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Abstract 
 
Over the past decade, the use of social media (SM) such as Facebook, Twitter, Pinterest 

and Tumblr has dramatically increased. Using SM, millions of users are creating large 

amounts of data every day. According to some estimates ninety per cent of the content 

on the Internet is now user generated. Social Media (SM) can be seen as a distributed 

content creation and sharing platform based on Web 2.0 technologies. SM sites make it 

very easy for its users to publish text, pictures, links, messages or videos without the 

need to be able to program. Users post reviews on products and services they bought, 

write about their interests and intentions or give their opinions and views on political 

subjects. SM has also been a key factor in mass movements such as the Arab Spring 

and the Occupy Wall Street protests and is used for human aid and disaster relief 

(HADR). 

There is a growing interest in SM analysis from organisations for detecting new trends, 

getting user opinions on their products and services or finding out about their online 

reputation. Companies such as Amazon or eBay use SM data for their recommendation 

engines and to generate more business. TV stations buy data about opinions on their TV 

programs from Facebook to find out what the popularity of a certain TV show is. 

Companies such as Topsy, Gnip, DataSift and Zoomph have built their entire business 

models around SM analysis.  

The purpose of this thesis is to explore the economic value of Twitter tweets. The 

economic value is determined by trying to predict the share price of a company. If the 

share price of a company can be predicted using SM data, it should be possible to 

deduce a monetary value. There is limited research on determining the economic value 

of SM data for “nowcasting”, predicting the present, and for forecasting. This study aims 

to determine the monetary value of Twitter by correlating the daily frequencies of positive 

and negative Tweets about the Apple company and some of its most popular products 

with the development of the Apple Inc. share price. If the number of positive tweets about 

Apple increases and the share price follows this development, the tweets have predictive 

information about the share price. 

A literature review has found that there is a growing interest in analysing SM data from 

different industries. A lot of research is conducted studying SM from various 

perspectives. Many studies try to determine the impact of online marketing campaigns or 

try to quantify the value of social capital. Others, in the area of behavioural economics, 

focus on the influence of SM on decision-making. There are studies trying to predict 

financial indicators such as the Dow Jones Industrial Average (DJIA). However, the 

literature review has indicated that there is no study correlating sentiment polarity on 

products and companies in tweets with the share price of the company. 

The theoretical framework used in this study is based on Computational Social Science 

(CSS) and Big Data. Supporting theories of CSS are Social Media Mining (SMM) and 

sentiment analysis. Supporting theories of Big Data are Data Mining (DM) and Predictive 
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Analysis (PA). Machine learning (ML) techniques have been adopted to analyse and 

classify the tweets. 

In the first stage of the study, a body of tweets was collected and pre-processed, and 

then analysed for their sentiment polarity towards Apple Inc., the iPad and the iPhone. 

Several datasets were created using different pre-processing and analysis methods. The 

tweet frequencies were then represented as time series. The time series were analysed 

against the share price time series using the Granger causality test to determine if one 

time series has predictive information about the share price time series over the same 

period of time. For this study, several Predictive Analytics (PA) techniques on tweets 

were evaluated to predict the Apple share price. 

To collect and analyse the data, a framework has been developed based on the LingPipe 

(LingPipe 2015) Natural Language Processing (NLP) tool kit for sentiment analysis, and 

using R, the functional language and environment for statistical computing, for correlation 

analysis. Twitter provides an API (Application Programming Interface) to access and 

collect its data programmatically.  

Whereas no clear correlation could be determined, at least one dataset was showed to 

have some predictive information on the development of the Apple share price. The other 

datasets did not show to have any predictive capabilities. There are many data analysis 

and PA techniques. The techniques applied in this study did not indicate a direct 

correlation. However, some results suggest that this is due to noise or asymmetric 

distributions in the datasets. 

The study contributes to the literature by providing a quantitative analysis of SM data, for 

example tweets about Apple and its most popular products, the iPad and iPhone. It 

shows how SM data can be used for PA. It contributes to the literature on Big Data and 

SMM by showing how SM data can be collected, analysed and classified and explore if 

the share price of a company can be determined based on sentiment time series. It may 

ultimately lead to better decision making, for instance for investments or share buyback. 
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1 Introduction 
 

1.1 Background 
 

Opinions are central to almost all human activities because they are key influences of our 

behaviours (Liu 2012, p. 2). People want to know other people’s opinions whenever they 

need to make a decision about choosing a holiday destination, making a voting decision 

in an election, selecting a restaurant or buying a new car. Emotions towards products or 

services influence our purchasing decisions. Behavioural economics tells us that 

emotions can profoundly affect individual behaviour and decision-making (Bollen, Mao & 

Zeng 2010, p. 1).  

In the past, people turned to friends and family whenever they wanted to know an 

individual’s opinion. When an organisation wanted to obtain public opinions, it had to 

conduct surveys, focus groups or polls. With the unprecedented rise of the internet and 

especially Web 2.0 technologies, sharing opinions and views has become increasingly 

easy. Web 2.0 is a technology shifting the Web to turn it into a more participatory 

platform, in which people not only consume content (via downloading) but also contribute 

and produce new content (via uploading) (Darwish & Lakhtaria 2011, p. 204). 

SM has exploded as a category of online discourse where people create content, share 

it, bookmark it and network at a prodigious rate (Asur & Huberman 2010, p. 492). SM 

has been increasingly used in a wide range of domains, such as political campaigns (for 

example, presidential elections), mass movements (for example, organizing Occupy Wall 

Street movements, Arab Spring), as well as disaster and crisis response and relief 

coordination (Gundecha & Liu 2012, p. 12). 
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With the explosive growth in the availability and use of Social Media (SM) (e.g., reviews, 

forum discussions, blogs, microblogs, comments, and postings in social network sites) 

on the Web, individuals and organisations are increasingly using the content in these 

media for decision making (Liu 2012, p. 2). Customer reviews make a significant impact 

on the purchasing decision of potential customers (Smith et al. 2011, p. 20). As such 

they can influence the propensity of customers to buy products or services or influence 

the choices for holiday destinations or restaurants. If reviews written in the past influence 

future actions of customers, SM data has the potential to be used for forecasting, 

predicting the future, or nowcasting, that is, to predict the present in real-time, for 

instance the rise or fall of share prices. 

Organisations have realised the potential of SMM (Social Media Mining) in extracting 

actionable patterns that can be beneficial for business, users and consumers (Gundecha 

& Liu 2012, p. 1). SM is analysed for its potential to predict sales volumes, to identify 

customers who are likely to switch the supplier or to determine customer satisfaction. If 

opinions can be used to make predictions about sales volumes, they might also have 

predictive information about other financial indicators. 

Not surprisingly, the need for studying and understanding the social phenomena 

underlying such communities has recently given rise to a new field of work, known as 

Computational Social Science, which is materializing at the crossroads of computer 

science and the social sciences (Smith et al. 2011, p. 1). 

 

1.2 Justification for the research  
 
The increase in the use of SM has led many social scientists to examine whether specific 

patterns in the streams of tweets might be able to predict real-world outcomes (Bollen, 
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Mao & Zeng 2010; Barberá & Rivero 2013; Gerber 2014; Burnap et al. 2015; Tsakalidis 

et al. 2015). Predictive Analysis (PA) of SM data is a recent area of research (Hong Keel, 

Dennis & Yuan 2014; Burnap et al. 2015; Tsakalidis et al. 2015). Despite attracting an 

increasing number of researchers; many areas are still unexplored. The potential of 

analysing SM has been recognized but the literature review in chapter 2 Literature review 

has identified gaps in exploring the influence of SM on share price developments. Also 

there are many different techniques for SMM and PA. Some have proven to be very 

effective for certain tasks but have performed less well in other environments. Ipso facto, 

assessing the best performing methods for a specific problem is an important SMM task 

since often it is not possible to tell a priori which method will yield the best results 

(Witten, Frank & Hall 2011). Analysing and evaluating different SMM and PA techniques 

and algorithms can thus lead to better outcomes, and research in this area has the 

potential to improve the analysis of SM and the accuracy of PA (Huang et al. 2013). 

 

1.3 Research methodology 
 

Data analysis, in the context of this study, comprises two phases. The first phase is the 

data conditioning phase where data is collected, and passed through pre-processing 

steps such as relevance filtering or data deduplication. The main purpose of the data 

conditioning phase is the transformation of noisy raw SM data into high-quality data that 

will enable the computation of predictor variables (Kalampokis, Tambouris & Tarabanis 

2013, p. 546).  

The second phase is the PA phase. The aim of this phase is the evaluation and creation 

of a predictive model that will enable accurate prediction of phenomenon outcomes 
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based on a new set of observations, where ‘new’ can be interpreted as observations in 

future or observations that were not included in the original data sample (Kalampokis, 

Tambouris & Tarabanis 2013, p. 546).  

The data conditioning phase consists of two steps: 

1. Data collection of Twitter data 

2. Data pre-processing  

The PA phase consists of following steps: 

3. Model evaluation and data analysis 

4. Correlation and PA 

Figure 1-1 summarizes the steps of each phase. 

 

Figure 1-1: Analysis phases 

 

It has to be noted that the steps can vary depending on the data analysis problem at 

hand.  
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1.3.1 Data conditioning phase 

 

During the data conditioning phase, the time window has to be defined, that is, the time 

period over which data is collected. The query terms used for the data search have to be 

selected, the prediction variables, that is, the observation points in the data, have to be 

defined and the method for data extraction has to be evaluated. For this study, two 

months of tweets about Apple and its most popular products were collected. In the case 

of Twitter tweets, tweets can be collected either through Twitter’s Application 

Programming Interface (API) or using a screen scraper. Other possibilities include online 

data collectors or data brokers. For this study the data was collected through the Twitter 

Search API and using the NVivo NCapture screen scraper. The Twitter Search API has 

the advantage that tweets can be collected automatically and the collection task can be 

run over an extended period of time. The prediction variables selected for this study are 

words in the tweets, word frequencies (bag of words approach), tweet frequencies, tweet 

and tokens.  The collected, raw data has to be relevance filtered to remove irrelevant 

data such as spam or off topic tweets. Depending on the data, other tasks such as data 

deduplication, retweets removal or record linkage might be necessary. For this study, 

basic subjectivity analysis and data deduplication were performed to “clean” the data.  

1.3.2 Predictive analysis phase 

 

After the data purification steps, the model for data analysis has to be selected. Model 

selection happens during the PA phase. The predictive model measures the observation 

points. Observation points are also called the predictor variables or independent 

variables. Measurement of predictor variables means identifying which mood dimensions 

will be selected. A uni-dimensional mood model makes a binary mood distinction, that is, 
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positive or negative. A multi-dimensional mood model captures additional mood 

dimensions such as excellent, good, neutral, bad, poor or very poor. Mood dimensions 

can be derived from the Profile of Mood States (POMS), a well-vetted psychometric 

instrument (Bollen, Mao & Zeng 2010, p. 3). For this study, binary mood classification 

was used which classifies tweets into positive and negative tweets about Apple and its 

products. Selection of the predictive method will mean selecting, for example, 

supervised, unsupervised or semi-supervised Machine Learning (ML) algorithms. 

Usually, different models are trained and the best performing scheme is chosen. The 

selected scheme is then used to classify new, unseen data, for example tweets. 

Classification is a common example of a process that can be undertaken using 

supervised ML. Supervised methods can also be used for regression. Grouping tweets 

into positive and negative tweets is a binary classification task. That is why, for this 

study, supervised methods for binary classification and for regression were evaluated. 

For supervised learning algorithms, a given data set is typically divided into two parts: 

training and testing datasets with known class labels (Gundecha & Liu 2012, p. 2). The 

class labels in this study are the mood states of “positive” and “negative”. These datasets 

are used for the selection of the evaluation method. Typical supervised learning methods 

are decision tree induction, k-Nearest Neighbour, Naïve Bayes classification, Multilayer 

Perceptrons and Support Vector Machines. The best performing algorithm, which is the 

one with the best classification performance, will then be applied to new, unseen data for 

classification. In this study the Naïve Bayes, Perceptron and Multilayer Perceptron, 

decision Trees as well as Logistic Regression (LR) classifiers were evaluated. The 

prediction baseline step defines how the prediction is executed, for example by finding 

correlations between mood state timelines and financial data over the same period over 
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time. Time series analysis is a popular method for finding correlations. The classified 

data collected for this study is represented as time series, viz. the number of positive and 

negative tweets over a certain period of time. The second time series is the share price 

over the same period of time. The two series are evaluated to determine if they can be 

correlated to each other. The goal is to determine if a time series A has predictive power 

over a time series B. If it has, it can be used to make predictions using future, unseen 

data. This study used the Granger causality test to correlate the Twitter mood states time 

series with the share price development. Figure 1-2 summarizes these steps for a Twitter 

tweet.  

 

 

Figure 1-2: Data conditioning and pretictive analysis stages 

 

Each step typically goes through many iterations until satisfactory results are obtained.  

These steps will be described in more detail in chapter 3. Research methodology. 

 

1.4 Delimitation of the scope and key assumptions 
 

The focus of this study is on analysing data from the Twitter microblogging website. 

Since microblogging messages are short and colloquial, traditional algorithms do not 
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perform as well as they do for long texts (Liang & Dai 2013). The SMM algorithms were 

evaluated in order to address the issues of scarce texts and colloquial language. 

However, the goal is not to find new algorithms for short text messages, but to apply 

suitable methods for the problem at hand.  

There are many Data Mining (DM) algorithms and not all of them can be evaluated. The 

algorithms selected for this study are based on the ones identified in the literature review 

in chapter 2 Literature review. In previous studies, some algorithms have shown to 

perform well for similar tasks. They were evaluated and used in the framework 

developed for this thesis.  

Free access to the Twitter search API is limited to a 15 minute quota (Twitter Developers 

2015). This means that for collecting tweets, after a search query has been executed, the 

collection algorithm has to wait for 15 minutes before it can execute the next search 

query. Consequently, data collection has to run over an extended period of time. With its 

large and growing user base, Twitter has currently more than 317, 000, 000 monthly 

active users (Statista 2016) and members of different social classes are represented on 

Twitter. Nevertheless, there is a self-selection bias: only users who have chosen to be on 

Twitter are represented in the collected data. Also: 

 Not everybody is using Twitter 

 Not every Twitter user tweets opinions or tweets at all 

 Not every tweet is giving an honest opinion 

This study is not analysing the demographic distribution of its users since they can omit 

for instance their geographic location or age. In this case, there is no reliable way of 

identifying the age or location of some Twitter users.. Also, some Twitter users can 

pretend to be someone other than themselves or use nom de plumes, like catfish or 
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sockpuppet, to hide their true identity and tweet fake opinions. If these numbers are not 

significant, the results will only be marginally affected. However, if they are large, it will 

influence the outcomes. In this study only English tweets were analysed. The largest 

Twitter user base is in the US (Statista 2016). The assumption is that when analysing 

English tweets, the number is large enough that fake tweets have no significant impact 

on the results. Also, since a large, active user base tweets in English, the body of tweets 

have a representational demographic distribution in terms of age, gender, ethnic 

classification or social group. This study does not aim to create high quality samples but 

assumes that Big Data principles will smoothen uneven distributions if the datasets are 

large Since Big Data needs large data volumes to get meaningful results. The study 

focused on opinions on Apple and Apple products. Apple is a well-known company with 

well-established products used by many people worldwide. Hence, many people tweet 

about it and its products as the data collection task revealed.  

 

1.5 Key definitions and terminologies 
 

This chapter forms the basis for the subsequent parts of the dissertation by providing the 

key definitions and concepts.  

1.5.1 Computational social science (CSS) 

 

Computational social science (CSS) is the integrated, interdisciplinary investigation of 

social systems as information-processing organizations using the medium of advanced 

computational systems (Cioffi-Revilla 2010, p. 261). A CSS is emerging that leverages 

the capacity to collect and analyse data with an unprecedented breadth, depth and scale 
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(Lazer et al. 2009, p. 722). Computational social science is a fledging interdisciplinary 

field at the intersection of the social sciences, computational science, and complexity 

(Cioffi-Revilla 2010, p. 259). 

CSS has two subareas relevant to the proposed research, social media mining (SMM) 

and sentiment analysis. 

1.5.1.1  Social media mining (SMM) 

 

Social Media Mining (SMM) is the process of representing, analysing, and extracting 

actionable patterns from SM data (Zafarani, Abbasi & Liu 2014, p. 2). SM data consists 

of the individuals, the entities such as content and sites, and the connections and 

interactions between the individuals. These interactions represent the social capital (SC) 

of SM data. SC is an investment in social relations with expected returns (Lin, Burt & 

Cook 2001, p. 6). SC is unlike other forms of capital in that it is not possessed by 

individuals, but resides in the relationships that individuals have with one another (Smith 

et al. 2011, p. 2). SMM takes into consideration these relations of the data when 

analysing it. Analysing SM data is the task of mining user-generated content with social 

relations (Zafarani, Abbasi & Liu 2014, p. 2). 

1.5.1.2  Sentiment analysis 

 

Sentiment analysis, also called opinion mining, is the field of study that analyses people’s 

opinions, sentiments, evaluations, appraisals, attitudes, and emotions towards entities 

such as products, services, organizations, individuals, issues, events, topics, and their 

attributes (Liu 2012, p. 1). In SMM, sentiment analysis is then the automated extraction 

of emotional content from SM data (Jones & Huan 2013, p. 94).  
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To extract the opinions from user generated content, the natural language has to be 

transformed into a more formal representation such as a tree structure that is easier to 

interpret for a computer. This technique is called Natural Language Processing (NLP), a 

field in computer science and linguistics which is concerned with the interactions 

between computers and human (natural) languages (Olive, Christianson & McCary 2011, 

p. 1). 

 

1.5.2 Big Data 

 

A universally agreed upon definition of "Big Data" has not been developed to date (Finlay 

2014). Big Data refers to data that is too big to fit on a single server, too unstructured to 

fit into a row-and-column database, and/or too continuously flowing to fit into a static data 

warehouse (Davenport 2014, p. 1). Big Data does not refer to large data volumes alone. 

Big Data also has increased velocity (i.e., the rate at which data is transmitted and 

received), complexity, and variety compared to data sources of the past (Franks 2012, p. 

5). This is usually referred to by the three V’s: Volume, Velocity and Variety. Big Data 

techniques are used to handle large-scale datasets, find useful patterns and gain insights 

and knowledge. Big Data analysis is a process of knowledge discovery from raw 

data.SM data are largely user-generated content on SM sites (Gundecha & Liu 2012, p. 

4). The pervasive use of SM has generated unprecedented amounts of social data 

(Gundecha & Liu 2012, p. 1). SM data can be considered Big Data due to the amount 

and the speed at which the data is generated. SM data are vast, noisy, unstructured, and 

dynamic in nature, and thus novel challenges arise (Gundecha & Liu 2012, p. 1). As 

such, Big Data has two subcategories, data mining (DM) and predictive analysis (PA).  
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1.5.2.1  Data mining (DM) 

 

Data mining (DM), also popularly referred to as knowledge discovery from data (KDD), is 

the automated or convenient extraction of patterns representing knowledge implicitly 

stored or captured in large databases, data warehouses, the Web, other massive 

information repositories, or data streams (Han, Kamber & Pei 2011, p. xxiii). DM involves 

statistical and/or artificial intelligence analysis, usually applied to large-scale datasets 

(Olson & Delen 2008, p. 4).  

Throughout the literature review no consensus was found to distinguish Big Data and 

DM. Some authors define DM as the analysis of large and complex datasets (Finlay 

2014). Others define DM as the process of information generalization (Menasalvas & 

Wasilewska 2006). Some authors define DM as the analysis of the datasets themselves 

and Big Data the analysis of the relations between the datasets. In this thesis the terms 

are used interchangeably. SMM is a form of Big Data analysis based on SM data. It finds 

patterns and relations in SM data that can be used for better understanding customer 

needs, voters’ preferences or detecting future crisis. DM turns a large collection of data 

into knowledge (Han, Kamber & Pei 2011, p. 2). 

1.5.2.2  Predictive analytics (PA) 

 

The research for the thesis is in the area of predictive analysis (PA). PA uses advanced 

analytics for predictive modelling. Advanced analytics goes further than core analytics. 

Advanced analytics includes everything from complex ad hoc SQL, to forecasting, to DM, 

to predictive modelling (Franks 2012, p. 187). PA refers to “Technology that learns from 
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experience (data) to predict the future behaviour of individuals in order to drive better 

decisions” (Siegel 2013, p. 11). 

1.5.3 Artificial intelligence (AI) 

 

Artificial intelligence (AI) is a branch of computer science. The central scientific goal of AI 

is to understand the principles that make intelligent behaviour possible in natural or 

artificial systems (Poole & Mackworth 2010, p. 4). In the literature there are many ways 

AI is defined. AI deals with symbolic, non-algorithmic methods of problem solving. In this 

thesis, AI is referred to as the study of making computers do things associated with tasks 

humans do better at the moment. AI is that part of computer science concerned with 

designing intelligent computer systems that exhibit the characteristics associated with 

intelligence in human behaviour (Akerkar 2005, p. 2). ML is an area of AI where 

computers have the capability to learn. Learning involves an agent remembering the past 

in a way that is useful for the future (Poole & Mackworth 2010, p. 283). ML techniques 

are widely used in DM since they can generate rules that would be too complex or too 

many for a developer to program manually. 

1.5.3.1  Machine learning (ML) 

 

 Machine learning (ML) is the study of data-driven methods capable of mimicking, 

understanding and aiding human and biological information processing tasks (Barber 

2012, p. xv). ML is also closely aligned with AI, with ML placing more emphasis on using 

data to drive and adapt the model (Barber 2012, p. xv). Learning is the ability of an agent 

to improve its behaviour based on experience (Poole & Mackworth 2010, p. 283). Since 

computers do not have experiences, they learn from data. Contrary to the data 
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conditioning steps, ML algorithms are not domain specific and can be used for any data 

mining task. ML algorithms have been applied to many natural language processing 

problems, including text classification, part of speech tagging, parsing, named entity 

recognition, word sense disambiguation, etc., each requiring a large number of labelled 

examples such as documents and their classes, words in the context and their senses as 

training data (Law & Ahn 2011, p. 9). 

The application of ML methods to large databases is called DM (Alpaydin 2004, p. 2). 

These datasets are often too large for traditional DM techniques. Also, ML techniques 

have been used in NLP because understanding and interpreting natural language has 

been a challenging task with conventional techniques such as lexicon-based methods 

(Liu 2012, p. 119). ML schemes can be trained with a large corpus of text documents to 

mitigate the short comings of traditional methods. As such, the building of machines to 

automatically parse and understand natural languages has been a central endeavour for 

researchers in Artificial Intelligence (Al), Information Retrieval (IR) and Natural Language 

Processing (NLP) (Law & Ahn 2011, p. 9). However, it is also useful to realize that 

sentiment analysis is a highly restricted NLP problem because the system does not need 

to fully understand the semantics of each sentence or document but only needs to 

understand some aspects of it, i.e., positive or negative sentiments, and their target 

entities or topics (Liu 2012, p. 13). Also, opinion mining is highly domain specific. 

Training data for one domain might perform poorly on test data from another domain. 

1.5.3.2  Data classification 

 

Classification is the process of finding a model (or function) that describes and 

distinguishes data classes or concepts. The models are derived based on the analysis of 
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a set of training data (i.e., data objects for which the class labels are known). The model 

is used to predict the class label of objects for which the class label is unknown (Han, 

Kamber & Pei 2011, p. 18). In their work Han et al (2011) focus on the feasibility, 

usefulness, effectiveness, and scalability of techniques of large datasets. In this study, 

classification techniques were used to classify tweets into their sentiment polarity over a 

certain time frame. 

1.5.4 Theoretical framework 

 

The theoretical framework is based on AI, CSS and Big Data. Figure 1-3 shows the 

research question in its theoretical framework: 

 

 

Figure 1-3: Theoretical framework 
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A framework developed for this study was used for analysing Twitter tweets and finding 

correlations with share prices. It used DM techniques for collecting and analysing data 

and ML techniques for data classification and finding correlations. Its contribution is to 

determine how SM mining, viz. Twitter tweets, can be used for PA for financial markets. 

Several SMM, sentiment analysis, PA and Big Data techniques were evaluated to build 

the framework. The best performing ones were then used on the actual data to be 

classified. 

 

1.6 Publication list 
 

As part of this thesis, several papers and book chapters were published, and some of the 
research was presented at conferences. Table 1-1: Publication list 

 lists the papers that were published as part of the study: 

Authors Title Publication Year Publisher 

Wlodarczak, Peter Smart Cities, Enabling 
technologies for future living 

City Networks - Planning for 
Health and Sustainability 

2017 Springer 
International 
Publishing 

Wlodarczak, Peter Cyber Immunity, A Bio-
Inspired Cyber Defense 
System  

International Conference on 
Bioinformatics and 
Biomedical Engineering 

2017 Springer 
International 
Publishing 

Wlodarczak, Peter; 
Soar, Jeffrey; Ally, 
Mustafa 

Context Aware Computing for 
Ambient Assisted Living  

International Conference on 
Smart Homes and Health 
Telematics 

2016 Springer 
International 
Publishing 

Wlodarczak, Peter; 
Soar, Jeffrey; Ally, 
Mustafa 

Genome mining using 
machine learning techniques  

International Conference on 
Smart Homes and Health 
Telematics 

2015 Springer 
International 
Publishing 

Wlodarczak, Peter; 
Soar, Jeffrey; Ally, 
Mustafa 

Multimedia data mining using 
deep learning  

IEEE Xplore 2015 IEEE 

Wlodarczak, Peter; 
Qian, Siyu; Ally, 
Mustafa; Soar, 
Jeffrey 

Social genome mining for 
crisis prediction  

21st ACM SIGKDD 
Conference on Knowledge 
Discovery and Data Mining 

2015 PopInfo'15 

Wlodarczak, P.; 
Soar, J.; Ally, M. 

