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In order to improve network throughput and reduce energy consumption, we propose in this paper a cross-layer optimization
design that is able to achieve multicast utility maximization and energy consumption minimization. The joint optimization
of congestion control and power allocation is formulated to be a nonlinear nonconvex problem. Using dual decomposition, a
distributed optimization algorithm is proposed to avoid the congestion by control flow rate at the source node and eliminate the
bottleneck by allocating the power at the intermediate node. Simulation results show that the cross-layer algorithm can increase
network performance, reduce the energy consumption of wireless nodes and prolong the network lifetime, while keeping network
throughput basically unchanged.

1. Introduction

As a practical solution for the broadband wireless Internet,
wireless multihop networks can provide good geographic
coverage with low cost. Nodes at different locations commu-
nicate with each other by relaying information over wireless
links. However, wireless links suffer limited capacity due to
limited resource, fading channel, and mutual interference,
and so forth. Multiuser resource assignment in interference-
limited wireless network is a complex yet critical issue. The
mutual interference among users is a major factor in limiting
the performance of communication systems. However, it
can be efficiently mitigated by carefully allocating wireless
resources such as transmission power and frequency bands.
An important consideration in the design of a multihop
network is the network’s ability to efficiently support high
throughput multicast applications over wireless links. One of
themain challenges for designing high throughput inwireless
multihop networks is the interference of multiple wireless
links. Recently, some techniques have been developed for
enhancing the performance of wireless multihop networks,

which include cross-layer design that considers network
utility maximization problem [1] and network coding which
allows intermediate nodes to perform coding operations in
addition to pure packet forwarding [2].

The network utility maximization (NUM) framework has
been applied widely in network for rate allocation through
congestion control protocols [1]. Congestion control regu-
lates the source rates to avoid overwhelming link capacity.
On the other hand, feasible power allocation can efficiently
enhance link capacity. Multicast flow causes more congestion
than unicast traffic due to the fact that multicast flow can
be distributed in large multicast trees. With the multimedia
applications becoming more popular in wireless network,
how to enhance network performance for multicast applica-
tions is an urgent issue. This paper addresses the challenges
together by considering a joint optimization of multicast
congestion and power allocation for a wireless multihop
network. We focus on optimal congestion control and power
allocation, use the network utility maximization framework
to design a cross-layer optimizationmodel, and then propose
an efficient distributed algorithm to solve the problem.
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The remainder of this paper is organized as follows.
The related works are described in Section 2 and energy
efficient utilitymodel is introduced in Section 3. A distributed
algorithm will be presented in Section 4. Finally, a numerical
simulation is conducted to evaluate the performance of the
proposed distributed algorithm.

2. Related Work

Most resource allocation problems in wireless network can
be formulated as network utility maximization (NUM) prob-
lems, which optimize the resource allocation as a whole
through crossing different layers in a communication net-
work. The network utility maximization problem is divided
into multiple subproblems through dual decomposition,
where each decomposed subproblemcorresponds to resource
allocation on one layer. In network utility maximization,
the utility function represents an objective to be maximized
while the constraints represent different underlying network
characteristics. The primal variables correspond to resources
and the Lagrange dual variables correspond to the interfaces
among the layers. NUM substantially expands the scope of
the classical network flow problem that relies on nonlinear
concave utility objective functions. Moreover, there is an
elegant economic interpretation of the dual-based distributed
algorithm, where the Lagrange dual variables can be inter-
preted as shadow prices for resource allocation, and each end
user in the network tries to maximize their net utilities and
net revenue, respectively [3].

It has been widely recognized that cross-layer design
can potentially lead to substantial performance of wireless
networks [4]. Price and Javidi investigated the distributed
rate assignment in CDMA-based wireless networks and
presented a distributed rate assignment algorithm based on
the congestion and interference constraints at the MAC and
transport layer to enhance network capacity [5]. Ghasemi and
Faez [6] presented a new algorithm for jointly optimal control
of multicast session rate, link attempt rate, and link power
in contention based multihop wireless networks, where the
cross-layer resource allocation was formulated as a nonlinear
optimization. The optimization variables were coordinated
through two shadow prices, and a distributed algorithm for
updating those variables was proposed. It was shown that
it is possible to achieve increased network throughput and
decrease the session’s end-to-end delay. A jointly optimal
congestion control and power control algorithm for a general
ad hoc network was presented in [7] to enhance the overall
network performance, and it proposed a framework to adapt
physical layer resource allocation to enhance the end-to-
end utilities. In fact, the mutual interference links could be
activated synchronously, if the transmission power of the
different senders were properly adjusted [8]. The work in [8]
showed that it was of a great importance to choose a proper
transmitting power in the interference-limited environment.
The increasing of power might result in high interference,
which resulted in the total throughput utility reduction and a
waste of energy. Zhang and Lee studied energy efficient utility
maximization for wireless networks with/without multipath

by formulating them into convex program [9]. The problem
was solved by a distributed dual decomposition algorithm.
van Nguyen et al. studied efficient and fair power allocation
associated with congestion control in orthogonal frequency
division multiplexing (OFDM) based multihop cognitive
radio networks [10]. They considered mutual relationship
through a cross-layer optimization design that addressed
both aggregate utility maximization and energy consump-
tion minimization with outage constraint of primary user.
Yuan et al. proposed a cross-layer optimization framework
for throughputmaximization jointmulticast routing problem
and the wireless medium contention problem in wireless
mesh networks [11]; however, they did not consider the issue
of multicast congestion control.

