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Diabetic retinopathy (DR) is a diabetes complication that can cause vision loss among patients due 
to damage to blood vessels in the retina. Early retinal screening can avoid the severe consequences 
of DR and enable timely treatment. Nowadays, researchers are trying to develop automated deep 
learning‑based DR segmentation tools using retinal fundus images to help Ophthalmologists with DR 
screening and early diagnosis. However, recent studies are unable to design accurate models due to 
the unavailability of larger training data with consistent and fine‑grained annotations. To address this 
problem, we propose a semi‑supervised multitask learning approach that exploits widely available 
unlabelled data (i.e., Kaggle‑EyePACS) to improve DR segmentation performance. The proposed 
model consists of novel multi‑decoder architecture and involves both unsupervised and supervised 
learning phases. The model is trained for the unsupervised auxiliary task to effectively learn from 
additional unlabelled data and improve the performance of the primary task of DR segmentation. 
The proposed technique is rigorously evaluated on two publicly available datasets (i.e., FGADR and 
IDRiD) and results show that the proposed technique not only outperforms existing state‑of‑the‑art 
techniques but also exhibits improved generalisation and robustness for cross‑data evaluation.

Diabetic retinopathy (DR) is an eye condition that can leads to vision loss or blindness in people with diabetes. 
It is mainly caused by the damage to the blood vessels of the  retina1. In diabetic patients, the excessive growth 
of glucose in the blood affects retinas, which is the innermost layer of the eye. It processes visual information by 
transferring the light through neural signals and coordinating with the brain. The retina receives blood nourish-
ment like all parts of the human body through the micro blood vessels. The blood sugar level with the uninter-
rupted blood flow must be  retained2. The high blood sugar level may damage the tiny blood vessels even in the 
prediabetes stage. Over time, blood vessels in the retina start leaking fluid that causes swelling and blur vision in 
DR patients. According to the World Health Organization (WHO), there were about 463 million diabetes patients 
in the year 2019 globally and more than 77% of them suffer from  DR3. With each passing year, the prevalence of 
DR is increasing, which can lead to a higher number of patients with vision problems or even blindness. Hence, 
early diagnosis of DR is important through regular screening for preventing further complications.

A fundus photography is usually used to screen DR and other eye related  illnesses4. A fundus image visual-
izes the details of entire layers on retina which enables a doctor to provide the most accurate diagnosis. Figure 1 
presents an example of a DR retina by fundus photography, which consists of multiple lesions such as hemorrhage 
(HEs), microaneurysm (MAs), hard exudates (EXs), and soft exudates (SEs). Among them, MA is the earliest 
clinically visible evidence of DR, which appears as small red dots. In addition to MA, moderate non-proliferative 
DR contains ‘blot’ or ‘dot’ shaped hemorrhages (HEs). EXs are vivid yellow-white intra-retinal deposits that can 
vary from small specs to larger patches. SEs are greyish-white patches of discoloration in the nerve fiber layer, 
which usually appear in the severe DR stage.
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Early detection of DR using automated systems is highly desired. Unfortunately, the current DR detection 
practices are unable to provide the fully automated services. Specifically, these practices need a well-trained clini-
cian to manually examine digital color fundus images of the retina and identify the DR disease by locating the 
lesions (i.e. MAs, HEs, EXs, and SEs). Although such practice can provide accurate detection, however, this task 
is hectic, time-consuming and fully depends on the expertise of well-trained practitioners. Therefore, consider-
able efforts are being made to develop computer-aided DR diagnosis tools for screening patients as well as to 
efficiently facilitate the  ophthalmologists4. Such automated tools will be able to assist clinicians in identifications, 
screening, and monitoring of the disease for accurate and ultimate measurements of retinal lesions.

