsabiyera et al. 2020). Similarly, sequencing 
of recombinant chromosome 5D/5U from wheat-Ae. umbel-
lulata introgression line identified 5U and 5D chromosome-
specific SNPs for mapping Lr76 and Yr70 resistance genes 
(Bansal et al. 2020).

SNPs from genotyping‑by‑sequencing

SNP discovery through WGS also requires sequencing of 
more than one variety or species which remains expensive 
and tedious. Further genetic studies involving QTL mapping, 
association studies and diversity analysis hardly require the 
whole sets of SNPs. Hence, the genotyping-by-sequencing 
(GBS) strategy was introduced, wherein only a subset of 
regions from the genome is focused through complexity 
reduction or targeted enrichment approaches. There are 
more than a dozen techniques to reduce complexity (Bhatia 
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et al. 2013; Scheben et al. 2017). Among these, the most 
popular one involves sequencing of DNA fragments gen-
erated using single restriction enzyme like ApeKI (Elshire 
et al. 2011; Trebbi et al. 2011). A restriction site-associated 
DNA sequencing (Radseq) approach was used to detect and 
map 430,979 SNPs between two T. urartu accessions G1812 
and G3146 (Ling et al. 2018). Subsequently, a two-enzyme-
based restriction approach (Poland et al. 2012) involving rare 
and frequent cutter enzymes was also used to map rust resist-
ance genes like Lr27/Sr2/Yr30, Lr37, Lr46/Yr29/Sr58 (Rauf 
et al. 2022), Lr81 (Xu et al. 2022), Sr6 (Mourad et al. 2018) 
and Sr17 (Megerssa et al. 2022). Recently, a three-enzyme 
strategy called 3D-GBS has been introduced and tested in 
soybean, where the complexity is reduced to four-fold com-
pared to the single enzyme ApeKI strategy (de Ronne et al. 
2023) and could be extended to wheat.

SNPs from transcriptomes

Transcriptome refers to RNA molecules (such as messenger, 
non-coding and small RNAs) that represent a small propor-
tion of large genomes, such as in wheat. Due to its reduced 
size, transcriptome datasets have also been exploited for 
mining SNPs. Initially, hybridization and sequencing-based 
approaches were used to quantify and map transcripts. 
For example, using transcriptome data and serial analysis 
of gene expression (SAGE) technique, SNPs linked with 
Lr28 resistance were detected from wheat cultivar HD2329 
(Chandra et al. 2017). However, this approach was expen-
sive and produced short tags that could not be mapped onto 
the reference genome. RNA sequencing (RNAseq) over-
comes this limitation by allowing both quantification and 
mapping of transcriptomes (Wang et al. 2009). SNPs were 
detected with an average density of one per 569 bp from 
transcriptome reads of three wheat cultivars viz., Excalibur, 
RAC875 and Kukri (Lai et al. 2012).  The in silico mining of 
publicly available transcriptome data has also enhanced the 
SNP discovery process in wheat. Besides hexaploid wheat, 
the RNAseq approach has also been utilized to character-
ize SNPs from diploid and tetraploid relatives of wheat. 
RNAseq data from two Ae. tauschii accessions belonging 
to two major lineages resulted in the identification of ~ 10K 
non-redundant D genome-specific SNPs (Iehisa et al. 2012, 
2014). A total of 144,806 high-quality SNPs were discov-
ered from the sequencing of 22,841 expressed genes of 147 
T. urartu accessions (Ling et al. 2018). Similarly, RNAseq 
reads from 18 durum accessions and an emmer wheat acces-
sion led to the identification of 52,646 SNPs (Wang et al. 
2014). Recently, bulked segregant analysis was combined 
with RNAseq (BSR-seq), where sequencing of RNA from 
resistant and susceptible bulks was used to detect SNPs and 
candidate genes for rust resistance as demonstrated for Yr15 

(Ramirez-Gonzalez et al. 2015) and SrTM4 (Li et al. 2023) 
genes.

SNPs from exome capture

Exome refers to coding sequences (also called exons) pre-
sent in a genome and are selectively captured, sequenced 
and analysed using probes from exons, while RNAseq pre-
dicts the coding sequences of expressed genes only. Exome 
capturing was first applied in tetraploid wheat species, T. 
dicoccoides and T. durum, targeting 3497 genes where 4386 
SNPs were identified (Saintenac et al. 2011). Screening of 
eight UK wheat varieties using a Nimblegen array designed 
to capture and characterize 50% of wheat exome (84 Mb) 
detected 511,439 SNPs, of which 99,945 were categorized 
as varietal SNPs based on their ability to distinguish two or 
more varieties (Winfield et al. 2012). Later, the Nimblegen 
array-based capturing was extended to a large-scale screen-
ing of wheat exome from 43 accessions including culti-
vated wheat and its wild relatives, generating 921,705 SNPs 
(Winfield et al. 2016). The array was also used to identify 
SNPs linked to stripe rust resistance gene Yr78 (Dang et al. 
2022). While probes are designed to target exons, non-tar-
get variants are also observed contributing to a significantly 
increased number of SNPs discovered compared to RNAseq, 
as Esposito et al. (2022) found that only 26% of the SNPs 
identified were in exons, while the rest were from intergenic 
regions. Although RNAseq and exome capturing are eco-
nomical compared to WGS and GBS, the SNPs discovered 
are from conserved gene clusters and are insufficient for the 
construction of high-resolution genetic maps, which require 
uniformly distributed genome-wide markers.