On the other hand, network coding has extended the
functionality of network nodes from storing/forwarding
packets to performing algebraic operations on received data.
Starting with the work of [12], employing network coding at
intermediate nodes is advantageous to maximize multicast
throughput. Various potential benefits of network coding
have been shown which include the improvement of multi-
cast session’s throughput and the reduction of the overhead
of probabilistic routing [13]. Among the numerous network
coding schemes, distributed random linear network coding
receives more attention as it independently and randomly
selects linear mappings from inputs onto output links. This
encoding scheme has been implemented in practice, which
is widely applied to P2P systems, network security, and
networkmonitoring andmanagement [14, 15]. Chen et al. [16]
considered a flow control for network coding-basedmulticast
flows inwired network [16]. In their work, optimizationmod-
els were formulated for network resource allocation, which
included two sets of decentralized controllers at sources and
links/nodes for congestion control, and they are developed
for wired networks with given coding subgraphs and without
given coding subgraphs, respectively. Based on their work,
we will consider both flow and power control for network
coding-based multicast flows in interference-limited wireless
multihop network.

3. Problem Formulation

3.1. Network Model. We consider a wireless multihop net-
work with 𝐿 = {1, . . . , |𝐿|} logical links shared by 𝑁 =

{1, . . . , |𝑁|} nodes which are equipped with multiradios
working on the orthogonal channels. It is also assumed that
there are𝑀 = {1, . . . , |𝑀|}multicast sessions in the network,
where each multicast session 𝑚 ∈ 𝑀 has a source node
𝑠
𝑚

∈ 𝑁 and a destination node set 𝐷
𝑚

⊂ 𝑁. In order to
improve the utilization of the network, the random linear
network coding is assumed to be used in the multicast flows,
and the network coding allows the flows of amulticast session
to share network capacity by coding them together. For the
case ofmultiple sessions sharing a network, achieving optimal
throughput requires coding across sessions. However, it is
difficult to design such network codes. Thus, we limit our
consideration to codes within each session.
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Traditionally, resource allocations are optimized sepa-
rately which is difficult to support high quality communi-
cation. In this paper, we focus on the joint optimization of
multicast flow rate control and power allocation, where the
multicast tree is established and the channels are assigned in
advance, such as in [17]. In the wireless network, the multiple
information flows share the network links, and it is mandated
that all the information flows on the links do not exceed the
physical channel capacity. The data received by intermediate
node should be forwarded (the source nodes send data while
the destination nodes receive data only). The relationship of
each information flow and physical flow can be expressed as

∑

𝑗:(𝑖,𝑗)∈𝐿

𝑔
𝑚𝑑

𝑖,𝑗
− ∑

𝑗:(𝑗,𝑖)∈𝐿

𝑔
𝑚𝑑

𝑗,𝑖
=

{{

{{

{

𝑥
𝑚 if 𝑖 = 𝑠

𝑚

−𝑥
𝑚 if 𝑖 = 𝑑

0 otherwise
∀𝑑 ∈ 𝐷

𝑚
,

𝑔
𝑚𝑑

𝑖,𝑗
≤ 𝑓
𝑚

𝑖,𝑗
, ∀𝑑 ∈ 𝐷

𝑚
.

(1)

Here, 𝑥𝑚 is the source rate and 𝑔
𝑚𝑑

𝑖,𝑗
represents the flow of

session 𝑚 on link (𝑖, 𝑗) sent to the destination node 𝑑. Link
capacity can be shared by the flows on the links when the
random linear network coding is adopted, and the limit of
network capacity can be expressed as

𝑓
𝑚

𝑖,𝑗
= max
𝑑

{𝑔
𝑚𝑑

𝑖,𝑗
} , 𝑑 ∈ 𝐷

𝑚
. (2)

Now, let us explain, with the help of Figure 1, multicast
session model which is similar to the model in [16], which is
a typical butterfly diagram. 𝑠 is the source node of the session
while 𝑑

1
and 𝑑

2
are the destination nodes. Network coding

can be performed on the wireless links (𝑤, V) to share link
capacity for improving network capacity.

Figure 1 shows a multicast session where the flow is sent
from the source node 𝑠 to left and right trees which are further
depicted in Figure 2. The encoding can be performed on
the wireless links shared by the different multicast trees. As
shown in Figure 1, the link (𝑤, V) is the shared part of two
trees, the multicast trees can share link capacity by network
coding, themax rate of information flow for leftmulticast tree
is 2, and the right multicast tree is 1.

Figure 2 shows the multicast subtrees partitioned by
Figure 1. In the figure, the source node separates the flow
sent to the destination node into two subtrees, each of which
can change the transmission rate through adjusting at the
source node. As shown in Figure 2, in a multicast session,
the link using random linear network coding can achieve
maximum upper bound in the ideal case. In order to express
the corresponding relationship of the link 𝑙 and multicast 𝑚,
we define a multicast matrix 𝐻

𝑚

(|𝐻
𝑚

| = |𝐿| ∗ |𝑆|), and the
elements of the matrix are defined as follows [16]:

𝐻
𝑚

𝑙𝑠
= {

1, 𝑙 ∈ 𝑇
𝑚𝑠

0, others.
(3)

Here, 𝑇
𝑚𝑠

represents the link set of multicast tree. The source
node in a multicast tree 𝑇

𝑚𝑠
sends the same information
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Figure 1: Typical butterfly diagram.
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Figure 2: Network coding at the shared link (𝑤, V) corresponded to
the multicast tree decomposition.

flow to the destination nodes. For the sake of simplicity, we
assume that network coding occurs within session, and the
constraints of the physical flow rate for each multicast stream
𝑚 on link 𝑙 can be expressed as

max
𝑠

{𝐻
𝑚

𝑙𝑠
𝑥
𝑚,𝑠

} ≤ 𝑐
𝑙

∀𝑙 ∈ 𝐿. (4)

3.2. Network Interference Model. In an interference-limited
wireless network, the information theoretic capacity 𝑐

𝑙
of

each link 𝑙 is not fixed. It can be considered as a function
of the transmit power, the interference of adjacent link,
bandwidth and modulation, and so forth. Assuming that the
modulation scheme has been determined, the information
theory capacity 𝑐

𝑙
of link 𝑙 is considered as the function of the

transmit power and channel conditions as follows:

𝑐
𝑙
(𝑃) = 𝐵 ⋅ log (1 + 𝐾SINR

𝑙
(𝑃)) , (5)
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where 𝐵 is bandwidth, 𝑃 is the vector of transmission power,
and 𝐾 is a constant which depends on the modulation and
bit error rate. Without loss of generality, we assume that
𝐾 = 1. SINR

