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ABSTRACT 17 

Floods are one of the most significant environmental hazards that can have harmful effects on 18 

agricultural activities and vegetation. The primary objective of this study is to analyze the 19 

destructive after-effects of an industrial flash flood on the vegetation of the Khusheh Mehr region. 20 

This flash flood occurred due to a break in the wastewater ponds of the Kaveh Soda factory on 21 

April 25, 2010. Using the Normalized Difference Water Index (NDWI) and the Normalized 22 

Difference Vegetation Index (NDVI) derived from time-series Landsat data over the period of 23 

2000-2020, we analyzed the changes in wastewater ponds and regional vegetation before and after 24 

the wastewater flood occurred. We also investigate the quantitative and qualitative changes in 25 

vegetation during the past 20 years and detect the flood passage through this area. The results show 26 

that 538 hectares out of the total 2123 hectares of Khusheh Mehr were directly affected by the 27 

runoff resulting from the 2010 flood, and 1250000 m3 of industrial wastewater was discharged in 28 

the study area. The analysis of the vegetation in 2010 showed that during May and July, the 29 

efficiency and expansion of vegetation in these areas (NDVI > 0.3) decreased by 90% and 55%, 30 

respectively, compared to the same periods in 2009 and 2006. The study is significant because it 31 

can help evaluate the effects of the flash flood not only on wastewater ponds and vegetation but 32 

also on the contamination of underground and surface waters as chemicals and industrial 33 

wastewater held in natural and artificial environments are discharged during a flood and directly 34 
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affect vegetation. The findings can provide useful information for hazard and land use 35 

management and support policymakers, e.g., payment for financial loss of farmers. 36 

Keywords: Flood, Wastewater, Landsat, Khusheh Mehr area, NDVI, NDWI. 37 

1. INTRODUCTION 38 

Floods are considered a tragedy caused by both humans and nature. This catastrophe has occurred 39 

most frequently in arid regions in the past decade (Avand et al., 2022) and has caused enormous 40 

damage to constructions, infrastructure, land, and fatalities. During the past century, this damage 41 

has amounted to up to 386 billion USD (Wang et al., 2011). Between 1995 and 2015, 47% of 42 

hazardous accidents with natural origins could be related to floods, affecting the lives of 2.3 billion 43 

people globally (Walstorm and Guha-Sapir, 2015). 44 

Floods can generally be categorized into two types: "riverine" and "flash". The former is 45 

predictable and has roots in melting glaciers and harsh weather conditions, leaving enough time 46 

for management. However, this is not the case for flash floods, which develop quickly in a short 47 

period of time (Ritter et al., 2020). Heavy rain, breaks in dams or levees, and seasonal ice jams on 48 

rivers during winter and spring are common causes of flash floods (Azam et al., 2017). 49 

When damage to dams and dikes results in flash floods, vegetation, forests, orchards, grazing 50 

lands, and farms are considerably affected, turning floods into an environmental threat for plants 51 

(Pucciariello et al., 2014). In fact, floods impact 27% of agriculture worldwide (Pasley et al., 2020) 52 

by causing damage to plants and limiting the growth of biomass (Pires et al., 2018; Xu et al., 2015). 53 

Therefore, the amount of biomass and production falls (Pires et al., 2018; Pucciariello et al., 2014; 54 

Watson et al., 1976). 55 

Chemicals and industrial wastewater are typically stored in both natural and man-made 56 

environments and are at risk of being discharged during floods (World Meteorological 57 

Organization, 2015). Wastewater from factories, which can be either acidic or alkaline, poses 58 

significant dangers to aquatic life (Wu, 2017). Hazards that threaten the environment are a 59 

contentious issue worldwide, with the potential threats of effluents being particularly concerning. 60 

Sewage water contains a significant amount of different pollutants, the most common of which are 61 

those that are harmful to both human and natural life, including toxic organic and inorganic 62 

substances such as salt, heavy metals, nitrates, and pathogens (Jaramillo and Restrepo, 2017; Khan 63 

Jo
urn

al 
Pre-

pro
of



3 
Mehrnooshtahereezadeh@gmail.com 

and Ali, 2017). It is widely believed that releasing effluents into open spaces can lead to various 64 

types of contamination (Youssef et al., 2011), with soil and vegetation deterioration being one of 65 

the dangerous outcomes of sewage discharge into the environment (Ali et al., 2014). 66 

Estimating the flooded area and calculating the damage are vital factors in managing flood crises 67 

(Long et al., 2014; Shrestha et al., 2021). Many studies have focused on flood preparedness, 68 

warning, monitoring, severity, and extent of damage (Ahmed and Akter, 2017; Anusha and 69 

Bharathi, 2020; Arvind et al., 2016; Bourenane et al., 2018; Lopes et al., 2019; Marchi et al., 2010; 70 

Moharrami et al., 2021; Yariyan et al., 2020).  71 

Remote sensing is one of the most widely used research methods for post-flood change detection 72 

(Gandhi et al., 2015). Space-borne sensors provide images of the Earth's surface with adequate 73 

spatial and temporal resolution for environmental investigations (Roy et al., 2017). Analyzing 74 

multi-temporal time series of satellite images is critical in distinguishing or discriminating between 75 

changes in land cover over different periods. New equipment has been introduced for series 76 

analysis of changes in the same location (Nusrath, 2010; Arvind et al., 2016). 77 