SNPs from pan‑genome analysis

Soon after the release of reference genomes of wheat and 
its wild relatives (Avni et al. 2017; Zhao et al. 2017; Zimin 
et al. 2017), genomes of multiple wheat lines were decoded 
subsequently to generate pan-genome. Montenegro et al. 
(2017) constructed the first pan-genome assembly for wheat 
using a WGS dataset of 18 cultivars, wherein a total of 36.4 
million SNPs were identified in addition to other structural 
variations in genes/genomic regions. Subsequently, the 
‘10 + wheat genome project’ generated a pan-genome assem-
bly of 10 hexaploid wheat cultivars viz., ArinaLrFor, Jagger, 
Julius, LongReach Lancer, CDC Landmark, Mace, Norin61, 
SY Mattis, CDC Stanley, PI190962 (spelt wheat) and scaf-
fold assemblies of five UK wheat lines, viz. Cadenza, Claire, 
Paragon, Robigus and Weebill1 (Walkowiak et al. 2020). 
Here, in addition to multiple paired-end Illumina sequenc-
ing, 10X Genomics Chromium and Hi-C platforms were 
used to generate chromosome-level pan-genome assemblies. 
Using the 10 + wheat pan-genome and haplotype analysis, 
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Dang et al. (2022) detected SNPs associated with stripe rust 
resistance gene Yr78.

SNP genotyping

Large genome size, polyploid nature, gene duplications, 
low sequence divergence within coding regions and muta-
tions in probe/primer annealing sites have complicated SNP 
genotyping in wheat. On the contrary, abundance, highly 
polymorphic nature, easy transferability across different 
platforms and successful conversion rates ranging from 50 
to 97% (Semagn et al. 2014), have made SNPs a trending 
marker system for wheat genotyping. Prior to the NGS era, 
SNP genotyping was based on a few low throughput gel-
based assays such as CAPS markers. However, millions of 
SNPs discovered through NGS pipelines warranted the need 
for high-throughput genotyping assays. The SNP arrays and 
NGS-based genotyping assays such as GBS have become 
essential genotyping platforms in current wheat breeding 
programs, where many genome-wide markers are required 
for constructing high-resolution genetic maps, QTL map-
ping, GWAS and genomic selection. Once significant 
marker-trait associations are identified, uniplex genotyping 
assays like KASP serve as an integral part of MAS programs 
where tightly linked markers are specifically selected for 
trait introgression into elite genetic backgrounds.

SNP arrays

In addition to the large-scale SNP discovery, the increasing 
use of SNP markers for wheat improvement is attributed 
to the rapid progress in developing high-throughput SNP 
genotyping arrays. Apart from its cost-effective nature, 
arrays can also be custom designed for targeting SNPs of 
specific regions or genes of a genome. For polyploids like 
wheat, Affymetrix and Illumina-based techniques are the 
two widely used platforms for developing SNP arrays. While 
both the systems work based on oligonucleotide probe and 
hybridization-based capturing of DNA fragments related to 
the targeted SNPs, they vary with the length of the probes: 
25-mer for Affymetrix and 50-mer for Illumina (LaFram-
boise 2009; You et al. 2018). Using these platforms, a series 
of SNP arrays have been developed and are currently used 
for wheat improvement including resistance to rust diseases.

Wheat 9K Illumina iSelect SNP array

Developed in 2013, this 9K SNP array is one of the first 
high-density genotyping arrays developed for wheat. The 
array consists of 9000 SNPs pooled from three different 
sources viz., SNPs identified from reference transcripts 
of nine cultivated wheat accessions, SNPs from a panel 