Various studies attempted to automate the screening of  DR4. However, due to: (1) the noisy images (impulsive 
noise, bright border reflections, optical reflections), (2) structure complexity (size, shape, intensity), and (3) 
appearance of non-lesion structures (vessel reflections, drusen, nerve fiber reflections), it is very challenging. 
Researchers also explored deep learning (DL) techniques to solve this  problem5, however, the unavailability 
of larger training data is the major road block towards the development of an accurate and robust solution. 
We propose to use semi-supervised model to address this issue. Semi-supervised learning based systems offer 
opportunities to learn from both labeled data and unlabeled data. Such solutions showed improved results in 
various applications including knee osteoarthritis severity  grading6, speech emotion  recognition7, and Covid-19 
 detection8. However, to the best of our knowledge, none of the study use multitask learning semi-supervised 
model for diabetic retinopathy segmentation.

In this study, we propose a semi-supervised multitask learning approach that enables us to exploit the larger 
unlabeled data in the unsupervised training phase to improve the performance. Specifically, we propose a novel 
architecture namely semi-supervised multi-task Decoders-UNet (SSMD-UNet), which consists of one encoder 
and four decoder branches, among them one is considered as a primary decoder and the rest are considered 
as auxiliary decoders. The proposed SSMD-UNet is trained in two phases i.e., unsupervised and supervised 
phase. In the unsupervised phase additional abundantly available data is utilized for training of an auxiliary 
task. Specifically, SSMD-UNet is trained for the reconstruction task during which the encoder branch learns 
to produce the optimal latent representation. During the supervised phase, the network is trained in multitask 
learning to identify one of the lesions (e.g., HE) as the primary task. We consider the detection of the other three 
lesions (e.g., MAs, EXs, and SEs) and reconstruction are considered as auxiliary tasks. We trained four separate 
models; each of these is optimized for one disease detection. The propose scheme has been rigorously evaluated 
and analysed on two publicly available datasets (i.e.,  FGADR5 and  IDRiD9). The results show that the proposed 
scheme outperforms the existing state-of-the-art techniques and demonstrates the significant robustness as well.

Related work
Over the past few years, various studies attempt to solve the problems of DR lesion detection and segmenta-
tion, and highlight the  challenges10. In particular, deep learning based methods achieve significantly better 
 performance11. The DR detection/segmentation research is mainly categorized into two groups: traditional 
machine learning (ML) based approaches and modern DL-based approaches. The traditional methods use fun-
dus images to automatically detect one or several pre-selected DR-related  lesions12, such as EXs, HEs, and MAs. 
A typical segmentation methods consist of region growing methods to devise various image regions based on 
some uniformity criteria such as color and gray  level12, mathematical morphology operations performed by 

Figure 1.  Illustration of fundus image with characteristics of DR lesion. EX hard exudate, MA microaneurysm, 
HE hemorrhage, SE soft exudate.
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evaluating geometrical structures of retina  components12. Traditional methods are usually based on handcrafted 
features (e.g., local binary pattern (LBP)13, intensity difference and  gradient14 etc.) and learning-based features 
obtained from raw image data by learning latent features, discriminative representation using ML  techniques15. 
Unfortunately, the classical techniques are unable to model the complex structure in fundus images and have 
issues of scalability.

In contrast, DL based approaches can learn more complex structures and becoming very popular in DR detec-
tion/segmentation5,16. DL techniques ensure to simultaneously learn and understand higher-level and lower-level 
representation from the input images without requiring the handcrafted  features17. These characteristics mak-
ing the DL-based techniques to emerge as an effective tool to reshape the medical image analysis for healthcare 
 applications17. In the medical image analysis field, the convolutional neural networks are very famous among 
other DL  techniques18. The existing literature consists of different configurations and variants of CNN’s in which 
 AlexNet19,  ResNet20, and  VGG21, are the most popular.