𝑙
represents the SINR of the link 𝑙, where SINR

𝑙

is defined as

SINR
𝑙
(𝑃) =

𝐺
𝑙,𝑙
𝑃
𝑙

∑
𝑘 ̸= 𝑙

𝐺
𝑘,𝑙
𝑃
𝑘
+ 𝑛
𝑙

, (6)

where 𝑛
𝑙
represents white Gaussian noise of link 𝑙 at the

receiving node, 𝐺
𝑙,𝑙

is the fading coefficient of the link 𝑙

from the transmitting node to the receiving node, ∑
𝑘 ̸= 𝑙

𝐺
𝑘𝑙

is the interference of other links on the receiving node, 𝑃
𝑙
is

transmit power of source node, and 𝑃
𝑘
is interference power

of other nodes. Assuming that the CDMA system is adopted
in the network, with reasonable spreading gain and under
normal circumstances, 𝐺

𝑙𝑙
≫ 𝐺
𝑘𝑙
, 𝑘 ̸= 𝑙 (e.g., SINR > 5) [9],

due to the fact that the interference is much smaller than the
signal power. Equation (5) can be approximated instead as
[18]

𝑐
𝑙
(𝑃) = log(

𝐺
𝑙,𝑙
𝑃
𝑙

∑
𝑘 ̸= 𝑙

𝐺
𝑘,𝑙
𝑃
𝑘
+ 𝑛
𝑙

) . (7)

In wireless multihop networks, the sum of interference
terms over 𝑘 ̸= 𝑙 can be conducted in practice only over the
active links in the two-hop neighborhood. Interference infor-
mation can be measured or obtained by mutual broadcasting
of neighbor nodes.

3.3. Energy Efficient Multicast Rate Control Model. The wire-
less nodes are generally powered by a battery, so power
control may conserve energy and reduce the interference
among nodes. In this paper, we establish the model for
energy efficient multicast rate control and power allocation
optimization. The purpose of such optimization is to max-
imize the fair allocation of link bandwidth and minimize
power for the network multicast session flow and reduce
energy consumption. Assuming that 𝑈

𝑚
(𝑥
𝑚
) is the utility of

each multicast 𝑚 in the network and the utility function is
separable, where 𝑥

𝑚
= ∑
𝑠
𝑥
𝑚,𝑠

is the sum of data rates which
are distributed on the respective trees, then the problem can
be formulated as P1. Consider

P1: max ∑

𝑚

𝑈
𝑚

(∑

𝑠

𝑥
𝑚,𝑠

) − 𝛽∑

𝑙

𝑉
𝑙
(𝑃
𝑙
) , (8a)

s.t. ∑

𝑚

𝐻
𝑚

𝑙𝑠
𝑥
𝑚,𝑠

≤ 𝑐
𝑙
(𝑃) , ∀𝑠, ∀𝑚 ∈ 𝑀, ∀𝑙, (8b)

𝑃
𝑙
≥ 0, ∑

𝑙∈𝑜(𝑖)

𝑃
𝑙
≤ 𝑃

max
𝑖

, 𝑖 ∈ 𝑁, (8c)

where 𝑈
𝑚
is a continuously differentiable, strictly concave

and incremental function, 𝛽 is the equilibrium coefficient,
and 𝑉

𝑙
is the cost function. For simplicity, the cost function

can be expressed as the weights of power value as

𝑉
𝑙
(𝑃
𝑙
) = 𝑤
𝑙
𝑃
𝑙
, 𝑤
𝑙
≥ 0. (9)

Network performance includes not only the network
throughput but also the fairness of user, which can be

balanced through selecting the appropriate utility function.
Wedesign the utility functionwhich can be flexibly adjustable
by parameters as follows with reference to [19]:

𝑈
𝛼

𝑠
(𝑥
𝑠
) = {

𝑝
𝑠
(1 − 𝛼)

−1

𝑥
1−𝛼

𝑠
, 𝛼 ̸= 1, 𝛼 ≥ 0

𝑝
𝑠
log𝑥
𝑠
, 𝛼 = 1,

(10)

where 𝑝
𝑠
represents the weight of different flows and 𝛼 is the

fairness parameter. While 𝛼 = 1 corresponds to proportional
fairness, 𝛼 = 2 corresponds to the harmonic mean fairness,
and 𝛼 → ∞ corresponds to the max-min fairness. The
weight of eachmulticast session flow is set to be 1 in the paper,
which means that 𝑈

𝑚
(𝑥
𝑚
) = log(𝑥

𝑚
).

4. Optimization Approach
and Distributed Algorithm

P1 is a nonconvex optimization problem, since the link
constraint (8b) is a nonconvex region. However, a simple
variable transformation𝑃

𝑙
= log(𝑃

𝑙
) can be used to transform

the problem into an equivalent convex optimization problem
P2. Consider

P2: max ∑

𝑚

𝑈
𝑚

(∑

𝑠

𝑥
𝑚

𝑠
) − 𝛽∑

𝑙

𝑉
𝑙
(𝑃
𝑙
) ,

s.t. ∑

𝑚

𝐻
𝑚

𝑙𝑠
𝑥
𝑚

𝑠
≤ 𝑐
𝑙
(𝑃) , ∀𝑠, ∀𝑚 ∈ 𝑀, ∀𝑙,

𝑃
𝑙
≥ 0, ∑

𝑙∈𝑜(𝑖)

𝑒
𝑃𝑙 ≤ 𝑃

max
𝑖

, 𝑖 ∈ 𝑁.