of 20 landraces and genic SNPs identified from parents 
of the SynOp mapping population (Cavanagh et al. 2013). 
This bead chip array was validated by genotyping a diverse 
panel of 2994 hexaploid wheat accessions and a consen-
sus genetic map comprising 7504 loci was built using six 
biparental mapping populations and a MAGIC popula-
tion (Cavanagh et al. 2013). The utility of this array was 
demonstrated through the identification of high-density 
inter-varietal SNPs (Lai et al. 2015), assessing population 
structure and genetic diversity (Würschum et al. 2013), 
QTL mapping, association analysis and genomic selection 
for yield-related traits (Hao et al. 2017; Liu et al. 2020) 
and disease resistance (Bajgain et al. 2015, 2016). In the 
case of rust resistance, the 9K array was used to map Lr67, 
Lr74, Lr.ace-4A, Sr7a, Sr12, Sr25, Sr56, Yr5, Yr78 and 
Yr82 rust resistance genes (Supplementary Table 1a, 1b 
and 1c). Further, the widely used pleiotropic and triple 
rust resistance gene, Lr34/Sr57/Yr18 was also mapped 
using the 9K array. Additionally, the array enabled the 
detection of novel QTLs for all-stage stem rust resistance 
in 7A (Pujol et al. 2015) and for adult plant resistance 
in 6D (Bajgain et al. 2015) and 7A (Aoun et al. 2019) 
chromosomes.

Illumina 90K iSelect array

The iSelect90K array is a custom-designed array comprising 
81,587 functional SNPs, discovered from a transcriptome 
study involving 19 bread wheat and 18 durum accessions 
(Wang et al. 2014). The array was used to map 46,977 func-
tional SNPs by genotyping eight DH mapping populations. 
Further, the array was evaluated for diversity studies involv-
ing 550 hexaploid and 55 tetraploid wheat accessions includ-
ing landraces and cultivars of different geographic origins. 
Mapping of Lr16, Lr33, Lr 2K38, Lr48, Lr64, Lr74, Lr77, 
Lr79, Lr80, Lr82, Sr5, Sr8a/Sr8155B1, Sr883-2B, Sr9h, 
Sr11, Sr12, Sr13, Sr14, Sr15, Sr16, Sr22, Sr26, Sr42, Sr60, 
Sr63, SrKN, Yr29, Yr66, Yr67 and Yr71 rust resistance genes 
was undertaken using 90K iSelect array (Supplementary 
Table 1a, 1b and 1c).

Wheat 15K SNP array

The wheat 15K SNP array comprising 13,261 SNPs was 
derived from a 90K array based on the genotypic data of 
more than 2000 genotypes, including European and world-
wide wheat lines (Boeven et al. 2016; Soleimani et al. 2020). 
Subsequently, the array was validated using 204 winter bread 
wheat varieties and association mapping analysis (Boeven 
et al. 2016). The cost-effective 15K SNP array was used for 
mapping the Lr21 locus in Ae. tauschii (Naz et al. 2021).
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Axiom® HD Wheat genotyping (820K) array

SNPs from 9, 15 and 90K arrays are inadequate to predict 
allelic diversity present in the secondary and tertiary gene 
pools (Rasheed and Xia 2019). Thereby, the Axiom® HD 
Wheat genotyping (820K) array was introduced to over-
come this limitation by incorporating 819,571 SNPs identi-
fied through exome capturing of 43 wheat accessions and 
wild relatives belonging to diploid, tetraploid, hexaploid 
and decaploid species. The array was validated by genotyp-
ing 475 accessions representing A, B and D genomes and 
individuals from three mapping populations. About 289,859 
SNPs were physically mapped using cytogenetic stocks, and 
56,505 markers were genetically mapped onto a consensus 
map spanning 3739 cM in length using three mapping popu-
lations. The axiom array was further validated for its utility 
in analysing population structure and diversity, as well as in 
detecting and mapping novel introgressions onto the wheat 
chromosomes (Winfield et al. 2016). However, this array 
finds limited utility in a hexaploid wheat breeding program 
since most markers are from wheat relatives, derived from 
coding regions of genes that represent a small fraction of 
the wheat genome and are not amenable for cost-effective 
genotyping (Allen et al. 2017). Axiom® HD wheat genotyp-
ing (820K) array was used for mapping leaf rust resistance 
gene Lr32 (Sharma et al. 2023).

Wheat Breeders’ 35K Axiom array

To have a cost-effective high-throughput genotyping plat-
form, a subset of 35,143 SNP markers from the 820K array 
were selected based on their even distribution in the genome 
and high level of polymorphism to design the Wheat Breed-
ers’ 35K Axiom array. By genotyping five mapping popu-
lations, 62.6% of these SNPs were genetically mapped. 
Further, screening a unique and elite collection of 1,779 
hexaploid accessions, including those from Gediflux and 
Watkins global landrace collections, nullisomic and mono-
somic cytogenetic stocks, the array demonstrated its utility 
in high-density genetic mapping, diversity and genomic rear-
rangements in hexaploid wheat (Allen et al. 2017). Genomic 
regions of rust resistance genes such as LrTs276-2, LrM, 
SrH, SrY and Yr29/Lr46 as well as novel QTL (QYrcw.
nwafu.3BS) were mapped using 35K Axiom array (Supple-
mentary Table 1a, 1b and 1c).