In retinal image analysis, DL has been widely employed due to its unique characteristics of preserving local 
image relations. For instance, Chudzik et al.22 applied a fully convolutional neural network with the batch nor-
malization layers and the dice coefficient loss function to detect and segment MAs. They have evaluated their 
proposed model on E-Ophtha23 and achieve 0.84% sensitivity rate. Mo et al.24 presented an image-level fully 
convolutional residual network for EX segmentation. Their proposed model is capable of producing a prob-
ability map of EX for fundus image using only one forward pass. Tan et al.25 presented CNN-based model to 
segment multiple lesions including EX, MA, and HE, simultaneously. This work demonstrated that it is possible 
to simultaneously segment several lesions using a single CNN architecture. They have evaluated their proposed 
methodology on CLEOPATRA  database25 which consists of 298 images and achieved 0.87%, 0.62%, and 0.46%, 
sensitivity rates for EXs, HEs, and MAs, respectively. Gwenole et al.4 presented a novel technique using CNN 
to detect referable DR and automatically segment DR lesions. They have created heatmaps of the convolutional 
layer that leads to explore new biomarkers in images and achieve improved performance. The heat map attained 
a similar accuracy for lesions like a pixel-wise trained convolution network. Various other  studies26,27 also pre-
sented similar architecture to segment DR lesions. However, most of these studies evaluated their model using 
single datasets without considering to evaluate the generalisation of their proposed frameworks.

Aziz et al.28 proposed a novel methodology for hemorrhage detection. First, they enhanced the quality of 
the image, using contrast limited adaptive histogram equalization to improve the contrast of an image. Then the 
gamma correction is utilized to adjust the brightness level. Furthermore, the seed points extraction technique 
is employed to detect HEs. They have validated their methodology using  DIARETDB129 and  DIARETDB030 
and obtained promising results. Wang et al.31 segmented the DR lesion by implementing a contextual net and 
achieved high accuracy. In contextual net, they incorporated supervision features to avoid overfitting. This 
contextual supervision model performance is analyzed through the fundus database where they reported the 
exact prediction but poor severity classification. Manisha and  Susan32 have carried out DR detection, classifica-
tion, and segmentation tasks. They reported that the pre-trained model i.e., DenseNet121 is the most suitable 
model for DR image classification. Whereas, EfficientNet-B0 and MobileNetV1 are effective for DR detection. 
In the DR segmentation task, PSPNet with focal loss provides efficient results and outperforms the pre-trained 
networks. Liu et al.33 segmented EXs by proposing a dual-branch network with dual-sampling modulated dice 
loss. This network utilizes two branches with partial weights sharing to learn representations and classifiers for 
EXs in various sizes. They compared their proposed model with five well-known deep learning-based methods: 
Unet++34,  DoubleUnet35,  SPNet36,  DNL37, and Deeplabv3+38, and achieved better results than these five models. 
Huang et al.39 proposed a global transformer block and a relation transformer block for incorporating attention 
mechanisms and preserving detailed information for DR segmentation. The model has been evaluated on  IDRiD9 
and  DDR40 datasets and achieves reasonable results.

Recently, MTL techniques are getting popular in DR segmentation due to their improved generalisation 
power. In MTL, models are developed to learn generalised representations by solving multiple related tasks 
 together41. Yang et al.42 presented a hybrid segmentation method for vessel segmentation which is a combination 
of image fusion network and multitask (MT) segmentation network. The MT segmentation network segment 
the thin vessels and thick vessels separately from fundus images using U-Net. The model is evaluated using 
three publicly available datasets such as,  CHASE_DB143,  DRIVE44, and STARE  dataset45, and attained improved 
performance on these datasets. Zhao et al.46 proposed a W-net to segment the optic disc (OD) and the exudates 
simultaneously in retinal images using the MTL scheme. They have evaluated their proposed model on two pub-
licly available datasets such as e_ophtha_EX (i.e., comprised of 82 fundus images) and DiaRetDb1 (comprised 
of 89 fundus images) datasets and obtained 94.76% and 95.73% F1-score for OD segmentation, and 92.80% and 
94.14%, for EXs segmentation. Clement et al.47 proposed a multi-task CNN architecture to segment red lesion 
and bright lesions in fundus images. They have improved the segmentation accuracy of the retinal lesion by using 
image-level annotation. The model is evaluated using four different datasets, such as  DIARETDB129,  IDRID9, 
e-optha  exudate23, and  EyePACS26 and obtained improved results. Most of the above studies utilise MTL learning 
in supervised setting without exploiting the abundantly available unlabelled data to improve the performance. In 
particular, we present a semi-supervised MTL method that can learn generalised representation and effectively 
exploit unlabelled data compared to the semi-supervised  techniques48,49 in DR segmentation.