Remote sensing is described as the art and science of collecting data and extracting information 78 

about objects, areas, or phenomena such as vegetation, land cover classification, dew estimation, 79 

urban green areas, agricultural land, and water resources, without physical contact (Gandhi et al., 80 

2015; Morar et al., 2022; Valjarević et al., 2020; Verpoorter et al., 2012). Digital processing of 81 

images is an effective method to apply various algorithms and mathematical indices to study these 82 

features. The specifications are reflectance-based, and indices highlight the areas of interest on the 83 

image (Deep and Saklani, 2014). Spectral indices such as Normalized Difference Vegetation Index 84 

(NDVI) and Normalized Difference Water Index (NDWI) are widely used and approved for trend 85 

analysis in vegetation and surface water covers under temporal resolution (Bhandari et al., 2012; 86 

Chen et al., 2013; Rouse et al., 1974). NDVI, calculated as a ratio difference between measured 87 

canopy reflectance in the red and near-infrared bands, is particularly helpful in assessing greenery 88 

density (C. Tucker, 1979; Vrieling et al., 2013; Rouse et al., 1974; Nageswara Rao et al., 2005; 89 

Zhu et al., 2013). To study changes in land cover through indexing the greenness of the land surface 90 

and changes in the presence of water bodies on the land surface, NDVI and NDWI were used, 91 

respectively (Gao, 1996; Rouse et al., 1974). 92 
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It has been repeatedly reported that NDVI can be used for vegetation observations and NDWI for 93 

water bodies (Ahmed and Akter, 2017; Ashok et al., 2021; Choubin et al., 2019; Gandhi et al., 94 

2015; Hu et al., 2018; Potter, 2021; Viana et al., 2019) as well as in other studies (Chen et al., 95 

2021; Chouari, 2021; Demirel et al., 2010; Boori et al., 2020; Zhang et al., 2009). The NDWI index 96 

has also been widely applied for change detection (Ashok et al., 2021; El-Asmar et al., 2013; 97 

Jaramillo and Restrepo, 2017; Saravanan et al., 2019; Viana et al., 2019) and flood studies (Lopes 98 

et al., 2019; Memon et al., 2015). 99 

Kaveh-Soda is one of the major factories in Maragheh-Bonab Plain, Azerbaijan Province, Iran, 100 

producing sodium carbonate. As a result, the industrial wastewater from this establishment is held 101 

in enormous ponds, five of which were breached on April 25, 2010, due to heavy seasonal rainfall 102 

(Shahbazi et al., 2015). The resulting flood destroyed all the gardens and agricultural lands in 103 

Khusheh Mehr, YengiKand, Narjabad, and Khaneqah, the four downstream villages from the 104 

Kaveh Soda factory and wastewater ponds. 105 

Therefore, our study focuses on investigating the effects of the 2010 flood on vegetation in the 106 

Khusheh Mehr area and Maragheh-Bonab Plain in Azerbaijan Province, Iran. To accomplish this, 107 

we utilize two remotely sensed indicators, NDVI and NDWI, to achieve the following objectives: 108 

i) to examine both quantitative and qualitative changes in vegetation in the region during the past 109 

20 years; ii) to assess the changes in area and volume of wastewater ponds before and after the 110 

flood; iii) to evaluate the impact of the flood on vegetation in the area; and iv) to detect the path 111 

of the flood through the Khusheh Mehr area. 112 

2. FLOOD EVENT AND STUDY AREA 113 

The Maragheh-Bonab Plain is located in the East Azerbaijan province in the northwest of Iran (see 114 

Figure 1). Generally, this area experiences a cold and dry climate (Fijani et al., 2017), with an 115 

average annual temperature of around 13.5°C, ranging from a minimum of -0.3°C to a maximum 116 

of 28.4°C. Annual rainfall levels in the plain range from 306.5 mm to 413.5 mm in the mountainous 117 

areas, with most rainfall occurring between March and May. The annual evaporation rate is 118 

approximately 1600 mm (Fijani et al., 2013).  119 
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Most of the Maragheh-Bonab Plain is covered in alluvial sediments that are between 20 and 80 120 

meters thick (Barzegar et al., 2017). From a hydrogeological perspective, the region's hydrous 121 

formations consist of Quaternary sediments that cover most of the plain. These sediments have 122 

formed alluvial and free aquifers with good discharge, including river sediments, debris sediments, 123 

and high alluvial terraces. Permian calcareous formations in the north of the region, which mainly 124 

form the heights, also have good discharge (Asghari Moghaddam et al., 2015). The Sufi Chay 125 

river, which originates from the Southern amplitude of Mount Sahand (shown in Figure 5), is the 126 

main river in the area. The river flows south-west and enters the city of Maragheh before 127 

redirecting to the west and crossing the agricultural lands of Bonab and Khusheh Mehr locality, 128 

ultimately emptying into Lake Urmia (Fijani et al., 2017). 129 

Most of the underground water in the Maragheh-Bonab Plain is used for agriculture, with drinking 130 

and industrial usage as the second and third priorities (Fijani et al., 2017). The villages in the area 131 

benefit from soft, fertile soil, and farming, horticulture, and animal husbandry are the main 132 

occupations of the local people (Hamzehpour and Rahmati, 2017). Grape fields, plum, apple, and 133 

walnut orchards are well-known in the region, and onions, tomatoes, potatoes, corn, wheat, and 134 

barley are also cultivated in this field (Narimani et al., 2011). The flooded area of Khusheh Mehr, 135 

including the rural areas of Yengikand, Narjabad, and Khaneqah, covers approximately 2123 136 

hectares with a population of 6657 according to the annual census of 2016 (Statistical Center of 137 