Behavioural health analytics 
using mobile phones  

EAI Endorsed Transactions 
on Scalable Information 
Systems 

2015 European 
Union Digital 
Library 

http://link.springer.com/chapter/10.1007/978-3-319-56154-7_19
http://link.springer.com/chapter/10.1007/978-3-319-56154-7_19
http://link.springer.com/chapter/10.1007/978-3-319-56154-7_19
http://link.springer.com/chapter/10.1007/978-3-319-39601-9_29
http://link.springer.com/chapter/10.1007/978-3-319-39601-9_29
http://link.springer.com/chapter/10.1007/978-3-319-19312-0_39
http://link.springer.com/chapter/10.1007/978-3-319-19312-0_39
http://ieeexplore.ieee.org/abstract/document/7323027/
http://ieeexplore.ieee.org/abstract/document/7323027/
http://linkr.anu.edu.au/popinfo2015/papers/7-wlodarczak2015popinfo.pdf
http://linkr.anu.edu.au/popinfo2015/papers/7-wlodarczak2015popinfo.pdf
https://scholar.google.com/citations?view_op=view_citation&hl=en&user=MTXebScAAAAJ&citation_for_view=MTXebScAAAAJ:zYLM7Y9cAGgC
https://scholar.google.com/citations?view_op=view_citation&hl=en&user=MTXebScAAAAJ&citation_for_view=MTXebScAAAAJ:zYLM7Y9cAGgC
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Wlodarczak, Peter; 
Soar, Jeffrey; Ally, 
Mustafa 

Reality mining in eHealth  International Conference on 
Health Information Science 

2015 Springer 
International 
Publishing 

Wlodarczak, Peter; 
Soar, Jeffrey; Ally, 
Mustafa 

Big Data Analysis, from 
Cloud to Crowd  

SSRN 2015 Elsevier 

Wlodarczak, Peter; 
Soar, Jeffrey; Ally, 
Mustafa 

Big Data analytics of Social 
Media  

19th International 
Conference on Circuits, 
Systems, Communications 
and Computers, (CSCC 
2015) 

2015 INASE 

Wlodarczak, P; 
Soar, J; Ally, M 

What the Future Holds for 
Social Media Data Analysis  

  2015 World 
Academy of 
Science, 
Engineering 
and 
Technology 

Wlodarczak, Peter; 
Ally, Mustafa; Soar, 
Jeffrey 

Data Process and Analysis 
Technologies of Big Data  

Networking for Big Data 2015 Chapman and 
Hall/CRC 

Wlodarczak, Peter; 
Ally, Mustafa; Soar, 
Jeffrey 

Opinion Mining in Social Big 
Data  

SSRN 2015 Elsevier 

Wlodarczak, Peter An approach for big data 
technologies in social media 
mining  

Journal of Art Media and 
Technology 

2015 JAMT 

Wlodarczak, Peter Big Personal Data  SSRN 2014 Elsevier 

Table 1-1: Publication list 

 

At the time of writing, the book chapter “Smart Cities, Enabling technologies for future 

living” had not been published yet. 

 

1.7 Structure of the thesis 
 

The first chapter outlines the study areas and defines the goals and aims of the study. 

The research question is formulated and the underlying hypotheses are stated. An 

overview of the methodology is presented and the scope is defined along with the key 

definitions and terminology. 

http://link.springer.com/chapter/10.1007/978-3-319-19156-0_1
https://papers.ssrn.com/sol3/papers.cfm?abstract_id=2688423
https://papers.ssrn.com/sol3/papers.cfm?abstract_id=2688423
http://www.inase.org/library/2015/zakynthos/bypaper/COMPUTERS/COMPUTERS-02.pdf
http://www.inase.org/library/2015/zakynthos/bypaper/COMPUTERS/COMPUTERS-02.pdf
http://www.waset.org/publications/10000096
http://www.waset.org/publications/10000096
http://books.google.com/books?hl=en&lr=&id=X2BECgAAQBAJ&oi=fnd&pg=PA103&dq=info:BS9uyw4b5kwJ:scholar.google.com&ots=tjNqFMFqf7&sig=Vt8ak06IVA68KOVd_6xrobfal1k
http://books.google.com/books?hl=en&lr=&id=X2BECgAAQBAJ&oi=fnd&pg=PA103&dq=info:BS9uyw4b5kwJ:scholar.google.com&ots=tjNqFMFqf7&sig=Vt8ak06IVA68KOVd_6xrobfal1k
https://papers.ssrn.com/sol3/papers.cfm?abstract_id=2565426
https://papers.ssrn.com/sol3/papers.cfm?abstract_id=2565426
http://jamt.sisa.ssru.ac.th/index.php/JAMT1-1/article/view/7
http://jamt.sisa.ssru.ac.th/index.php/JAMT1-1/article/view/7
http://jamt.sisa.ssru.ac.th/index.php/JAMT1-1/article/view/7
https://papers.ssrn.com/sol3/papers.cfm?abstract_id=2514721
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The second chapter reviews the literature to build the theoretical foundation of the study 

and gives an overview of research related to the area of this thesis that has been 

conducted thus far. It identifies key issues which form the basis of the research. 

The third chapter describes the theoretical framework of the research and refines the 

research question and issues.  

The fourth chapter provides a detailed description of the adopted research methodology. 

It describes the data collection and analysis methods and the approach taken to find 

correlations. Finally, the limitations and ethical concerns are addressed. 

The fifth chapter presents the results and findings. It sets out summary tables and figures 

of the results to enhance readability. Chapter 5, Conclusions and implications, presents 

the conclusions and implications for theory, practice and methodology. The limitations 

that came up during the research and suggestion for future research are elaborated. 
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2 Literature review 
 

2.1 Introduction 
 

The previous chapter identified the research problem and provided an overview of the 

research methodology. This chapter reviews the current literature upon which the 

theoretical basis of this thesis is built. The two main areas of literature reviewed were in 

the areas of CSS and Big Data. Based on the interdisciplinary nature of the research 

there are several related areas covered in this review. Also, there are overlaps, for 

instance there is no clear separation between CSS and Big Data. SMM is a form of Big 

Data analysis and here also is no clear distinction between Big Data analysis and DM. 

Different authors use these terms interchangeably (Alpaydin 2004; Menasalvas & 

Wasilewska 2006; Finlay 2014). The review focuses on literature directly relevant to the 

research. ML and classification are covered in the sections on literature on SMM and PA 

since they are supporting theories in these fields. 

A considerable amount of research has been performed on using Twitter data (Arias, 

Arratia & Xuriguera 2014; Paltoglou & Thelwall 2012; Achrekar et al. 2011). Twitter has 

several characteristics that make it a popular research subject. Firstly, unlike in other SM 

sites such as Facebook or Google+ where access to posts can be limited to friends, all 

tweets are by definition public. Secondly, tweets are limited to 140 characters which 

simplifies NLP. Generally, no complicated linguistic constructs are used in posts because 

of the character limitation. Thirdly, Twitter provides a powerful search API to access 

historical data. When using appropriate queries much of the data pre-processing, such 

as relevance filtering, can already be handled in the data collection step. 
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The literature review is based mostly on searches in the University of Southern 

Queensland (USQ) online library and on Google Scholar, but also on other online 

libraries and indexing sites such as CiteSeerX or arXiv.org. 

The search terms were initially selected to focus on the research areas as described in 

chapter 1.5.4 Theoretical framework. Then they were narrowed down to include only 

search results in the specific area, for instance PA, PA using SM, PA using Twitter. Table 

2-1: Literature search terms lists the search terms that were used: 

Data Mining 

Big Data 

Artificial Intelligence 

Machine learning 

Predictive Analytics 

Opinion mining 

Data mining 

Social media mining 

Social media analysis 

Twitter analysis 

Predictive analysis using social media 

Predictive analysis using Twitter 

Big Data analysis using social media 

natural language processing 

social media using machine learning 

behavioural analytics 

natural language processing using social media 

opinion mining on social media 

opinion mining for predictive analytics 

research methodology 

research framework 

theoretical framework 

predicting share price 

predicting financial indicators 

Table 2-1: Literature search terms 
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2.1.1 Computational social science 

 

There is an extensive literature about CSS. The literature review focused on literature 

relevant for this thesis which is CSS itself and opinion mining. 

 

2.1.1.1 Social media mining 

 
SM data is big, linked, noisy, highly unstructured and often incomplete. Therefore it 

differs from data in traditional DM, which fosters a new research field - SMM (Tang, 

Chang & Liu 2014, p. 20). In recent years, a great deal of research has gone into 

analysing SM, and a large body of new studies has been published (Xinyu, Youngwoon 

& Suk Young 2015; Wei, Mao & Wang 2015; Tsakalidis et al. 2015). SMM is an 

interdisciplinary field rooted in computer science and social sciences. Researchers in this 

emerging field are expected to possess knowledge in different areas, such as DM, ML, 

text mining, social network analysis, and information retrieval. They are often required to 

consult research papers to learn the state of the art of SMM (Zafarani, Abbasi & Liu 

2014, p. 10). Among other DM algorithms, ML techniques have been used for SMM 

(Souza et al. 2015; Wlodarczak, Soar & Ally 2015; Shulong et al. 2014; Liu et al. 2014; 

Gerber 2014; Li et al. 2014). ML techniques are well suited when a problem cannot be 

adequately solved using simple (deterministic), rule-based solutions, when the rules are 

too complex or when you cannot scale. ML algorithms are trained with a set of data to 

recognize, for example the mood polarity (sentiment) of the data. ML is an area of AI and 

is not a recent technology. ML goes back to the late sixties when Arthur Samuel defined 

ML as the ability of a computer to learn without being explicitly programmed (Samuel 

1959). However, due to the nature of SM data, and for many Big Data problems, they 
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provide very suitable techniques that can handle the large volumes of data and their 

heterogeneous nature. Since the invention of the first ML algorithms in 1959 (Samuel 

1959), many new ML algorithms have been developed and are widely used now for SMM 

and Big Data analysis. 

DM “algorithms cover classification, clustering, statistical learning, association analysis, 

and link mining, which are all among the most important topics in DM research and 

development” (Wu et al., 2007, p. 2). Wu et al. (2007) have identified the top ten 

algorithms used in SMM. These algorithms are at the heart of SMM. They identified the 

following algorithms, C4.5, k-Means, SVM (Support Vector Machines), Apriori, EM 

(Expectation Maximisation), PageRank, AdaBoost, kNN (k-Nearest Neighbor), Naïve 

Bayes, and CART (Classification And Regression Trees), which are considered to be 

among the best techniques in this area. Most belong to the family of ML algorithms 

except for PageRank, which is based on webgraphs and graph theory. Wu et al. (2007) 

conclude that they are “among the most influential algorithms for classification, 

clustering, statistical learning, association analysis and link mining” (Wu et al., 2007, p. 

34).  

AdaBoost belongs to a family of learners called ensemble learners. If several learning 

schemes are available, it may be advantageous not to choose the best-performing one 

for your dataset (using cross-validation) but to use them all and combine the results 

(Witten, Frank & Hall 2011, p. 351). Ensemble learners have been used in many studies 

with surprisingly good results; such as for genome-wide prediction of traits (González-

Recio, Rosa & Gianola 2014), for approximating the crowd to predict majority opinions 

(Ertekin, Rudin & Hirsh 2014), for SMM (Tang, Chang & Liu 2014), for stock market 

prediction (Bouktif & Awad 2013), and for decision support systems (Pardeep et al. 
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2012). Ensemble learners work well in noisy environments, which is a typical 

characteristic of SM data. Even adding noise can improve the results in some cases. 

Noise can be described as items that carry no content of knowledge (Du 2013, p. 63). 

AdaBoost is an ensemble learner that has been developed specifically for classification. 

It can be applied to any classification learning algorithm (Witten, Frank & Hall 2011, p. 

359). Unfortunately, ensemble classifier methods do not take into account the 

interpretability of final classification (Bouktif & Awad 2013, p. 837). This lack of 

interpretability makes it difficult to determine which factors contribute to the result and to 

what extent. 

To retrieve knowledge from SM data, the data has to be analysed semantically. Many 

studies covered the techniques of mining text for opinion and sentiment analysis (Petz et 

al. 2014; Huang et al. 2013; Kao et al. 2013; Paltoglou & Thelwall 2012; Zeng et al. 

2010). Sentiment analysis is a subarea of Natural Language Processing (NLP). There 

are many NLP techniques such as stemming, lemmatization, or part-of-speech tagging. 

A common approach is splitting sentences into n-grams (Zlacky et al. 2014; Oliveira, 

Cortez & Areal 2013; Lloret et al. 2012), where n can be one for only one word, a 

unigram, a bigram for two words, trigrams etc. A different approach was pursued by Neri 

et al. (2012). They performed a sentiment analysis study on Facebook users comparing 

their sentiment towards RAI, the public Italian broadcast company against the private 

company LA7. They did not only use the positive or negative polarity of unigrams but 

instead analysed the whole sentences on the syntactic tree. They concluded that 

customer monitoring is a good way to measure loyalty and keep track of their sentiment 

towards brands and products. Whole sentence analysis has the advantage that it takes 

into account the context of sentiment words. 
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A different approach in the area of SMM is also used by Schreck & Keim (2013). They 

use a visualization approach to perceive information in SM. They point out the 

advantages of visual analysis to extract multifaceted information and correlate it with 

textual, geospatial, temporal, and other contextual data. This approach can be used on 

such data to track opinions about new products and services, fads and trends in popular 

culture, adverse reactions to prescription drugs, infectious disease epidemiology, fraud 

and other types of criminal activity, the public’s response to a political candidate or 

proposed legislation, motor vehicle defects, and different groups’ consumption habits 

(Schreck & Keim 2013, p. 69). However, they do not describe the details of their 

methodology or techniques that they used. SMM has become mainstream in research 

and new studies continue to appear analysing SM from different perspectives Xinyu, 

Youngwoon & Suk Young (2015) analysed tweets to predict the time and location where 

a specific type of crime was likely to occur. They used sentiment analysis of tweets and 

correlated it with weather data and historic crime data from a database. By correlating 

sentiment polarity and external influences, in their case weather data, they obtained 

better results from a hot-spot kernel density estimation model on theft incidents. Adding 

external influences to the analyses used in studies such as marketing campaigns or 

product announcements could be potential fields of future research. Wei, Mao & Wang 

(2015)) investigated the relationship between Twitter volume spikes and stock options 

pricing. They concluded that stock volatility around a Twitter volume spike and found that 

a three-parameter model that used the same drift and different volatilities before and 

after a Twitter volume spike provided the highest gain in the likelihood value. The work of 

Tsakalidis et al. (2015) focused on exploiting Twitter’s content to predict the 2014 EU 

election results in Germany, the Netherlands, and Greece. They used users’ voting 



Peter Wlodarczak                                                                            
                       

 

 
 Page 25                         

 

intentions and treated it as time-variant features. They employed time series analysis as 

well as sentiment analysis of tweets. They did not train a classifier but applied a lexicon-

based approach for sentiment analysis. Ishijima, Kazumi & Maeda (2015) analysed the 

sentiment towards the Japanese economy that might appear in daily news articles. They 

used word frequencies to classify articles into positive or negative articles about the 

current economic situation in Japan. They then constructed a daily summary index and 

performed statistical analysis to examine correlations between the sentiment index and 

Tokyo Stock Exchange prices. They concluded that the index significantly predicts stock 

prices of three days in advance. This study also used frequency analysis; however the 

prediction accuracy was lower from more sophisticated classifiers. 

 

2.1.1.2  Sentiment analysis (SA) 

 

Sentiment analysis (SA) using SM data has become a very active area of research. SA, 

also called opinion mining, on SM has not only attracted interest from academia, but also 

from the industry. For the first time in human history, we now have a huge volume of 

opinionated data in SM on the Web (Liu 2012, p. 8). In the past, companies have had to 

conduct surveys or opinion polls to obtain consumer opinions on their products and 

services. Using SA, it is possible to obtain the opinions of millions of users from SM data. 

Liu (2012) analyses the semantic orientation of an opinion using a feature-based opinion 

mining model where a feature is a finite set of words or phrases. He then tries to discover 

the hidden pieces of information by comparing an evaluative document against the 

comments of an opinion holder. Tsvetovat, Kazil and Kouznetsov (2013) focus on SA in 

social networks. They describe the challenges of SA as a replacement for polling, and 
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developed a new approach they called Implicit Sentiment Mining to overcome some of 

the difficulties. They rely on a psychological phenomenon called mirroring. To use 

mirroring, they collected a sample of texts from speeches of political candidates and 

Twitter posts from the same period which they processed through a linguistic pipeline to 

gauge overall party preference and propensity to vote for a specific candidate. Pang and 

Lee (2008) analysed methods for opinion mining and SA. They asserted that opinions 

are an important factor in the decision making process. They proposed a search 

specialized engine to get opinions and applications for different kinds of opinion Web 

sites. They provided, among others, an application for Business Intelligence. Taking this 

a step further, our proposed study quantifies the value of such an application. They 

provide a detailed description on how opinions were extracted, classified and 

summarized, both text based and graphic based. They also cover credibility, net 

authority and net influence.  

 

2.1.1.3  Quantifying social media data 

 
There have been many attempts to capitalize on the so-called “wisdom of the crowd” 

(Schoen et al. 2013). However, quantifying SM data remains challenging since it is often 

difficult to determine the impact of SM posts on human behaviour (Probst, Grosswiele & 

Pfleger 2013). Several studies tried to quantify SM data, many focusing on targeted 

marketing and on the return on investment (ROI) from marketing campaigns on SM 

(Zhang 2013; Goh, Heng & Lin 2012; Gomez-Arias & Genin 2009; Clemons 2009). 

Advances in information technology, data gathering and analytics are enabling 

companies to manage all phases of the customer life cycle, including acquiring new 
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customers, increasing revenue from existing customers and retaining new customers 

(Garcia Martinez & Walton 2014). As traditional advertising is losing its impact, both 

advertisers and the media owners who are dependent upon them are desperately 

seeking alternative ways to reach consumers and alternative ways to earn revenue 

(Clemons 2009, p. 46). Goh, Heng and Lin (2012) analysed the effect of direct marketer 

efforts on a Facebook fan site of an undisclosed company. They used quantitative 

approaches based on Heckman selection models and used control groups who have no 

Facebook account. They concluded that, ceteris paribus, the group that was targeted by 

direct marketing has a higher propensity to buy than an untreated group. They used 

econometrics to quantify the economic value for marketing efforts. The authors provide 

suggestions for future research but do not give clear indications of how to apply their 

findings in practice for online marketing efforts. 

Mayer (2009) analysed how socioeconomic background and incentives affect the 

structure and composition of social networks. He reviewed the theoretical and empirical 

literature studying these relations and possible implications of internet based social 

interactions. He concentrated on who interacts with whom, and how and why networks 

are formed. He analysed the influence of social networks on decision-making, trade, 

education, labour markets. He found that online social networks are formed in similar 

ways as offline social networks come about. However, the communication patterns differ 

in online social networks. He concluded that online social networks improve information 

transmission, foster price transparency, facilitate learning and make it easier to obtain 

product features or characteristics of trade partners. There was no indication however on 

what the implications of the study for policy and practice are or what the concrete 

applications are.  
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2.1.1.4  Frameworks for computational analysis 

 
Several attempts have been made to develop a framework for SM analysis (Arias, Arratia 

& Xuriguera 2014; Nguyen, Yan & Thai 2013; Nohuddin et al. 2012). They typically 

consist of a data collection and pre-processing mechanism, a data analysis engine and a 

visualisation and reporting frontend. Depending on the purpose of the framework, using 

correlation analysis (Souza et al. 2015; Siganos, Vagenas-Nanos & Verwijmeren 2014; 

Arias, Arratia & Xuriguera 2014; Kalampokis, Tambouris & Tarabanis 2013; Bollen, Mao 

& Zeng 2010) or predictive analysis (Burnap et al. 2015; Ishijima, Kazumi & Maeda 2015; 

Liu et al. 2014) is part of the framework. McKelvey et al. (2012) developed a framework 

they call Truthy, a system for collecting and analysing Twitter data of political discourses. 

Truthy is a system for visualizing political information diffusion on Twitter. Truthy can 

render statistical and visual overviews of large-scale communication networks. Truthy 

treats every tweet to be a meme, and categorises and visualises them as themes. Using 

this approach, they try to bridge the quantitative and qualitative epistemologies. They are 

interested in the visualisation aspect and not in opinion mining. They do not give insights 

into the metrics used.  

Xu, Li & Song (2012) propose a framework to identify the most valuable customers to 

maximize the profit of an enterprise. They conducted an empirical study and used an 

optimization technique based on semidefinite programming. They showed how, based on 

online influence and authority, more targeted marketing and reputation management can 

be performed.  

Smith et al. (2011) have tried to quantify social capital in online communities. They 

developed a computational framework to analyse cross-references, bonding, affinities 

and other kinds of relationships. They incorporated resources such as jobs, moral 
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support etc. more fully into their social capital framework from previous studies with a 

limited number of participants (Smith et al. 2011, p. 3) and showed how these resources 

can be mobilized. They conducted a proof of concept with four case studies. However, 

there is no single value for social capital. Also there is no economic quantification given, 

for example finding a job through a social network compared to finding one through a 

head hunter.  

Chau and Xu (2012) developed a framework to analyse business intelligence on blogs. 

Their primary focus was to analyse the blog content and the underlying social networks. 

The main purpose of the framework is to shape online reputation and improve marketing 

efforts. As proof of concept, they provided two case studies, one on a company, 

Starbucks, and one on a product, the iPod. They clearly describe their research design, 

detailing how they do their business intelligence collection and data analysis. The case 

studies described step-by-step how the material was gathered and analysed. However 

they did not mention how the automated steps were executed or what tools they used. 

Also, they did not describe the concrete value of their framework to BI.  

The research papers described in the section on Frameworks for computational analysis 

provide the starting point for the proposed study because while they had developed 

frameworks for a different purpose, they employed theories and techniques that have the 

potential for use in our study. 

Table 2-2 summarizes the literature review described in section 1.5.1 

 

Challenge Source Synopsis 

Social Media mining Souza et al. (2015); 

Shulong et al. (2014); Liu 

et al. (2014); Gerber 

(2014); Li et al. (2014) ; Wu 

Techniques for analysing 

structured, semi-structured 

and unstructured data are 

discussed. ML techniques 
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et al. (2007) ; Klein, Tran-

Gia & Hartmann (2013); 

Berman (2013); Mayer-

Schonberger & Cukier 

(2013); Zafarani, Abbasi & 

Liu (2014); Wlodarczak, 

Soar & Ally (2015);  

for classification problems 

are covered and under 

which conditions they are 

used. ML techniques have 

been widely applied to SM 

mining problems and 

provided good results since 

they can handle the 

noisiness and 

heterogeneity of SM data. 

They identified following 

algorithms C4.5, k-Means, 

SVM, Apriori, EM, 

PageRank, AdaBoost, k-

NN, Naive Bayes, and 

CART as the top of breed. 

They conclude that they 

are “among the most 

influential algorithms for 

classification, clustering, 

statistical learning, 

association analysis and 

link mining” (Wu et al., 

2007, p. 34). 

Sentiment  analysis Paltoglou & Thelwall 

(2012); Huang et al. 

(2013); Kao et al. (2013); 

Zeng et al. (2010); Liu 

(2012); Tsvetovat, Kazil & 

Kouznetsov (2013); Pang 

and Lee (2008) 

SA techniques are 

discussed, how they can 

be applied to SM and how 

they influence decision 

making. Text mining and 

sentiment analysis were 

used in SM analysis to 

determine customer loyalty. 

Sentiment analysis was 

also used to predict 

elections or overall party 

preference during elections 

and customer behaviour. 

The studies concluded that 

accurate predictions could 

be made when adopting 

appropriate psychological 
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and linguistic techniques. 

Quantifying social media 

data 

Goh, Heng and Lin (2012); 

Mayer (2009); Manyika et 

al. (2011); Zhang (2013); 

Goh, Heng & Lin (2012); 

Gomez-Arias & Genin 

(2009); Clemons 2009 

SM data has been 

quantified in terms of 

marketing efforts. The 

influence on decision 

making, trade, education 

and labour markets has 

been investigated. SM data 

can improve marketing 

efforts, especially for 

personalised and directed 

marketing campaigns. 

They conclude that Big 

Data can create significant 

value to the economy. 

They give estimates on 

how much money can be 

saved for example in the 

health sector if it were to 

use Big Data creatively. 

The studies conclude that 

determining the value is 

still challenging. 

Frameworks for 

computational analysis 

McKelvey et al. (2012); 

Smith et al. (2011); Chau 

and Xu (2012) 

SM analysis frameworks 

have been developed for 

analysing political 

discourses, determining the 

social capital in online 

communities and to 

analyse Business 

Intelligence in blogs. They 

propose to enhance the 

frameworks for more 

general purpose SM 

analysis. 

Table 2-2: Computational social science literature overview 
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2.1.2 Big Data 

 

In a broad range of application areas, data is being collected at an unprecedented scale 

(Jagadish et al. 2014, p. 86). The volumes of the collected data are often too large to be 

processed by traditional database technologies. Big Data has provided the technologies 

to store and analyse these large scale datasets. However, in literature there is no 

consensus on the definition of Big Data. Some authors use Big Data to refer to the data 

itself (Twinkle & Paul 2014; Berman 2013), others denote the technologies to process it 

(Mayer-Schonberger & Cukier 2013). Here the term Big Data is used to refer to the data 

analysis methods used for Big Data. 