Axiom®wheat 660K SNP array

The Axiom®wheat 660KSNP array was designed by the 
Chinese Academy of Agricultural Sciences (CAAS). From 
a robust collection of 51 million genome-specific SNPs gen-
erated through GBS (78 accessions), RNAseq (32 acces-
sions) and resequencing data from different wheat genomes, 

four 623K arrays were designed initially and screened using 
192 wheat accessions. The highly polymorphic SNPs were 
then used to generate the high-density Axiom®wheat 
660K SNP array for commercial purposes. With a capac-
ity to detect 100,000 genes (almost all wheat genes) and 
78% of the SNPs genetically mapped (Cui et al. 2017), the 
660K array has become a potential genotyping platform for 
diversity, haplotype analysis and investigating the genetic 
basis of agronomically important traits in wheat (Jin et al. 
2016; Yang et al. 2019; Sun et al. 2020). All-stage resist-
ance QTL, QYrXN3517-2BL was mapped using 660K SNP 
array (Huang et al. 2023). But like the Axiom® HD Wheat 
genotyping (820K), the use of 660K SNP array was not a 
cost-effective approach.

Wheat 55K SNP array

The wheat 55K SNP array comprising 53,063 markers 
derived from the 660K SNP array and associated with 
important agronomic traits was designed jointly by the 
CAAS and Affymetrix. Through 55K SNP array, the geno-
typing cost is cut down to one-third of the 660K SNP array, 
and its utility was validated for constructing high-density 
genetic maps and QTL mapping (Liu et al. 2018; Fan et al. 
2022). The array was also useful in mapping Yr30/Sr2 and 
novel QTLs including QLr.hebau-5AL/QYr.hebau-5AL, 
QLr.hebau-3BL, QYr.hebau-5AL, QYr.hebau-4BS, QYr.
hebau-6BS, QYr.nwafu-7BL, QYr.gaas.2A and QYr.gaas.6A 
(Zhang et al. 2019b; Huang et al. 2019; Gebrewahid et al. 
2020; Cheng et al. 2022).

18K  AxiomTM 384 layout array

The 18K  AxiomTM 384 layout array synthesized by Affy-
metrix, comprises 18,101 SNPs derived from a high den-
sity 420K Axiom array developed under the Collaborative 
French Breed Wheat Project. The uniqueness of this array 
is that only reproducible and co-dominant SNPs covering 
the entire genome were selectively included based on the 
characterisation of 200 wheat accessions from diverse geo-
graphical regions. The utility of the array in generating a 
consensus linkage map was demonstrated by genotyping 
nine DH populations developed from Australian wheat 
germplasm (Norman et al. 2017).

TaBW280K chip array

The previously described arrays include SNPs discovered 
primarily from transcriptomes, exomes and GBS. The 
TaBW280K chip was designed using a small subset (280,226 
SNPs) of three million SNPs identified through the WGS of 
wheat. It is a high throughput genotyping array comprising 
of 225,596 intergenic and 54,280 genic SNPs. The array has 
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been used to construct a high-density genetic linkage map 
comprising of 83,721 markers covering a length of 3308 cM 
(Rimbert et al. 2018).

Wheat 50K (TriticumTraitBreed) array

Recently, Rasheed and Xia (2019) reported a customized 
Wheat 50K array (TriticumTraitBreed array) based on the 
high-quality SNPs selected from the Wheat 35, 90 and 660K 
SNP chips. Around 135 functional markers, and 700 SNPs 
tightly linked with known QTLs were included in this array.

10K Ae. tauschii Infinium SNP array

The 10K Ae. tauschii Infinium SNP array is a species-
specific array developed by selecting 10,000 SNPs from a 
pool of nearly 200,000 SNPs identified between Ae. tauschii 
accessions AL8/78 and AS75, out of which 9,485 were from 
functional assays. A small fraction of SNPs (515 SNPs) was 
in wheat ESTs and have been assigned to linkage groups 
on the AL8/78 × AS75 genetic map (Luo et al. 2013). Rust 
resistance genes Lr42 and YrAs2388 of Ae. tauschii were 
characterized using this D genome-specific arrays (Gill et al. 
2019).

Illumina Infinium wheat barley 40K SNP array

The recently developed wheat barley 40K SNP array is a 
multi-species array that was designed to enable robust 
imputation SNP genotyping with high accuracy. It com-
prises 14,261 and 25,363 SNP markers, respectively, from 
barley and wheat that are linked to key agronomic traits. The 
SNP markers for wheat were based on exome sequencing 
of 1041 bread wheat accessions, while the SNPs for barley 
were selected based on exome sequencing of 267 accessions 
and whole genome sequencing of 117 accessions from the 
Intergrain commercial barley breeding programme (Keeble-
Gagnère et al. 2021). Since it permits the hybridization of 
multiple samples on a single array, the wheat barley 40K 
SNP array serves as a common and cost-effective genotyping 
platform for both crop species, finding broad applications 
in genome-wide association studies and genomic selection.