Iran, 2016). 138 

The Kaveh Soda factory, situated on the eastern side of the studied area, has been actively 139 

producing sodium carbonate (Na2CO3) since 2004. The factory specializes in producing industrial 140 

salts, detergents, light and heavy sodium carbonate, baking soda (NaHCO3), and glassware. 141 

Sodium carbonate is a substance that is widely used in the paper industry. Consequently, sodium 142 

carbonate, with a mass weight of 106 grams, is a white crystalline powder that is the most critical 143 

use in the glass industry. Also, the names of soda1 and soda ash2 brands are used for their solid-144 

state (Wang and Wang, 2009). The salt required for the factory is supplied from Lake Urmia. 145 

Ammonia is using a considerable amount of freshwater, and a significant volume of ammonia and 146 

salts also flow into the environment. It is introduced into the production process but is not 147 

consumed, and only a small amount of it is lost. The general reaction to the process follows the 148 
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formulas occurring in this factory (Han et al., 2021; Wang and Wang, 2009), and these elements 149 

and materials can also be found in the wastewater of Kaveh Soda factory. 150 

The production of one ton of sodium carbonate produces approximately ten cubic meters of 151 

effluent, including one ton of calcium chloride, half a ton of sodium chloride, and other soluble 152 

and insoluble impurities. Currently, the production unit covers an area of 300 hectares, with the 153 

majority consisting of wastewater ponds from this factory (Fijani et al., 2017; Shahbazi et al., 154 

2015). Also, 8000 cubic meters of wastewater flow into these ponds daily (Fijani et al., 2013; 155 

Gharebaghi et al., 2009). Most of the water consumed by the factory is obtained from the Alavian 156 

dam, underground waters, and fresh drinking water belonging to the city of Maragheh. 157 

On April 25, 2010, five wastewater ponds broke due to spring rains, resulting in a flash flood 158 

(Shahbazi et al., 2015). The floodwaters flowed downstream of the factory to the arable lands, 159 

causing damage to the vegetation and crops in the area (refer to Figure 2). 160 

 161 
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Figure 1. The flooded area (Khusheh Mehr and its surroundings) created from Landsat images.  162 

 163 

Figure 2. Image A shows the broken ponds after the flood. Images B, C, and D show the flooded 164 

areas of Khusheh Mehr. 165 

3. MATERIALS AND METHODS 166 

3.1. Landsat images 167 

This research utilized image collections (path/row 168/034) obtained from Landsat 5 (TM), 168 

Landsat 7 (ETM+), and Landsat 8 (OLI) satellites. However, Landsat 7 images were used less 169 

frequently due to the presence of a gap caused by SLC error (Figure 3). These data were processed 170 

at Level-2 and downloaded from the USGS Earth Explorer (https://earthexplorer.usgs.gov/). Due 171 

to the unavailability of images at regular intervals, the available images were prepared and 172 

downloaded for the relevant months. Since the wastewater pond accident occurred in April, the 173 

first time series used to assess the vegetation in the area was one month after the flood (May), 174 

during which the area showed the maximum size in terms of greenery. The second time series was 175 

acquired in July, which had more available images and a lack of cloud cover. The Landsat images 176 

from USGS Earth Explorer used for this research are provided in Table 1. 177 
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 178 

Figure 3. A Landsat 7 image of the central line with no gap on 24/06/2010; Kaveh Soda ponds and 179 

Khusheh Mehr area are located here.  180 

3.2. Precipitation data 181 

To demonstrate that rainfall was one of the reasons for the pond breaking and flash flood, daily 182 

rainfall data for April 2010 were downloaded for the city of Maragheh from the meteorological 183 

data website ("Weather data SYNOPS/BUFR - GFS/ECMWF forecast - Meteomanz.com," n.d.) 184 

and are presented in Figure 4-A. In particular, heavy rainfall occurred in the study area in April 185 

2010, especially in the two days before the flood (Figure 4-A), with a total of 23 mm. 186 

This study also examined monthly rainfall data for the month of April in the years before and after 187 

the flood to determine the importance of precipitation in the occurrence of the flood (Figure 4-B). 188 

The monthly rainfall chart for the entire month of April (April 1 to 31) shows data from 2008-189 

2013, and it is evident that the monthly rainfall of 2010 was significantly higher compared to the 190 

same period of the previous two years. It is worth noting that the monthly rainfall for April 2010 191 

was 46.6 mm until the time of the flood on April 25, which is much more than the same period in 192 

2009 with 7.8 mm. Therefore, although rainfall in the two days before the incident was not the 193 

only significant factor in the occurrence of this flood, it definitely played a role. The main factor 194 

was the increase in the volume of wastewater compared to previous years and the loose soil walls 195 

of the ponds (Figure 2-A), with rainfall serving as an aggravating factor. 196 

 197 
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 198 

 199 

Figure 4. A: Daily rainfall in April 2010. B: Precipitation totals for April, 2008-2013. 200 

 201 

Table 1. Landsat images used in this study ( https://earthexplorer.usgs.gov/). 202 