(11)

Furthermore, the objective function of P2 is not strictly
concave, since some sources have multiple alternative mul-
ticast trees that may cause an instability problem in the
convergence of an iterative algorithm—a persistent oscilla-
tion of the flow rate around the optimal value. It implies
that although the dual variables may converge, the primal
variables flow rates and transmit powers may not. To deal
with this instability problem, we use ideas from proximal
optimization algorithms [13, page 232]. The basic idea is
that, instead of P3, we try to solve an equivalent problem by
introducing a quadratic term of some auxiliary variables 𝑦

𝑚,𝑠

so that the optimization problem becomes strictly concave
with respect to 𝑥

𝑚,𝑠
. Consider

P3: max ∑

𝑚

𝑈
𝑚

(∑

𝑠

𝑥
𝑚,𝑠

) − 𝛽∑

𝑙

𝑉
𝑙
(𝑃
𝑙
)

− ∑

𝑚

𝑐
𝑚

2
∑

𝑠

(𝑥
𝑚,𝑠

− 𝑦
𝑚,𝑠

)
2

,

(12a)

s.t. ∑

𝑚

𝐻
𝑚

𝑙𝑠
𝑥
𝑚,𝑠

≤ 𝑐
𝑙
(𝑃) , ∀𝑠, ∀𝑚 ∈ 𝑀, ∀𝑙,

(12b)

𝑃
𝑙
≥ 0, ∑

𝑙∈𝑜(𝑖)

𝑒
𝑃𝑙 ≤ 𝑃

max
𝑖

, 𝑖 ∈ 𝑁. (12c)
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Due to the fact that 𝑐
𝑙
(𝑃) = log(𝐺

𝑙𝑙
) + 𝑃

𝑙
−

log(∑
𝑘 ̸= 𝑙

𝐺
𝑘,𝑙
exp(𝑃

𝑘
) + 𝑛
𝑙
) is sum of a linear function and a

log-sum-exp function, problem (12a) is convex according to
the theory of convex optimization.

Theorem 1. The transformed problemP2 is a convex optimiza-
tion problem.

Proof. The constraints (12b) and (12c) are convex in (𝑥, 𝑃)

since the log-sum-exp is convex in its domain [20].Moreover,
the utilities in (12a) are assumed to be strictly concave.
Therefore, P2 is convex in (𝑥, 𝑃).

Hence, the maximized value of (12a) is unique. Problem
P2 can be solved by Lagrange dual decomposition which
is the most important optimization method and has been
widely used in constrained optimization problem. The orig-
inal problem P3 is decomposed into two suboptimization
problems.

We define the Lagrangian as

𝐿 (𝑥, 𝑦, 𝑃, 𝜆, 𝜇) = ∑

𝑚

𝑈
𝑚

(𝑥
𝑚,𝑠

) − 𝛽∑

𝑙

𝑉
𝑙
(𝑃
𝑙
)

− ∑

𝑚

𝑐
𝑚

2
∑

𝑠

(𝑥
𝑚,𝑠

− 𝑦
𝑚,𝑠

)
2

− ∑

𝑙

𝜆
𝑙
(∑

𝑚

𝐻
𝑚

𝑙𝑠
𝑥
𝑚,𝑠

− 𝑐
𝑙
(𝑃))

− ∑

𝑖

𝜇
𝑖
(𝑃

max
𝑖

− ∑

𝑙∈𝑜(𝑖)

𝑒
𝑃𝑙)

= ∑

𝑚

𝑈
𝑚

(∑

𝑠

𝑥
𝑚,𝑠

) − ∑

𝑙

𝜆
𝑙
∑

𝑚

𝐻
𝑚

𝑙𝑠
𝑥
𝑚,𝑠

− ∑

𝑚

𝑐
𝑚

2
∑

𝑠

(𝑥
𝑚,𝑠

− 𝑦
𝑚,𝑠

)
2

+ ∑

𝑙

𝜆
𝑙
𝑐
𝑙
(𝑃) − 𝛽∑

𝑙

𝑉
𝑙
(𝑃
𝑙
)

+ ∑

𝑖

𝜇
𝑖
(𝑃

max
𝑖

− ∑

𝑙∈𝑜(𝑖)

𝑒
𝑃𝑙) ,

(13)

where 𝜆 is the vector of Lagrange multiplier which is
associated with capacity constraints (12b), while 𝜇 is the
vector of Lagrangemultipliers which is associatedwith power
constraints (12c), and 𝑃

𝑙
and 𝑥

𝑚,𝑠
are primal variables. The

dual problem P3 can be expressed as an unconstrained min-
max problem:

min
𝜆,𝜇≥0

𝐷(𝜆, 𝜇) , (14)

where the dual function

𝐷(𝜆, 𝜇) = max 𝐿 (𝑥, 𝑦, 𝑃, 𝜆, 𝜇)

= max 𝐿
1
(𝑥, 𝑦, 𝜆) + max 𝐿

2
(𝑃, 𝜆, 𝜇) .

(15)

From the prospective of economics, to understand 𝐿
1
,

each user is selfish and wants to maximize its own util-
ity. Yet, the user increases bandwidth will also reduce the
available bandwidth for other users. 𝐿

2
corresponds to the

balance maximizing link capacity and the minimizing power
consumption. Such optimization process takes the following
several steps.

Firstly, the price of the congestion on each link is updated
according to the flow based on the projection gradient
method [20]; the step of adjusting the direction for each link
is calculated by 𝜆

𝑙
; the update algorithm can be expressed as

follows:

𝜆
𝑙
(𝑡 + 1) = [𝜆

𝑙
(𝑡) + 𝑎 (𝑡) (∑

𝑚,𝑠

𝐻
𝑚

𝑙𝑠
𝑥
𝑚,𝑠

− 𝑐
𝑙
(𝑃))]

+

. (16)

Here, 𝑎(𝑡) is the small positive step size, and “+” rep-
resents the projected onto the real number of positive real
number space. If congestion has arisen on the multicast
tree 𝑇

𝑚
, then congestion control prices will rise accordingly,

indicating that the source node should reduce the data rate.
Based on the gradient projection algorithm, smaller step

iterative update in each time slot is chosen for the prices as
follows:

𝜇
𝑙
(𝑡 + 1) = [𝜇

𝑙
(𝑡) + 𝛾

1
(𝑡) (𝑃

max
𝑖

− ∑

𝑙∈𝑜(𝑖)

𝑃
𝑙
)]

+

. (17)

Second, by considering the second optimization term in (15),

max 𝐿
2
(𝑃, 𝜆, 𝜇) = max(∑

𝑙

𝜆
𝑙
𝑐
𝑙
(𝑃) − 𝛽∑

𝑙

𝑉
𝑙
(𝑃
𝑙
)

+ ∑

𝑖

𝜇
𝑖
(𝑃

max
𝑖

− ∑

𝑙∈𝑜(𝑖)

𝑒
𝑃𝑙)) .