Given the wide range of arrays, breeders must make a 
careful choice depending on the germplasm panel used and 
the nature of the genetic analysis required. Moreover, the 
array-based SNP markers introduce an ascertainment bias 
that can underestimate diversity and genome prediction 
abilities (Chu et al. 2020).

Triticum aestivum next generation (TaNG) array

The recently developed TaNG array consists of 43,372 SNP 
markers, sourced from the whole genome sequence of 204 

elite wheat lines and 111 Watkins wheat landraces. These 
SNPs were selected based on the ability to distinguish varie-
ties and conversion into definitive markers (Burridge et al. 
2024).

Next‑generation sequencing (NGS)‑based SNP 
genotyping systems

Among NGS-based genotyping systems, GBS involving 
one-enzyme (Elshire et al. 2011) and two-enzyme strate-
gies (Poland et al. 2012) has been rewarding, particularly in 
identifying novel genetic loci associated with rust resistance 
(Supplementary Table 2 and 3). Through exhaustive QTL 
mapping and genome-wide association studies, it paved the 
way for the rapid selection of rust resistance through MAS. 
Targeted GBS (tGBS), intended for targeting and saturating 
specific genomic regions, is an extended innovation of GBS 
that is effective in characterising several thousand markers 
across a large number of samples. The tGBS approach has 
been employed for mapping all-stage stripe rust resistance 
genes YrAw12 (Baranwal et al. 2021), YrPAK (Tariq et al. 
2021) and an adult plant stripe rust resistance gene Yr75 
(Kanwal et al. 2021).

 Compared to SNP arrays, GBS introduces less ascer-
tainment bias and is more reliable in the prediction of rare 
alleles that enable the unravelling of molecular diversity 
in the gene pool (Elshire et al. 2011; Rasheed et al. 2017; 
Chu et al. 2020). Further, it does not require prior sequence 
information or targeted probe sets. However, it involves a 
complex two-step library preparation comprising restric-
tion enzyme digestion and adapter ligation. This limitation 
has been overcome by simplified NGS library preparation 
protocols, such as Nextera, that enable simultaneous DNA 
fragmentation and adaptor ligation in a single step using a 
transposon complex (Caruccio 2011). Whole genome cover-
age to varying levels can be achieved by low-depth (1-2x) 
sequencing of these libraries, referred to as Skim sequencing 
(Skim-Seq). The utility of Skim-Seq approach as a genotyp-
ing platform and as a tool for genomics-assisted breeding has 
been demonstrated using DH populations and cytogenetic 
stocks in wheat (Adhikari et al. 2022).

Despite being robust, a significant proportion of SNPs 
(18–33%) detected in these multiplex platforms are dis-
carded owing to factors such as missing data, minor allele 
frequency, weak amplification, ambiguity in heterozygote 
calling and lack of polymorphism in the panel surveyed 
(Rasheed et al. 2017). In addition, the high cost per sample 
and the substantial time involved limit the application of 
these NGS-based SNP genotyping platforms, specifically in 
areas where fewer samples need to be screened with rela-
tively low to moderate marker density. Under such situa-
tions, uniplex SNP genotyping platforms are considered to 
be efficient and economical.
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Uniplex SNP genotyping platforms

Cleaved amplified polymorphic sequences (CAPS)

Sequence polymorphisms such as SNPs that introduce 
changes in the recognition site of restriction enzymes are 
useful for developing CAPS markers. DNA sequence span-
ning these polymorphic restriction sites is PCR amplified 
using sequence-specific primers and subjected to restriction 
digestion to detect the polymorphism based on cleavage. 
DNA fragments captured through RFLP or AFLP analysis 
and linked with disease resistance are valuable sources for 
developing CAPS markers. ASR leaf rust resistance gene 
Lr51 introgressed from T. speltoides and a pleiotropic APR 
gene Lr37 (Sr38/Yr17) introgressed from Ae. ventricosa 
into chromosomes 1B and 2A of bread wheat, respectively, 
was mapped using CAPS markers (Helguera et al. 2003, 
2005). Based on haplotype analysis in diverse germplasm, 
a diagnostic CAPS marker (GLP-1/2 CAPs) developed from 
a SNP lying in the promoter region of the TaGLP gene was 
used for genotyping the stem rust resistance locus Sr2 (Mago 
et al. 2014). Subsequently, the closely linked csSR2 marker 
developed for Sr2 was also based on CAPS assay (Mago 
et al. 2011).