Proposed method
We propose an MTL based framework which incorporates the semi-supervised learning by using a single encoder 
and five decoder branches. By using five decoder branches, the model is able to learn generalised representa-
tions by performing multiple tasks (i.e., segmentation and reconstruction) simultaneously. We consider the 
segmentation of one disease among four (MAs, HEs, EXs, and SEs) as the primary task, and the segmentation 
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of the remaining three diseases along with the reconstruction task is considered as auxiliary tasks. Incorpora-
tion of reconstruction task enables the model to exploit the unlabelled dataset during the unsupervised phase, 
in which a single branch (i.e., reconstruction) of a decoder is optimized and the model acts like a conventional 
autoencoder network.

Our proposed model is motivated by semisupervised multi-task learning. Here we are utilizing multiple 
decoders to learn shared representations that help improve the generalization and performance of the system. In 
addition, it also enables us to utilize the additional abundantly available unlabelled data in the training pipeline 
of the system. This also helps improve the generalization and performance of the proposed system. We empiri-
cally evaluated the model and showed the benefits of using additional data, robustness analysis, and the effect of 
auxiliary tasks in “Results and discussion”.

Figure 2 demonstrates the proposed model architecture which consists of single encoder and five decoder 
branches. One decoder branch performs reconstruction and the other four perform the segmentation of each 
disease. To further elaborate the model details, we divide the model into two parts based on the tasks (i.e., seg-
mentation and reconstruction). The proceeding subsection describes both parts of proposed model.

Pre‑processing. The DR lesions detection from fundus images is a challenging and important task. Due 
to masking on DR lesions, the images taken with digital imaging devices have various reflections and shadows. 
Effects such as some tinted lesions, bubble appearances, uneven lighting, noise, and specular reflections are part 

Figure 2.  Proposed SSMD-UNet framework, where each decoder is designed for predicting one annotations, 
and one decoder is reconstructing the image. The dotted blue line exhibit the unsupervised path and the green 
line exhibit supervised path.
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of the fundus images. Likewise, the selected datasets have prolific intensity as well as dimension variation. Hence, 
we apply a pre-processing step to improve the quality of training data as shown in Fig. 3. We first cropped the 
images from EyePACS and  IDRiD9 datasets to remove the blank areas from all sides and then applied histogram 
 equalisation50. Finally, we used a bicubic interpolation to resize the images from all the datasets to 512× 512 
based on their aspect ratio and normalised the intensity values.

Segmentation task. As depicted in Fig. 2, the proposed model consists of four decoder branches that per-
form the segmentation of each disease (i.e., MAs, HEs, EXs, and SEs). The architecture of all decoder branches 
are identical and are inspired by the conventional UNet  architecture51. Our  UNet51 is based on convolutions 
neural networks (CNNs), which consists of a contractive (encoder/down), bottleneck (middle bottom), and 
upsampling (expansion) phase. The contractive part is comprised of a rectified linear unit (ReLU) placed after 
every second convolution layer, further, using the max-pooling layer, the result is then downsampled. This con-
traction increases feature information and reduces the spatial information. The expansive pathway combines the 
spatial information and feature information through a sequence of up-convolutions and concatenations with 
high-resolution features from the contracting path. We have employed five identical decoders in the proposed 
architecture that dilates the information at various levels by integrating the features learned at the corresponding 
level of the encoder branch through the residual connections. Finally, each decoder network learns to localize 
one disease for which it has been optimized.