Big Data has some fundamental differences when it comes to data collection and 

analysis. For one, no sample selection is needed since all or almost all data can be 

analysed (Mayer-Schonberger & Cukier 2013), for instance all opinions on Twitter. Big 

Data does not necessarily mean a huge quantity of data. For instance, 100,000 records 

are a small quantity for a database to manage but to perform a survey among 100,000 

people is an impossible task for a human with the result that not all people would be 

included in the survey but only a sample will be selected. This is not necessary in Big 

Data analysis. In this sense, Big Data means “all” or almost all data, for example, all 

people who retweeted a tweet.  

Secondly, in a world of small data (Berman 2011, p. 154) the sample has to be of high 

quality. “Since we only collected a little amount of information, we tried to make certain 

that the figures we bothered to record were as accurate as possible” (Mayer-

Schonberger & Cukier 2013, p. 32). This is not necessary for Big Data. For instance, if 

some subjects included in the analysis do not actually give their opinion on the iPhone 
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but some other product, the result would not necessarily influence the outcome because 

of the large quantity of opinions. 

Big Data is typically unstructured and messy. Unlike in a relational database, where data 

is organised in tables and containers, SM data is an accumulation of text, binary data 

such as multimedia data, or both such as text data with embedded pictures or videos. 

The data is unstructured and categorised by the users. For instance, tweets do not have 

a subject field. When a user writes a tweet, he or she usually “tags” it using the hash “#” 

sign. In other words, data is being labelled. Tagging has become the de facto standard 

today for categorising content on the internet. There is no standardised way for tagging. 

Some tags might be misleading or simply wrong. Nevertheless, noisy data does not 

falsify the validity of the result if there is enough of it. In Big Data analysis, more trumps 

better. Big Data transforms figures into something more probabilistic than precise 

(Mayer-Schonberger & Cukier 2013, p. 35). 

It is important to mention that Big Data finds correlations between data, not causes. For 

instance, Google publishes influenza trends based on flu related searches and medical 

records in a certain region (Ginsberg et al. 2009). If there are many searches it assumes 

there is a flu epidemic in that area. However, it does not find the cause of the epidemic. 

Big Data analysis finds the what, not the why. Accordingly, this study focuses on finding 

correlation, not causation. 

Big Data analysis now drives nearly every aspect of society, including mobile services, 

retail, manufacturing, financial services, life sciences, and physical sciences (Jagadish et 

al. 2014, p. 86). The literature on Big Data for this study falls into two categories, DM and 

PA. Many studies cover techniques and methods of Big Data analysis (Wright 2014; Dinu 

& Iovan 2014; Klein, Tran-Gia & Hartmann 2013; Berman 2013). These techniques 
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include distributed computing (Twinkle & Paul 2014), real-time analytical processing 

(Cheng-Zhang et al. 2014), distributed storage (Shvachko et al. 2010) and Big Data 

architectures (Chan 2013). Big Data technologies are a separate area of research and 

are beyond the scope of this thesis.  

Some studies also cover the limitations of Big Data. Buhl et al. (2013) argue that there 

have to be novel, innovative business models to fully exploit its usefulness. Some 

authors also cover the anonymity issues arising with Big Data analytics (Tucker 2014; 

Boyd & Crawford 2012) and privacy-preserving DM has been extensively discussed in 

the literature to overcome this problem (Agrawal & Srikant 2000). 

Manyika et al. (2011) tried to determine how Big Data could reduce costs in different 

industries. They concluded that Big Data can create significant value to the economy. It 

can enhance productivity and efficiency in the private and public sectors. They suggest 

estimates on how money can be saved for example in the health sector if it were to use 

Big Data creatively. Their study identified the  areas where and how Big Data can help  

improve decision making, discover needs or create greater transparency. The conclusion 

was that Big Data will change the way business is done today and will increase the 

competitiveness, productivity and efficiency of companies. However they do not specify 

how they came up with their estimates and what methods they used to arrive at them. 

 

2.1.2.1  Data mining (DM) 

 

Utilizing appropriate data mining (DM) algorithms is crucial to obtaining meaningful 

results. The algorithms have to be efficient and suitable for a Big Data setting. Many 

studies have developed and analysed DM algorithms (Lim, Chen & Chen 2013; 
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Bulysheva & Bulyshev 2012; Kumar et al. 2012; Zeng, Li & Duan 2012; Trif 2011). These 

algorithms are the basic building blocks for the framework developed for our study. 

Trif (2011) compared classic back-propagation to genetic algorithm based training in 

mobile systems based on performance and resource consumption. Back-propagation is 

used for training neural networks. After every training iteration, the error is propagated 

back through the network, and the weights of the axon connecting the neurons are 

adapted. Genetic algorithms are inspired by evolution and are used for optimization 

problems. After each generation the best results are selected and their best features are 

employed in the next generation. Their author concluded that genetic algorithms are 

more efficient especially in the mobile context and from a security perspective since they 

use fewer resources from traditional back propagation algorithms. Unfortunately, The 

study does not mention the nature of the data nor the quantity. It would be expected that 

this would influence the efficiency greatly. Kumar et al. (2012) analysed an evolutionary 

approach based on hybrid classification models in datasets from different domains. The 

classification of data is one of the main tasks in DM, but selecting the appropriate model 

to use depends on a number of different factors. Various  issues  such  as  predictive  

accuracy,  training  time  to  build  the  model,  robustness  and  scalability need to be 

considered and can have trade-offs, further complicating the quest for an overall superior 

method (Kumar et al., p. 25). They concluded that the use of the genetic algorithm is the 

most consistent algorithm in terms of predictive accuracy and the use of decision trees in 

terms of training time. A genetic  algorithm  is  the  first  choice  when  predictive  

accuracy  and  comprehensibility  are  the selection  criterion  and  decision  tree is  the 

first  choice  when  training  time  is  a  selection criterion (Kumar et al., p. 40). However, 

there is no mention of the application of the outcome to real world problems.  
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Lim, Chen & Chen (2013) analysed current Business Intelligence (BI) research in the 

areas of Big Data, text analytics and network analytics. They reviewed state-of-the-art 

techniques and algorithms and determined directions for future research. They found that 

a great amount of research is currently being undertaken in the areas of both descriptive 

and predictive models in relation to user preferences and behaviour (Lim, Chen & Chen 

2013, p. 9). This paper was a starting point for several technologies and techniques for 

this thesis. Bulysheva & Bulyshev (2012) proposed a new segmentation algorithm for 

identifying data that is valuable for the business. They presented a new algorithm for 

data segmentation to help build time-based customer behaviour models. The proposed 

study will build on this and determine the economic value of such behaviour models. 

Zeng, Li & Duan (2012) reviewed current Business Intelligence (BI) systems with an 

emphasis on BI algorithms. They were critical of current BI systems that only analysed 

past data and did not attempt to conduct any projections. 

Akhtar, Zamani and El-Sayed (2012) tried to find associations between individual data 

records or datasets. They modified some a priori and frequency algorithms to find 

Boolean associations in a BI system. This technique was used in a case study on al 

medical database as proof of concept. The conclusion was that the modified algorithm 

improved time and space complexity in association finding. Association finding is an 

important process in the proposed study since it can determine net authority and 

influence and thus identify important associations from less important ones. Their 

algorithms could turn out to be useful for our study because it provides improved 

association algorithms.  
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2.1.2.2  Predictive analysis (PA) 

 

Early research on stock market prediction was based on random walk theory and the 

Efficient Market Hypothesis (EMH) (Bollen, Mao & Zeng 2010, p. 1). However, stock 

market prices do not follow random walks and EMH is unreliable since financial news are 

unpredictable. New approaches in predictive analysis (PA) of financial markets have 

used SM data, often using SA and ML approaches. 

Twitter analysis has been used for predicting stock market development (Wei, Mao, & 

Wang 2015; Souza et al. 2015; Bollen, Mao & Zeng 2010), election outcomes (Burnap et 

al. 2015; Tsakalidis et al. 2015; Arias, Arratia & Xuriguera 2014; Tumasjan et al. 2011) 

and box office sales (Liu et al. 2014; Wong, Sen & Chiang 2012; Asur & Huberman 

2010).  

One of the first studies trying to link Twitter moods to financial indicators was a study 

conducted by Bollen, Mao and Zeng (2010). They attempted to analyse whether   

general mood on Twitter feeds could be used to predict financial indicators. They 

compared different SA methods to determine if the development of the mood could be 

used to predict the indicator. They also tested different correlation analysis methods, the 

Granger causality test and self-organizing, fuzzy neural networks, to determine if the 

closing values of the DJIA (Dow Jones Industrial Average) could be predicted. They 

concluded that public mood states derived from Twitter feeds can be used to predict the 

DJIA. “We find an accuracy of 87.6% in predicting the daily up and down changes in the 

closing values of the DJIA (Dow Jones Industrial Average) and a reduction of the Mean 

Average Percentage Error by more than 6%” (Bollen, Mao & Zeng 2010, p. 1). They 

found that multiclass SA gave the most accurate results. The results in this much cited 

study were very encouraging and triggered a large amount of new research in the area of 
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PA for financial indicators using SM data. PA has also been used to predict sales 

volumes, elections, diseases and political and humanitarian crises. 

Wei, Mao and Wang (2015) investigated the relationship between Twitter volume spikes 

and stock options pricing. Their study found that implied volatility increases sharply 

before a Twitter volume spike and decreases rapidly afterwards. Also, they found that 

options may be overpriced after a spike of tweet volumes. Similarly, Souza et al. (2015) 

tried to predict whether there is statistically-significant information between the Twitter 

sentiment and volume, and stock returns and volatility. They concluded that measures of 

the Twitter sentiment extracted from listed retail brands have a statistically-significant 

relationship with stock returns and volatility. Using Facebook SA, Siganos, Vagenas-

Nanos and Verwijmeren (2014) observed a positive relation between sentiment on 

Facebook and stock market returns. 

Ostrowski (2011) performed a study using relational modelling and a social dimension to 

predict customer behaviour. The aim of the study is to support more focused customer 

relationships. His findings showed that among his three chosen supervised classification 

methods the edge-based k-means outperformed the modular matrix approach. K-means 

is a clustering technique used to categorize the tuples of a dataset in different groups 

based on the similarities (Kumar et al. 2012, p. 28). The modular matrix approach 

organizes data into matrices based on user defined classes. The dimension of the matrix 

corresponds to the number of classes. The study compared the performance of the 

classification methods under various scenarios but did not provide an actual application 

for the customer relationship management. 

Wong, Sen and Chiang (2012) have analysed whether tweets can be used to predict box 

office sales for movies. They accessed tweets using the Twitter API and used IMDb and 
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Rotten Tomatoes (RT) ratings as control data. They concluded that Twitter users are 

generally more positive about movies than IMDb and RT users and that Twitter reviews 

did not necessarily translate into predictable box-office sales. This suggests that the 

results can differ depending on which SN is being analysed. Our proposed study will take 

this into account when it comes to determining the reliability of the results. 

However, other studies have challenged the results and the validity of PA. Gayo-Avello 

(2012) challenged the capability of Twitter analysis to predict elections. He stated that SA 

on Twitter data could not unambiguously distinguish between political and non-political 

tweets. He also found that tweets can refer to different persons, even if they make use of 

the same name. He cited the example of Felipe Calderón, who was a candidate for the 

elections for the Mexican president but also a Spanish candidate, Ramón Calderón, who 

was running for president of Real Madrid.  

As can be seen from this, many factors influence the accuracy of predictions and can, in 

particular, be significantly influenced by the data collection and feature extraction steps 

of the process. 

Method Source Synopsis 

Data mining Trif (2011); Kumar et al. 

(2012); Lim, Chen & Chen 

(2013); Bulysheva & 

Bulyshev (2012); Zeng, Li 

& Duan (2012) 

Utilizing appropriate data 

mining algorithms is crucial 

to obtaining meaningful 

results. Different algorithms 

perform differently 

depending on the data 

types, the volume and the 

velocity. Back-propagation, 

evolutionary and statistical 

algorithms have been 

analysed. They are used 

for classification, 

aggregation, segmentation, 

text mining and sentiment 
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analysis as well as 

associations. 

Predictive analysis Bollen, Mao & Zeng (2010); 

Tumasjan et al. (2011); 

Arias, Arratia & Xuriguera 

(2014); Asur & Huberman 

(2010); Wong, Sen & 

Chiang (2012); Wei, W, 

Mao, Y & Wang, B (2015); 

Souza et al. (2015) 

A number of studies tried to 

use SM data for predictive 

analysis. Predicting box 

office sales on the opening 

weekend of a new movie, 

the development of the 

Dow Jones index, election 

outcomes, TV ratings and 

influenza rates using 

sentiment analysis. The 

studies concluded that 

using the right methods 

accurate predictions could 

be made. They also 

concluded that text mining 

of SM data is still very 

challenging. 

Table 2-3: Big Data literature overview 

 

2.2 A framework for analysing Twitter data 
 
The literature review has shown that SN are being analysed from many different 

perspectives. There is a large body of literature on profit maximisation through online 

marketing campaigns and their return on investment. There has also been increasingly 

innovative research on generating new business by analysing SM data. Many studies 

analyse the online reputation of companies or products and performed opinion and SA. 

The literature review also indicated that an increasing number of companies perform SM 

analysis, however they often struggle due to the lack of profitable business models for 

their organisations. 

The goal of this research proposal is to develop a framework to analyse Twitter data 

using Big Data analysis and to determine the economic value especially for share prices. 
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The study complements the current literature on SMM and Big Data theories by 

developing a framework for tweets and evaluating different methods. It will determine 

which textual binary sentiment classifier produces the more accurate results for finding 

correlations with share price.  

While there have been many studies using SM analysis to predict share price, to the best 

of our knowledge no study so far has correlated opinions on companies and products to 

the share price of the company. 

 

2.3 Research question and issues 
 
Based on the literature review, 2 Literature review, conducted, the following research 

question has emerged: 

 

Research question: Is there a correlation between share price and public opinion on 

products based on Big Data analysis of tweets? 

 

Essentially, I argue that by using predictive analysis of Twitter tweets a monetary value 

can be deduced. The research question is based on the following hypotheses: 

 

Hypothesis 1: Sentiment polarity of Twitter data can be correlated to the share price 

history 

 

If a correlation can be determined as assumed in hypothesis 1, this leads to the second 

hypothesis: 
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Hypothesis 2: A correlation between sentiment polarity and share price can be used to 

predict share price trends 

 

2.4 Summary 
 

This chapter reviewed the relevant literature and identified the gaps this thesis aims to 

fill. Previous studies have tried to predict financial indicators. Wei, Mao & Wang (2015) 

used the Black–Scholes mode and Twitter spikes to predict stock option pricing. They 

concluded that implied volatility increases sharply before a Twitter volume spike and 

decreases quickly afterwards (Wei, Mao & Wang 2015, p. 271). They did not use opinion 

mining but used only tweet volumes. Ishijima, Kazumi & Maeda (2015) used word 

frequencies in news articles for opinion mining to predict the Japanese stock market. 

However, their methods using daily word frequencies did not perform as well as more 

sophisticated opinion mining techniques. Shulong et al. (2014) analysed public sentiment 

variations on Twitter. They used the Latent Dirichlet Allocation based clustering methods 

for opinion mining allowing them to detect reasons behind sentiment variations (Shulong 

et al. 2014, p. 1168). Nanli et al. (2014) used collective mood states on Sina, a Chinese 

version of Twitter, to predict the Chinese stock market. While they did not describe the 

details of their analysis they did use dictionary based methods for opinion mining. Hong 

Keel, Dennis & Yuan (2014) analysed tweets of S&P 500 companies for positive and 

negative opinions to predict daily stock market returns of these firms. Like Nanli they 

employed a dictionary based approach for sentiment analysis. Zheng & Xiaoqing (2013) 

used a Social Behaviour Graph based on human’s online behavior for sentiment analysis 

on a Chinese stock forum to predict trading volumes. Porshnev, Redkin & Shevchenko 
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(2013) used a lexicon based approach for sentiment analysis of tweets and SVM and 

neural networks for predictive analysis. Evangelopoulos, Magro & Sidorova (2012) 

applied Latent Semantic Analysis to extract the semantic and conceptual content from 

tweets to make predictions on stock prices. Bollen, Mao & Zeng (2010) used a tool for 

opinion mining, OpinionFinder, to analyse tweets to predict the DJIA. The literature 

review indicated that no study applied regression based models for opinion mining. 

Regression models have been used for predictive analysis (Souza et al. 2015; 

Evangelopoulos, Magro & Sidorova 2012), but not study used LR for creating opinion 

time series. LR finds a single, linear decision boundary and has the advantages that: 

 It does not expect the independent variables to be normally distributed 

 It does not expect a linear relationship between the independent and the 

dependent variable 

 It has a low variance 

 It is less prone to over-fitting from other learning schemes such as neural 

networks 

 It is a fast algorithm 

Applying LR for opinion mining has the potential to improve classification accuracies 

when applied to text due to the heterogeneity and noisiness of posts on SM. 

The next chapter describes the research methodology that has been adopted. 
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3 Research methodology 
 

3.1 Introduction 
 

The previous chapter discussed the ever growing literature in the area of SMM and Big 

Data and identified the gaps this study intends to fill. This chapter will discuss the 

research design and methodology, outlined in the introductory chapter in detail and 

justify the approach.  

DM is a very iterative process and for certain tasks several methods were used. The best 

performing method was then chosen for the specific task. For instance, the original 

approach of using word frequency analysis for opinion mining did not provide satisfactory 

results, so a more sophisticated method based on n-gram and subjectivity analysis was 

chosen. 

 

3.1.1 Data conditioning phase 

3.1.1.1  Data collection of Twitter data 

 
Usually data analysis starts with getting familiar with the domain. This is important 

because different areas often use different language and its own jargon. This influences 

how data is searched for, viz. the search terms, and how it is being mined and 

interpreted. 

Once the domain is understood, the sources have to be defined. This step has gained in 

importance since the Internet has opened a whole wealth of new data sources. For this 

study Twitter has been chosen for several reasons: 



Peter Wlodarczak                                                                            
                       

 

 
 Page 45                         

 

 Twitter has a public search API to access historic posts and a streaming API to 

access real-time data. In contrast, Facebook has a query API limited to the 100 

latest posts of a user’s timeline and access to the streaming API, the "Public Feed 

API", is limited to a small invited research group.  

 By definition all tweets are public as a result of which they can be read by 

anybody, unlike other SM sites, e. g. Facebook, where posts can be accessible 

only by Facebook friends if not made public by the user.  

 Twitter tweets are limited to 140 characters. This limit does not allow for lengthy 

reasoning and usually posts are direct and to the point. This makes opinion mining 

easier since usually explicit statements are used and no complex linguistic 

constructs need to be processed.  

 Twitter offers a powerful query API where search terms can be refined to include 

and exclude tweets containing certain search terms. This allows result lists to be 

filtered down to include only relevant tweets and the use of pre-processing 

techniques such as relevance filtering when constructing the queries.  

 Twitter has a large, active user base. To obtain good results for PA and ML, a 

large volume of labelled training data is needed.  

With a user base of more than 650 million Twitter accounts and an average of close to 

7'000 tweets sent every second (Twitter Blogs 2015), Twitter produces large volumes of 

data. For this study, a popular consumer product company, Apple Inc., was chosen, 

since lesser known companies are less tweeted about or hardly at all. 

Data was collected during the periods when there were no announcements from Apple or 

any conferences held where Apple was presenting in order to avoid having outliers. After 

any company announcement, an unusually high number of users were likely to tweet in 
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response and retweet in response, thereby producing an unusually high number of 

tweets. Outliers are instances that are considerably different from other instances in the 

dataset (Zafarani, Abbasi & Liu 2014, p. 141). Outliers usually falsify the result and are 

thus often removed. While outliers might be reflected in a financial index too, here the 

assumption was that a correlation is more likely to be detected using a normalized time 

series curve. Outliers can be handled using Big Data methods. However, this study aims 

to find correlations using Twitter tweets only. There are many external influencers that 

might influence share price such as marketing campaigns or exhibitions. Including 

external influencers could be a subject for future research. 

When collecting data, we can either use APIs provided by SM sites for data collection or 

scrape the information from those sites (Zafarani, Abbasi & Liu 2014). Using the API will 

require writing a program or script to collect the tweets automatically. Using a screen 

scraper means using a program, typically a browser plugin, to simulate a user and 

scrape the data off the SM site. No programming is needed. Some SM sites offer 

different types of APIs. For instance, Twitter has a search API for historic data and a 

streaming API for real time data. Twitter offers a “firehose” API for 100%, a “gardenhose” 

API for 10% and a “spritzer” API for 1% of its real time data. If no API is provided, screen 

scrapers can be used to access SM data. It accesses data directly through the browser 

similarly like a user does, for instance a Facebook time line or a Twitter search result. 

Web screen scrapers are usually browser plug-ins such as NCapture (NVivo 11 for 

Windows 2016) or Mozenda (Mozenda Blog, 2017). There are also online tools that can 

be used to access the data such as Spredfast (Spredfast 2017) or Topsy (Topsy.com 

2015).  
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For this research the NCapture screen scraper that comes with NVivo was used and the 

Twitter4j (Twitter4j 2017) library for collecting historic tweets. Twitter4j is a Java library to 

facilitate access to Twitter APIs through a Java program. It gives access to the timeline, 

to the timeline of friends, the search API, streaming (real-time) data, number of followers, 

retweets and so forth and can execute queries. 

Twitter requires its users to register and create an access token to access its data 

programmatically. It is based on OAuth, an open standard for authorization on the Web. 

Through the API, the number of retweets, the number of mentions in other tweets, the 

number of followers, and the time stamp and location trends can be accessed for each 

tweet.  The Twitter API also gives access to queries.  

The output of a query lists the user and the content of the post. A sample query output is 

shown in Figure 3-1: Twitter data query output 

@Lisa_Mainiac_ - Samsung Galaxy Tab 3 ? ? 
http://t.co/cbFk4O7o2s http://t.co/zKPh7vF08I 
@electronicguid - Must See: Samsung Galaxy Note 2 vs. Galaxy Mega 6.3 Comparison 
Part 1 http://t.co/PcNeywtwqL 
@ForVi_ - Name: @Forvi_ The New generation has Come I AM #ReadyToMoveOn with 
@Samsung_ID Galaxy S III Mini Go ! 32 ##ReadyToMoveOn 
@Marmaladedays - @O2 and get a great case for it here :) https://t.co/fq8yt9yUjs 
@tsriram - Samsung Galaxy Note 3 Hammer & Knife Test | Freak. 
http://t.co/bAZtU6DFZa 
@GoulartIzabel - Micro USB MHL TO HDMI 1080P HD TV Cable Adapter For Samsung Galaxy 
S3 S4 Note 2: Price 0.76 USD (9 Bids) End... http://t.co/n5VAHZpbVW 
@Benjovi23 - If you have a Samsung galaxy device don't send texts with the smiley 
faces its changes it to picture messaging and you will get charged 
http://t.co/iwszKpQtiy 15.12 10:36 
… 

Figure 3-1: Twitter data query output 

 

The Twitter search API is not idempotent, meaning, it will not always return the same 

results. Two consecutive, identical Twitter searches, one through the API and one using 

the Web search may render different results. The documentation of the Twitter Search 
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API documentation states that the API renders data based on relevance (Twitter 

Developers 2015). This is only a problem if the feature distribution in different query 

result sets varies significantly. Since according to the Twitter documentation the tweets 

are selected randomly, the distribution should be more or less even. 

In this study, the tweets were stored in an Amazon S3 bucket, a storage service offered 

by the Amazon cloud. The Twitter search API has the possibility to refine a search by 

excluding words, including or excluding retweets, or giving a start and end date. A smiley 

can be added to retrieve only tweets with a positive or negative attitude. For instance, the 

following search retrieves all tweets containing the words “iPhone S6” since 1st July 

2015, excluding tweets containing http or https as possible spam (Bollen, Mao & Zeng 

2010, p. 2), excluding retweets and with a positive attitude: 

iPhone S6 since:2015-07-01 -http -https +exclude:retweets :) 

Figure 3-2: Twitter search 

 

This has the advantage that part of the data pre-processing can already be done during 

the data collection phase. For instance, excluding retweets in the query can handle data 

deduplication during data collection, at least partly as has been found in this study. The 

query can be called programmatically through the API or through the advanced search in 

Twitters web site. The search results can then be collected using NCapture. In this study, 

both methods were used. It has to be noted that searching through the API and through 

the Web interface showed to return different result sets. Twitter returns a sample of 

random tweets for a given time period and query according to the Twitter documentation 

(Twitter Developers 2015). No additional information about how Twitter actually selects 

the random tweets was documented. 
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It should be noted that according to Big Data principles data cleansing such as spam 

removal should not be necessary. However, for the algorithms used in this study, a 

purified data set had a better predictive performance from a dataset that did not go 

through the cleaning steps. The data cleansing stage can have a direct effect on both the 

accuracy and speed of the entire resolution process (Ting, Wu & Ho 2010, p. 75). Also, 

better features will result in better trained learners. Since ML map input(s) x to output(s) 

y, the closer the input vector x is to y, the easier the task for a ML scheme becomes. The 

closer the input and output vectors are, the faster the learner converges during training. 

3.1.1.1.1 Datasets 

For training, several datasets were tested. For instance a data set containing opinions 

about Apple, Google and Microsoft was used but did not show satisfactory classification 

accuracies when the trained classifiers were evaluated. These datasets were not used 

any further in the testing. 