Taqman assay

Taqman assay, also known as 5’ nuclease assay, is a real-
time PCR-based assay for SNP genotyping. It comprises two 
differentially labelled probes and an unlabelled primer pair 
to amplify the target region. When the probes are intact, the 
fluorescence emitted by the reporter dye is suppressed by 
the quencher dye. Specific annealing of the probe comple-
mentary to the target sequence, followed by cleaving of the 
hybridized probe by exonuclease activity of Taq polymerase, 
results in fluorescence, indicating the specific allele ampli-
fied. The Taqman assay has been used for MAS of the adult 
plant leaf rust resistance gene Lr2K38 located on chromo-
some 1A (Sapkota et al. 2020).

Kompetitive allele‑specific PCR (KASP) assay

While GBS and array platforms are robust and advantageous 
in mapping genes and QTLs, screening a small subset of 
trait-linked SNP markers using these platforms is an expen-
sive exercise. Once identified from GBS and chip assays, 
SNPs linked with key agronomic traits are converted into 
KASP assay for marker-assisted breeding programs. The 
KASP assay is an allele-specific assay that uses a univer-
sal fluorescence resonant energy transfer (FRET) cassette 
to enable bi-allelic scoring of SNPs and InDels at a spe-
cific locus. Several such KASP markers designed from 
informative SNPs are used as diagnostic markers in MAS 

for numerous major genes and QTLs associated with resist-
ance to leaf rust, stem rust and stripe rust (Supplementary 
Table 1a, 1b, 1c and 2). Due to its speed, simplicity and 
uniplex nature of detecting SNPs, the KASP assay is rapidly 
replacing SSR and other gel-based marker systems. How-
ever, a common problem encountered while converting 
array-based SNP to KASP markers in wheat is the frequent 
false calling of heterozygous genotypes and lack of locus 
specificity. This results from SNPs within the polyploid 
genomes exhibiting inter-homologue polymorphism in some 
individuals which makes it difficult to distinguish homozy-
gotes from heterozygotes. Hence, to overcome this pitfall 
and ensure the successful conversion of SNP into a KASP 
marker, Makhoul et al. (2020) insisted on the alignment of 
SNP probes with the reference genome, sanger sequencing 
and visual KASP primer placement as critical factors for 
consideration.

Semi‑thermal asymmetric reverse PCR (STARP)

STARP is another novel method of genotyping individual 
SNPs (Long et al. 2017). Basically, STARP includes com-
petitive amplification of two SNP alleles using two univer-
sal priming element adjustable primers and one group of 
three locus-specific primers: two asymmetrically modified 
allele-specific primers and their common reverse primer. 
The resulting PCR products can be visualized either by 
gel-based or florescence-based methods for detecting SNP 
alleles. This method overcomes the limitations and combines 
major advantages of the current SNP genotyping technolo-
gies in terms of accuracy, flexibility, simplicity and cost-
effectiveness. For instance, the traditional allele-specific 
PCR (Myakishev et al. 2001) shows a low SNP detection 
rate and the KASP, which is an improved allele-specific 
PCR, involves higher operational cost due to dependency 
on the developer (Middlesex, UK; http:// www. lgcgr oup. 
com) for PCR reagents and allele-specific primers, and the 
need for sophisticated equipment such as real-time PCR 
machines or fluorescence readers. In contrast, STARP can 
be performed using standard PCR conditions and adopted 
in both conventional PAGE and high-throughput genotyping 
platforms; therefore, it can be followed across laboratories 
with minimum resources. STARP markers have been used 
for MAS in wheat rust resistance breeding programmes. 
Sharma et al. (2019) designed two SNP-based dominant 
STARP markers for the stem rust resistance gene Sr883-2B 
and a co-dominant STARP marker for Sr883-6A, a likely 
allele of Sr13 gene derived from the cultivated emmer 
accession PI193883. These markers were validated for their 
utility for MAS using a panel of 48 durum and cultivated 
wheat cultivars. Among the three, the co-dominant STARP 
marker (rwgsnp7) was found to be effective for a gel-free 
assay system.

http://www.lgcgroup.com
http://www.lgcgroup.com
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Creating artificial SNPs for rust resistance 
analysis