Input reconstruction task. The proposed MTL architecture also includes one unsupervised reconstruc-
tion branch (as shown in Fig. 2), which works like a standard autoencoder (AE) during training. AE mainly 
trained in an unsupervised way to learn comprised features by performing the reconstruction. In a typical AE, 
encoder part takes an image as input to encode into a compressed latent features, while the decoder is tasked 
to reconstruct the input image from compressed representation. In our framework, AE encode an input vec-
tor x ∈ RI , this input is linearly mapped by the encoder with a set of weights W1

e  ∈ RK1×I with K1 units. Then, 
added a bias vector b1e ∈ RK1 and applied a nonlinear activation function fe to generate the first layer outputs h1 
= fe(W1

e · x + b1e ) ∈ R
K1 . The next layer outputs such as, h2 = fe(W2

e · h1 + b2e ) ∈ R
K2 can be computed using 

the prior outputs and so on, until the final representation is computed such as z = fe(WL
e .hL−1 + bLe ) ∈ R

KL for 
a network with l layers.

To obtain the reconstructed input x̂ ∈ R
I , the decoder maps the encoded representation z with another 

set of weights WL
d  ∈ RKL−1×KL as ĥL−1 = fd(WL

d · z + bLd) ∈ R
KL−1 and so on until the final reconstruction 

x̂ = fd(W
1
d · ĥ1 + b1d) ∈ R

I . The term fd is decoding activation function, and bld and Wl
d are respectively the 

decoding bias and the weights matrix of layer l. AE in its original form, learn features by reducing the error 

Figure 3.  Fundus photograph preprocessing. Original images (a,c,e) are transformed into (b,d,f).
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between the input x and its decoded version x̂ . During the learning process, the cost function commonly used 
for optimization is the mean square error (MSE)52, which can be defined as follows:

Multitask training scheme. The proposed architecture exploits MTL to optimise the performance for pri-
mary tasks which is the localization of the lesion. There is a total of five tasks for which each decoder is assigned, 
specifically, four supervised (i.e., segmentation) tasks and one unsupervised (i.e., reconstruction) task. Among 
four supervised segmentation tasks, only one is considered as the primary task during training and the rest are 
trained as auxiliary tasks along with the unsupervised reconstruction task. In Eq. (2), we present the SSMD-
UNet loss LSSMD-UNet as a function of supervised and unsupervised losses.

Here, LRec is the reconstruction loss of the reconstruction branch (defined in Eq. 1), LSeg1 , LSeg2 , LSeg3 , and 
LSeg4 are losses for the four segmentation tasks (i.e., HE, MA, EX and SE localisation). Here LSeg1 is considered as 
the loss of primary task while LSeg2 , LSeg3 , and LSeg4 denote the losses of auxiliary tasks ; α and β are the trade-off 
parameters to control the weight of each loss term.

For a given input, i.e., in Decoder-1, we focus to solve HE as the primary task therefore, we use LSeg1 for this. 
LSeg1 is the loss of the primary tasks. This is the beauty of our proposed model for a given input, we can train the 
model for one primary task by giving more weights β and penalizing the auxiliary task. The model will focus on 
accurately detecting primary tasks and also segmenting the auxiliary task as a byproduct. This mainly depends 
on the problem that we want to solve.

For the input data x, the overall model is trained in two phases: (1) the unsupervised (reconstruction) phase 
and (2) the supervised (segmentation) phase. In the unsupervised learning (reconstruction) phase, the model 
updates the encoder ( Eθ ) and the reconstruction decoder ( DRec ) and minimises the reconstruction error (defined 
in Eq. 1) by encoding x into latent representation z and reconstructing the x̂.

In the supervised learning phase, the encoder ( Eθ ) and the segmentation decoders ( DSegk ) are updated to 
minimise the segmentation error. We employ dice score loss for the optimisation of segmentation tasks which 
can be defined as below:

where k ǫ {1, 2, 3, 4} , while, Spred and Sgt denote the predicted and ground truth segmentation, respectively.