For this study, only tweets about Apple, the iPhone and the iPad were used. The iPhone 

and iPad are contributing most to Apples revenue Pramuk 2015). Apple has a number of 

other products such as the Apple watch, the iMac, the MacBook and many others. An 

obvious choice would be to collect all tweets about Apple and all Apple products. 

However, Apple also sells accessories to their products, lesser known products such as 

the Apple Pencil or the Xsan Storage Area Network and services. However, only the 

products with the biggest contributions to revenue were analysed. For instance, the 

Apple Pencil only contributes marginally to revenue. Also, considering service such as 

the “Apple Volume Purchase Program for Business”, a search returned only one result. 

Apple also has contracts with some large corporations where the details are not public 

and no information about revenue is publicly available. For this reason, this study 
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focuses on tweets directly about Apple, the iPhone and the iPad. Many possible 

combinations could have also be considered, for example all Apple, iPhone and iPad 

tweets together. However, testing all combinations for correlations would exceed the 

scope of this study and should be subject for future research. 

 

3.1.1.2  Data pre-processing 

 

During the data pre-processing stage, the data is passed through a relevance filter. 

Irrelevant data such as stop words, punctuations such as brackets or semi colons and 

smileys are typically removed. ML techniques such as Logistic Regression or the Naïve 

Bayes classifier used in this study use a bag-of-words approach and do not require stop 

words to be removed. There is no definitive list of stop words. For example, “isn’t” is 

sometimes removed as stop word, but in opinion mining it is a mood polarity shifter that 

can change the entire meaning of the statement. To avoid spam, text that matches the 

regular expression “http” and “www” was removed. 

 

Figure 3-3: Relevance filtering of tweet 

 

To get clear statements, a data set containing only tweets with subjective statements 

was created, viz. data records that contain opinions, not fact statements. Tweets with 

fact statements were discarded in this set. For instance, “I like the new Tesla” is a 
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subjective statement expressing a sentiment, “The new iPhone comes in black and 

silver” is a fact statement and has to be removed. 

Data deduplication is an important data pre-processing step. Twitter searches can have 

many duplicates even though the “-filter:retweets” parameter was added to every query. 

The similarity between the documents is usually computed by one of the distance or 

similarity measures such as cosine similarity, Euclidean distance, Pearson correlation 

coefficient, Jaccard index, Kullback-Leibler divergence and many others (Zlacky et al. 

2014, p. 161). To remove duplicates, in this study the Jaccard index was used. The 

Jaccard index operates at a token level and compares two strings by first tokenizing 

them and then dividing the number of common tokens by the total number of tokens 

(Baldwin & Dayanidhi 2014, p. 427). The Jaccard index is a very efficient way of 

comparing strings and has been used in many studies (Zhong et al. 2016; Zafarani, 

Abbasi & Liu 2014; Vesdapunt, Bellare & Dalvi 2014; Hangya & Farkas 2013). The 

deduplication was run with a proximity cut off of 0.5 where a proximity of 1 is a perfect 

match. All rows above proximity were eliminated. The threshold was determined 

empirically by looking at results with thresholds from 0.3 - 0.7. Deduplication is needed to 

reduce redundancy and improve the performance of the algorithm. If every row has to be 

compared to all other rows, the algorithm is O(n^2). That is why it is not suited for large 

datasets. 

To pre-process the tweets, for example for data deduplication and subjectivity analysis, 

the Natural Language Processing (NLP) toolkit LingPipe (LingPipe 2015) was used. 

LingPipe has implemented all common NLP techniques such as part-of-speech tagging, 

named entry recognition, word sense disambiguation, expectation maximisation and 

many more. It is open source and implemented in Java. 
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After filtering out all the relevant information, the tweets are ready for SA. The pre-

processing tasks depend highly on the analysis problem and can vary depending on the 

type of data, the problem at hand and the results that the analysis is supposed to reveal. 

For this study several datasets were analysed to compare their performance with 

different ML schemes. 

 

3.1.2 Predictive analysis phase 

3.1.2.1  Data classification 

 

After the data has been pre-processed, it is ready to be classified. Classification can be 

binary, usually positive or negative, or multiclass, for instance a Likert scale. In this study 

the data was classified into positive and negative tweets over a time frame of two 

months. The binary sentiment polarity was then represented as a time series. Modelling 

for time series is conceptually similar to other modelling problems, but one major 

distinction is that usually the next value of the series is highly related to the most recent 

values, with a time-decaying importance in this relationship to previous values (Wu & 

Coggeshall 2012, p. 173). 

The tweets were classified using supervised ML techniques. We interpret ML as the 

acquisition of structural descriptions from examples (Witten, Frank & Hall 2011, p. XXI). It 

allows a system being trained using examples and adding human judgement to correct 

the incorrectly classified tweets. To train a learner, after each learning cycle the error is 

calculated using a loss function such as the negative log-likelihood or mean squared 

error. During training the loss function is minimized until a minimum is reached. ML, then, 

is about making computers modify or adapt their actions (whether these actions are 
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making predictions, or controlling a robot) so that these actions get more accurate, where 

accuracy is measured by how well the chosen actions reflect the correct ones (Marsland 

2009, p. 5). ML can be useful in situations in which producing rules manually is too 

labour intensive (Witten, Frank & Hall 2011, p. 25). ML techniques are also adopted 

when a problem cannot be adequately solved using a simple (deterministic), rule-based 

solution or when it does not scale. Spam filtering is probably one of the most prevalent 

applications of ML. It cannot be done manually due to the large of volumes of spam and 

it does not scale since constantly new forms of spam appear and programming new rules 

cannot keep up with the speed at which new forms of spam surface. Spam filtering is 

often done using techniques based on the Bayesian theorem. For each email the 

probability that it is legitimate or spam is calculated. If there is a high probability that the 

email is unsolicited, it is filtered out by the spam filter. 

To analyse and classify the tweets, several ML tool kits were evaluated. For this study, 

as for NLP, LingPipe was used. LingPipe is an open source NLP library that has 

implementations of ML techniques that can analyse a body of data. It has 

implementations of classification and clustering algorithms. It is well documented, has 

been used in many real-world problems (Carpenter 2007; Konchady 2008; Denecke 

2008) and was easy to use. The frameworks that were evaluated were LingPipe 

(LingPipe 2015), Mallet (MALLET 2017), WEKA (Weka 3 2015), RapidMiner (RapidMiner 

2017), NLTK (Natural Language Toolkit 2017) and Amazon ML (Amazon Machine 

Learning 2017). The evaluation of the tools focussed on popular open source 

frameworks except for Amazon ML. MALLET is an open source ML framework that has 

implementations of many popular ML algorithms. However, the documentation showed to 

be very incomplete and the online community seemed to be smaller from the LingPipe 
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community. WEKA is a ML framework written in Java, but contrary to MALLET has a 

graphical user interface. WEKA has no NLP capabilities. RapidMiner is a commercial DM 

and ML tool that has a free, open source version. The open source version has a limit of 

10’000 data rows (RapidMiner 2017) which is too small for this study. NLTK is a very 

popular NLP toolkit written in Python. Its functionality is comparable with the functionality 

of LingPipe. It has NLP and ML capabilities. Amazon ML was the only non-open source 

toolkit evaluated. At the time of writing there was no documentation of which ML 

algorithms Amazon ML uses. LingPipe was selected over the other tools because it is 

well documented. Since the data was collected using Twitter4j and Java, using a Java 

library was a natural choice over a Python based library. As stated before, the 

Documentation of MALLET was very incomplete which made its use very difficult. WEKA 

has no NLP capabilities; RapidMiner in its free edition was too limited and Amazon ML 

did not document any of its used algorithms. 

Generally speaking, ML schemes are well documented in literature and many good 

implementations, open source and closed source can be found. The focus of the 

evaluation was on ease of use, availability of documentation and on how easy it could be 

integrated into the framework used for this study. That is the main reason why LingPipe 

was selected over NLTK, which is written in Python, not Java. 

Figure 3-4: Machine learning cycle shows a ML learning cycle using LingPipe. 
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Figure 3-4: Machine learning cycle 

 

Ultimately we want to find a decision function f, that classifies tweets into labels X={x1, 

x2,…xn}, such that f:X → {P,N}, predicts if a tweet is positive P or not N. This is a binary 

classification problem since we have two class labels, f is called classifier. It should be 

noted that many classifiers output the probability Pr, that a tweet xi with corresponding 

label yi belongs to class j (Wlodarczak, Soar & Ally 2015, p. 380): 

)Pr( jyx ii   

Equation 3-1: Classification probability 
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In this study a method called cross-validation was used. In cross-validation, first the 

labelled data is separated into a set of training data and a set of testing data. The data is 

divided randomly into n folds, where n is usually somewhere between 5 and 10. The 

model is trained with n-1 folds, then, the model is tested using the holdout fold. This 

method is called n-fold cross-validation. There are usually several iterations until the 

result converges. Converging means the result is not changing anymore. The result is 

evaluated using different measures. A popular measure is the classification accuracy, the 

ratio between the correctly classified and the total number of tweets. Other measures 

used were the F score and Kappa statistics. 

There are many measures for the performance of a binary classifier. The Receiver 

Operating Characteristic (ROC) is a graphic plot that illustrates the varying discrimination 

threshold. Precision–Recall (PR) measures the relevance of a classification. The 

performance measures will be explained in more detail in the research methodology 

chapter. 

This process of training and testing is repeated for all the classification algorithms to 

determine which one has the best classification performance. Experience shows that no 

single ML scheme is appropriate to all DM problems (Witten, Frank & Hall 2011, p. 403). 

LingPipe has several evaluator classes that can be used to compare the performance of 

the different algorithms to select the most effective one. After evaluation, a set of new, 

unseen data was run against the trained algorithm to create a binary sentiment 

classification time series of two month worth of tweets. 
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Figure 3-5: Binary sentiment classification time series 

 

3.1.2.2  Correlations 

 

To determine if predictions can be made, correlations have to be detected and validated; 

in this case is tweet there a correlation between share price and public opinion on 

Twitter? In other words, does the Twitter mood time series have statistically relevant 

predictive information about the financial time series?  

A popular method to analyse the temporal relationship of the behaviour is the Granger 

causality test. It evaluates the correlation between two lagged time series. However, 

even Granger causality is not causality in a deep sense of the word because it is also 

based only on numeric predictions (de Siqueira Santos et al. 2013, p. 11). The traditional 

linear Granger test has been widely used to examine the linear causality among several 

time series in bivariate settings as well as multivariate settings (Bai, Wong & Zhang 

2010). The original Granger tests examined the linear causality among several time 

series in a bivariate and multivariate setting (Wlodarczak, Soar & Ally 2015, p. 4). 

However, many real world applications are nonlinear and variances have been 

Binary sentiment classification time series

Opinion Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Total Trend

Positive Tweets 12.00 23.00 52.00 346.00 325.00 182.00 58.00 41.00 42.00 41.00 34.00 102.00 1,258.00

Negative Tweets 23.00 56.00 68.00 61.00 15.00 23.00 47.00 36.00 63.00 53.00 12.00 17.00 474.00

Total 35.00 79.00 120.00 407.00 340.00 205.00 105.00 77.00 105.00 94.00 46.00 119.00 1,732.00
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developed (Hiemstra & Jones 1994). For this study, the R implementation in the lmtest 

package was used (Package lmtest 2017). The lmtest package only supports Granger in 

a bivariate setting, however for this study no multivariate data was analysed. 

If a correlation has been detected, the latency has to be determined. The correlation 

latency is the delay between the change of the sentiment polarity and the change in 

share price. The correlation analysis was thus performed using different time lags. To 

determine if correlations exist between Twitter opinions and share price, the sentiment 

time series was compared against the stock price chart of the analysed company. Figure 

3-6: Tweets about Apple Inc. and AAPL share price shows the Twitter mood time series 

and the Apple Inc. share price.  

 

 

Figure 3-6: Tweets about Apple Inc. and AAPL share price 

 

If a correlation was detected visually, the detection had to be automated. A correlation 

exists, if a pattern in one time series repeats in the other time series.  

Tweets about Apple Inc.

Opinion Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Total Trend

Positiv e Tweets 123.00 23.00 34.00 346.00 219.00 182.00 58.00 41.00 42.00 41.00 86.00 327.00 1'522.00

Negativ e Tweets 23.00 56.00 68.00 61.00 15.00 23.00 47.00 36.00 63.00 53.00 12.00 17.00 474.00

Stock price 218.00 365.00 234.00 341.00 97.00 123.00 61.00 52.00 71.00 23.00 218.00 315.00 2'118.00

Total 364.00 444.00 336.00 748.00 331.00 328.00 166.00 129.00 176.00 117.00 316.00 659.00 4'114.00
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To find correlations, the R statistics framework was used and the lmtest package and it’s 

the Granger causality test implementation. The test is simply a Wald test comparing the 

unrestricted model—in which y is explained by the lags, the order, of y and x—and the 

restricted model—in which y is only explained by the lags of y (Package lmtest 2017). 

The inputs for the causality tests were: 

1. A time series of two month of stock market values, for example Apple stock price 

AAPL 

2. Permutations of mood time series 

 
The analytical framework was written in the Java programming language and used the 

LingPipe NLP toolkit for data pre-processing and analysis. The R statistics environment 

and programming language was used for correlation analysis. An R script was developed 

to run the Granger causality tests. 

 

3.2 Data analysis framework 
 

For this study, a data analysis framework was developed using Java and R. It consists of 

a data collection class that uses Twitter4j (Twitter4j 2017) to access the Twitter REST 

API. Some helper classes were developed, for instance for data transformation of tweets 

from text to CSV format. The data went through data deduplication and basic subjectivity 

pre-processing steps using LingPipe for NLP. LingPipe was also used for feature 

extraction. In the case of the naïve Bayes classifier, a bag-of-words was created. For LR 

a tokenizer from LingPipe was used to extract n-grams. 
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Figure 3-7: Data analysis framework 

 

The framework is generic. Except for the data collection, it could be used to analyse 

posts from other SM sites. However, since tweets are limited in character size, it would 

have to be tested with longer posts to verify its suitability for other sites allowing posts 

exceeding the 140 character size. 

 

3.3 Justification for the paradigm and methodology 
 

ML techniques have been widely used for DM. They have shown to be effective for many 

DM problems (Xinyu, Youngwoon & Suk young 2015; Wei, Mao & Wang 2015; 

Tsakalidis et al. 2015). ML techniques are domain independent and can be used for text 

mining, multimedia mining, decision support, predictive maintenance or fraud detection. 

Many approaches have been applied for SA (Zlacky et al. 2014; Solakidis, Vavliakis & 

Mitkas 2014; Shulong et al. 2014). Topic models such as Latent Dirichlet Allocation 

(LDA) (Zlacky et al. 2014) or term weighting such as Term Frequency and Inverse 

Document Frequency (TF/IDF) (Gokhale et al. 2014) have been widely used. Many more 

methods exist. The decision to use supervised ML techniques was taken for following 

reasons: 
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 The class label was known; in unsupervised methods such as LDA observations 

are assumed to be caused by latent variables 

 The causal relation between the input and output observations is straightforward, 

the causal gap is small 

 There is an abundance of data, about 6’000 tweets per second on average 

 ML techniques usually have good generalization performance as long as there is 

enough data 

 ML has an emphasis on predictive models, statistics is more focussed on 

explanatory or inferential models 

 The problem at hand is linearly separable 

 Naïve Bayes and Linear Regression have been widely used and can be very 

effective for many data analysis problems, especially for text processing tasks 

ML models fall into the category of context reasoning decision models. Context 

reasoning can be defined as a method of deducing new knowledge, and understanding 

better, based on the available context (Perera et al. 2014, p. 432). They support the 

decision making process by making predictions about imminent machine failure, 

customers who are likely to switch or possible security breaches in case of a cyber-

attack. There are a large number of different context reasoning decision models, such as 

decision tree, naive Bayes, hidden Markov models, support vector machines, k-nearest 

neighbour, artificial neural networks, Dempster-Shafer, ontology-based, rule-based, 

fuzzy reasoning and many more (Perera et al. 2014, p. 432). The requirement for context 

reasoning emerges due to imperfections in raw data. When collecting bulk data such as 

tweets, there are likely to be off topic tweets, duplicates, outliers, missing data or 
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misinterpreted tweets. ML techniques mitigate this problem by giving high-level context 

deductions from a set of contexts. 

ML is inspired by natural learning and as such it is well suited for real world problems 

such as opinion mining. But it should be noted that human learning is supervised and 

unsupervised, but dominantly unsupervised. Humans learn mostly from experience, not 

from labelled data.  

The Granger causality test (Souza et al. 2015) was used in assessing whether there are 

anticipatory or lagged effects in time series. The hypothesized causal variable in time 

series X must have unique information about the dependent variable in time series Y. 

While Grangercausality has no real meaning for causality, it is well suited for analysing 

time precedence in explorative studies and it is widely used in economics. The causal 

relationship must not be simultaneous but defined with a lag, which is an assumption in 

this study. 

 

3.4 Ethical considerations 
 

The use of data—particularly data about people—for data mining has serious ethical 

implications, and practitioners of data mining techniques must act responsibly by making 

themselves aware of the ethical issues that surround their particular application (Witten, 

Frank & Hall 2011, p. 33). Very little is understood about the ethical implications 

underpinning the Big Data phenomenon (Boyd & Crawford 2012, p. 672). In this study, a 

lot of opinionated tweets about Apple were collected. However, the data was collected 

anonymously and no personal information was extracted. Nevertheless, using this 

framework, there are several considerations. Often reidentification of anonymised data is 

possible. For instance, over 85% of Americans can be identified from publicly available 
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records using just three pieces of information: five-digit zip code, birth date (including 

year), and sex (Witten, Frank & Hall 2011, p. 33). Tweets are by definition public for 

everyone to read. There seems to be no privacy issue. However, often people are not 

aware of what information they are disclosing that is implicit. For instance, one study 

could determine sexual orientation, ethnicity, religious and political views, personality 

traits, intelligence, happiness, use of addictive substances, parental separation, age, and 

gender only based on Facebook likes in some cases with accuracies of more than 80% 

(Kosinski, Stillwell & Graepel 2013, p. 5802). So Twitter users, without being aware are 

revealing information about their interests, their opinions and views. The information can 

be used for targeted advertisements or marketing campaigns. Oppressive regimes can 

also use the info to find and persecute dissidents or critical journalists. Users of SM are 

often ignorant about what information can be deduced from what they publish. Privacy-

preserving DM techniques have been proposed (Vatsalan, Christen & Verykios, 2013; 

Boyd & Crawford 2012; Agrawal & Aggarwal 2001; Agrawal & Srikant 2000). However, 

due to the complexity of the subject they are often not applied. It should be noted that 

collected data might be used in ways that go far beyond what was originally planned 

when it was collected. 

When applied to people, data mining is frequently used to discriminate—who gets the 

loan, who gets the special offer, and so on (Witten, Frank & Hall 2011, p. 33). 

Discrimination based on opinions in tweets is only one possible form of abuse. Positive 

opinions often mean profits and fames for businesses and individuals, which, 

unfortunately, give strong incentives for people to game the system by posting fake 

opinions or reviews to promote or to discredit some target products, services, 

organizations, individuals, and even ideas without disclosing their true intentions, or the 
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person or organization that they are secretly working for (Liu 2012, p. 123). Writing fake 

opinions is called opinion spam. Twitter not only offers a search API, but also an API to 

automatically create new tweets (Twitter Developers 2017). It could be used to produce 

bulk fake opinions. Ultimately, making predictions based on Twitter might be considered 

insider information. 

 
 

3.5 Conclusions 
 

This chapter elaborated the research methodology. The data collection and analysis 

steps were described and some ethical concerns were raised. Twitter data was collected 

using the Twitter API using a program written in Java, and NCapture, a screen scraper. 

The data was then purified using basic subjectivity analysis to find only opinionated 

tweets and data deduplication. Several models were trained using the different datasets; 

the original data set, the deduplicated set and the set that went through basic subjectivity 

analysis. The models were evaluated for their performance and the best performing 

models were used for correlation analysis. Correlation analysis was done using the 

Granges causality test and R. The next chapter will describe how the data in this study 

was collected, processed and interpreted in detail. 
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4 Data analysis 
 

4.1 Introduction 
 

The preceding chapter elaborated the research methodology. This chapter describes the 

data analysis methods used for this study. It builds upon the research methodology 

described in the previous chapter and describes in detail how the data was collected, 

pre-processed and analysed. 

 

4.2 Data mining 
 

DM comprises two phases, the data conditioning phase and the PA phase. For this 

study, tweets were collected and analysed. The steps and tasks used are summarized in 

Figure 4-1: Twitter data mining steps.  

 

Figure 4-1: Twitter data mining steps 

 

4.2.1 Data conditioning phase 

 

In the data conditioning phase, tweets about Apple Inc., the iPhone and the iPad were 

collected using the Twitter search API and a screen scraper, NCapture from 1st of 

December 2015 to 31st of December. During this time period no announcements from 
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Apple or end user fair took place that would have boosted the number of tweets. The aim 

of this study is not to analyse the influence of external events on Apple share price. 

Selecting a period without major Apple related events avoided having outliers in the 

datasets. Not having outliers can be easily verified using Topsy. Figure 4-2: Number of 

tweets about Apple, the iPhone and the iPad shows that over the period from 2nd of 

November 2015 to 2nd of December 2015 no outliers in terms of number of tweets were 

detected. 

 

Figure 4-2: Number of tweets about Apple, the iPhone and the iPad 

 

Apple’s flagship product and main source of profit, the iPhone, is contributing most to its 

revenue (Pramuk 2015). It is to be expected that iPhone sales influence share price the 

most. 

Also, a query for iPhone is unambiguous. It most likely only returns tweets specifically 

related to the iPhone. For instance, a query for Galaxy, Samsung’s flagship smartphone 

suite, would most likely also return tweets about galaxies of the universe. Samsung is a 

conglomerate that produces other electronics such as displays, TVs, chips, hard drives 

etc. The Galaxy smartphone range is only one of many products that contribute to 

company results. This makes Apple ideal for correlating tweet trends about their products 
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and share price. Using for instance “Galaxy”, Samsung’s smartphone, as a search term, 

a query will more likely also return tweets about Galaxies in the universe. This means 

that additional NLP pre-processing steps such as word sense disambiguation or part-of-

speech tagging are required. Generally speaking, data pre-processing is domain specific 

and the steps depend on the data. In contrast, ML is not domain specific and ML 

techniques can be used for DM in any domain. 

SM companies have changed access to their sites several times in the past and it is 

possible that access will change again and some of the statements will become 

outdated. At the time of writing, Twitter restricted access to 180 queries per 15 minutes 

for users represented by access tokens (Twitter Developers 2015). This means that data 

collection has to run over a certain period of time to get the tweets. If the API quotas are 

changed and get more constraint, data collection will have to be run over a more 

extended period of time. 

4.2.1.1  Access method  

 
There are several methods to access Twitter tweets. The first is using Twitter’s search 

API. For this study the Java open source library Twitter4j (twitter4j 2015) was used. It 

allows accessing historic tweets through the query API as well as real-time data by 

implementing its TwitterStream interface. This has the advantage that the same query 

strings can be used for historic and for streaming data. Twitter4j implements a Java 

wrapper for Twitter’s v1.1 REST API. REST is an acronym for Representational State 

Transfer and is an architecture style of the World Wide Web.  

The second method used was using the NVivo screen scraper plugin, NCapture. The 

advantage of using a screen scraper is that no API needs to be used and no 
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programming is required. The captured tweets can be imported into NVivo for qualitative 

analysis. NVivo is a computer assisted qualitative data analysis software (CAQDAS). 

CAQDAS has been seen as aiding the researcher in her or his search for an accurate 

and transparent picture of the data whilst also providing an audit of the data analysis 

process as a whole - something which has often been missing in accounts of qualitative 

research (Welch 2002, p. 1). Using NVivo has the disadvantage that only certain data 

formats such as XML are supported. A learning library such as LingPipe requires, for 

instance, Coma Separated Value (CSV) format. 

The other two possibilities, using Web sites for data collection or buying data from 

brokers such as DataSift (DataSift 2015), were not evaluated since they are very costly. 

SM data can also be accessed through web tools such as Topsy (Topsy.com 2015) or 

Gnip (Gnip 2015). Web-based SM analysis tools often offer free, basic functionality and 

premium, subscription-based functionality. Web-based social data analysis tools that rely 

on public discussion to produce hypotheses or explanations of patterns and trends in 

data rarely yield high-quality results in practice (Willett, Heer & Agrawala 2012, p. 227). 

Topsy was used just to query the daily tweet volumes for every query. This allowed 

estimating for how long a query has to be run to get, for instance, one month of Twitter 

data. The number of daily tweets and the 15 minutes query quotas as defined in the 

Twitter search API can be used to get an estimate for how long a query has to run given 

the quota to get a data set of a day of tweets. Topsy was bought by Apple and has been 

discontinued now. 
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4.2.1.1.1 Queries 

 
A query is a request for information retrieval. Twitter supports query operators that 

modify the behaviour. For instance, tweets containing certain words can be omitted. The 

API also supports logical operators such as the disjunction operator OR, meaning “All 

tweets containing expression 1 OR expression 2”. The search can also restrict the time 

window of the tweets and exclude retweets. For instance, the query in Table 4-1: Twitter 

query for Apple 

Apple -http -https -www lang:en since:2015-04-01 until:2015-04-02 +exclude:retweets 

Table 4-1: Twitter query for Apple 

 

retrieves all tweets containing the word “Apple”, not containing the words “http”, “https” 

and “www”, only tweets in the English language from April 1st 2015 to April 2nd 2015, 

excluding retweets. “http”, “https” and “www” are excluded since many tweets that 

contain URLs are spam (Bollen, Mao & Zeng 2010, p. 2). 