(18)

Notice that 𝐿
2
aims to maximize the sum of weighted

capacities and minimize the power cost. Thus, (18) serves
as a tool for power control at each link. Similar to [16], we
substitute formula (7) into 𝐿

2
. Consider

𝐿
2
= ∑

𝑙

𝜆
𝑙
𝐵[

[

log (𝐺
𝑙𝑙
𝑒
𝑃𝑙) − log(𝜎

𝑙
+ ∑

𝑗 ̸= 𝑙

𝑒
𝑃𝑗+ln𝐺𝑖𝑗)]

]

− 𝛽∑

𝑙

𝑤𝑒
𝑃𝑙 + ∑

𝑖

𝜇
𝑖
(𝑃

max
𝑖

− ∑

𝑙∈𝑜(𝑖)

𝑒
𝑃𝑙)

= ∑

𝑙

𝜆
𝑙
𝐵[

[

log (𝐺
𝑙𝑙
𝑒
𝑃𝑙) − log(𝜎

𝑙
+ ∑

𝑗 ̸= 𝑙

𝑒
𝑃𝑗+ln𝐺𝑖𝑗)]

]

− ∑

𝑖

(𝛽𝑤 + 𝜇
𝑖
) ∑

𝑙∈𝑜(𝑖)

𝑒
𝑃𝑙 + ∑

𝑖

𝜇
𝑖
𝑃
max
𝑖

.

(19)

Theorem 2. Problem max 𝐿
2
(𝑃, 𝜆, 𝜇) is a convex optimiza-

tion.
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Proof. We know from [7] that 𝐵∑
𝑙
[𝜆
𝑙
log(𝐺

𝑙𝑙
𝑒
𝑃𝑙) −

𝜆
𝑙
log(∑

𝑘
exp(𝑃

𝑘
+ log𝐺

𝑙𝑘
) + 𝑛
𝑙
)] is strict concave function

and another term−∑
𝑖
(𝛽𝑤
𝑙
+𝜇
𝑖
) ∑
𝑙∈𝑜(𝑖)

𝑒
𝑃𝑙 is concave function

for 𝑃; obviously, problem (18) is a convex optimization.
Taking the derivative of 𝐿

2
with respect to 𝑃,

𝜕𝐿
2
(𝑃, 𝜆, 𝜇)

𝜕𝑃
𝑙

= 𝜆
𝑙
𝐵 − (𝛽𝑤 + 𝜇

𝑖
) 𝑒
𝑃𝑙

− 𝐵∑

𝑗 ̸= 𝑙

𝜆
𝑗
𝐺
𝑗𝑙
𝑒
𝑃𝑙

∑
𝑘 ̸= 𝑗

𝐺
𝑗𝑘
𝑒𝑃𝑘 + 𝜎

𝑙

.

(20)

Coming back to 𝑃 instead of 𝑃,

𝜕𝐿
2
(𝑃, 𝜆, 𝜇)

𝜕𝑃
𝑙

=
𝜆
𝑙
𝐵

𝑃
𝑙

− (𝛽𝑤 + 𝜇
𝑖
) − 𝐵∑

𝑗 ̸= 𝑙

𝜆
𝑗
𝐺
𝑗𝑙

∑
𝑘 ̸= 𝑗

𝐺
𝑗𝑘
𝑃
𝑘
+ 𝜎
𝑙

=
𝜆
𝑙
𝐵

𝑃
𝑙

− (𝛽𝑤 + 𝜇
𝑖
) − 𝐵∑

𝑗 ̸= 𝑙

𝐺
𝑗𝑙
𝑚
𝑗
,

(21)

where𝑚
𝑗
is a message calculated based on locally measurable

quantities for transmitter 𝑗. Consider

𝑚
𝑗
=

𝜆
𝑗

∑
𝑘 ̸= 𝑗

𝐺
𝑗𝑘
𝑃
𝑘
+ 𝜎
𝑙

. (22)

Then, we can write the gradient steps as the following
distributed power control algorithm with message passing:

𝑃
𝑙
(𝑡 + 1)

= [

[

𝑃
𝑙
(𝑡) + 𝛾(

𝐵𝜆
𝑙
(𝑡)

𝑃
𝑙
(𝑡)

− (𝛽𝑤 + 𝜇
𝑖
(𝑡))

−𝐵∑

𝑗 ̸= 𝑙

𝐺
𝑗𝑙
𝑚
𝑗
(𝑡))]

]

+

𝑙∈𝑜(𝑖)

.

(23)

Next, we consider the first optimization in (15),

max
𝑥≥0,𝑦

𝐿
1
(𝑥, 𝑦, 𝜆)

= max[∑

𝑚

𝑈
𝑚

(∑

𝑠

𝑥
𝑚,𝑠

) − ∑

𝑙

𝜆
𝑙
∑

𝑚,𝑠

𝐻
𝑚

𝑙𝑠
𝑥
𝑚,𝑠

−∑

𝑚

𝑐
𝑚

2
∑

𝑠

(𝑥
𝑚,𝑠

− 𝑦
𝑚,𝑠

)

2

]

= ∑

𝑚

max
𝑥≥0,𝑦

[

[

𝑈
𝑚

(∑

𝑠

𝑥
𝑚,𝑠

)

− ∑

𝑡∈𝑇𝑚

(𝐻
𝑚

𝑙𝑠
𝑥
𝑚,𝑠

∑

𝑙

𝜆
𝑙
−

𝑐
𝑚

2
(𝑥
𝑚,𝑠

− 𝑦
𝑚,𝑠

)
2

)]

]

.