 203 

Sites Maragheh-Bonab Plain Khusheh Mehr 

Landsat 5, 8 5, 7, 8 

Date 
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2016/07/18 
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2019/07/11 
 204 

3.3. Topography data 205 

Furthermore, maps and shape files of the channels and main river in the flood area were collected 206 

and created to better understand the drainage system over the studied area (Figure 5). In addition, 207 

a digital elevation model (DEM) was obtained from the Shuttle Radar Topography Mission 208 

(SRTM) 12.5 meters  (Lemenkova, 2016; Wu, 2017) to determine the topography and direction of 209 

surface water flow (Figure 6).  210 

 211 

Figure 5. Main rivers and canals of Khusheh Mehr: The Sufi Chay River crosses the Northern area 212 

of this region; an irrigation canal shown in yellow color is a canal 1.5 meters in depth and 1 meter 213 

width. The drainage channel called flood control, with 4 meters of depth and 10 meters of width 214 

begins from the head of Kaveh Soda ponds and runs along the irrigation canal through the South 215 

of Khusheh Mehr, reaching the Sufi Chay River.  216 
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 217 

Figure 6. Topography and stream direction: the topography of Khusheh Mehr includes a decrease 218 

in altitude from the East in Mount Sahand highs to the West in Lake Urmia. This area’s slope and 219 

stream direction also are to the West, i.e., Lake Urmia. The maximum altitude of the Khusheh 220 

Mehr region is 1383 meters in the East, and its minimum is 1310 meters in the West.  221 

3.4. Methods  222 

Spectral indices, such as NDVI and NDWI, are capable of separating vegetation and water-covered 223 

areas from other subjects. In this study, these indices were computed from Landsat images and 224 

then classified into certain classes to detect changes in the vegetation and wastewater ponds. The 225 

background information on NDVI and NDWI, as well as the classification, sampling, and flood 226 

path detection approaches, are briefly described below. Additionally, the flowchart of the actions 227 

taken in this study is illustrated in Figure 7. 228 

3.4.1. Normalized difference vegetation index 229 

NDVI is one of the most commonly used indexes for analyzing and dynamically monitoring 230 

vegetation on a regional and international scale (Vrieling et al., 2013; Zhu et al., 2013). Introduced 231 

by C. J. Tucker in 1979, this index has a numerical value between -1 and +1, with values below 232 

zero during the growth season indicating the absence of vegetation (such as deserts, wastelands, 233 

Jo
urn

al 
Pre-

pro
of



12 
Mehrnooshtahereezadeh@gmail.com 

clouds, snow, water, and glaciers), and values above zero and towards +1 indicating vegetation. 234 

NDVI was used in this study to show the dispersion and quality of vegetation (Valjarević et al., 235 

2020). The NDVI can be calculated using the following formula (Choubin et al., 2019; Sajedi-236 

Hosseini et al., 2018): 237 

Equation (1)   NDVI = (NIR-Red)/(NIR+Red) 238 

Healthy vegetation exhibits low reflection of light in the red band and higher reflection in the near-239 

infrared band, and hence an increase in the positive value of NDVI indicates growth in green 240 

vegetation (Saravanan et al., 2019). The vegetation in the studied area suffered enormous damage 241 

after the flood, and therefore, NDVI was used to investigate the impact of the flood on the 242 

vegetation in greater detail. 243 

3.4.2. Normalized Difference Water Index 244 

NDWI was introduced by (C. J. Tucker, 1979) to detect surface water and measure its extent. 245 

Although this index was designed to work on multi-band Landsat images, it is also effective in 246 

analyzing the extent of free water (Murray et al., 2012; Panigrahy et al., 2012). NDWI is calculated 247 

using the green and near-infrared bands as: 248 

Equation (2) NDWI = (Green-NIR)/(Green+NIR) 249 

NDWI values above zero represent water surfaces, while values lower or equal to zero indicate 250 

non-water surfaces (McFeeters, 2013). This index was used to analyze changes in wastewater 251 

ponds in different years and investigate changes in wastewater before and after the flood in the 252 

study area. 253 

3.4.3. Index classification 254 

The purpose of image classification is to sort all image pixels into specific classes or themes. Two 255 

commonly used classification approaches are supervised (semi-automated) and unsupervised 256 

(automatic) classification (Milanović et al., 2017). In this paper, we used the supervised 257 

classification approach. More specifically, the area was classified into strong and dense vegetation 258 

(NDVI > 0.3) and weak vegetation (NDVI < 0.3) every year. The average NDVI value was also 259 

calculated for different years. Wastewaters were measured for different years and changes in their 260 

extent before and after the flood were investigated by classifying NDWI > 0 and NDWI < 0.  261 
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3.4.4. The sampling method of vegetation index data (NDVI) 262 

In this study, it was necessary to classify the area's vegetation to measure and compare changes in 263 

the extent of vegetation area. Thus, the vegetation had to be separated from urban areas and 264 

wastelands before being classified and the vegetation area calculated. As a result, threshold pixels 265 

for each year's vegetation from the NDVI images were needed to confirm that the presented pixels 266 

were indeed parts of the vegetation. 267 

After calculating NDVI for each year in Maragheh-Bonab Plain, 17500 pixels out of a total of 268 