Experimental setup
Datasets. FGADR dataset. The fine-grained annotated diabetic retinopathy (FGADR)5 dataset comprised 
of two sets. Seg-set and Grade-set. The Seg-set is made available from the corresponding author on reasonable 
request, the dataset consists of 1842 images with fine-grained pixel-level lesion annotations. The lesions consist 
of HEs, MAs, SEs, EXs, NV, and IRMA. During experimentation, we follow the data usage agreement provided 
by Zhou et al.5 and all the experiments were carried out in accordance with relevant guidelines and regulations. 
It is noticeable that the FGADR dataset consists of six lesions, each having its masks. We used NV and IRMA as 
an unlabeled data as they have less samples with ground truth i.e., 49 and 159 masks, respectively. Whereas, HE, 
MA, SE, and EX comprised of 1842 masks each. Figure 4 shows an example of fundus images and their annotated 
regions from the  FGADR5 and  IDRiD9 datasets, whereas the EyePACS dataset is unannotated dataset.

IDRiD. The Indian Diabetic Retinopathy Image Dataset (IDRiD dataset) is publicly available and can be down-
loaded from IEEE Dataport  Repository9, under a Creative Common Attribution 4.0 license. More detail infor-
mation about the data is available in the data  descriptor9. We follow the data usage agreement provided by 
Porwal et al.9.

The  IDRiD9 dataset consists of fundus images captured during real clinical examinations in an eye clinic in 
india using Kowa VX fundus camera. The obtained images have 50 degree field of view with a resolution of 4288 
× 2848. The images are separated into three parts, corresponding to three different learning tasks and accom-
panied by the respective types of ground truth. The first part is designed for the development of segmentation 
algorithms that comprised of 81 images (54 train set and 27 test set) with pixel level annotations of DR lesions 
(MAs, HEs, EXs, SEs) and the optical disk. The second part corresponds to a DR grading task and contains 516 
images divided into train set (413 images) and test set (103 images) with DR and Diabetic Macular Edema (DME) 
severity grades. Finally, the third part corresponds to a localization task and contains 516 images with the pixel 
coordinates of the optic disk center and fovea center (again split in a 413 train and 103 test set). Using this dataset, 
we only consider the pixel level annotated images (i.e., 81) to evaluate our SSMD-UNet.

Kaggle‑EyePACS. The Kaggle-EyePACS dataset is publicly available  dataset26. The Kaggle diabetic retinopa-
thy detection challenge dataset consists of 35,126 training samples and 53,576 testing samples. A clinician has 
graded all images according to the International Clinical Diabetic Retinopathy Disease scale. The images are 

(1)LRec(x,Dδ(Eθ (x))) = �x − x̂�22

(2)LSSMD-UNet =α ∗ LRec + LSeg ,

(3)LSeg =β ∗ LSeg1 + (1− β) ∗
(

LSeg2 + LSeg3 + LSeg4
)

.

(4)LS⌉}‖(x,DSegk (Eθ (x))) = (1−
2× Spred ∩ Sgt

Spred ∪ Sgt
),
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collected from different sources with various lighting conditions and weak annotation quality. The presence of 
DR in each image is rated on a scale of 0–4. In this dataset, some images contain artifacts, and are out of focus, 
underexposed, or overexposed. We followed the data usage agreement provided by EyePACS.

Data availability and usage statement
All the above mentioned datasets are publicly available except FGADR that is available on request for research 
purposes. The Kaggle-EyePACS and IDRiD datasets utilized in this study were downloaded from publicly avail-
able sources. The Fine-Grained Annotated Diabetic Retinopathy (FGADR) datasets used during the current 
study available from the corresponding author on reasonable  request5. We confirm that all the experiments were 
carried out in accordance with relevant guidelines and regulations. As all datasets used in this work are public, 
therefore, we followed the protocols mentioned by the data releasing organisations in their respective licenses.

Training strategy. The step-by-step training strategy of our semi-supervised architecture is illustrated in 
Fig. 2. The single encoder part is comprised of five convolutional layers where a max-pooling layer is following 
each convolutional layer. These convolutional layers find out the main regions within the fundus image and 
create feature maps. We initialize the model randomly and then train the unsupervised path of the model. In 
particular, at first hand, we train the SSMD-UNet using unlabelled data such as EyePACS dataset has been used 
which consists of 88,702 images, to reconstruct the input image. After optimization of SSMD-UNet for recon-
structing task, we primarily used FGADR dataset to train the supervised path of SSMD-UNet for the segmen-
tation of HEs, MAs, EXs, and SEs. The dataset is divided into three sets of 70% (1290), 5% (92) and 25% (460 
images) for training, validation and testing, respectively.