(24)

The first optimization in (15) can be used to regulate the
flow rate at each source. If source 𝑠 only has a single tree,
then we can get the optimal value through derivation of the
subproblem 𝐿

1
:

𝜕𝐿
1
(𝑥, 𝑦, 𝜆)

𝜕𝑥
𝑚

= 𝑈


𝑚
(𝑥
𝑚
) − ∑

𝑙

𝜆
𝑙
(𝑡)∑

𝑚,𝑠

𝐻
𝑚

𝑙,𝑠
. (25)

According to the optimization theory, the rate of source
node can obtain the optimal valuewhen the derivation is zero;
so

𝑥
𝑚

(𝑡) = (∑

𝑙

𝜆
𝑙
(𝑡)∑

𝑚,𝑠

𝐻
𝑚

𝑙,𝑠
)

−1

. (26)

Otherwise, the optimization 𝐿
1
can be solved by a non-

linear Gauss-Seidel method which alternately (i) maximizes
the objective function over 𝑥

𝑚
while keeping 𝑦

𝑚
fixed and (ii)

maximizes 𝐿
1
over 𝑦

𝑚
while keeping 𝑥

𝑚
fixed.The algorithm

repeats the following steps.

Step 1. Fix 𝑦
𝑚

= 𝑦
𝑚
(𝑡) and maximize the problem P3. With

the addition of the quadratic term, the problem P3 is now
strictly convex with respect to 𝑥

𝑚,𝑠
. Hence, the maximizer of

P3 is unique existence.
To be precise, taking the derivative of 𝐿

1
with respect to

𝑥
𝑚,𝑠

,

𝜕𝐿
1
(𝑥, 𝑦, 𝜆)

𝜕𝑥
𝑚,𝑠

=
1

∑
𝑠
𝑥
𝑚,𝑠

− ∑

𝑙

𝐻
𝑚

𝑙𝑠
𝜆
𝑙
+ 𝑐
𝑚
𝑦
𝑚,𝑠

− 𝑐
𝑚
𝑥
𝑚,𝑠

.

(27a)

Thus, according to the first-order necessary optimality
condition, we have

𝑥
∗

𝑚,𝑠
=

1

𝑐
𝑚

[
1

𝑧
− ∑

𝑙

𝐻
𝑚

𝑙𝑠
𝜆
𝑙
+ 𝑐
𝑚
𝑦
𝑚,𝑠

]

+

, (27b)

where 𝑧 = ∑
𝑠∈𝑇𝑚

𝑥
∗

𝑚,𝑠
can be calculated by summing both

sides of (27b) as formula (27c). Consider

𝑧 = ∑

𝑡∈𝑇𝑚

1

𝑐
𝑚

[
1

𝑧
− ∑

𝑙

𝐻
𝑚

𝑙𝑠
𝜆
𝑙
+ 𝑐
𝑚
𝑦
𝑚,𝑠

]

+

. (27c)

Assuming that 𝑓(𝑧) = 𝑧 − ∑
𝑡∈𝑇𝑚

(1/𝑐
𝑚
)[(1/𝑧) − ∑

𝑙
𝐻
𝑚

𝑙𝑟
𝜆
𝑙
+

𝑐
𝑚
𝑦
𝑚,𝑠

]
+, it is a strictly increasing function; we can easily

achieve unique solution for the equation 𝑓(𝑧) = 0. 𝑧 =

(−𝑏 + √𝑏2 + 4|𝑇
𝑚
|)/2, where 𝑏 = ∑

𝑠∈𝑇𝑚
(∑
𝑙
𝐻
𝑚

𝑙𝑠
𝜆
𝑙
− 𝑐
𝑚
𝑦
𝑚,𝑠

).
The iterative procedure follows as (27b) and (27c).

Step 2.The algorithm sets 𝑦(𝑡 + 1) = 𝑥(𝑡 + 1). The advantage
of network utility maximization is that the optimization
model can be implemented in a distributed network.Through
broadcasting the information of the adjacent nodes as well
as the feedback price for each link on the path, the network
is able to share the global information among the nodes.
After exchanging cross-layer information, the information of
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1. Inner power allocation algorithm.
(1) Initialize parameter 𝜇

𝑖
(0), 𝑡
1
= 0;

(2) Update 𝑃
𝑙
(𝑡
1
+ 1), 𝑢

𝑖
(𝑡
1
+ 1);

(3) 𝑡
1
= 𝑡
1
+ 1, repeat (2) until iterations end.

2. For each 𝑙 ∈ 𝑜(𝑖) executes update at each node.
(1) Receive messages 𝑚

𝑗
(𝑡
2
) from all interfering nodes 𝑗 in the neighborhood and execute inner power allocation;

(2) Update power using formula (23);
(3) Compute 𝑚

𝑙
(𝑡
2
) broadcast 𝑚

𝑙
(𝑡
2
) to all interfering nodes in the neighborhood;

(4) Compute link capacity, and update link price using formula (17);
(5) 𝑡
2
= 𝑡
2
+ 1 if 𝑡

2
< 𝐾 then goto (1) else end.

3. At each source node.
(1) Receive from the reverse path ∑

𝑠∈𝑇𝑚
𝐻
𝑚

𝑙,𝑠
𝜆
1
(𝑡) of link prices.

(2) Update the multicast flow rate 𝑥
𝑚,𝑠

using (26) or (27b) and (27c)
(3) Communicate 𝑥

𝑚,𝑠
(𝑡 + 1) to all links on the tree 𝑇

𝑚
.

(4) if 𝑡
2
> 𝐾 then set y(𝑡 + 1) = x(𝑡), 𝑡2 = 1 and repeat to (1) until iterations end.

Algorithm 1: Cross-layer multicast rate and power allocation optimization.

physical layer and transport layer can be shared. The control
structure is showed in Figure 3.