416816 vegetation pixels were selected as vegetation samples from certain vegetation lands and 269 

orchards. To ensure that the selected pixels were definitely vegetation, 10% of the initial pixels of 270 

the samples were excluded, and the numerical value of the pixel number 1751 was chosen as the 271 

initial vegetation limit in that year. In this manner, the vegetation threshold was obtained by the 272 

same method for each year, and then the area of vegetation was classified and calculated. 273 

 274 

Figure 7. The flowchart of actions taken in this study. 275 
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3.4.5. Detection of the flood path  276 

The flood path was detected using NDVI data in May 2009 and May 2010, as this is when the area 277 

has the greenest vegetation (maximum spring greenery). This was done by first sampling the 278 

vegetation, determining the minimum threshold for vegetation, and then classifying the area into 279 

two categories: vegetation and non-vegetation with numerical values of 1 and 2, respectively. For 280 

the next step, the NDVI image values for 2010 were classified, and then each value was squared 281 

(pixel value * pixel value). Consequently, the numerical values in the classified image for 2009 282 

are 1 and 2, while the values for 2010 are 1 and 4 (refer to Table 2). Finally, a four-class image 283 

was gained by subtracting pixels (classified NDVI 2010 – classified NDVI 2009) (refer to Table 284 

3). 285 

Table 2. Numerical values in classified images. 286 

 
Non-vegetated land pixel 

numerical value 

Vegetation pixel numerical 

value 

Classified NDVI of 2009 1 2 

Classified NDVI of 2010 1 2 

2010 classified NDVI after 

pixel value changes 
1 4 

Table 3. The resulting classes after subtraction of the images (pixel calculations). 287 

Result image function Result 2009 Manipulation 2010 

Vegetated (No flooded) 2 Vegetated (2) - Vegetated (4) 

Vegetated (No flooded) 3 
Non-vegetated 

(1) 
- Vegetated (4) 

Flooded -1 Vegetated (2) - 
Non-vegetated 

(1) 

(Wasteland /residential) or 

flooded 
0 

Non-vegetated 

(1) 
- 

Non-vegetated 

(1) 

From Table 3, despite the three-class functions are precisely determined, the exact nature of one 288 

class remained unknown (i.e., pixel with zero numerical value). Therefore, further steps were 289 

implemented to detect the flooded areas. In the resulting image after the operation mentioned 290 

above, pixels with zero numerical values were chosen, separated and considered as an independent 291 

layer. For the next step, based on the knowledge of the region and how far the flood has progressed 292 
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from the flood control channel in different areas of the Khusheh Mehr, three buffers with a radius 293 

of 1200, 1000, and 400 meters were applied over the flood control channel mentioned in Figure 5. 294 

Therefore, zero-layer pixels within this region were considered flood pixels while those outside 295 

the buffer line were classified as wasteland or residential. 296 

4. RESULTS AND DISCUSSION  297 

4.1. Wastewater 298 

4.1.1. The trend of changes in wastewater areas 299 

The area of wastewater in the ponds was calculated using NDWI derived from Landsat images. 300 

The results showed that the volume and size of industrial wastewater from the factory have had an 301 

upward trend over the past years (Figures 8 and 9). Specifically, the area of industrial wastewater 302 

has increased from 43.47 hectares in 2005 to 115.56 hectares in 2021, and assuming an average 303 

depth of 8 meters for all ponds, a total of 9244800 cubic meters of industrial wastewater has 304 

accumulated in these ponds over time. Furthermore, the temporal trend of changes in the industrial 305 

wastewater area was analyzed using a linear regression model, as illustrated in Figure 8. The results 306 

indicate a significant increasing trend, as demonstrated by the regression coefficient (slope ≈ 9.34), 307 

which is significantly different from zero at the 95% confidence level (p-value ≈ 0.001). 308 

 309 

Jo
urn

al 
Pre-

pro
of



16 
Mehrnooshtahereezadeh@gmail.com 

 310 

Figure 8. The trend for the area of industrial wastewater changes in Kaveh Soda factory ponds 311 

during the period 2000 to 2021.  312 

 313 
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Figure 9. The trend of changes in industrial wastewater in Kaveh Soda Factory from 2000 to 2021 314 

using NDWI derived from Landsat images.  315 

The increasing extent of Kaveh Soda’s industrial effluent poses a serious threat to the environment 316 

in the region. In the event of a flood similar to the one that occurred in 2010, there is a possibility 317 

of severe damage to the area, both financial and human. This is why the increasing volume and 318 

extent of wastewater year by year leading to the potential for more severe and larger floods is of 319 

concern.  320 

 321 

4.1.2. Changes in the volume and area of wastewater before and after the event 322 

Analysis of images from before and after the flood in 2010 using NDWI shows a decrease in the 323 

area of factory wastewater in the south-western parts of the ponds (Figure 10). After the flood, the 324 

area of industrial wastewater decreased to 15.66 hectares. Considering an average depth of 8 325 

meters of ponds in the mentioned area, nearly 1250000 cubic meters of wastewater has been 326 

discharged into the studied area, in the period from April to June 2010. The runoff from the flood 327 

has flowed into the rural areas of Khaneqah, Narjabad, YengiKand, and Khusheh Mehr due to the 328 

topographic slope (Figure 6). The channel for controlling the flood and the Sufi Chay River (Figure 329 

5) have forwarded the main body of the wastewater to Lake Urmia. However, the flood-damaged 330 

agricultural lands are heavily affected, causing serious problems for the vegetation in the Khusheh 331 