We train four models, each optimized for its corresponding lesion. In order to train the model for HE 
detection, HE is considered as primary tasks while MA, EX and SE are considered as auxiliary tasks with the 

Figure 4.  First and second rows are the illustration of fundus images from the FGADR dataset with annotated 
characteristics of DR lesion, whereas the third and fourth rows are from the IDRiD dataset with annotated 
characteristics of DR lesion.
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unsupervised reconstruction. Figure 5 shows the learning curves of each individual SSMD-UNet trained for 
the segmentation of EX, MA, SE, and HE lesions. The learning curve is plotted against the combined loss 
( LSSMD-UNet ) defined in Eq. (2).

The models are trained with the batch size of 16 using NVIDIA RTX 2090 GPU and Intel Core-i5 CPU, where 
we used the stochastic gradient descent (SGD) as optimizer with a learning rate of 0.0001. After each convolution 
layer, we applied batch normalization to achieve a stable distribution of activation values. The batch normaliza-
tion layer was employed prior to the non-linearity layer. We utilized a non-linear activation function known as 
a rectified linear unit (ReLU) because it offers better performance related to hyperbolic tangent and leaky ReLU 
during validation. The structure of an encoder and the decoders are the same, however, the transposed convolu-
tion layers replaced the convolutional layers.

Figure 5.  Learning curves of models trained for the segmentation of EX, MA, SE, and HE are shown in (a–d), 
respectively.
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Evaluation parameters. We employed five widely used metrics to evaluate the segmentation performance, 
such as, area under the curve of receiver operating characteristic (AUC-ROC), dice similarity coefficient, area 
under the curve of precision-recall (AUC-PR), mean absolute error (MAE), and sensitivity. We use the Sigmoid 
function in our evaluation as the final prediction Sp . Thus, we measure the similarity/dissimilarity between the 
pixel-level segmentation ground-truth G, and the final prediction map, which can be defined as follows:

Dice similarity coefficient. The dice similarity coefficient (DSC) is extensively used parameter defined in Eq. (5) 
to evaluate the degree of overlap of predicted segment ( SPred ) with ground truth segment ( Sgt)53. The DSC values 
range between [0,1], where 1 and 0 represent complete overlap and no overlap, respectively.

AUC‑ROC. It relates the true positive rate versus false positive rate, in other words, compares sensitivity vs 
(1 − specificity). The higher the AUC-ROC, the bigger the difference between true negatives and true positives.

AUC‑PR. This curve plot the positive predictive value in comparison with the true positive rate. The main 
focus of this metric is on the positive class and is unconcerned with the true negatives. Consequently, PR is more 
suitable than ROC, especially when the data is imbalanced.

Mean absolute error (MAE). This metric calculates the pixel-wise error between Sp and G, and can be defined 
as follows:

Sensitivity. The classification of pixels performance and correctness of the segmentation area are measured by 
the sensitivity (SEN), as define below:

Results and discussion
We have carried-out multiple experiments on two publicly available datasets (i.e  FGADR5 and  IDRiD9) to evalu-
ate the effectiveness of our proposed model. In this section, we emphasize five aspects of our model: (1) we 
quantify the overall performance of our model; (2) we elaborate on the effect of auxiliary tasks on enhancing the 
primary task performance; (3) we quantify the impact of using additional data; (4) we analyze the visual analysis 
and; (5) and eventually analyze the robustness analysis.