The power allocation is executed at the physical layer of
the wireless network; the information can be sent to upper
layer; rate control can be implemented by adjusting the size
of windows for TCP to avoid congestion. Joint optimization
problem can be decomposed into layers of suboptimiza-
tion problem by dual decomposition; each suboptimization
problem uses gradient projection method to solve the opti-
mization problem and then we design cross-layer multicast
rate and power allocation optimization algorithm as follows.
The parameters 𝑡, 𝑡

1
, and 𝑡

2
represent the iteration of inner

power allocation, intermediate nodes, and source nodes,
respectively.

The above algorithm can be executed on the source
node and the intermediate node through the sharing of
information. Link price updates for each intermediate node
requires the information from its nearest two-hop neighbors,
which can be obtained through the broadcast of the two-hop
neighbors. The price of each link is provided by the feedback
returned to the source node, and the price information can
be added into the underlying link ACK data packets; so it can
be sent hop by hop back to the source node in the process of
sending data along the path.

Algorithm 1 can achieve a global optimal solution of the
iterative algorithm under certain conditions.

Definition 3 (see [20]). Assuming 𝜆
∗ is optimal value of dual

variable. There exists fix step size 𝛼, for every 𝛿 > 0,

lim sup
𝑡→∞

1

𝑡

𝑡

∑

𝜏=1

𝐷(𝜆 (𝜏) , 𝜇) − 𝐷 (𝜆
∗

, 𝜇) ≤ 𝛿. (28)

Algorithm 1 converges to 𝜆
∗ and 𝜇

∗.

Theorem 4. Assuming 𝜆
∗ is optimal value of dual variable

and 𝑎 is small step size, if the Euclidean norm of subgradient
is bounded, ‖∇

𝜆
𝐷(𝜆, 𝜇)‖

2
≤ 𝐺 is true for every 𝑡. Algorithm 1

converges to the range of the optimum radius 𝑎𝐺2/2.

Proof. Consider

𝜆 (𝑡 + 1) − 𝜆
∗

2

2
≤

𝜆(𝑡) − 𝑎∇
𝜆
𝐷(𝜆(𝑡), 𝜇) − 𝜆

∗

2

2

≤
𝜆 (1) − 𝜆

∗

2

2

− 2𝑎

𝑡

∑

𝜏=1

(𝐷 (𝜆 (𝜏) , 𝜇) − 𝐷 (𝜆
∗

, 𝜇))

+ 𝑎
2

𝑡

∑

𝜏=1

∇𝜆𝐷(𝜆, 𝜇)


2

2
,

(29)

so

2𝑎

𝑡

∑

𝜏=1

(𝐷 (𝜆 (𝜏) , 𝜇) − 𝐷 (𝜆
∗

, 𝜇)) ≤
𝜆 (1) − 𝜆

∗

2

2
+ 𝑡𝑎
2

𝐺

1

𝑡

𝑡

∑

𝜏=1

(𝐷 (𝜆 (𝜏) , 𝜇) − 𝐷 (𝜆
∗

, 𝜇)) ≤

𝜆 (1) − 𝜆
∗

2

2
+ 𝑡𝑎
2

𝐺

2𝑡𝑎
.

(30)

From Definition 3,

lim sup
𝑡→∞

1

𝑡

𝑡

∑

𝜏=1

(𝐷 (𝜆 (𝜏) , 𝜇) − 𝐷 (𝜆
∗

, 𝜇)) ≤
𝑎𝐺
2

2
. (31)

For ∇
𝜆
𝐷(𝜆, 𝜇) = (𝐶

1
(𝑃
1
) − ∑

𝑚
𝐻
1

𝑚𝑠
𝑥
𝑚𝑠

, . . . , 𝐶
𝐿
(𝑃
𝐿
) −

∑
𝑚

𝐻
𝐿

𝑚𝑠
𝑥
𝑚𝑠

)
𝑇, obviously,

∇𝜆𝐷(𝜆, 𝜇)
2

≤ √∑

𝑙∈𝐿

(𝐶
𝑙
(𝑃

max
𝑖

)) + ∑

𝑙∈𝐿

𝑃max. (32)

So formula (17) converges to 𝜆
∗.

Similarly, formula (18) converges to 𝜇
∗. Therefore, Algo-

rithm 1 will converge to global optimumwhile the step size is
small enough.
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Figure 3:The open loop control structure for layered protocol stack
in wireless system.
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Figure 4: A simple network with two multicast sessions.

5. Numerical Experiments and Analysis

In this section, we conduct numerical simulation to evaluate
the performance of Algorithm 1. Without loss of generality,
network multicast tree has been established and channels
have been assigned at the stage of network initialization. We
consider a simple topology as shown in Figure 4 where each
node has multiradios, each link has been assigned channel
label as “𝑎,” “𝑏,” “𝑐,” and so forth, and the capacity of link is
determined by transmitting power, the path fading of the link,
and the external interference.

There are twomulticast sessions in this network scenario;
the source node of session 1 is 𝑆

1
, while the destination nodes

are 𝑥 and 𝑦; the source node of session 2 is 𝑆
2
, while the

destination nodes are 𝑦 and 𝑧. For the sake of simplicity,
the same utility function 𝑈(𝑥) = log(𝑥) is adopted for all
sessions. The left multicast tree is represented as a solid line,
while the right multicast tree is identified as dotted line. The
encoded link of session 1 is (𝑤

1
, V
1
), while the encoded link

of session 2 is (𝑤
2
, V
2
). The channel assignment of each link

meets the condition where there is no strong interference in
the surrounding area.

The system is initialized by the following configuration:
the maximal transmit power is 2.5mW for all the nodes,
the interference noise of network is 𝑛

𝑙
= 0.0001mW, the

bandwidth of each channel is 1 kHz, and the step size of
iterative algorithm is unified set to be 0.0035; channel gain
coefficient is set according to the distance 𝑑 between any two
nodes in a uniformly distributed random selection within
[0.2𝑑
−4

− 2𝑑
−4

]. The initial power of all links is set to be
0.1mW, and the initial prices value is set to be 1 for congestion
and power.