The Twitter search API has a parameter, an emoticon, ":)" to return only tweets with a 

positive, or ":(" to return only tweets with a negative attitude. However, it merely checks 

for the presence of a positive or negative smiley and is therefore not a real sentiment 

classification method. For instance, a tweet "I miss my iPhone :-(" has a negative attitude 

but should be interpreted as a positive sentiment towards the iPhone. 

The queries used in this study are listed in the table in Appendix 6.2 Queries.  

 

 



Peter Wlodarczak                                                                            
                       

 

 
 Page 70                         

 

4.2.1.2  Data collection 

 

Twitter Data was collected using the Twitter search API and NVivo’s NCapture screen 

grabber. The NVivo qualitative data analysis tool was used to collect data and do an 

initial analysis. NVivo has a screen grabber plugin, NCapture, for Google Chrome and 

MS Internet Explorer. NCapture was used to capture tweets through the Twitter web 

search and imported into NVivo for data pre-processing. The volumes captured through 

NCapture and through the API were about the same.  

The NVivo 11 Plus edition also has quantitative analysis capabilities. For instance, the 

NVivo Plus version can do word frequency analysis. It also has cluster, SA and topic 

classification capabilities among others. NVivo does SA only at the sentence, paragraph 

or cell level. No information on the methods used for SA is documented. It seems that 

NVivo does SA based on word frequencies. There are no performance statistics and a 

verification using human judgement showed that the results are not satisfactory. A 

corpus of about 167,400,000 tweets was collected and classified using NVivo. NVivo has 

an auto code functionality "Identify sentiment" that does multiclass sentiment 

classification. It classifies tweets into four categories: 

Very negative, moderately negative, moderately positive and very positive 

However manually checking the results showed many false positives and false 

negatives. For instance, "Dads new job gave him an iPhone 6s and I'm super jealous" 

was classified as very negative. Also, the SA is done on the entity level, not the aspect 

level. For instance, "An iPhone without the case is so dope" was classified as very 

negative. The sentiment classifier seems to only look for positive or negative sentiment 

words and often misclassifies the whole sentiment polarity. NVivo, according to the 
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documentation, performs SA based on single sentiment words. "It is important to 

understand that this tool does not classify content according to sentiment. It does not 

take each piece of content and rate it on a Likert sentiment scale. It looks at the 

sentiment of words in isolation—the context is not taken into account." (NVivo 11 for 

Windows Help 2015). 

However, NVivo was useful for pre-evaluating the data. Analysing the collected data in 

NVivo revealed that "+exclude:retweets" did not remove all retweets and data 

deduplication was still necessary. Also, only few tweets really use hashtags to highlight 

the subject of the tweets. This explained why queries using the hashtag, e. g. “#iPhone”, 

did not improve the results of the predictive model. Figure 4-3: Tweets imported in NVivo 

shows an import of tweets captured by NCapture in NVivo: 

 

Figure 4-3: Tweets imported in NVivo 

 



Peter Wlodarczak                                                                            
                       

 

 
 Page 72                         

 

At the time of the study, Twitter limited access to its Search API to 180 queries every 15 

minutes and 1600 results per query. Also, the API only returns tweets no older than 10 

days. So the data collection was performed over a period of two months. A corpus of 

more than a quarter of a million (253,237) tweets (Apple: 85,516, iPad: 82,025, iPhone: 

85,696) for the period 1st November 2015 to 31th December 2015 was collected. This 

body was subjected to data pre-processing and after pre-processing for training of the 

learning algorithms. 

It’s important to note that the Search API is focused on relevance and not completeness. 

This means that some tweets and users may be missing from search results (Twitter 

Developers 2015). The Twitter Search API is part of Twitter’s v1.1 REST API. It allows 

queries against the indices of recent or popular tweets and behaves similarly to, but not 

exactly like, the Search feature available in Twitter mobile or web clients, such as 

Twitter.com search (Twitter Developers 2015). The Search API is not a complete index 

of all tweets, but instead an index of recent tweets. At the moment that index includes 

between 6-9 days of tweets (Twitter Developers 2015). 

For this reason, two different methods of accessing historic tweets were used, one based 

on the REST API and one using the NVivo screen scraper. 

The Apple share quotes were collected from the Nasdaq web site (Nasdaq 2016). Figure 

4-4: AAPL quotes over a period of 2 month shows the AAPL quotes over a period of 2 

months, November 2016 to December 2016 from the Nasdaq web site: 
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Figure 4-4: AAPL quotes over a period of 2 month 

 

The quotes can be exported to an Excel spread sheet which allows for easier 

processing. Table 4-2: Excel export of AAPL quotes shows an excerpt from an Excel 

export: 

Date Open High Low Close Volume 

2015-07-02 126.43 126.69 125.77 126.44 27171180 

2015-07-06 124.94 126.23 124.85 126 27972950 

2015-07-07 125.89 126.15 123.77 125.69 46737090 

2015-07-08 124.48 124.64 122.54 122.57 60609830 

2015-07-09 123.85 124.06 119.22 120.07 78291510 

2015-07-10 121.94 123.85 121.21 123.28 61292800 

Table 4-2: Excel export of AAPL quotes 
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4.2.1.3  Data pre-processing 

 

The data pre-processing tasks include data deduplication and basic subjectivity analysis 

to remove tweets without opinions. Data cleaning refers to the pre-processing of data to 

remove or reduce noise (by applying smoothing techniques, for example) and the 

treatment of missing values (e.g., by replacing a missing value with the most commonly 

occurring value for that attribute, or with the most probable value based on statistics) 

(Han, Kamber & Pei 2011, p. 289). Many classification algorithms have mechanisms for 

handling noisy or missing data. However, cleaning data before analysis can improve the 

learning process. Irrelevant data such as duplicates or data that does not contribute to 

the result have to be eliminated, for example filtered for relevance. Data transformations, 

such as converting the data from one format to the other, were also performed but this 

will not be described in detail as this only supports the analysis process but has no effect 

on the result. For instance, the collected tweets were transformed from plain text into 

Comma Separated Value (CSV) files, since this format is supported by LingPipe. To 

transform the data, some helper classes were developed as part of the data analysis 

framework. 

There are two types of sentences, “objective” and “subjective” sentences. For instance, 

“The new iPhone comes in two colours, black and marine blue” is an example of an 

objective statement whereas “The new iPhone is great” is a subjective statement since it 

expresses an opinion, and not a fact. SA aims to extract subjective information, opinions, 

and thus only tweets containing subjective information need to be analysed, and 

objective tweets have to be filtered out. Subjectivity/objectivity identification can be a 

difficult task since texts can have both subjective and objective information. Also 

subjectivity/objectivity classification largely depends on the definition of subjectivity. For 
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instance, “The new iPhone is expensive” can be regarded as an objective statement or 

as a negative opinion. On SM, microblogs contain mostly subjective information of 

around 82.9% (Petz et al. 2014). Nevertheless, opinion mining performs better when 

objective sentences are removed (Pang & Lee 2004). Since tweets are short, the whole 

tweet was removed in this study if it contained objective sentences to create a data set 

with only subjective statements. To remove objective tweets, basic subjectivity analysis 

was performed. 

Data deduplication was performed using the Jaccard index, also called Jaccard distance 

or Jaccard similarity coefficient. Data deduplication is a Natural Language Processing 

(NLP) task and will be described in the next chapter. 

4.2.1.4  Natural language processing 

 

The NLP task was performed using the LingPipe library. The tool evaluation focussed on 

free open source software (FOSS) frameworks. Commercial products, such as the IBM 

SPSS suite, were not evaluated. However, Amazon’s cloud based ML service was also 

evaluated. The following NLP frameworks were evaluated: 

LingPipe, Mallet, WEKA, RapidMiner, NLTK and Amazon ML 

Some NLP tools, such as LingPipe and RapidMiner, have a dual-licensing model. They 

offer a free basic license and a commercial license offering additional features or 

services. There are many other frameworks such as OpenNLP, Googles Speech API or 

GATE, to name a few. 

LingPipe was chosen for several reasons:  

 LingPipe is an NLP toolkit but also has implementations of ML algorithms such as 

classification and clustering schemes 
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 LingPipe has performed very well for all NLP and classification tasks that were 

executed 

 LingPipe is written in Java and has a native Java API 

 LingPipe has a very complete documentation, a shortcoming of some of the other 

toolkits 

 LingPipe is widely used in academia and the industry; a Google Scholar search 

returns more than 2000 publications.  

 LingPipe is Big Data ready 

 LingPipe 1.0 was released in 2003 (Baldwin & Dayanidhi 2014) and has matured 

since.  

For this study version 4.1 was used. LingPipe is a very popular NLP framework in 

academia and has been used in many studies (Lloret et al. 2012; Asur & Huberman 

2010; Pang, B & Lee, L 2008; Carpenter, B 2007; Carpenter, B 2004). 

Word sense disambiguation determines the meaning of a polysemous word in a specific 

context. For instance, ‘apple’ can refer to the company Apple Inc., or the fruit of the 

deciduous apple tree. Word sense disambiguation was not necessary since the words 

‘iPhone’ and ‘iPad’ have no other meaning than the devices by Apple Inc. An analysis of 

the query results, using human judgement, showed that less than 1% of the captured 

tweets were about the fruit, and not the company. 

Two data pre-processing tasks were performed: basic subjectivity analysis to remove 

objective tweets, and data deduplication.  
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4.2.1.4.1 Data deduplication 

 

Near duplicates were eliminated using the Jaccard index, also called the Jaccard 

similarity coefficient. This commonly used measure calculates the likelihood of a node 

that is a neighbour of either x or y to be a common neighbour. It can be formulated as the 

number of common neighbours divided by the total number of neighbours of either x or y 

(Zafarani, Abbasi & Liu 2014, p. 328):  
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Equation 4-1: Jaccard index 

 

LingPipe has an implementation of the Jaccard index.  

The Jaccard index divides the intersection of tokens from the two strings over the union 

of tokens from both strings (Baldwin & Dayanidhi 2014, p. 119). Tokenization is the 

process of extracting useful words, phrases or symbols from text sequences. A tokenizer 

breaks the text into text sequences that are used to calculate the distance. LingPipe has 

several implementations of tokenizers. A standard approach of statistical modelling is n-

gram analysis. It is based on counting frequencies of occurrences of short symbol 

sequences of length up to n (called n-grams) (LeCun, Bengio & Hinton 2015, p. 441). If 

the vocabulary size is V, the number of possible n-grams is in the order of Vn. LingPipe 

has an NGramTokenizer. N was set to 8. Instead of just splitting texts up into words, it 

splits texts up into sequences of 8 words. If texts are analysed at the single word level, 

sentiment polarity shifters might be ignored.  

Data deduplication reduced the data set by an average of: 
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Query term Percent 

iPhone 8.381562 

Apple 6.61280475 

iPad 4.85566755 

Table 4-3: Data deduplication percent per term 

 

4.2.1.4.2 Basic subjectivity analysis 

 

For basic subjectivity analysis, a statistical n-gram Language Model (LM) was used. 

Language models define probability distributions p(σ) over strings σ ∈ Σ∗ drawn from a 

fixed alphabet of characters Σ (Carpenter 2007, p. 2). The LM classifier is a learner that 

uses categorized character sequences, not single isolated words as many ML schemes 

do with the bag-of-words, unigram approach. LM classifiers relax some of the 

independence assumptions of naïve Bayes, allowing a local Markov chain dependence 

in the observed variables, while still permitting efficient inference and learning (P eng, 

Schuurmans & Wang 2004, p. 317). 

Training data is often created manually. Alternatively a body of annotated training data 

that has been made available on the Internet can be used. Here training data from Pang 

and Lee (2004) with a body of 10,000 records has been used for training an LM 

classifier. The Dynamic Language Model Classifier from LingPipe was used. A 

DynamicLMClassifier is a language model classifier that accepts training events of 

categorized character sequences (LingPipe API 2016). It is based on a multivariate 

estimator for the category distribution. n was tested for values from 4 to 11. The 

categories are “objective” and “subjective”, n=8 yielded the overall best results. Whereas 

the total accuracy, F1 and kappa statistic values, started to deteriorate for values above 

8, the area under curve still improved. Table 4-4: Summary statistics for basic subjectivity 

analysis shows the summary statistics for the subjectivity analysis: 
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n-gram Total accuracy F1 kappa PR ROC 

11 0.916 0.916 0.832 0.799797 0.791308 

10 0.917 0.917 0.834 0.799184 0.791236 

9 0.919 0.919 0.838 0.795737 0.789034 

8 0.921 0.921 0.842 0.79233 0.785358 

7 0.914 0.914 0.828 0.786075 0.780812 

6 0.915 0.915 0.83 0.777449 0.77448 

5 0.924 0.924 0.848 0.761533 0.76123 

4 0.909 0.909 0.818 0.719389 0.725968 

Table 4-4: Summary statistics for basic subjectivity analysis 

 

4.2.1.5  Classifier evaluation 

 

There are several metrics to evaluate a classifier. For this study the total accuracy, F1 

score, kappa coefficient, precision and recall and the receiver operating characteristic 

was used. Traditionally, information retrieval evaluation of accuracy, precision, recall and 

a combined f-measure score have been used (Ting, Wu & Ho 2010). The most common 

metric for evaluating classifiers is the accuracy. The accuracy is also referred to as the 

overall recognition rate of the classifier, that is, it reflects how well the classifier 

recognizes tuples of the various classes (Han, J & Kamber, M 2006, p. 360). The 

accuracy values for an unbalanced data set task are usually skewed because of the 

disproportion between matches and non matches (Ting, Wu & Ho 2010). For this reason, 

other measures such as precision and recall values have also been used. A measure 

called the Kappa statistic takes the expected figure into account by deducting it from the 

predictor’s successes and expressing the result as a proportion of the total for a perfect 

predictor (Witten, Frank & Hall 2011, p. 166). The maximum value of Kappa is 100%. 

The result of each test is represented as confusion matrix. A confusion matrix is an 

unambiguous view of the classification accuracy. It is called confusion matrix because it 
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is easy to see which categories the learner confuses. For instance, a learner classifying 

text into British, Australian and American English would be expected to be highly 

confusable. Confusion matrices can also be used to compare multiclass classifiers. A 

perfect classifier has all zeroes except in the cells that are located diagonally from the 

top left to the bottom right. They represent the correctly classified instances. 

A confusion matrix is a two dimensional contingency table with identical sets in both 

dimensions representing the instances in a predicted class. It is also called an error 

table. A confusion matrix can be used for binary and multiclass prediction with a row and 

column for each class. Confusion matrices can be used to quantitatively compare two 

classifiers over a fixed set of categories. This allows a more detailed analysis than just 

the proportion of correct guesses such as the accuracy. An ideal classifier has only 

values bigger than zero on the main diagonal. Table 4-5: Confusion matrices, shows the 

confusion matrices of the tests: 

n=11 Objective Subjective 
 

n=10 Objective Subjective 

Objective 453 47 
 

Objective 455 45 

Subjective 37 463 
 

Subjective 38 462 

       n=9 Objective Subjective 
 

n=8 Objective Subjective 

Objective 457 43 
 

Objective 458 42 

Subjective 38 462 
 

Subjective 37 463 

       n=7 Objective Subjective 
 

n=6 Objective Subjective 

Objective 459 41 
 

Objective 458 42 

Subjective 45 455 
 

Subjective 43 457 

       n=5 Objective Subjective 
 

n=4 Objective Subjective 

Objective 462 38 
 

Objective 451 49 

Subjective 38 462 
 

Subjective 42 458 

Table 4-5: Confusion matrices 
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The total accuracy, also called confidence, is expressed as the proportion of the correctly 

predicted instances from all instances. It can be expressed as percentage by multiplying 

it with 100. It is used to decide whether a model is good enough to make robust 

predictions. Accuracy alone is usually not enough to make these predictions.  

The F1 score, also F-score or F-measure measures the test accuracy of a binary 

classification. It is defined as: 

recallprecision

recallprecision
F




 21  

Equation 4-2: F1 score 

The F-score balances precision and recall. 

Precision is the number of true positives, divided by the number of true positives and 

false positives. It is also called Positive Predictive Value (PPV). It is a measure for a 

classifier’s exactness. Recall is the number of true positives divided by the number of 

true positives and false negatives. It is also called sensitivity or True Positive Rate (TPR). 

It is a measure of a classifier’s completeness. 
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Figure 4-5: Precision Recall 

Precision is defined as: 

fptp

tp
precision


  

Equation 4-3: Precision 

where tp = true positives and fp = false positives. 

Recall is defined as 

fntp

tp
recall


  

Equation 4-4: Recall 

 

Where tp = true positives and fn = false negatives. 

The Kappa statistic is used to measure the agreement between predicted and observed 

categorizations of a dataset, while correcting for an agreement that occurs by chance 

(Witten, Frank & Hall 2011, p. 166). This measure takes into account the probability of 
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random agreement between the predicted and the actual observed values and it is 

computed as: 

)(1

)()(

eP
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Equation 4-5: Kappa coefficient 

Where: 

m

mm
aP 1211)(


  

Equation 4-6: Observer agreement 

 

is the observed agreement and P(e) is the probability of random agreement, that is, the 

probability that the actual and the predicted coincide assuming independence between 

predictions and actual values (Arias, Arratia & Xuriguera 2014, p. 10). m is the total 

number of predicted values, m11 is the number of correct predictions (or hits) for the 

upward movement, m12 is the number of failed predictions (or misses). κ is one when the 

predicted and actual values agree. 

Receiver Operating Characteristic (ROC) curves depict the performance of a classifier 

without regard to class distribution or error costs. They plot the true positive rate on the 

vertical axis against the true negative rate on the horizontal axis (Witten, Frank & Hall 

2011, p. 172). The top left corner is the “ideal” point where the false positive rate is zero 

and the true positive rate is one. Hence, the larger the Area Under Curve (AUC) the 

better the classifier performs. 
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Figure 4-6: Receiver Operating Characteristic 

 

ROC curves are used to compare the performance of binary classifiers. In real-world 

settings, ROC curves are usually not as smooth as the one shown in Table 4-6, but are 

more stepped. 

 
An average of 40 % of the records was eliminated as a result of the subjectivity analysis. 

Table 4-6: Percentage of objective statements shows the percentages per month and 

search term: 

  iPhone iPad Apple 

November 41.993893 41.32689 39.33967 

December 41.89642 41.90201 39.47344 

Total % 41.9451565 41.61445 39.40656 

Table 4-6: Percentage of objective statements 
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The accuracy of every step was always verified using human judgement. Human 

judgement is a manual verification process where randomly selected datasets are 

inspected to get an estimate for the performance of the classifier. For instance, tweets 

that were removed for containing objective statements, not opinions, were randomly 

selected to substantiate that they are not actually opinionated. 

4.2.2 Predictive analysis phase 

 

After the data had been pre-processed, the data analysis was performed using ML 

techniques. As stated before in chapter 1.3 Research methodology, there are many 

different ML techniques. Classifying tweets into positive and negative tweets is a binary 

classification problem and supervised ML techniques apply. Several learning schemes 

were trained and compared.  

Classifiers should make no mistakes. For instance, a spam filter that classifies emails 

into legitimate and spam should always correctly detect spam. However, in real-life 

problems there are often a number of erroneously classified records. The number of 

errors should be small, so the best performing classifier was selected for SA. To 

compare them, a classifier needs a measure for the confidence of the classification. This 

is usually a score or a probability such as Precision Recall (PR) or the F-score. 

First, the learning schemes have to be trained. To train the models, several corpuses of 

hand-classified tweets were evaluated. Labelled data is often called truth data, ground 

truth or golden standard data. It is expensive to produce in any quantity and the cleanest 

articulation of what is being done (Baldwin & Dayanidhi 2014, p. 82). Gold data is often 

labelled manually or verified manually. Labelling is also called annotating. The training 

data was collected over a one-week period. A day’s data is likely to be correlated, for 
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instance to an announcement or another event and thus biased. That is why data over a 

period of one week was collected. The quality of the test set was verified using human 

judgement. Some records were randomly selected and manually verified. 

The classifiers were trained and evaluated using n-fold cross-validation. The training 

data was divided into n=10 sets or folds. 9 folds were used for training, 1, the holdout set, 

for testing. This process is also called holdout cross-validation. Extensive tests on 

numerous different datasets, with different learning techniques, have shown that 10 is 

about the right number of folds to get the best estimate of error, and there is also some 

theoretical evidence that backs this up (Witten, Frank & Hall 2011, p. 153).  

To improve cross-validation performance, the folds were verified to make sure the class 

label was properly represented in each fold, otherwise the learner is poorly trained. This 

process is called stratification and the whole process stratified holdout cross-validation. 

The folds were randomly selected and the whole process including random sampling 

was repeated 10 times to mitigate the bias. The error rates of each iteration were 

averaged over all iterations. The process was repeated 9 times until all 10 folds had 

been used once for testing.  

The workflow used to improve the performance of the learner was as follows: 

1. Verify the cross-validation performance 

2. Verify the error 

3. Analyse the errors by looking at the wrongly classified datasets 

4. Adjust the system 

5. Evaluate again 

Learning models that improved performance during cross-validation also increased 

performance on new data.  
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Cross-validation did not reliably predict the performance on new data. As a 

consequence, four different error categories were evaluated: 

For a given category X: 

True positive: The classifier guessed X, and the true category is X 

False positive: The classifier guessed X, but the true category is a category that is 

different from X 

True negative: The classifier guessed a category that is different from X, and the true 

category is different from X 

False negative: The classifier guessed a category different from X, but the true category 

is X (Baldwin & Dayanidhi 2014, p. 109) 

These error categories were used to determine the evaluation metrics Precision Recall 

(PR) and Specificity. 

Precision is defined as: true positive / (false positive + true positive) 

Recall is defined as: true positive / (false negative + true positive) 

Specificity is defined as: true negative / (true negative + false positive) 

It has to be noted that classifications are not mutually exclusive; a tweet can have a 

positive and a negative statement and thus belong to both classes.  

Following models were trained and evaluated: 

 Perceptron and multilayer perceptron classifier 

 Decision tree induction 

 Multigram language model 

 Naïve Bayes 

 Logistic regression classifiers 
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Only the Language model, naïve Bayes and Logistic Regression, was used for the actual 

analysis. The perceptron and decision tree classifiers did not perform well and were not 

used for analysis. All classifiers tested were using tokenized input. Tokenization breaks a 

stream of text into words, n-grams, phrases, phonemes or other meaningful elements. 

They are called tokens and are used for document representation. LingPipe’s 

classification, tagging, and entity extraction are all based on n-gram character language 

models (Carpenter 2007, p. 2). Document representation refers to the selection of 

appropriate features to represent documents (Shen et al. 2006, p. 672). These feature 

vectors serve as input for the classification algorithms.  

4.2.2.1  Multigram language model 

 

LingPipe’s classification, tagging, and entity extraction are all based on n-gram character 

language models (Carpenter 2007, p. 2). A language model (LM) is a probability 

distribution over a sequence of words. It assigns a probability to the character sequence, 

the n-gram or multigram, and then calculates the likelihood that it belongs to a certain 

category. LingPipe adopts a standard random processing approach to n-gram language 

models, where probabilities are normalized over strings of a fixed length (Carpenter 

2007, p. 2). The LM classifier accepts categorized character sequences as learning input 

and the multigram size. The best performance was obtained using 8-gram character 

sequences. It is a supervised learning scheme. The estimator for each category is 

initialized with a uniform Dirichlet prior with α=1 and using Laplace smoothing. Twitter 

users, and SM users in general, tend to use slang or orthographically incorrect words 

such as “I looooooooove my new car” to emphasise the sentiment expressed in the 

tweet, or “I luv this restaurant” to be cool. These words are likely to not be seen in the 
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test data. Smoothing allows assigning non-zero priors to words not seen in the sample 

and thus mitigates the problem of finding orthographically incorrectly spelled words. LM 

classifiers can be used for active learning in a tag-a-little, learn-a-little learning mode. 

The same learner was used for basic subjectivity analysis but with a different training set 

and with boundary character n-gram models. With an order of 8, the LM classifier will use 

a sentence “I love my new car” and produce “I”, “I “, “I l”, “I lo” training instances with up 

to maximum 8 characters.  

First, the trained learner was evaluated manually and the overall performance of the 

manual tests was not satisfactory. Table 4-7: Test sentences shows some of the test 

sentences used to manually verify the learner: 

Test sentences 

I love the new iPhone 

this mattress had a valley after two months 

the new iPod is very user friendly 

the iPad is very easy to use 

the iPad is excellent 

the iPhone is great 

my car cost me an arm and a leg 

why would anyone buy an iPhone 

the new Tesla isn't great 

this beer is flat 

Table 4-7: Test sentences 

 

The test sentences used phrases from other domains, such as beverages, cars and 

mattresses, to verify how well the model generalises. Also, manual testing is used to 

verify how well smoothing works. Using a learner trained with the smaller corpus of 737 

tweets, some probabilities of test sentences are shown in Table 4-8: 

Sentence Probabilities 

I love the new iPhone positive 1.00 

  negative 0.00 

this mattress had a valley after two months negative 1.00  
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  positive 0.03  

the new iPod is very user friendly negative 0.98  

  positive 0.02  

the iPad is very easy to use negative 0.53  

  positive 0.47  

the iPad is excellent positive 1.00  

  negative 0.00  

the iPhone is great positive 1.00  

  negative 0.00  

my car cost me an arm and a leg negative 1.00  

  positive 0.00  

why would anyone buy an iPhone negative 1.00  

  positive 0.00  

the new tesla isn't great negative 0.70  

  positive 0.30  

this beer is flat negative 0.57  

  positive 0.43  

Table 4-8: Test sentence results with 737 training tweets 

 

Two of the wrongly classified sentences, “the new iPod is very user friendly”, and “the 

iPad is very easy to use”, are from the domain of opinions from the test dataset; hence 

the manual tests showed that the performance of the learner is not satisfactory. Using 

the larger dataset of 1,048,575 tweets, the manual tests showed an even poorer result. 