Mutation‑based strategies

Mutation breeding has become a valuable method to ana-
lyse genes that are linked to agronomically important traits 
such as rust resistance. Targeting induced local lesions 
in genomes (TILLING) has been deployed as a reverse 
genetic tool to identify genotypes carrying mutations on 
genes linked to key traits (McCallum et al. 2000). TILL-
ING populations carrying artificial mutations add value to 
the existing germplasm resources in terms of creating new 
markers and are developed for both tetraploid and hexa-
ploid wheat (Chen et al. 2012, 2014; Rawat et al. 2012, 
2019; Colasuonno et al. 2016; Mo et al. 2018; Richaud 
et al. 2018; Harrington et al. 2019; Madsen and Brinch-
Pedersen 2020). Particularly, the Kronos and Cadenza 
TILLING populations have been extensively used by 
wheat breeders for functional characterization of agro-
nomically important genes (Chen et al. 2012; Simmonds 
et al. 2016; Krasileva et al. 2017; Uauy 2017; Mo et al. 
2018; Richaud et al. 2018; Marchal et al. 2018; Harrington 
et al. 2019; Chia et al. 2020; Ajaz et al. 2021; Debernardi 
et al. 2022; Desjardins et al. 2022). The Kronos TILLING 
population comprising of 1,536 mutant lines was gener-
ated using ethyl methane sulfonate (EMS) treatment of a 
tetraploid durum variety Kronos (Uauy et al. 2009). The 
Cadenza TILLING population comprising of 3,750 mutant 
lines was also developed through EMS mutagenesis of 
‘Cadenza’, a hexaploid Chinese Spring cultivar (Rakszegi 
et al. 2010). In addition to these TILLING resources, A 
genome and D genome-specific TILLING populations 
have also been developed from T. monococcum and Ae. 
tauschii, respectively (Rawat et al. 2012, 2018).

Although initially developed as a reverse genetic tool, 
TILLING also finds application in forward genetics to 
characterize the novel SNPs artificially induced through 
mutation. The cost-cutting NGS techniques have opened 
avenues to scan the genome of interesting mutant lines 
from the TILLING populations. The entire set of Kronos 
TILLING population was exome sequenced, and a mutant 
line T4-3822 harbouring 1,874 EMS-induced SNPs was 
identified (Krasileva et al. 2017). The NGS-based exome 
capture assay of 11 mutant lines from a TILLING popula-
tion of NN-Gandium-1 detected 104,779 SNPs distributed 
across A, B and D genomes (Hussain et al. 2018). Exome 
capturing and sequencing of a 2Mb region from three 
mutant lines of the Cadenza TILLING population detected 
at least 464 SNPs indicating the presence of 35 SNPs per 
Mb (King et al. 2015). Sequencing EMS mutants derived 
from the hexaploid cultivar ‘Indian’ using GBS detected 

14,130 induced mutations including SNPs and InDels 
(Sidhu et al. 2015). Prior to such large genome survey, 
TILLING populations were initially limited to discover-
ing SNPs in candidate genes. A set of 275 novel alleles 
were detected for 11 target genes using the mutant librar-
ies of Kronos and a hard red spring wheat breeding line 
'UC1041 + Gpc-B1/Yr36' carrying high protein content 
gene and partial stripe rust resistance gene (Uauy et al. 
2009). Many novel allelic variants for key genes involved 
in starch biosynthesis, kernel hardness, carotenoid bio-
synthesis, head blight resistance and glyphosate tolerance 
have also been discovered from TILLING populations 
(Dong et al. 2009; Slade et al. 2012; Colasuonno et al. 
2016; Li et al. 2017; Gadaleta et al. 2019; Moehs et al. 
2021).

Similarly, sequencing stem rust susceptible mutant lines 
from Sr35 resistant accession G2919 identified G-A muta-
tions in the disease resistance gene CNL9 present within 
the Sr35 region. The mutation resulted in a premature stop 
codon producing a truncated protein (Saintenac et al. 2013). 
TILLING population from a wheat variety NN-Gandium-1 
investigated for functional analysis of genes associated with 
leaf and stripe rust resistance identified a candidate SNP in 
Lr21 gene on chromosome 1B. Through prediction analysis, 
the synonymous SNP in the nucleotide binding site (NBS) 
domain was found to alter the protein structure by alanine to 
glutamic acid substitution (Hussain et al. 2018). A branched-
chain amino acid transferase in wheat (TaBCAT1) is known 
to be involved in a salicylic acid-dependent defence activa-
tion pathway. By analysing loss of function mutants from 
the Kronos TILLING population, two TaBCAT1 disruption 
mutant lines were identified. One mutant from A genome 
(Kronos2898) encoding a stop codon and the other from 
B genome (Kronos860) encoding for a truncated protein 
showed reduced susceptibility to Pst isolates causing leaf 
rust, thereby establishing the role of TaBCAT1 in positively 
regulating wheat rust susceptibility (Corredor-Moreno et al. 
2021). The mounting mutant resources for TILLING cou-
pled with NGS techniques remain less exploited for func-
tional characterization of several rust resistance genes iden-
tified in wheat. A major limitation in using these TILLING 
populations is attributed to the random mutations, which 
demand extensive screening to identify ‘loss or gain of func-
tion’ mutants making it a laborious and time-consuming 
exercise. These limitations can be overcome through site-
directed mutagenesis using gene editing techniques.