5.1. Network Utility. Figures 5(a) and 5(b) show, respectively,
the evolution of rate for the multicast session with 𝛽 = 0

and 𝛽 = 1, both of which show that the flow rate converges
gradually along with the algorithm’s iteration. On the other
hand, the speed of growth for the rate slows down gradually in
this process.The rate for two sessions behaves similarly which
illustrates that the algorithm has a good fairness. Also, the
session rate when 𝛽 = 1 is lower than that when 𝛽 = 0 which
indicates that the rate is slightly reduced when increasing the
value of balance coefficients.

In order to measure the difference of the tree for the same
multicast session, the process of rate change of the left and the
right multicast trees for session 𝑆

1
is shown in Figure 6. The

rates of left and right multicast trees improve rapidly in the
early stage but their patterns are different. The price of the
tree is subject to interference and bandwidth, in which the
tree featuring a lower price should be allocated more flow.

Figure 7 shows the evolution of the congestion prices over
different trees. The left and right tree price tends to be stable
after 200 generations, which is similar to the flow evolution
process in Figure 6.

5.2. Power Consumption. In wireless network, the link own-
ing lower channel gain needs to increase the power for elim-
inating the link’s bottleneck. Enhancing power will increase
link capacity, but it will increase the interference to the
neighbour nodes, consequently reducing the capacity of the
nearby links. Therefore, the allocation of power is not the
bigger the better in practice. A comparison of the nodes’
transmit power evolution process is shown in Figure 8 where
the balance coefficient is set to be 0.

From the top to the bottom in Figure 8, the power curves
respond to nodes 𝑚

2
, V
2
, 𝑚
3
, 𝑠
2
, 𝑠
1
, 𝑚
1
, V
1
, 𝑤
1
, and 𝑤

2
.

The node power is different due to the mutual interference
of the neighboring nodes. The growth speed is not smooth;
however, the power update of the most nodes is upward, as
the cost of power consumption is not considered. Some nodes
boost power in order to improve link capacity in the iterative
process, while other nodes do not do so as they have met the
bandwidth requirements.

Given wireless node’s limited energy, realizing a high
throughput will shorten the life of nodes in the network.
In the experiment, the balance coefficient value is set be 0.1
for reducing energy consumption. The results of power are
showed in Figure 9 which correspond to nodes 𝑚

2
, 𝑚
3
, 𝑚
1
,
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Figure 5: (a) Session rate with 𝛽 = 0. (b) Session rate with 𝛽 = 1.
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of the algorithm, the power of some nodes is significantly
decreased when balance parameter 𝛽 = 0.

5.3. The Effect of Tradeoff between the Total Energy Cost and
Total Utility. The parameter 𝛽 plays a balancing role between
the energy efficiency and network performance.The results of
comparing different values of balance coefficient 𝛽 are shown
in Figure 10(a). In this experiment, the balance coefficient
is increased from 0 to 1 and the session rate is reduced
to approximately 17.2% as a result. The experiment results
for node transmission power are showed in Figure 10(b),
which shows that the sum of node transmission power con-
sumption is significantly decreased from 13mW to 0.8mW
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Figure 7: Evolution of congestion prices over different multicast
trees.

when the balance coefficient increases. The total power
consumption of the power control is decreased noticeably,
when network traffic is declined very slightly and the value
of the balance coefficient is set as 0.1. The results show that
the network energy consumption is very sensitive to the
balance coefficient. Nevertheless, the balance coefficient has
little effect on the rate of nodes, which represents a major
advantage for battery-powered wireless networks.

5.4. Comparison with the Equal and Fixed Power Allocation
Algorithms. We compare our algorithm with the equal and
fixed power allocation for the session rate evolution. The
equal power allocation assumes that the nodes are allocated
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0.0 0.2 0.4 0.6 0.8 1.0
10

15

20

25

30

Su
m

 o
f s

es
sio

n 
ra

te
 (b

ps
)

𝛽

(a)

0.0 0.2 0.4 0.6 0.8 1.0
0
2
4
6
8

10
12
14

Su
m

 p
ow

er
 co

st 
(m

W
)

𝛽

(b)

Figure 10: (a) The effect of the tradeoff factor on total flow rate. (b) The effect of the tradeoff factor on total cost of power.

a maximum power of 2.5mW to affiliated link, and the
fixed power allocation sets the link power to be 0.5mW.
In this experiment, we randomly vary channel gain and
independently run the simulation 10 times to measure the
flow rate. As can be seen from Figure 11, the session rate

based on our joint rate and power allocation is higher than
that of the equal allocation. The session rate of the fixed
power allocation is significantly lower than the other two
alternatives, but, due to its fewer optimized variables, the
fixed power allocation enjoys faster convergence. Although
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utility power optimization converges slowly, it needs fewer
iterations to reach stable approximation, giving it more
practical engineering advantages.

On the other hand, the equal power allocation costs a total
power of 22.5mW, while the fixed power needs 8.5mW and
the utility-based power allocation consumes 13mW, which
are significantly lower than the equal power allocation. The
results reveal that the joint optimization can improve network
performance, while reducing node power consumption and
prolonging the life of network.

6. Conclusions

In this paper, we study the joint optimization of power
allocation and rate control for multicast flow with network
coding for enhancing wireless network throughput. Using
the network utility maximization theory, we propose a
multisession flow congestion control and power allocation
optimizationmodel under the condition that network coding
subgraph is determined. We also use the dual decomposition
to decompose the problem into source flow control and the
intermediate node power allocation optimization problems,
where each subproblem corresponds to resource allocation
of the transport layer and the physical layer. For dealing
with the instability problem by multiple subtrees, a proximal
optimization algorithm is adopted. Analysis demonstrates
that the distributed algorithm can converge under the con-
dition that the step length is small enough. Finally, numerical
simulation shows that our optimization algorithm can fairly
allocate resources for network traffic. Due to the power
controlling, the network node’s energy efficiency has been
improved significantly with a small impact on the network
capacity.
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