The learner was then evaluated using common statistical values such as the total 

accuracy, the F1-score, and kappa. 

Table 4-9: Summary statistics for Language Model classifier shows the summary results 

of the evaluation of the trained classifier: 

n Total accuracy F1 kappa 

737 0.986486 0.9864865 0.972973 

1048575 0.982051 0.9820511 0.964102 

Table 4-9: Summary statistics for Language Model classifier 

 

The confusion matrices are shown in in Table 4-7: 
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n=74 Objective Subjective 
  

n=51758 Objective Subjective 

Objective 36 1 
  

Objective 26739 776 

Subjective 0 37 
  

Subjective 153 24090 

Table 4-10: Confusion matrices 

 

Contrary to the manual tests, these statistics show a very high accuracy and predictive 

performance. In conclusion, the LM classifier is not a suitable learner for the 

classification task needed for this study. 

4.2.2.2  Naïve Bayes 

 

The Naïve Bayes classifier is one of the most popular classifiers (Baldwin & Dayanidhi 

2014, p. 190). It is used for example in spam filters (Tretyakov 2004). The word naïve 

refers to the fact that the features are assumed to be independent. This is a naïve 

assumption especially for texts where words are dependent on each other to form 

meaningful sentences. Nevertheless, it is used frequently in practice as it is relatively 

simple and works well for many text classification problems. The Naïve Bayes classifier 

has the following characteristics: 

 It tokenizes character sequences into words with frequencies called bag of words. 

This particular form is called the multinomial Naïve Bayes classifier and the word 

order is immaterial 

 Each word is a Boolean attribute  

 It requires two or more categories that are exhaustive and mutually exclusive 

 It is configurable for various kinds of unknown token models 

The naïve Bayes classifier calculates the probability of obtaining word i from all the 

documents in category H. It assumes the probability is independent of the words context 
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and position. A token-based naïve Bayes classifier computes the joint token count and 

category probabilities as follows (Baldwin & Dayanidhi 2014, p. 191): 

)()|(),Pr( HPHTPHT   

Equation 4-7: Category probability 

 

where T are the tokens. Each token is assumed independent, and the probability of all 

tokens is the product of the probability of each token. These probabilities are used to 

calculate the maximum likelihood estimate for the model. Since tokens that were unseen 

during training result in a zero probability estimate, smoothing was used to mitigate the 

problem. A technique called Laplace smoothing was used. In the standard Naive Bayes 

approach, Laplace smoothing is commonly used to avoid zero probability estimates 

(Peng, Schuurmans & Wang 2004, p. 318). Laplace smoothing is also called additive 

smoothing and it allows adding probabilities to words that do not appear in the training 

data. Experiments show that smoothing substantially increases the accuracy of 

predictions (Witten, Frank & Hall 2011, p. 252). 

LingPipe has several implementations of the naïve Bayes classifier. The classifier was 

first trained using tweet737 manually annotated tweets. The probabilities are listed in 

Table 4-8: 

Sentence Probabilities 

I love the new iPhone positive 0.96  

  negative 0.04  

this mattress had a valley after two months negative 0.97  

  positive 0.03  

the new iPod is very user friendly positive 0.62  

  negative 0.38  

the iPad is very easy to use negative 0.63  

  positive 0.37  

the iPad is excellent positive 0.53  

  negative 0.47  

the iPhone is great positive 0.55  
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  negative 0.45  

my car cost me an arm and a leg negative 0.78  

  positive 0.22  

why would anyone buy an iPhone negative 0.99  

  positive 0.01  

the new tesla isn't great negative 0.74  

  positive 0.26  

this beer is flat negative 0.85  

  positive 0.15  

Table 4-11: Test sentence results with 737 training tweets 

 

With one exception, all tweets were correctly classified. A first analysis revealed that 

some of the seemingly more obvious sentences to classify were categorized with a lower 

probability whereas sentences more difficult to classify were categorized with a higher 

probability. For instance, “the ipad is excellent” was classified as positive with a 

probability of 0.53, whereas “my car cost me an arm and a leg” was classified as 

negative with a probability of 0.78. 

A second dataset of 1,048,575 annotated tweets was used for training, 554.477 positive 

and 494,098 negative from Sentiment140 (Sentiment140 2016). Other datasets that 

were tested for training contained, for instance, opinions about Apple, Google and 

Microsoft. However, they showed low accuracies during training and were not used 

again. 

The pseudo code in Figure 4-7: Naive Bayes classifier  shows the NB algorithm, where C 

is the class labels, D is the Data set, the corpus of tweets, and t is a term in a tweet: 

TRAINNB(C, D) 
1. V ← EXTRACTTWEETS(T) 
2. N ← COUNTTWEETS(T) 
3. for each c ∈ C 
4. do Nc ← COUNTTWEETSINCLASS(D,c) 
5.   prior[c] ← Nc / N 
6.   textc ← CONCATENATETWEETSOFALLTWEETSINCLASS(D,c) 
7.   for each t ∈ V 
8.   do Tct ←  COUNTTOKENSOFTERM(textct, t)) 
9.   for each t ∈ V 
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10.   do countprob[t] [c] ← 
𝑇𝐶𝑇+1

∑ (𝑇𝑐𝑡′+1)𝑡′
 

11.  return V, prior, condprob 
 
APPLYNB(C, V, prior, condprob, d) 

1. W ← EXTRACTTOKENSFROMDOC(V, D) 
2. for each c ∈ C 
3. do score[c] ← log prior[c] 
4.   for each t ∈ W 
5.   do score[c] += log condprob[t][c] 
6. return arg maxc ∈ C score[c] 

Figure 4-7: Naive Bayes classifier  

 

The smoothing variable did not have a considerable influence on the performance of the 

classifier, so a uniform model was used. 

Table 4-12 shows the summary results of the evaluation of the trained classifier: 

n Total accuracy F1 kappa 

737 0.905405405 0.905405 0.810811 

1048575 0.778874763 0.778875 0.55775 

Table 4-12: Naïve Bayes classifier 

 

The confusion matrices are shown in Table 4-13: 

n=74 Objective Subjective 
  

n=51758 Objective Subjective 

Objective 33 4 
  

Objective 18628 8887 

Subjective 3 34 
  

Subjective 2558 21685 

Table 4-13: Confusion matrices 

 

The results for the n=737 truth data was dramatically improved using cross-validation. 

The performance of the large, n=1048575 data set was deteriorated for all measured 

statistics. The model was seriously overfitted due to a truth data set that contained many 

non-relevant opinions. The result was a classifier that captures noise instead of pertinent 

data points.  
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Table 4-14 shows the summary results of the evaluation of the trained classifier using 

10-fold cross-validation: 

n Total accuracy F1 kappa 

737 0.972972973 0.972973 0.945946 

1048575 0.573611809 0.573612 0.147224 

Table 4-14: Naïve Bayes classifier using 10-fold cross-validation 

 

The confusion matrices are shown in Table 4-15: 

n=74 Objective Subjective 
  

n=51758 Objective Subjective 

Objective 36 1 
  

Objective 13400 14115 

Subjective 1 36 
  

Subjective 7954 16289 

Table 4-15: Confusion matrices 

 

As stated earlier in Section 4.2.2 having more than 10 folds does not improve the 

performance of the classifier. This was confirmed by training and evaluating the classifier 

with folds from 5 to 10. 

An important factor in cross-validation is the proper representation of the classes in both 

the training data and test data. In other words, classes should not be over- or 

underrepresented. In the worst case scenario, a class which is not represented in the 

training data could be overrepresented in the test data. Therefore, the random sampling 

has to be done in a way such that each class is well represented in both datasets, a 

process called stratification. However, stratification is only a weak safeguard against 

uneven representation of instances. A more general way to mitigate any bias caused by 

the particular sample chosen for holdout is to repeat the whole process by training and 

testing, several times, with different random samples (Witten, Frank & Hall 2011, p. 152). 

It is for this reason that the corpus was randomly permutated using a randomizer. 
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4.2.2.3  Logistic regression 

 

Logistic regression (LR) classifiers are discriminative probabilistic classification models. 

They use feature vectors extracted from the corpus by a chain of conditional random 

fields (CRF)-specific feature extractors. CRF-based methods can obtain an improvement 

in accuracy on long texts compared to some existing rule-based or supervised learning 

methods (Zhang 2013, p. 19). They belong to the class of linear classifiers since the 

output is a linear expression for each class. This scheme is sometimes called 

multiresponse linear regression (Witten, Frank & Hall 2011, p. 125). LR uses real-valued 

feature vectors with weights as input and applies a vector of coefficients. LR feature 

extraction is not limited to characters or tokens It can use unlimited feature extraction 

which allows for arbitrary observations. Logistic regression is one of the best probabilistic 

classifiers, measured in both log loss and first-best classification accuracy across a 

number of tasks (LingPipe 2015). It almost certainly is one of the best performing 

classifiers available, albeit at the cost of slow training and considerable complexity in 

configuration and tuning (Baldwin & Dayanidhi 2014, p. 202). LR obey the maximum 

entropy paradigm which states that the correct distribution p(a, b) is that which 

maximizes entropy, or “uncertainty”, subject to the constraints. The contraints represent 

“evidence”, i.e. the facts known to the experimenter (Ratnaparkhi 1997, p. 2) where p is 

the probability of class a occurring in context b. Hence a LR classifier is a maximum 

entropy classifier. 

LR classifiers are highly customizable. The training underwent many iterations with 

different parameters and feature extraction methods until the classifier performed at its 

optimum. The methods and parameters are described in the next section. 
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The TokenFeatureExtractor was used to extract the tokens during construction to create 

the features. A minimum feature count was used since LR tends to overfit on low token 

count features that exist by chance in a training data set. The addInterceptFeature 

defines whether a category feature exists.  If a category is very rare or very common it 

should be captured. The noninformativeIntercept defines how the feature is handled. If 

true, no priors are applied to the intercept. Priors help to prevent LR from overfitting by 

pushing coefficients towards 0. RegressionPrior is the expected variance of the features. 

Low variance will push coefficients more aggressively to zero. Priors, in this context, 

function as a way to not be over-confident with observations about the world (Baldwin & 

Dayanidhi 2014, p. 205). Simulated annealing is an optimization method. The 

AnnealingSchedule instance calculates the learning rate for a specific epoch. An epoch 

is a learning iteration. 

The LR classifier was trained in several configurations. The first training was with a 

tokenizer feature extractor with and without cross-validation. The results for both truth 

datasets are summarized in Table 4-16 and Table 4-17: 

LR classifier without cross-validation: 

n Total accuracy F1 kappa 

737 0.918918919 0.918918919 0.837837838 

1048575 0.837880134 0.837880134 0.675760269 

Table 4-16: Logistic regression without cross-validation 

 

n=74 Objective Subjective 
 

n=51758 Objective Subjective 

Objective 33 4 
 

Objective 22158 5357 

Subjective 2 35 
 

Subjective 3034 21209 

Table 4-17: Confusion matrices 

 

LR classifier with 10-fold cross-validation: 
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n Total accuracy F1 kappa 

737 0.905405405 0.905405405 0.810810811 

1048575 0.833861432 0.833861432 0.667722864 

Table 4-18: Logistic regression with 10-fold cross-validation 

 

n=74 Objective Subjective 
 

n=51758 Objective Subjective 

Objective 33 4 
 

Objective 22039 5476 

Subjective 3 34 
 

Subjective 3123 21120 

Table 4-19: Confusion matrices 

 

LR classifier with character n-gram: 

 

n Total accuracy F1 kappa 

737 0.959459459 0.959459459 0.918918919 

1048575 0.878453572 0.878453572 0.756907145 

Table 4-20: Logistic regression using character n-grams 

 

n=74 Objective Subjective 
 

n=51758 Objective Subjective 

Objective 36 1 
 

Objective 23558 3957 

Subjective 2 35 
 

Subjective 2334 21909 

Table 4-21: Confusion matrices 

 

Counter intuitively the feature extraction approach using n-grams performed significantly 

better than the words/tokens or stemmed words approach. Smaller datasets usually 

benefit from lower order (number of tokens) n-grams (Baldwin & Dayanidhi 2014, p. 187). 

Cross-validation did not improve the classification accuracy but significantly slowed down 

training, so the cross-validation approach was not further pursued. 
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4.2.2.4  Summary 

 

Based on the results, the Naïve Bayes classifier, trained on the Apple specific dataset 

and with 10-fold cross-validation, and the LR classifier, trained on the same dataset with 

character n-grams, were used for classifying the collected tweets. They scored the 

highest in terms of accuracy, F1 score and kappa coefficient as well as manually 

verifying the classifiers with sample opinions. 

Two of the other trained classifiers, the LM classifier and the perceptron, did not yield 

satisfactory results and were nor used for classification. Following result sets were used 

for correlation analysis: Naive Bayes with 10-fold cross-validation and LR with character 

n-gram. For each classifier, the total number of positive and negative tweets, the total 

number of positive and negative deduplicated tweets and the total number of positive 

and negative tweets, after subjectivity analysis, were determined and used for correlation 

analysis. 

4.2.2.5  Granger causality test 

 

The Granger causality test is an econometric technique. It is used to determine if one 

time series has predictive information for another (Wlodarczak, Soar & Ally 2015, p. 4). It 

uses different lags of one series to model changes in the second time series. The 

Granger causality test for two scalar-valued, stationary, and ergodic time series {Xt} and 

{Yt} is defined as: 

...2,1)),(I|()I|( 1-t1-t   tYXFXF Ly

Lyttt  

Equation 4-8: Granger causality test 
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Where F(Xt|It-1) is the conditional probability distribution of Xt given the bivariate set It-1 

consisting of an Lx-length vector Xt and an Ly-length vector of Yt (Wlodarczak et al. 2015, 

p. 3). The F-test, t-test or Wald test (used in R) are calculated to test the following null 

and alternate hypotheses: 

H0:  αi = 0 for each i of the element [1,k] 

H1: αi ≠ 0 for at least 1 i of the element [1,k] 

where k is the number of lags in the time series. The F-test is most often used to 

compare statistical models in order to identify the model that is best fitted for the 

population from which the data has been sampled. Essentially, we are trying to 

determine whether X provides more statistical information about future values of Y than 

past values of Y alone. The null hypothesis generally refers to the fact that there is no 

relationship between two observations. It is important to notice that we are not trying to 

prove actual causation; we are only trying to prove that two values are related by some 

phenomenon.  

The R library “lmtest” contains the Granges causality test procedures. It has to be loaded 

first in the R script. The R “grangertest” function takes a bivariate time series on L lags 

and a dataset as input. The result of the grangertest function is DF, the degree of 

freedom, that is the number of observations, the F-statistic and the corresponding 

probability, Pr(>F), the p-value. If Pr(>F) < α, where α is the desired level of significance, 

we reject the null hypothesis of no Granger causality. 

Figure 4-8: Sample grangertest output shows a sample output of the grangertest 

function: 

Granger causality test 
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Model 1: Open ~ Lags(Open, 1:1) + Lags(Apple, 1:1) 
Model 2: Open ~ Lags(Open, 1:1) 
  Res.Df Df      F Pr(>F) 
1     38                  
2     39 -1 0.0191 0.8907 

Figure 4-8: Sample grangertest output 

 

α indicates the magnitude of relationship observed. A common value for p is 0.05. 

However, it is important to mention that a small p-value does not imply causality in a 

theoretical sense. Also, Granger causality is not a test for strict erogeneity. From a 

statistical point of view, p equal or less than 0.05 denotes statistical significance and 

significance is not related to causality. If the p-value is more than 0.05, we cannot reject 

the NULL hypothesis. If the p-value is less than 0.05, we can reject the NULL hypothesis. 

The 0.05 significance level is also called the cut off. However, the “statistical 

significance”, interpreted as “p ≤ 0.05”, is not sufficient to support a scientific hypothesis. 

The NULL hypothesis test is a reductio ad absurdum, which in essence states that a 

claim is valid by demonstrating that a counter-claim is improbable. Credible Granger 

causality analysis appears to require post-sample inference, as it is well-known that in-

sample fit can be a poor guide to actual forecasting effectiveness (Ashley & Tsang 2014, 

p. 72). 

We also need to verify that Y does not provide any information about X, otherwise there 

is likely an exogenous variable z that is better suited for Granger causation.  

A sample R plot of time series is shown in Figure 4-9: R time series plot of Apple tweet 

frequency and share price: 
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Figure 4-9: R time series plot of Apple tweet frequency and share price 

 

Whereas the opening and closing quotes of the Apple share show a clear downwards 

trend, the Apple tweet frequency shows a ragged line with no clear trend. If Apple 

Granger causes the Open or Close quote time series, the patterns in Apple would 

approximately repeat in Open or Close after a time lag. In the above example, there is no 
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obvious pattern in the Apple time series that seems to repeat in the Open or Close time 

series so there is no Granger causality. This is also confirmed by the result, a probability 

of 0.8907, for example ~89%, which is considerably higher than 5%, so we cannot reject 

the NULL hypothesis. For this reason, the R script plots the time series for visual 

comparison and does not only rely on the p-value. 

 

4.3 Results 
 

For every data set, that is, the tweets collected over the month of November and 

December 2017, the frequencies of all collected data without classification and the 

classified data using naïve Bayes and Logistic regression was submitted to the Granger 

causality test. Since trading happens only on weekdays, tweets from the weekends were 

discarded. A total of 27 tests were performed. Only the lag that yielded the most 

significant results is listed. 

The results are shown in following tables. 

4.3.1 Apple datasets 

 
The unclassified Apple data set, using only frequencies, showed for all three datasets, 

total number of Apple tweets, deduplicated Apple data set and the data set that 

underwent basic subjectivity analysis, values above 5% significance level, so we cannot 

reject the NULL hypothesis.  

 

 

  Total Deduplicated Subjectivity Analysis 

Apple 
Open 89,07% 95,3% 93,83% 

Close 85,48% 89,48% 93,43% 

Table 4-22: Apple unclassified 
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Open and Close in the second left column stands for open and close quote. 

The datasets that were classified using the naïve Bayes and LR classifier showed 

significantly better results. The best significance levels were obtained using LR on the 

data set without deduplication and subjectivity analysis. With a value of 16,3% we still 

cannot reject the NULL hypothesis. 

  

Naïve Bayes Logistic Regression 

 
  Total Deduplicated 

Subjectivity 
Analysis Total Deduplicated 

Subjectivity 
Analysis 

Apple 

Pos 
open 34,75% 39,88% 30,79% 16,3% 32,74% 25,94% 

Pos 
close 54,11% 46,7% 53,13% 52,13% 24,83% 41,49% 

Neg 
open 37,6% 41,39% 37,6% 43,63% 42,72% 37,59% 

Neg 
close 46,56% 39,03% 41,29% 48,05% 45,41% 45,26% 

Table 4-23: Apple classified 

 

4.3.2 iPad datasets 

 

The iPad datasets showed by far the lowest significance levels. Even the unclassified 

datasets showed significance levels of roughly more than 12%. Nevertheless the levels 

are still too high to determine a correlation and we cannot reject the NULL hypothesis. 

 

  Total Deduplicated 
Subjectivity 
Analysis 

iPad 
Open 15,28% 12,63% 29,74% 

Close 16,72% 12,71% 26,98% 

Table 4-24: iPad unclassified 

 

The datasets using subjectivity analysis showed for both, the naïve Bayes and LR levels 

of slightly more than 7% and 8% respectively for the closing quote and negative tweets. 

This is still above the 5% benchmark. Considering that the datasets for positive tweets 
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and subjectivity analysis were above the 9% significance level for LR and 12% for the 

naïve Bayes classifier, there cannot be a correlation deduced and we cannot reject the 

NULL hypothesis. 

  

Naïve Bayes Logistic Regression 

 
  Total Deduplicated 

Subjectivity 
Analysis Total Deduplicated 

Subjectivity 
Analysis 

iPad 

Pos 
open 39,39% 13,55% 14,76% 37,23% 11,41% 9,892% 

Pos 
close 45,23% 11,57% 12,25% 42,57% 11,51% 9,115% 

Neg 
open 26,52% 9,955% 8,919% 24,38% 10,25% 10,75% 

Neg 
close 22,38% 9,167% 7,515% 18,34% 8,357% 8,314% 

Table 4-25: iPad classified 

 

4.3.3 iPhone datasets 

 

The unclassified and classified iPhone datasets were all above 10%, the best value 

being 14,97% for unclassified tweets that went through subjectivity analysis and closing 

quotes, we cannot reject the NULL hypothesis for these datasets either. 

 

 

  Total Deduplicated 
Subjectivity 
Analysis 

iPhone 
Open 87,43% 87,44% 49,79% 

Close 70,12% 52,21% 14,97% 

Table 4-26: iPhone unclassified 

 

  
Naïve Bayes Logistic Regression 

 
  Total Deduplicated 

Subjectivity 
Analysis Total Deduplicated 

Subjectivity 
Analysis 

iPhone 

Pos 
open 81,7% 52,78% 49,8% 73,06% 48,64% 46,98% 

Pos 
close 53% 74,77% 75% 62,48% 75,04% 77,5% 

Neg 
open 60,61% 49,31% 54,21% 66,24% 53,06% 60,41% 
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Neg 
close 42,47% 30,67% 29,02% 37,79% 27,23% 28,86% 

Table 4-27: iPhone classified 

 

In summary, only a weak correlation for some data iPad sets could be determined. 

Overall the significance levels were not sufficient to determine correlation and we cannot 

reject the NULL hypothesis. 

 

4.4 Conclusions 
 

As shown in the results section 4.3, there was a large span with the results, ranging from 

a significance of around 90% for the unclassified Apple datasets, to less than 10% for 

some iPad datasets. The variations were even substantial for datasets that underwent 

the same pre-processing steps. For instance, the unclassified, deduplicated Apple 

dataset produced significance levels of around 90%, whereas the unclassified, 

deduplicated iPad dataset showed levels of close to 13%. In the case of the iPhone 

datasets, there was a large difference in significance levels even for the opening and 

closing quotes.  

Using unclassified data, using only frequencies did not produce any satisfactory results; 

the classification accuracies were below average. By far the best results were obtained 

using opinions on the iPad. Whereas data deduplication increased the accuracy of the 

Granger causality test considerably, basic subjectivity analysis did not improve the 

results significantly or even worsened it. 

Opinion mining is highly domain specific. Different words for the same meaning are used 

depending on what is being reviewed, e. g. a movie, a car or a dish. This explains why a 
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smaller dataset with Apple specific opinions about the iPhone or the iPad performed 

considerably better than a much larger, general purpose dataset, even though the Apple 

corpus was much smaller. On the other hand, opinions are often expressed in similar 

ways using similar words within a domain. This finding contradicts the Big Data principle, 

where more data is always better than less data. Smaller datasets make training of 

learning models simpler since the features (observations) to be extracted are narrowed 

down.  

Several learning models were trained for SA. Even simpler ones such as language 

model classifiers performed reasonably well if they were provided with enough training 

data. A major problem of language model classification is data scarcity, since most 

multigrams will not be seen during training. This can be mitigated using unigrams and 

making the assumption that the probability of a word only depends on the previous n 

words. 

Cross-validation is a very effective training method, and in this study, it has dramatically 

improved the performance of classifiers when training is executed using slam datasets. 

The NB classifier was the least prone to overfitting of the learners trained in this study. 

An overfit model is usually trained too close to the training data and does not generalize 

well. As a consequence, it captures noise or random error instead of the underlying 

relation. 

Data pre-processing is at least as important as tuning the learner. In this study most of 

the time was consumed in the data pre-processing phase. Many different datasets were 

tested until satisfactory results were obtained. Again, this contradicted the Big Data 

paradigm where the dataset does not necessarily have to be of a high quality if there is 

sufficient data. 
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Twitter users can use the hashtag to highlight keywords in tweets since there is no 

subject line. For instance, a user could write "#iPhone" for a tweet about the iPhone. 

However, omitting the hashtag when using the Search API, did not appear to have a 

significant impact on the relevance of the collected tweets. Also, as an analysis using 

NVivo revealed, the majority of the analysed tweets did not contain hashtags. For 

instance, in a randomly selected and verified sample of 3197 Apple tweets over the 

period 15.11.2015 - 15.11.2015, only 301 tweets contained hashtags. Other datasets 

that were manually verified showed similarly low hashtag usage. 

Contrary to the Big Data principle, which suggests that a large data set outdoes a small 

high quality sample, a dataset that contained only opinions about Apple products 

performed much better from a larger dataset with opinions on other companies such as 

Google and Microsoft. 

Despite the fact that Apple sold more iPhones in 2015 than ever before (Pramuk 2015) 

this did not did not influence the share price as expected. It fell by 8.8% in the second 

quarter of that year. The main reason is probably that Apple, despite excellent results, 

did not met analysts’ expectations (Higgins 2015). 

This is also reflected in the fact that there are always considerably more tweets about the 

iPhone than, for instance, the iPad or Apple. 
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Figure 4-10: Frequencies of tweets 

 

Both classifiers, the naive Bayes and Logistic Regression, performed about equally well. 