Gene expression modifications (SNPs in promoters)

Promoter regions lying upstream of the genes contain spe-
cific motifs that act as cis-regulatory elements that are 
required for the binding of transcription factors to initiate the 
transcription process. SNPs in these cis-regulatory elements 
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of promoters can alter the nature and rate of binding of these 
transcription factors, thereby affecting gene expression. Sev-
eral novel SNPs have been identified in the promoters of 
yield-related genes in wheat viz., TaGw2-6a, TaCWI-4 and 
TaCYP785 (Jaiswal et al. 2015; Jiang et al. 2015; Guo et al. 
2022) that were responsible for differential gene regulation. 
The Sr2 locus has been physically mapped on chromosome 
3B of wheat cultivar Hope. Interestingly, this locus did not 
belong to the NLR family but rather contained Germin-like 
proteins (GLPs) encoding candidate genes associated with 
disease resistance. Based on a haplotype analysis between 
the Sr2-containing Hope cultivar and the non-Sr2 wheat cul-
tivar Chinese Spring, several SNPs and InDels were detected 
only in the promoter region and not in the coding regions of 
the genes, which speculates the role of these SNPs in disease 
resistance expression (Mago et al. 2014).

Outlook

The post-genomics era has witnessed gold-standard tech-
nologies that are accelerating the wheat breeding at an 
unprecedented rate.

Haplotype block‑based approaches for resistance 
detection and stacking

Phenotype being a complex expression of the interaction 
of genes and environment, the concept of trait-based selec-
tion is now being extended from favourable alleles to haplo-
types in disease resistance breeding. For instance, a GWAS 
analysis showed that selection of the TraesCS2B01G513 
haplotype containing four natural polymorphisms in a gene 
that encodes for serine/threonine protein kinase (STPK) can 
effectively improve resistance to yellow rust in wheat culti-
vars (Wu et al. 2021). While the traditional GWAS identifies 
individual SNPs as causal variants associated with the trait, 
adopting haplotype block analysis where the specific pat-
tern of a group of SNPs associated with traits such as rust 
resistance was predicted and utilized in crop breeding. This 
requires the integration of sophisticated machine learning 
algorithms and predictive models to bring about dimension-
ality reduction of data sets and augment the detecting power 
of novel rust resistance loci through GWAS (Difabachew 
et al. 2023). Machine learning involving either a reference-
based imputation (such as BEAGLE, IMPUTE 5, TOPmed) 
or a reference-free imputation (such as the Random Forest 
and neural networks) can improve the efficiency of genotype 
calling, thereby increasing the statistical power of associa-
tion analysis to identify significant marker-trait associations 
(Song et al. 2020).

Pan‑genome assembly for haplotype discovery

Parallelly, third-generation sequencing techniques, such as 
single molecule real-time (SMRT) sequencing and nanop-
ore sequencing that can generate long reads, make genome 
assembly and reconstruction easier for pan-genome analysis. 
However, the longer read length comes at the compromise of 
accuracy and demands error correction and DNA polishing. 
Recently, Hifi sequencing has become a gold standard that 
meets the dual demand of long read length and accuracy 
(Hon et al. 2020). Pan-genome assembly, haplotype phasing 
and variant calling are therefore no longer a daunting task. 
Further, with improvements in deep learning and machine 
learning models, maximizing genetic gains through genomic 
selection based on chromosome stacking approaches that 
involve the selection of superior parents carrying chromo-
somal segments harbouring desirable haplotype blocks in 
wheat hybridization programmes are also gaining momen-
tum (Villiers et al. 2024). Further reduced cost for short 
DNA read sequencing enables sequencing of large germ-
plasm sets such as Watkins wheat landrace collection, 
thereby detecting haplotype blocks associated with key traits 
such as rust resistance (Cheng et al. 2024).

Integrating machine learning and digital imaging 
to accelerate resistance phenotyping

With developments in high-throughput phenomics based 
on image acquisition through unmanned air vehicles and 
genotyping based on binary SNP encoding, the futuristic 
approach aims to integrate these data using machine learning 
techniques to train model sets for predicting the phenotypes 
from genotypes (Fig. 1). However, phenotypic plasticity of 
plants in varying environmental conditions and pathogen 
interactions poses challenges that need to be addressed while 
deploying ‘genotype to phenotype’ models.

Yet, precision and accuracy in dissecting the complex 
phenotypes and strengthening the phenomics platform for 
rust resistance screening at the same pace as genomics for 
SNP discovery and genotyping would speed up rust resist-
ance breeding in wheat to ensure a secured food supply to 
meet the rising human needs.
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