Mehr, Khaneqah, Narjabad, and YengiKand rural areas. 332 Jo
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 333 

Figure 10. The area of the industrial wastewater before and after the flood in 2010 using NDWI 334 

derived from Landsat images. 335 

4.2. Flood path 336 

Figure 11 shows the land use map of Khusheh Mehr before the 2010 flood. The results of flood 337 

detection revealed that 538 hectares of agricultural lands in this region were directly affected by 338 

the floods (Figure 12). It is worth considering that the flood control channel and the Sufi Chay 339 

River played a crucial role in controlling and directing the flood. Due to the region's topography 340 

(Figure 6), the flood entered the Sufi Chay River from the northeast of Khusheh Mehr after 341 

crossing through Khaneqah, Narjabad, Khusheh Mehr, and YangiKand rural areas. In the south-342 

eastern and southern parts of Khusheh Mehr, the flood control channel and irrigation channel are 343 

located (Figure 5). The flood control channel directed a significant part of the flood toward the 344 

Sufi Chay river and, consequently, Lake Urmia located in the western side of the study area. 345 

Apart from contaminating the soil and destroying vegetation, the flood contaminated the 346 

groundwater aquifer as well. The underground water in the region lost its quality and potability 347 

due to the intrusion of the flood in some parts of the studied area. Previously, farmers and 348 

landowners used well water for drinking and consumption, which they had dug for agricultural 349 

purposes. According to the statements of local farmers, the use of well water in some areas of the 350 
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region to irrigate vegetation caused the remaining trees and gardens to dry up. This flood not only 351 

had apparent impacts on the vegetation of Khusheh Mehr and caused severe damage to the 352 

ecosystem, but also had long-term effects on the underground water, which needs to be 353 

investigated in future studies. Hence, laboratory research should be conducted. In previous years, 354 

two studies were conducted on the infiltration of the factory's wastewater into the underground 355 

waters of Khusheh Mehr through ponds and as a result of this flood (Fijani et al., 2013, 2017). 356 

 357 

Figure 11. Land use and land cover in the study area before the flood in 2010.  358 

Jo
urn

al 
Pre-

pro
of



20 
Mehrnooshtahereezadeh@gmail.com 

 359 

Figure 12. Flood path crossing lands of Khusheh Mehr (Khusheh Mehr, YengiKand, Narjabad and 360 

Khaneqah) derived from Landsat images.  361 

Previously published research has demonstrated that the underground water in the Khusheh Mehr 362 

region and its surrounding areas has been contaminated by industrial wastewater from the Kaveh 363 

Soda factory, resulting in a significant increase in chloride ions (Cl), calcium (Ca), sodium (Na), 364 

and sulphate (SO4) levels after the establishment of the factory and the 2010 flood. The rise in 365 

these ions has led to an increase in the electrical conductivity (EC) of the groundwater. According 366 

to sampling data, 20% of the groundwater has poor quality due to factory wastewater (Fijani et al., 367 

2017). 368 

4.3. The vegetation 369 

4.3.1. The trend of vegetation changes in the area of Khusheh Mehr and surrounding rural areas 370 

(The flood's epicentre).  371 
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To analyze the impact of the flood on the vegetation of the Khusheh Mehr region and surrounding 372 

rural areas, Landsat images captured in May and July were used. The results of the NDVI analysis 373 

in May of subsequent years revealed a decline in both the quality and quantity of vegetation in 374 

Khusheh Mehr and the rural areas affected by the flood. The area covered with dense vegetation 375 

(NDVI > 0.3) decreased to 21.8 hectares in May 2010, which was a significant reduction compared 376 

to the 245 hectares in 2009 (Figure 13 and Figure 14), corresponding to a decline of 91%. 377 

Moreover, the total vegetation area calculated for each year showed that the vegetation area for 378 

the flood year had decreased by 249 hectares compared to 2009, a 15% decrease. 379 

 380 

 381 

Figure 13. The trend for changes in the dense vegetation and overall vegetation in the Khusheh 382 

Mehr region in years before and after the flood in 2010 using NDVI index in May.  383 
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 384 

Figure 14. The vegetation map of the Khusheh Mehr region in May of different years derived from 385 

Landsat images.  386 

The vegetation changes for July were also analyzed over the last 20 years (Figure 15 and Figure 387 

16). In the years 2010 and 2011, the area of dense vegetation surfaces (NDVI > 0.3) experienced 388 

a significant drop compared to 2009 and 2006, corresponding to a 55% decrease. In addition, the 389 

entire vegetation area of Khusheh Mehr and its surrounding rural areas experienced a 29% and 390 

17% decline in July compared to 2006 and 2009, respectively. Due to this flood, the vegetation in 391 

areas affected by industrial flood was completely destroyed, and the soil where the flood had 392 

crossed lacked desirable vegetation for one to two years. However, the vegetation and greenery of 393 

the area were restored before the flood through deep plowing, adding 10-20 centimeters of fresh 394 

soil, adding animal fertilizer to fields, continuous irrigation, and natural recovery of the land itself 395 

over time. But according to local reports from farmers, the quantity and quality of agricultural 396 

products decreased after the floods. 397 
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 398 

Figure 15. The vegetation map of the Khusheh Mehr region in July of different years. Derived 399 

from Landsat images.  400 

The maps (Figure 15) for the years 2010 and 2011 showed that the non-vegetation areas 401 

surrounding Khusheh Mehr have expanded as a result of the industrial wastewater flood from the 402 