The term "Granger causality" is somewhat misleading, given that strong evidence of 

"Granger causality," may be weak evidence of "causality." Establishing causality, the 

relationship between cause and effect, is a difficult endeavour as there are likely to be 

many factors influencing the value of a share price. In fact, it is common to have a very 

accurate predictive ML model which nevertheless gives no information whatsoever about 

how or why something is happening (Huang et al. 2015). 

Since the iPhone is by far the most important Apple product in terms of units sold and 

revenue generated (see Figure 4-11) for the time period when the data was collected, it 

is surprising to see that the best results were obtained using opinions on the iPad. It 

would have been expected, that it would also be the most significant for predicting the 

share price. 
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Figure 4-11: Apple Q4 2015 results (Apple Inc. 2016) 

 

The iPad time series provided the best results when the Granger test was applied. 

However, the predictive accuracy was still not high enough to show that the iPad time 

series could predict the Apple share price. In other words, using the methods applied in 

this study it was not able to determine any correlation between Twitter opinions and 

share price. Based on these findings the research question as stated in Section 2.3 

Research question and issues, cannot be affirmed through the use of the methods 

applied in this study and that other techniques and strategies might yield more 

definitive results.  



Peter Wlodarczak                                                                            
                       

 

 
 Page 111                         

 

Also, from this study it is uncertain why the iPad series was more accurate from the 

iPhone time series. 

The following possible reasons that may have influenced the result are offered here: 

 There were not enough relevant tweets - including opinions from other SM sites 

might have provided different results 

 The time frame during which the data was collected was too short 

 The models used were not fit for purpose - other predictive models or correlation 

tests might produce different results 

 No correlation between Twitter opinions and share price exists. 

In future research, other approaches could be used. The Granger causality test assumes 

the analysed time series are covariance stationary. If the data is assumed non-

stationary, windowing techniques could have been used, assuming that sufficiently short 

windows of non-stationary observations are locally stationary.  

The Granger causality test is data driven; causal interactions are inferred directly from 

simultaneously recorded time series. Other possible approaches could be model driven, 

where a model is first elaborated and then assessed against the data, or based on VAR 

(Vector Auto Regression) such as the Toda-Yamamoto approach (Fan et al. 2013; Alimi 

& Ofonyelu 2013). 
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5 Conclusions and implications 
 

5.1 Introduction 
 

The previous chapters 3 Research methodology and 4 Data analysis elaborated on the 

research methodologies and the results of the study. The purpose of this chapter is to 

describe the contributions and potential implications of this research on the different 

bodies of knowledge. 

 

5.2 Conclusions about the research problem 
 
In using the framework developed in this research, namely by applying ML techniques 

and the Granger causality test, only limited predictive capabilities could be determined. 

There was a weak correlation between the Twitter moods and share price using mood 

states about the iPad: 7,515% using the naïve Bayes classifier and 8,314% using 

Logistic Regression, however only for closing quote and negative tweets, as shown in 

chapter 4.3 Results. This is above the commonly used 5% threshold. It is important to 

notice that a p-value equal to or less than 0.05 (5%) is a measure for significance, but 

not for causality. A low p-value merely supports the believed causal relationship. It 

calculates the probability under the assumption that the Null hypothesis is true. The 

value of 0.05 should not be considered an absolute value. Causality can create a 

significant result, but significance does not prove causality. Although correlation does not 

imply causation, correlation can be used as a hint to identify causality between random 

variables (de Siqueira Santos et al. 2013, p. 11). To establish causality, a randomized 

controlled trial is needed, causal graphs or propensity score matching techniques must 
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be applied. However, determining significance and properly establishing causality is 

beyond the scope of this study and can be a subject for future research. 

The least accurate results were obtained using Apple moods except for one result: LR 

without data deduplication and basic subjectivity analysis provided a p-value of 0,163. 

Otherwise deduplication and subjectivity analysis mostly improved the results. Data pre-

processing can improve the predictive performance of learners and a purified data set 

usually yields better results. This confirms that data pre-processing is at least as 

important as training and configuring the most suited classifiers. 

Contrary to what would have been expected, the iPhone did not provide the best results. 

Also, pre-processing iPhone data sometimes worsened the outcome. 

The performances of NB and LR were insignificantly different. Both classifiers provided 

high accuracies. However, LR classifiers are highly configurable, and more adjustments 

might have improved the classification performance. 

To improve the result, several possible measures could be adopted: 

 More training data could be collected 

 Twitters streaming API could be used instead of the search API 

 Other pre-processing steps such as outlier removal or normalization could 

improve the predictive performance  

 Other Apple products such as the MacBook or iPod could be considered 

 All opinions on any Apple product could be collected 

 Other data analysis algorithms could be evaluated 

 Other data sources could be included, for instance other SM sites or tweets in 

other languages 
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 Separate classifiers for positive and not positive, and negative and not negative 

classification with separate training data 

In conclusion, using the experiments conducted in this study, no conclusive correlation 

could be detected, but the opportunities exist for more detailed analyses as suggested 

above. 

 

5.3 Implications for theory 
 

Contrary to the Big Data principle, where larger datasets produces better results from 

relatively small samples (Mayer-Schonberger & Cukier 2013), in this study, training 

datasets that were specifically tailored for the problem at hand performed better than 

much larger, but more general datasets. As described in Section3.1.2 Predictive analysis 

phase, the NB and LR classifiers had a lower accuracy with using the dataset with more 

than 1 million records. This was the case in all experiments performed in this study, 

independently whether they were trained with or without cross-validation. Also, using a 

dataset that had undergone data pre-processing such as data deduplication resulted in 

mostly higher accuracy results. Noisy examples are very likely to be misclassified, and 

so the set of stored exemplars tends to accumulate those that are least useful (Witten, 

Frank & Hall 2011, p. 245). In the worst case, the predictive model is constructed using 

noise, for instance random data that has been erroneously collected. If a parameter is 

totally random, then it cannot tell you anything meaningful about the data object and you 

can drop the parameter (Berman 2013, p. 135). This suggests that more data is not 

necessarily better from having a smaller, high-quality sample. In this study, datasets that 

were put through pre-processing steps such as deduplication and subjectivity analysis 

performed better most of the time, the learning cycles were shorter and the classifiers 
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were more accurate. However, there are many different algorithms and techniques for 

Big Data analysis. Depending on the method used, classification accuracy could be 

better if the data volumes are large despite noise in the dataset. Interestingly enough, it 

has been shown that when artificial noise is added to attributes (rather than added to 

classes), test-set performance is improved if the same noise is added in the same way to 

the training set (Witten, Frank & Hall 2011, p. 332). In this study, both, the NB and LR 

classifiers had a higher classification accuracy on a smaller, high quality data set. Also, 

they were less prone to overfitting. NB seemed to be more robust whereas LR was 

sometimes overfitted, depending on the parameterisation. Most learning algorithms try to 

learn from noisy data by modelling the maximum likelihood output or least squared error, 

assuming that noise effects average out (Schmidt & Lipson 2007, p. 1). However, if the 

noise distributions are not symmetrical in the datasets, this approach does not hold. 

The same observation applies to cross-validation. Cross-validation is a highly effective 

training method (Witten, Frank & Hall 2011, p. 152). However, in this study cross-

validation sometimes overfitted the learning scheme and a training cycle without cross-

validation performed better. This is most likely due to noise or uneven distributions of the 

class label. 

The results varied significantly depending on what data pre-processing methods were 

adopted. The most notable differences were the variability of the iPhone open and close 

quote datasets. Since the differences of the quotes for open and close values are small, 

as would be expected since no trading happens between the closing and opening of the 

stock market, the distributions in significance of the same datasets were surprising. 

Explanations for the variance are uneven noise or class label distributions, but also 

inconsistencies in the datasets. In circumstances where big data are produced, acquired, 
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aggregated, transformed, or represented, inconsistencies invariably find their way into 

large datasets (Du 2013, p. 64). Since the same methods for data collection, pre-

processing and analysis were applied, the same inconsistencies should manifest 

themselves in all the data, and not just the iPhone datasets. Since much more tweets 

about the iPhone are posted in the period when the data was collected, the 

inconsistencies might have augmented due to the larger datasets. The inconsistencies 

could have been coupled with nonlinear components. In other words symmetric internal 

noise can be scaled, offset, and in general transformed to produce non-symmetric noise 

distributions on the output (Schmidt & Lipson 2007, p. 1). In this situation the 

inconsistencies have deformed the maximum-likelihood output, and the regressed 

models may no longer describe the analytical structure of the system. The 

inconsistencies might be off topic tweets that were erroneously collected, uneven 

distributions of class labels or noise as stated before, or overfitted learners. To overcome 

these issues, applying more or different pre-processing steps such as filling in missing 

data (Perera et al. 2014), TF-IDF (Term Frequency-Inverse Document Frequency) (Ting, 

Wu & Ho 2010), active learning (Vesdapunt, Bellare & Dalvi 2014) or clustering 

techniques (Zhong et al. 2016) might mitigate the issues. 

In summary, adopting data pre-processing steps seemed to improve the results. 

However, considering the variability of some of the results, the question of whether a 

correlation exists between twitter opinions and share price cannot be conclusive. 
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5.4 Implications for policy and practise 
 

ML algorithms are domain independent, whereas data pre-processing is highly domain 

specific. ML models are commonly used across many different fields in computing and 

engineering (Perera et al. 2014, p. 433). Data pre-processing depends on the type of 

data that is being mined. For instance, for analysing text, NLP techniques have to be 

applied. Selecting NLP techniques depend on what is being mined for. For example, if 

text is mined to interpret historic data or to make decisions to influence events that are 

likely to happen in the future. As we have seen in this study, data representation in the 

form of feature vectors is crucial for data analysis; otherwise knowledge discovery is very 

difficult or can lead to misleading results. Practitioners who want to use SM mining to 

support their decision making processes need to select appropriate pre-processing 

steps, else the results might be inconclusive.  

For this study, much more time was spent on data pre-processing than the effective data 

analysis. This is due to several facts that need to be considered if SM mining tasks using 

Twitter are conducted: 

 Collecting tweets is time consuming due to the limitations of the Twitter API 

 The collected data needs to be verified for its quality, which is a manual process 

and can only be partly automated  

 To obtain a good dataset for training, many pre-processing and verification 

iterations were necessary 

 ML and correlation techniques have reached a high level of maturity and many 

studies have been conducted to improve them 
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 ML techniques such as Logistic Regression are highly configurable and can be 

trained in a manageable amount of time 

 There are many established data analysis frameworks that have been proven to 

deliver good results in many studies 

 ML techniques are well documented in the literature 

 Good ready-made training sets for specific DM tasks are rare and often it is 

laborious and time consuming and needs manual steps to create them 

 Data pre-processing techniques differ greatly and are highly dependent on the 

task at hand, for example in the cases where financial data is analysed or text 

data is mined 

Looking only at the performance values such as F-score and accuracy would not 

produce credible results and manual checks will be needed. The reason is that the 

training and test data are limited and random sampling was used to do manual post-

training verification. A set of opinions, not found in the training and test corpus, was 

applied to the trained learner. Also, since many words have not been seen during 

training, the verification step has shown to give additional information about the 

performance of the trainer that the standard measures had not. 

Some classifiers such as LR are highly configurable and to optimize them is very time 

consuming. Even for an experienced data scientist familiar with ML techniques the 

results are sometimes unpredictable and surprising. For instance, in LR, very 

counterintuitively character n-grams performed better than tokens. 

Using ML methods as black boxes makes it difficult to understand why they fail in certain 

situations and how to fix them. Many classifiers are difficult to interpret since the inner 

state is complex. The implication is a loss of control over how the internals work, for 
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instance in deep learners, but also with shallow learners such as ensemble learners that 

are often difficult to interpret. Bayesian networks or decision trees are more transparent 

than a complex neural network or deep learner. Thus it might be difficult to determine 

how an AI system came to a certain conclusion. 

The implications for organizations are that SM analysis should be applied only to specific 

tasks as part of an overall IT strategy, but should not be used as a single source of 

information. 

 

5.5 Limitations 
 

Arthur Lee Samuel coined the term “Machine Learning” in a paper in 1959 (Samuel 

1959). Since then many ML techniques have been developed. Also data conditioning 

techniques have also been evolving alongside them. In this study some techniques were 

evaluated that had been widely used in previous studies in very different contexts (Xinyu, 

Youngwoon & Suk young 2015; Souza, TTP, Kolchyna, Treleaven & Aste 2015; Arias, 

Arratia & Xuriguera 2014; Bollen, Mao & Zeng 2010; Asur & Huberman 2010) and that 

showed to provide good results. Due to the large numbers of techniques, a decision was 

made, based on the studies analysed in the literature review, to use the techniques 

described in chapter 3. It was beyond the scope of this study to use all of the techniques. 

The same applied to the data pre-processing techniques. Some of the typical pre-

processing steps such as data deduplication and basic subjectivity analysis were 

performed. Applying more data pre-processing steps such as lemmatisation or part-of-

speech tagging might have improved the predictive accuracy. However due to the large 
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number of techniques available only some of the more popular ones were applied. 

Evaluating pre-processing techniques was beyond the scope of this study. 

The subject of opinion mining using SM data is more complex than the literature 

suggests. Some studies mentioned in the literature review found a direct correlation 

between public mood states in SM and the Dow Jones Industrial Average (DJIA) (Bollen, 

Mao & Zeng 2010), or political opinions and election results (Tsakalidis et al. 2015). 

However, there are many more factors that influence the result. Tweets only mirror 

certain factors and are subject to the self-selection bias and possibly to the network 

effect. 

Limitations were encountered at several stages of the research: 

 Limitations in collecting the data 

 Limitations inherent to opinion mining 

 Limitations in the ML algorithms 

There are several limitations in harvesting tweets. At the time of writing, the search API 

and Web based query interface did not render the same result set despite being based 

on relevance, with the streaming API only giving a random number of tweets. The Twitter 

documentation did not state which criteria are used to classify the relevance of the select 

tweets. 

There are also limitations due to the complexity of the task of opinion mining, having to 

cater for word sense disambiguation, coreference resolution and negation handling. NLP 

remains a challenging task and this is a rapidly evolving field of study. More research in 

this area is needed to increase the accuracy.  
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5.6 Further research 
 
New methods using deep learning have been shown to deliver very promising results. 

Particularly, two types of deep learners have performed exceptionally well on certain 

tasks: Recurrent Neural Networks (RNN) for NLP and Convolutional Neural Networks 

(CNN) for Multimedia Mining (Wlodarczak et al. 2015, p. 191). There is no agreed upon 

definition for deep learners, but they are typically artificial neural networks comprised of 

many layers and can proceed hierarchically from the input observations into more 

abstract levels of representation as they pass from one layer to the next. They take 

advantage of the hierarchical structures often found in nature. Natural language is 

composed of letters, letters form phonemes, phonemes form words, words form phrases, 

phrases form sentences etc. Contrary to many learners, RNN do not take a fixed size 

vector an input. This makes them ideal for NLP tasks. Natural language can be of varied 

sizes. RNN maintain an inner state through their recurrent layers. RNN are very suited 

for semantic analysis of texts of oral speeches.  

One of the big advantages of deep learners is that they can automatically extract 

features. Deep learners are also more plausible biologically. Most human or animal 

learning is not supervised. We learn from experience, not from labelled data. On the 

down side, Deep Learning uses significantly more data pre-processing than shallow 

learners and they have a carnivorous appetite for data. Also, optimizing a Deep Learning 

Model can be very computationally intensive. Deep learners have been very successful 

because of advances in processor technologies such as GPUs (Graphics Processing 

Units) that generate a great deal of computing power. Using deep learners for opinion 

mining is a still fertile ground for future research. 



Peter Wlodarczak                                                                            
                       

 

 
 Page 122                         

 

Feature engineering usually consumes most of a DM task and more automation would 

be greatly beneficial. Feature engineering requires human judgement which makes it 

difficult to automate. Also, the heuristics are highly domain specific and the feature space 

is not always obvious. Since unsupervised learners do not require an input vector but 

operate on latent variables as causes for all observations, they can learn larger and more 

complex models. Latent variables cannot be directly observed but are inferred from 

observations. If the causal relation between the input and output is complex, supervised 

learning, in practice, cannot learn where deep hierarchies exist.  

Deep Linguistic Analysis methods are considering the context contrary to the bag-of-

words approach that many ML techniques use. It handles the structure of a language at 

the morphology, syntax and semantics level. However, linguistics does not look at the 

insights and ML techniques are better suited to extract knowledge. 

Big Data analysis usually deals with large datasets. Since a smaller, Apple specific data 

set performed better from a large data set with opinions on other products and 

companies than Apple in this study, research on different types of datasets with different 

sizes could lead to better performing classifications. In this study, the datasets were pre-

processed using basic subjectivity analysis and deduplication. A data set large enough 

might not need data purification according to Big Data principles where no high quality 

samples are needed. Analysing the predictive performance of different datasets in 

different sizes might lead to valuable results as to which lead to the best results. 

Developing ML models is an iterative process that needs fine tuning. Automating tasks 

such as automated model selection will speed up the learning cycle. However, there is 

no universal effectiveness measure for all models. Some research has already provided 

results such as Auto-WEKA (Auto-WEKA 2016).  
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MLaaS (Machine Learning as a Service) solutions such as Google Cloud Prediction API 

(Google Cloud Platform 2016) will potentially multiply the ML applications. However, 

cloud based solutions often hide the complexity of the implementation, and, due to the 

black box approach, some control is lost, which makes it difficult to optimize the learners 

or interpret the results. 

Properly establishing causality is a difficult endeavour and a subject for more research. 

The inference of causality based on empirical data requires: 

 the putative causative factor to be the only variable factor in the experiment and 

its values must be completely under the control of the researcher 

 the response to be evaluated in time immediately after the value of the putative 

causative factor is changed 

 a reasonable model that explains the possible nature of the causative link 

between the factor on the response 

The most effective way to identify causality is through a well-controlled experiment (de 

Siqueira Santos et al. 2013, p. 12). Future research on designing the experiment could 

thus lead to better correlation analysis and a better understanding of causality. 

A new area of research is target-dependent SA, where the query represents the target of 

the query. Some studies have already developed classifiers using this paradigm. Their 

classifiers actually work in a target-independent way: all the features used in the 

classifiers are independent of the target, so the sentiment is decided no matter what the 

target is (Jiang et al. 2011, p. 151). Since the target, of for instance "iPhone", is clearly 

defined; basic subjectivity analysis in this study should suffice for target-dependant SA. 

However, in some cases there might be disambiguation. For instance, there is the 

popular "Game of Thrones" TV series, a novel by George R. R. Martin, and a game and 
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a comic with the same name. Tweets about "Game of Thrones" have to be first analysed 

in order to filter out the tweets about the desired target. Also, people may talk about 

multiple targets in a tweet. Target-dependant SA is thus an area for more research. 

Based on our manual evaluation of Twitter Sentiment output, about 40% of errors are 

because of having disambiguation (Jiang et al. 2011, p. 152). Taking into consideration 

the relations between tweets, such as tweets published by the same person, tweets 

replying to or replied by the given tweet, or retweets of a given tweet. These relations 

might provide information about what the given tweet expresses and could increase the 

accuracy of the classification. This allows for context-aware sentiment classification and 

might improve the performance of the learner. 

Finally, text analysis can be expanded to virtually any domain that humans write about. 

For instance, text can be analysed for jurisdictional decisions or medical diagnosis based 

on anamnesis. However, there are ethical considerations if a computer decides on the 

guilt of a person or proposes a diagnosis. The ethical implications of ML are a potential 

new area of research given that their ramifications are not fully understood and are 

intensely debated. 

 

5.7 Conclusions 
 

Several ML schemes were trained and tested. While some delivered results with low 

accuracy, the classifiers that did perform well had similarly good predictive performance. 

For this study, during DM, more of the time had to be spent on data pre-processing, with 

less time left on the data analysis. Automatic feature extraction can thus reduce the DM 

effort considerably and more research in this area should be conducted. DM techniques, 
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such as deep learning, that have the capability to perform automatic feature extraction, 

have the potential to reduce the time spent on pre-processing tasks dramatically and 

make the entire DM cycle more efficient. However, while deep learning techniques have 

delivered surprisingly good results with tasks such as Multimedia Mining and Natural 

Language Processing, they were less effective on non-perceptual systems. They are 

also statistically less well understood in comparison to ML techniques and it is often 

difficult to determine how a result was obtained. Using deep learners, there is a loss of 

control over how the internals work, as is the case with other learners, like, for example, 

ensemble learners.  

Determining causation in many correlation problems is difficult since often not all factors 

are known. This study attempted to correlate Twitter opinions with share price. Many 

different factors influence the development of financial markets and price movements, 

and much research has already been conducted to determine these factors. However, 

properly designing the experiment for causality is crucial to obtaining good results and 

further research is necessary to obtain and interpret results conclusively. 

ML techniques are biologically not very plausible. To develop techniques that work more 

“brain-like”, a better understanding of how neural networks work in nature must be 

obtained to build systems that better represent learning in biological systems. Deep 

learners seem to be closer to nature, but they are still a long way from simulating how 

neurobiologists believe the human or animal brain works. Most human or animal learning 

is not supervised. We learn from experience, not from labelled data. Humans have their 

whole lifetime of experience which they can apply to solve problems. Computers do not 

have the quantity and quality of data that we accumulate over a lifetime. However, we 

have already seen tasks where humans, in the past, have outperformed computers (for 
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example, chess or Go, the strategy board game), but are now being beaten by machines 

in recent years. Deep learners have mastered tasks such as speech and object 

recognition with an ever-increasing accuracy. But the subconscious mind gives humans 

context and without knowing how the subconscious mind works, it is almost impossible to 

know how to implement it. The subconscious mind is far more complex than the 

conscious mind. Moravec’s paradox states that high-level reasoning takes very little 

computational power contrary to low-level sensorimotor skills (Rotenberg 2013). Giving 

computers the capability of perception and mobility is currently an almost insurmountable 

task, and researchers still have to go a long way before computers will have the ability to 

achieve the skills of even a small child in this area. 
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6.2 Queries 
 

All queries analysed in this study are instead in following table. 

Apple -http -https –www 
Apple -http -https -www +exclude:retweets 
iPhone S6 -http -https -www   
iPhone S6 -http -https -www +exclude:retweets 
Apple -http -https -www :)  
Apple -http -https -www :( 
Apple -http -https -www +exclude:retweets :) 
Apple -http -https -www +exclude:retweets :( 
iPhone S6 -http -https -www :)   
iPhone S6 -http -https -www :( 
iPhone S6 -http -https -www +exclude:retweets :) 
iPhone S6 -http -https -www +exclude:retweets :( 
Google -http -https  
Google -http -https +exclude:retweets 
Android -http -https   
Android -http -https +exclude:retweets 
Google -http -https :)  
Google -http -https :( 
Google -http -https +exclude:retweets :) 
Google -http -https +exclude:retweets :( 
Android -http -https :) 
Android -http -https :( 
Android -http -https +exclude:retweets :) 
Android -http -https +exclude:retweets :( 
Samsung -http -https  
Samsung -http -https +exclude:retweets 
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Galaxy S6 -http -https 
Galaxy S6 -http -https +exclude:retweets 
Samsung -http -https :) 
Samsung -http -https :( 
Samsung -http -https +exclude:retweets :) 
Samsung -http -https +exclude:retweets :( 
Galaxy S6 -http -https :) 
Galaxy S6 -http -https :( 
Galaxy S6 -http -https +exclude:retweets :) 
Galaxy S6 -http -https +exclude:retweets :( 

 

For the sentiment and timeline analysis, following queries were used to retrieve one-day 

worth of Tweets: 

iPhone -http -https -www +exclude:retweets lang:en since:2015-11-22 until:2015-11-23 
iPad -http -https -www +exclude:retweets lang:en since:2015-11-22 until:2015-11-23 
Apple -http -https -www +exclude:retweets lang:en since:2015-11-22 until:2015-11-23 

 

The Tweets were selected for the period of November 2015 to January 2016. 

6.3 Results 

6.3.1 Results of the Granger causality test 

 

The Granger causality test was performed using the R statistics programming language 

and the “lmtest” library. Following tables show the results as provided by the lmtest 

library: 

6.3.1.1  Apple unclassified 

 

Apple total unclassified Apple deduplicated Apple subjectivity analysis 

      

Open quote: Open quote: Open quote: 
      
Model 1: Open ~ Lags(Open, 1:1) + 
Lags(Apple, 1:1) 

Model 1: Open ~ 
Lags(Open, 1:1) + 
Lags(Apple, 1:1) 

Model 1: Open ~ 
Lags(Open, 1:1) + 
Lags(Apple, 1:1) 

Model 2: Open ~ Lags(Open, 1:1) Model 2: Open ~ 
Lags(Open, 1:1) 

Model 2: Open ~ 
Lags(Open, 1:1) 

  Res.Df Df      F Pr(>F)   Res.Df Df      F Pr(>F)   Res.Df Df      F Pr(>F) 
1     38                  1     38                  1     38                  
2     39 -1 0.0191 0.8907 2     39 -1 0.0035  0.953 2     39 -1 0.0061 0.9383 
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Close quote: Close quote: Close quote: 
      
Model 1: Close ~ Lags(Close, 1:1) + 
Lags(Apple, 1:1) 

Model 1: Close ~ 
Lags(Close, 1:1) + 
Lags(Apple, 1:1) 

Model 1: Close ~ 
Lags(Close, 1:1) + 
Lags(Apple, 1:1) 

Model 2: Close ~ Lags(Close, 1:1) Model 2: Close ~ 
Lags(Close, 1:1) 

Model 2: Close ~ 
Lags(Close, 1:1) 

  Res.Df Df      F Pr(>F)   Res.Df Df      F Pr(>F)   Res.Df Df      F Pr(>F) 
1     38                  1     38                  1     38                  
2     39 -1 0.0339 0.8548 2     39 -1 0.0177 0.8948 2     39 -1 0.0069 0.9343 

Table 6-1: Apple unclassified 

 

6.3.1.2  Apple classified naïve Bayes 

 

Apple total naïve Bayes Apple deduplicated naïve 
Bayes 

Apple subjectivity analysis naïve 
Bayes 

      

Positive: Positive: Positive: 

      

Model 1: Open ~ Lags(Open, 
1:1) + Lags(Positive, 1:1) 

Model 1: Open ~ Lags(Open, 
1:1) + Lags(Positive, 1:1) 

Model 1: Open ~ Lags(Open, 1:1) + 
Lags(Positive, 1:1) 

Model 2: Open ~ Lags(Open, 
1:1) 

Model 2: Open ~ Lags(Open, 
1:1) 

Model 2: Open ~ Lags(Open, 1:1) 

  Res.Df Df      F Pr(>F)   Res.Df Df      F Pr(>F)   Res.Df Df      F Pr(>F) 

1     38                  1     38                  1     38                  

2     39 -1 0.9047 0.3475 2     39 -1 0.7283 0.3988 2     39 -1 1.0679 0.3079 

      

      

Model 1: Close ~ Lags(Close, 
1:1) + Lags(Positive, 1:1) 

Model 1: Close ~ Lags(Close, 
1:1) + Lags(Positive, 1:1) 

Model 1: Close ~ Lags(Close, 1:1) + 
Lags(Positive, 1:1) 

Model 2: Close ~ Lags(Close, 
1:1) 

Model 2: Close ~ Lags(Close, 
1:1) 

Model 2: Close ~ Lags(Close, 1:1) 

  Res.Df Df      F Pr(>F)   Res.Df Df      F Pr(>F)   Res.Df Df      F Pr(>F) 

1     38                  1     38                  1     38                  

2     39 -1 0.3803 0.5411 2     39 -1 0.5398  0.467 2     39 -1 0.3992 0.5313 

      

      

Negative: Negative: Negative: 

      

Model 1: Open ~ Lags(Open, 
1:1) + Lags(Negative, 1:1) 

Model 1: Open ~ Lags(Open, 
1:1) + Lags(Negative, 1:1) 

Model 1: Open ~ Lags(Open, 1:1) + 
Lags(Negative, 1:1) 

Model 2: Open ~ Lags(Open, 
1:1) 

Model 2: Open ~ Lags(Open, 
1:1) 

Model 2: Open ~ Lags(Open, 1:1) 

  Res.Df Df      F Pr(>F)   Res.Df Df      F Pr(>F)   Res.Df Df      F Pr(>F) 

1     38                  1     38                  1     38                  
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2     39 -1 0.8025  0.376 2     39 -1 0.6826 0.4139 2     39 -1 0.8025  0.376 

      

      

Model 1: Close ~ Lags(Close, 
1:1) + Lags(Negative, 1:1) 

Model 1: Close ~ Lags(Close, 
1:1) + Lags(Negative, 1:1) 

Model 1: Close ~ Lags(Close, 1:1) + 
Lags(Negative, 1:1) 

Model 2: Close ~ Lags(Close, 
1:1) 

Model 2: Close ~ Lags(Close, 
1:1) 

Model 2: Close ~ Lags(Close, 1:1) 

  Res.Df Df      F Pr(>F)   Res.Df Df      F Pr(>F)   Res.Df Df      F Pr(>F) 

1     38                  1     38                  1     38                  

2     39 -1 0.5433 0.4656 2     39 -1 0.7551 0.3903 2     39 -1 0.6855 0.4129 

Table 6-2: Apple classified naïve Bayes 

 

6.3.1.3  Apple classified Logistic Regression 

 

Apple total Logistic 
Regression 

Apple deduplicated Logistic 
Regression 

Apple subjectivity analysis Logistic 
Regression 

      

Positive: Positive: Positive: 

     

Model 1: Open ~ Lags(Open, 
1:1) + Lags(Positive, 1:1) 

Model 1: Open ~ Lags(Open, 
1:1) + Lags(Positive, 1:1) 

Model 1: Open ~ Lags(Open, 1:1) + 
Lags(Positive, 1:1) 

Model 2: Open ~ Lags(Open, 
1:1) 

Model 2: Open ~ Lags(Open, 
1:1) 

Model 2: Open ~ Lags(Open, 1:1) 

  Res.Df Df      F Pr(>F)   Res.Df Df      F Pr(>F)   Res.Df Df      F Pr(>F) 

1     38                  1     38                  1     38                  

2     39 -1 2.0236  0.163 2     39 -1 0.9844 0.3274 2     39 -1 1.3107 0.2594 

      

      

Model 1: Close ~ Lags(Close, 
1:1) + Lags(Positive, 1:1) 

Model 1: Close ~ Lags(Close, 
1:1) + Lags(Positive, 1:1) 

Model 1: Close ~ Lags(Close, 1:1) + 
Lags(Positive, 1:1) 

Model 2: Close ~ Lags(Close, 
1:1) 

Model 2: Close ~ Lags(Close, 
1:1) 

Model 2: Close ~ Lags(Close, 1:1) 

  Res.Df Df      F Pr(>F)   Res.Df Df     F Pr(>F)   Res.Df Df      F Pr(>F) 

1     38                  1     38                 1     38                  

2     39 -1 0.4191 0.5213 2     39 -1 1.375 0.2483 2     39 -1 0.6794 0.4149 

      

      

Negative: Negative: Negative: 

      

Model 1: Open ~ Lags(Open, 
1:1) + Lags(Negative, 1:1) 

Model 1: Open ~ Lags(Open, 
1:1) + Lags(Negative, 1:1) 

Model 1: Open ~ Lags(Open, 1:1) + 
Lags(Negative, 1:1) 

Model 2: Open ~ Lags(Open, 
1:1) 

Model 2: Open ~ Lags(Open, 
1:1) 

Model 2: Open ~ Lags(Open, 1:1) 

  Res.Df Df      F Pr(>F)   Res.Df Df      F Pr(>F)   Res.Df Df      F Pr(>F) 

1     38                  1     38                  1     38                  
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2     39 -1 0.6191 0.4363 2     39 -1 0.6443 0.4272 2     39 -1 0.8028 0.3759 

      

      

Model 1: Close ~ Lags(Close, 
1:1) + Lags(Negative, 1:1) 

Model 1: Close ~ Lags(Close, 
1:1) + Lags(Negative, 1:1) 

Model 1: Close ~ Lags(Close, 1:1) + 
Lags(Negative, 1:1) 

Model 2: Close ~ Lags(Close, 
1:1) 

Model 2: Close ~ Lags(Close, 
1:1) 

Model 2: Close ~ Lags(Close, 1:1) 

  Res.Df Df      F Pr(>F)   Res.Df Df      F Pr(>F)   Res.Df Df      F Pr(>F) 

1     38                  1     38                  1     38                  

2     39 -1 0.5077 0.4805 2     39 -1 0.5722 0.4541 2     39 -1 0.5759 0.4526 

Table 6-3: Apple classified Logistic Regression 

 

6.3.1.4  iPad unclassified 

 

iPad total unclassified iPad deduplicated iPad subjectivity analysis 

      

Open quote: Open quote: Open quote: 

      

Model 1: Open ~ 
Lags(Open, 1:2) + 
Lags(iPad, 1:2) 

Model 1: Open ~ 
Lags(Open, 1:2) + 
Lags(iPad, 1:2) 

Model 1: Open ~ Lags(Open, 1:2) + 
Lags(iPad, 1:2) 

Model 2: Open ~ 
Lags(Open, 1:2) 

Model 2: Open ~ 
Lags(Open, 1:2) 

Model 2: Open ~ Lags(Open, 1:2) 

  Res.Df Df     F Pr(>F)   Res.Df Df      F 
Pr(>F) 

  Res.Df Df      F Pr(>F) 

1     35                 1     35                  1     35                  

2     37 -2 1.983 0.1528 2     37 -2 2.1961 
0.1263 

2     37 -2 1.2558 0.2974 

      

      

Close quote: Close quote: Close quote: 

      

Model 1: Close ~ 
Lags(Close, 1:1) + 
Lags(iPad, 1:1) 

Model 1: Close ~ 
Lags(Close, 1:1) + 
Lags(iPad, 1:1) 

Model 1: Close ~ Lags(Close, 1:1) + 
Lags(iPad, 1:1) 

Model 2: Close ~ 
Lags(Close, 1:1) 

Model 2: Close ~ 
Lags(Close, 1:1) 

Model 2: Close ~ Lags(Close, 1:1) 

  Res.Df Df      F Pr(>F)   Res.Df Df     F 
Pr(>F) 

  Res.Df Df      F Pr(>F) 

1     38                  1     38                 1     38                  

2     39 -1 1.9828 0.1672 2     39 -1 2.433 
0.1271 

2     39 -1 1.2541 0.2698 

Table 6-4: iPad unclassified 
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6.3.1.5  iPad classified naïve Bayes 

 
iPad total naïve Bayes iPad deduplicated naïve Bayes iPad subjectivity analysis naïve Bayes 

      

Positive: Positive: Positive: 

      

Model 1: Open ~ 
Lags(Open, 1:2) + 
Lags(Positive, 1:2) 

Model 1: Open ~ Lags(Open, 
1:2) + Lags(Positive, 1:2) 

Model 1: Open ~ Lags(Open, 1:2) + 
Lags(Positive, 1:2) 

Model 2: Open ~ 
Lags(Open, 1:2) 

Model 2: Open ~ Lags(Open, 
1:2) Model 2: Open ~ Lags(Open, 1:2) 

  Res.Df Df      F Pr(>F)   Res.Df Df      F Pr(>F)   Res.Df Df      F Pr(>F) 

1     35                  1     35                  1     35                  

2     37 -2 0.9569 0.3939 2     37 -2 2.1177 0.1355 2     37 -2 2.0221 0.1476 
      

      

Model 1: Close ~ 
Lags(Close, 1:1) + 
Lags(Positive, 1:1) 

Model 1: Close ~ Lags(Close, 
1:1) + Lags(Positive, 1:1) 

Model 1: Close ~ Lags(Close, 1:1) + 
Lags(Positive, 1:1) 

Model 2: Close ~ 
Lags(Close, 1:1) 

Model 2: Close ~ Lags(Close, 
1:1) Model 2: Close ~ Lags(Close, 1:1) 

  Res.Df Df      F Pr(>F)   Res.Df Df      F Pr(>F)   Res.Df Df      F Pr(>F) 

1     38                  1     38                  1     38                  

2     39 -1 0.5767 0.4523 2     39 -1 2.5919 0.1157 2     39 -1 2.4956 0.1225 
      

      

Negative: Negative: Negative: 

      

Model 1: Open ~ 
Lags(Open, 1:2) + 
Lags(Negative, 1:2) 

Model 1: Open ~ Lags(Open, 
1:2) + Lags(Negative, 1:2) 

Model 1: Open ~ Lags(Open, 1:2) + 
Lags(Negative, 1:2) 

Model 2: Open ~ 
Lags(Open, 1:2) 

Model 2: Open ~ Lags(Open, 
1:2) Model 2: Open ~ Lags(Open, 1:2) 

  Res.Df Df     F Pr(>F)   Res.Df Df     F  Pr(>F)     Res.Df Df      F  Pr(>F)   

1     35                 1     35                    1     35                     

2     37 -2 1.379 0.2652 2     37 -2 2.466 0.09955 . 2     37 -2 2.5918 0.08919 . 
      

      

Model 1: Close ~ 
Lags(Close, 1:1) + 
Lags(Negative, 1:1) 

Model 1: Close ~ Lags(Close, 
1:1) + Lags(Negative, 1:1) 

Model 1: Close ~ Lags(Close, 1:1) + 
Lags(Negative, 1:1) 

Model 2: Close ~ 
Lags(Close, 1:1) 

Model 2: Close ~ Lags(Close, 
1:1) Model 2: Close ~ Lags(Close, 1:1) 

  Res.Df Df      F Pr(>F)   Res.Df Df      F  Pr(>F)     Res.Df Df      F  Pr(>F)   

1     38                  1     38                     1     38                     



Peter Wlodarczak                                                                            
                       

 

 
 Page 153                         

 

2     39 -1 1.5291 0.2238 2     39 -1 2.9943 0.09167 . 2     39 -1 3.3478 0.07515 . 

Table 6-5: iPad classified naïve Bayes 

 

6.3.1.6  iPad classified Logistic Regression 

 

iPad total Logistic 
Regression 

iPad deduplicated Logistic 
Regression 

iPad subjectivity analysis Logistic 
Regression 

      

Positive: Positive: Positive: 

      

Model 1: Open ~ 
Lags(Open, 1:2) + 
Lags(Positive, 1:2) 

Model 1: Open ~ Lags(Open, 
1:2) + Lags(Positive, 1:2) 

Model 1: Open ~ Lags(Open, 1:2) + 
Lags(Positive, 1:2) 

Model 2: Open ~ 
Lags(Open, 1:2) 

Model 2: Open ~ Lags(Open, 
1:2) 

Model 2: Open ~ Lags(Open, 1:2) 

  Res.Df Df      F Pr(>F)   Res.Df Df      F Pr(>F)   Res.Df Df      F  Pr(>F)   

1     35                  1     35                  1     35                     

2     37 -2 1.0166 0.3723 2     37 -2 2.3109 0.1141 2     37 -2 2.4733 0.09892 . 

      

      

Model 1: Close ~ 
Lags(Close, 1:1) + 
Lags(Positive, 1:1) 

Model 1: Close ~ Lags(Close, 
1:1) + Lags(Positive, 1:1) 

Model 1: Close ~ Lags(Close, 1:1) + 
Lags(Positive, 1:1) 

Model 2: Close ~ 
Lags(Close, 1:1) 

Model 2: Close ~ Lags(Close, 
1:1) 

Model 2: Close ~ Lags(Close, 1:1) 

  Res.Df Df      F Pr(>F)   Res.Df Df      F Pr(>F)   Res.Df Df      F  Pr(>F)   

1     38                  1     38                  1     38                     

2     39 -1 0.6485 0.4257 2     39 -1 2.6001 0.1151 2     39 -1 3.0044 0.09115 . 

      

      

Negative: Negative: Negative: 

      

Model 1: Open ~ 
Lags(Open, 1:2) + 
Lags(Negative, 1:2) 

Model 1: Open ~ Lags(Open, 
1:2) + Lags(Negative, 1:2) 

Model 1: Open ~ Lags(Open, 1:2) + 
Lags(Negative, 1:2) 

Model 2: Open ~ 
Lags(Open, 1:2) 

Model 2: Open ~ Lags(Open, 
1:2) 

Model 2: Open ~ Lags(Open, 1:2) 

  Res.Df Df      F Pr(>F)   Res.Df Df      F Pr(>F)   Res.Df Df      F Pr(>F) 

1     35                  1     35                  1     35                  

2     37 -2 1.4699 0.2438 2     37 -2 2.4329 0.1025 2     37 -2 2.3782 0.1075 
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Model 1: Close ~ 
Lags(Close, 1:1) + 
Lags(Negative, 1:1) 

Model 1: Close ~ Lags(Close, 
1:1) + Lags(Negative, 1:1) 

Model 1: Close ~ Lags(Close, 1:1) + 
Lags(Negative, 1:1) 

Model 2: Close ~ 
Lags(Close, 1:1) 

Model 2: Close ~ Lags(Close, 
1:1) 

Model 2: Close ~ Lags(Close, 1:1) 

  Res.Df Df      F Pr(>F)   Res.Df Df      F  Pr(>F)     Res.Df Df     F  Pr(>F)   

1     38                  1     38                     1     38                    

2     39 -1 1.8364 0.1834 2     39 -1 3.1578 0.08357 . 2     39 -1 3.167 0.08314 . 

Table 6-6: iPad classified Logistic Regression 

 

6.3.1.7  iPhone unclassified 

 

iPhone total unclassified iPhone deduplicated iPhone subjectivity analysis 

      

Open quote: Open quote: Open quote: 

      

Model 1: Open ~ 
Lags(Open, 1:1) + 
Lags(iPhone, 1:1) 

Model 1: Open ~ 
Lags(Open, 1:1) + 
Lags(iPhone, 1:1) 

Model 1: Open ~ Lags(Open, 1:2) 
+ Lags(iPhone, 1:2) 

Model 2: Open ~ 
Lags(Open, 1:1) 

Model 2: Open ~ 
Lags(Open, 1:1) 

Model 2: Open ~ Lags(Open, 1:2) 

  Res.Df Df      F Pr(>F)   Res.Df Df      F Pr(>F)   Res.Df Df      F Pr(>F) 

1     38                  1     38                  1     35                  

2     39 -1 0.0254 0.8743 2     39 -1 0.0253 0.8744 2     37 -2 0.7114 0.4979 

      

      

Close quote: Close quote: Close quote: 

      

Model 1: Close ~ 
Lags(Close, 1:1) + 
Lags(iPhone, 1:1) 

Model 1: Close ~ 
Lags(Close, 1:1) + 
Lags(iPhone, 1:1) 

Model 1: Close ~ Lags(Close, 1:1) 
+ Lags(iPhone, 1:1) 

Model 2: Close ~ 
Lags(Close, 1:1) 

Model 2: Close ~ 
Lags(Close, 1:1) 

Model 2: Close ~ Lags(Close, 1:1) 

  Res.Df Df      F Pr(>F)   Res.Df Df      F Pr(>F)   Res.Df Df      F Pr(>F) 

1     38                  1     38                  1     38                  

2     39 -1 0.1495 0.7012 2     39 -1 0.4175 0.5221 2     39 -1 2.1619 0.1497 

Table 6-7: iPhone unclassified 

 

6.3.1.8  iPhone classified naïve Bayes 

 
iPhone total naïve Bayes iPhone deduplicated naïve iPhone subjectivity analysis naïve 
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Bayes Bayes 

      

Positive: Positive: Positive: 

      

Model 1: Open ~ 
Lags(Open, 1:3) + 
Lags(Positive, 1:3) 

Model 1: Open ~ Lags(Open, 1:4) 
+ Lags(Positive, 1:4) 

Model 1: Open ~ Lags(Open, 1:4) + 
Lags(Positive, 1:4) 

Model 2: Open ~ 
Lags(Open, 1:3) 

Model 2: Open ~ Lags(Open, 1:4) Model 2: Open ~ Lags(Open, 1:4) 

  Res.Df Df      F Pr(>F)   Res.Df Df     F Pr(>F)   Res.Df Df      F Pr(>F) 

1     32                  1     29                 1     29                  

2     35 -3 0.3114  0.817 2     33 -4 0.812 0.5278 2     33 -4 0.8626  0.498 

      

      

Model 1: Close ~ 
Lags(Close, 1:1) + 
Lags(Positive, 1:1) 

Model 1: Close ~ Lags(Close, 1:1) 
+ Lags(Positive, 1:1) 

Model 1: Close ~ Lags(Close, 1:1) + 
Lags(Positive, 1:1) 

Model 2: Close ~ 
Lags(Close, 1:1) 

Model 2: Close ~ Lags(Close, 1:1) Model 2: Close ~ Lags(Close, 1:1) 

  Res.Df Df      F Pr(>F)   Res.Df Df      F Pr(>F)   Res.Df Df     F Pr(>F) 

1     38                  1     38                  1     38                 

2     39 -1 0.4017   0.53 2     39 -1 0.1049 0.7477 2     39 -1 0.103   0.75 

      

      

Negative: Negative: Negative: 

      

Model 1: Open ~ 
Lags(Open, 1:4) + 
Lags(Negative, 1:4) 

Model 1: Open ~ Lags(Open, 1:4) 
+ Lags(Negative, 1:4) 

Model 1: Open ~ Lags(Open, 1:4) + 
Lags(Negative, 1:4) 

Model 2: Open ~ 
Lags(Open, 1:4) 

Model 2: Open ~ Lags(Open, 1:4) Model 2: Open ~ Lags(Open, 1:4) 

  Res.Df Df     F Pr(>F)   Res.Df Df     F Pr(>F)   Res.Df Df      F Pr(>F) 

1     29                 1     29                 1     29                  

2     33 -4 0.688 0.6061 2     33 -4 0.871 0.4931 2     33 -4 0.7886 0.5421 

      

      

Model 1: Close ~ 
Lags(Close, 1:3) + 
Lags(Negative, 1:3) 

Model 1: Close ~ Lags(Close, 1:3) 
+ Lags(Negative, 1:3) 

Model 1: Close ~ Lags(Close, 1:3) + 
Lags(Negative, 1:3) 

Model 2: Close ~ 
Lags(Close, 1:3) 

Model 2: Close ~ Lags(Close, 1:3) Model 2: Close ~ Lags(Close, 1:3) 

  Res.Df Df      F Pr(>F)   Res.Df Df      F Pr(>F)   Res.Df Df      F Pr(>F) 

1     32                  1     32                  1     32                  

2     35 -3 0.9575 0.4247 2     35 -3 1.2539 0.3067 2     35 -3 1.3035 0.2902 

Table 6-8: iPhone classified naïve Bayes 
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6.3.1.9  iPhone classified Logistic Regression 

 
iPhone total Logistic Regression iPhone deduplicated Logistic 

Regression 
iPhone subjectivity analysis 
Logistic Regression 

      

Positive: Positive: Positive: 

      

Model 1: Open ~ Lags(Open, 1:4) + 
Lags(Positive, 1:4) 

Model 1: Open ~ Lags(Open, 1:4) + 
Lags(Positive, 1:4) 

Model 1: Open ~ Lags(Open, 
1:4) + Lags(Positive, 1:4) 

Model 2: Open ~ Lags(Open, 1:4) Model 2: Open ~ Lags(Open, 1:4) Model 2: Open ~ Lags(Open, 
1:4) 

  Res.Df Df      F Pr(>F)   Res.Df Df      F Pr(>F)   Res.Df Df      F Pr(>F) 

1     29                  1     29                  1     29                  

2     33 -4 0.5074 0.7306 2     33 -4 0.8829 0.4864 2     33 -4 0.9125 0.4698 

      

      

Model 1: Close ~ Lags(Close, 1:1) 
+ Lags(Positive, 1:1) 

Model 1: Close ~ Lags(Close, 1:1) + 
Lags(Positive, 1:1) 

Model 1: Close ~ Lags(Close, 
1:1) + Lags(Positive, 1:1) 

Model 2: Close ~ Lags(Close, 1:1) Model 2: Close ~ Lags(Close, 1:1) Model 2: Close ~ Lags(Close, 
1:1) 

  Res.Df Df      F Pr(>F)   Res.Df Df      F Pr(>F)   Res.Df Df      F Pr(>F) 

1     38                  1     38                  1     38                  

2     39 -1 0.2431 0.6248 2     39 -1 0.1027 0.7504 2     39 -1 0.0829  0.775 

      

      

Negative: Negative: Negative: 

      

Model 1: Open ~ Lags(Open, 1:4) + 
Lags(Negative, 1:4) 

Model 1: Open ~ Lags(Open, 1:4) + 
Lags(Negative, 1:4) 

Model 1: Open ~ Lags(Open, 
1:4) + Lags(Negative, 1:4) 

Model 2: Open ~ Lags(Open, 1:4) Model 2: Open ~ Lags(Open, 1:4) Model 2: Open ~ Lags(Open, 
1:4) 

  Res.Df Df      F Pr(>F)   Res.Df Df      F Pr(>F)   Res.Df Df      F Pr(>F) 

1     29                  1     29                  1     29                  

2     33 -4 0.6047 0.6624 2     33 -4 0.8075 0.5306 2     33 -4 0.6911 0.6041 

      

      

Model 1: Close ~ Lags(Close, 1:3) 
+ Lags(Negative, 1:3) 

Model 1: Close ~ Lags(Close, 1:3) + 
Lags(Negative, 1:3) 

Model 1: Close ~ Lags(Close, 
1:3) + Lags(Negative, 1:3) 

Model 2: Close ~ Lags(Close, 1:3) Model 2: Close ~ Lags(Close, 1:3) Model 2: Close ~ Lags(Close, 
1:3) 

  Res.Df Df      F Pr(>F)   Res.Df Df      F Pr(>F)   Res.Df Df      F Pr(>F) 

1     32                  1     32                  1     32                  

2     35 -3 1.0645 0.3779 2     35 -3 1.3611 0.2723 2     35 -3 1.3087 0.2886 

Table 6-9: iPhone classified Logistic Regression 
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6.4 Abbreviations 
 

API Application Programming Interface 

BI Business Intelligence 

CI Criminal intelligence 

CSS Computational social science 

DJIA Dow Jones Industrial Average 

DM Data Mining 

DSS Decision Support System 

EBITDA Earnings before interest, taxes, depreciation and amortization 

FQN Facebook query language 

JSON JavaScript Object Notation 

LR Logistic Regression 

MIS Management Information System 

ML Machine Learning 

NB Naïve Bayes 

NLP Natural Language Processing 

NPV Net Present Value 

OLAP Online Application Processing 

OSN Online Social Networks 

PA Predictive analysis 

PI Profitability Index 

PV Present value 

ROI Return on Investment 

SA Sentiment Analysis 

SC Social Capital 

SM Social Media 

SMM Social media mining 

SMN Social Media Network 

SOA Service Oriented Architecture 

SVM Support Vector Machines 

 