Kaveh Soda factory. Additionally, according to the results (Figure 16), the whole vegetation and 403 

dense vegetation areas in 2010 and 2011 have shown a noticeable decline. The lowest area of 404 

whole vegetation covered in the studied years related to the years 2010 and 2011 was 955 and 960 405 

hectares, respectively, which is the lowest amount among the studied years. In addition, the dense 406 

vegetation area in the two years mentioned above showed a significant decrease compared to 407 

previous years, reaching 182 and 179 hectares. 408 

In 2001, there were extensive non-vegetated lands in the south of Khusheh Mehr due to the lack 409 

of agricultural prosperity and irrigation channels during those years. It should be noted that the 410 

east, west, and north of Khusheh Mehr have higher-quality soil compared to the south. Later, with 411 

an increase in the use of underground waters and canalization of the dam water to irrigate the 412 

southern areas of Khusheh Mehr, the southern parts of Khusheh Mehr became grape gardens, apple 413 

orchards, and other vegetable fields with rich vegetation.  414 
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 415 

Figure 16. The trend for changes in the dense vegetation and the whole vegetation in general 416 

surrounding Khusheh Mehr in the years before and after the flood in 2010 using NDVI in July. 417 

4.3.2. Trends for changes in the vegetation of the Maragheh-Bonab Plain  418 

The July vegetation was also analyzed to investigate the effects of the flood on the Maragheh-419 

Bonab Plain. The results showed that the general and dense vegetation in 2010 and 2011 had 420 

significantly decreased compared to previous years. Specifically, the area of dense and strong 421 

vegetation in 2010 decreased by 26% and 21% compared to 2009 and 2006, respectively (Figure 422 

17). However, there was no significant change observed in the overall surface of vegetation. The 423 

NDVI image of the Maragheh-Bonab Plain after the 2010 flood is shown in Figure 18, where the 424 

ponds and flood path are visibly apparent on the right side of the image. 425 

168.03
261.72

393.57 409.95

182.88 179.19

448.2 445.5

605.25 661.59

1095.84
1188.63

1360.53

1152.9

955.44 959.76
1082.97

1213.2
1288.8

1386.18

0

200

400

600

800

1000

1200

1400

1600

2001 2005 2006 2009 2010 2011 2013 2016 2018 2019

A
re

a(
H

A
)

Year
Dense vegetation ( NDVI > 0.3 ) All Vegetation

Jo
urn

al 
Pre-

pro
of



25 
Mehrnooshtahereezadeh@gmail.com 

 426 

Figure 17. The trend for the changes in the area of dense vegetation in the Maragheh-Bonab Plain 427 

region during the years before and after the flood in 2010 using July NDVI.  428 

 429 

 430 

Figure 18. The image resulted from NDVI of Maragheh-Bonab Plain in the flood year (2010) 431 

derived from Landsat image. 432 

In the following, the trend of changes in the vegetation area of the Khusheh Mehr region with the 433 

trend of vegetation changes in the Maragheh-Bonab plain by the linear regression model was 434 
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statistically analyzed, and according to the result, the p-value≤0.001 shows a significant trend. In 435 

addition, the regression value of 0.91 between the aforementioned data shows a high correlation 436 

between the two groups of data. 437 

4.3.3. Vegetation index average 438 

The results of the mean NDVI from the Khusheh Mehr region in May show a decrease in this value 439 

in 2010 due to floods. Therefore, the average vegetation index in May 2010 has the lowest value 440 

among the studied years (Table 4). A comparative analysis was conducted by calculating the 441 

averages of pixels chosen as vegetation pixels in July. The results indicate a rising trend in the 442 

average vegetation index (NDVI), but in the years 2010 and 2011, this trend experienced a decline, 443 

due to the increase in non-vegetated pixels in the region (Figure 19).  444 

Table 4. Table of average vegetation index (NDVI) in Khusheh Mehr area for May of different 445 

years. 446 

Year Mean of NDVI 

2007 0.197 

2009 0.169 

2010 0.165 

2014 0.196 

2019 0.216 

 447 

 448 

Figure 19. The chart for the trend showing changes in vegetation index (Mean of NDVI) related 449 

to sample pixels of July.  450 

 451 

5. Recommendations and Limitations 452 
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5.1. Recommendation 453 

Industrial flash floods can have significant negative effects not only on vegetation, which has been 454 

analyzed in this study, but also on groundwater and soil quality, leading to long-term 455 

environmental and economic problems. This article examines the consequences of the breaking of 456 

only five ponds of industrial wastewater from a factory. It highlights that in case of an accident 457 

such as an earthquake or torrential rains, the breaking of the ponds is inevitable given the volume 458 

of stored wastewater of the factory. A study that estimates the extent to which financial and human 459 

losses will increase and how much soil will be contaminated if 20 ponds break is required. 460 

Flash floods can carry pollutants such as chemicals, heavy metals, and other harmful substances 461 

that can contaminate groundwater and soil, persisting in the environment for extended periods and 462 

posing health risks to humans and animals (Basahi et al., 2018; Masoud et al., 2018). Furthermore, 463 

the force of the floodwater can erode soil and wash away topsoil, which can impact the soil's ability 464 

to retain moisture and nutrients (Akuja et al., 2001; Getnet et al., 2022; Kathwas et al., 2022). 465 

Additionally, flash floods can alter soil structure and cause compaction, reducing the soil's capacity 466 

to retain air and water, thereby decreasing its fertility (Kourgialas et al., 2012). This method is 467 

especially helpful for analyzing industrial flash floods, which frequently have a significant regional 468 

impact. The health and density of the vegetation in the impacted area can be evaluated using NDVI. 469 

By this index, the severity of flood damage and the possibility of soil pollution can be found in 470 

changes in the health of the vegetation. 471 

The flood happened in 2010, but this research was conducted in 2022-2023. Therefore, when 472 

conducting this research, the area had changed entirely compared to the flood period and when it 473 

was damaged. The land and vegetation of the area were similar to the state before the flood, and 474 

the land had considerably recovered. Using the archived Landsat images, we were able to examine 475 

the continuous changes in the vegetation cover of the Khusheh Mehr. In this regard, valuable maps 476 

and data were obtained. Also, due to the special conditions of the factory and the sensitivity of the 477 

officials, it is not possible to physically enter and leave the site, but with using satellite images, we 478 

extracted the extent and volume of sewage in different years using remote sensing indicators. The 479 

things mentioned in this research provided us with a more comprehensive and accurate view of 480 

the extent of changes in vegetation and effluents, which would not have been possible without 481 

remote sensing. 482 
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Finally, the results of the current study will assist scientists and managers of flood hazards in 483 

assessing the vulnerability of floods and in making decisions about how to manage and lessen the 484 

effects of flood events. It recommends that the proposed method, a reliable instrument that can 485 

effectively assess the impact of industrial floods on vegetation in different areas. Remote sensing 486 

is an economical technique for analyzing industrial flash floods. It does away with the necessity 487 

for time- and money-consuming ground-based surveys.  488 

5.2. Limitations 489 

The study has encountered several restrictions including a lack of access to complete information. 490 

In fact, researchers were not allowed to enter the factory for field visits in order to access 491 

information such as the exact volume of wastewater as well as water consumption, which is derived 492 

from Sahand springs and underground waters. It would have been helpful to obtain a report from 493 

the factory detailing the precise amount of wastewater produced to make more accurate 494 

calculations. 495 

In terms of remote sensing, it was not possible to extract the type of solutes and compounds of this 496 

factory's effluent, because we used Landsat images with a resolution of 30 * 30 meters in this 497 

work, and this was practically not possible whit Landsat images. It was not possible to assess the 498 

exact amount of damage to the texture and quality of the soil in terms of remote sensing 499 

measurement, and this required laboratory work after the flood. Further, the NDVI is calculated 500 

according to the difference between near-infrared and visible red light reflectance, which is 501 

significantly impacted by vegetation. As a result, it is less efficient in identifying flood damage in 502 

regions with scant or no vegetation. Also, NDWI can identify water bodies, although the water's 503 

depth or speed may not be precisely measured because of the limitation. 504 

6. CONCLUSION 505 

The Kaveh Soda factory in Maragheh was established in 2004 to produce light and heavy sodium 506 

carbonate, as well as soda. However, the factory's industrial wastewaters have become one of the 507 

biggest environmental challenges for water resources and soil in the Maragheh–Bonab plain, 508 

particularly in rural areas like Khusheh Mehr. The factory produces 8000 liters of wastewater with 509 

high EC (over 200 micro siemens) per day. In April 2010, several wastewater ponds broke, causing 510 

a flash flood of dangerous wastewater to flow into the surrounding rural areas and agricultural 511 

lands. 512 
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This study examined the impact of the flash flood on the region's vegetation structure at both the 513 

local and regional levels using Landsat 5, 7, and 8 satellite images from 2000-2020. The results 514 

showed that on a local level (agricultural lands and orchards in the region of Khusheh Mehr), the 515 

average arable land area with dense vegetation index (NDVI > 0.3) was between 250 and 300 516 

hectares. However, in May 2010, dense vegetation in the Khusheh Mehr area decreased by 90% 517 

to 21 hectares due to the flash flood. This effect was retrievable in July 2010 and 2011 when the 518 

vegetation of rural areas of Khusheh Mehr experienced a fall of at least 50% compared to the same 519 

months in 2006 and 2009. This significant decrease in dense vegetation surface on a local scale is 520 

due to the direct impact of contaminated factory runoff and increased soil EC. 521 

The study findings were consistent on a regional scale (Maragheh – Bonab plain). Statistical 522 

analysis with a regression of 0.91 confirmed the high correlation between them. Dense vegetation 523 

(mostly agricultural lands and orchards with NDVI > 0.3) underwent a decrease of at least 1,000 524 

hectares in July 2010 and 2011 and fell to less than 3,000 hectares in these years compared to an 525 

average of 3,900 hectares in 2006-2009. On this scale, the contamination of underground and 526 

surface waters due to an increase in water resource EC with factory wastewater after the April 527 

2010 flood clearly affected the vegetation. Soil damage in 2010 caused the entire vegetation and 528 

trees that were in direct contact with the flood to dry up. However, in the following years, with 529 

some activities of farmers, the vegetation, cultivation, and agriculture gradually returned to their 530 

pre-flood status. The financial loss, estimated at 23 million USD after field visits to flooded lands 531 

in 2010, was paid to farmers according to experts. 532 
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