Overall performance. We evaluate the overall performance of the proposed technique using the evalua-
tion matrices such as dice score, AUC-ROC, AUC-PR, and MAE, as described in section evaluation paramets. 
We utilize  FGADR5 dataset to analyze the performance of the proposed Multi-Decoder UNet architecture with 
semi-supervised learning (i.e, SSMD-UNet). Also, to expand our comparison, we implemented the proposed 
model without semi-supervised learning (SSL); utilized only labelled data for training. Table  1 provides the 
quantitative results of these experiments, where we compare our scheme with the existing state-of-the-art seg-
mentation models. The experimental results illustrate that the proposed framework for diabetic retinopathy 
segmentation provides improved performance as compared to previous works.

The results illustrate that our proposed model outperforms the current state-of-the-art segmentation 
approaches. The main reason for performance improvement is because of two factors: (1) the incorporation of 
MTL and; (2) SSL where we employ additional data of EyePACS dataset (unlabeled data) which is exploited in 
the unsupervised phase. The proposed model uses the encoding branch that plays an important role in enhancing 
the learning ability of the networks, it helps to extract latent representation which further eases the segmenta-
tion of the main task. Even without semi-supervised learning, our results are competitive which exhibits the 
effectiveness of MTL.

In contrast to traditional UNet and other deep learning-based lesion segmentation models, our proposed 
model employs multiple decoders within a multitask learning framework. This allows our network to concur-
rently learn a shared representation for multiple tasks, which enhances the system’s generalization as shown in 
Table 2. Additionally, our model is trained using a semi-supervised approach to effectively utilize the abundant 
unlabeled data available, resulting in improved performance as demonstrated in Fig. 2. This is not achievable 
using the conventional UNet architecture.

Furthermore, as depicted in Table 3, our proposed model outperforms other deep learning models for sev-
eral reasons. For instance, the IDRiD dataset contains a limited number of labeled samples, and training deep 
learning-based lesion segmentation models typically requires a vast amount of labeled data. In Table 3, UNet, 
DeepLabV3+, and FCN are trained using only the limited samples, specifically 54 samples, without incorporating 

(5)DSC =
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(6)MAE =
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w × h
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unlabeled data or a multi-decoder approach. Consequently, their results are significantly lower compared to our 
proposed model. The impact of each component is analyzed in the subsequent subsections.

Visual analysis. To further expand the comparison, we also visualize the results of a fully supervised version 
of the proposed model, i.e., MD-UNet, which may help to analyze the significance of SSL.

Figure 6 show the results of four diseases (i.e., HE, MA, EX and SE) for different networks which include 
 UNet51, UNet++34, MD-UNet and SSMD-UNet along with ground truth. To better visualize the difference 
between the diseases, we used color-coding to present each disease: green, blue, red and yellow colors that 
represent MAs, HEs, EXs and SEs, respectively. We observe the UNet and UNet++ detects only partial regions 
that correspond to red and blue lesions. While our proposed SSMD-UNet strategy are more close to the ground 
truth as compare to UNet and UNet++. Thus, we can conclude that our proposed model is effective for lesion 
segmentation task. Additionally, as seen in Fig. 6 our proposed model enhances the performance for all the dis-
eases. It can also be noted that the performance of proposed scheme remain consistent for all the diseases while, 
UNet and UNet++ failed to demonstrate consistent performance against all four diseases. The main reason for 
performance improvement is because of two factors: (1) the incorporation of MTL and; (2) SSL where we employ 
additional data of EyePACS dataset (unlabeled data) which is exploited in the unsupervised phase.

To better illustrate the effect of our proposed model, we also visualized the results of different images from 
IDRiD dataset. Figure 7 compare the segmentation results with corresponding original images, ground truths, 
UNet, DeepLabV3+, FCN, and our proposed SSMD-UNet. We observe that the UNet is not detecting the red 
lesion in IDRiD dataset. While, the DeepLabV3+ and FCN partially detect each lesion. On the other hand, our 
proposed model provides efficient results as can be seen in Fig. 7. The main reason for UNet, DeepLabV3+, and 
FCN low results are limited data.

Table 1.  Quantitative results of deep learning-based lesion segmentation models on FGADR dataset. The best 
results are illustrated in bold.

Methods

MA HE EX SE

Dice ROC PR MAE DICE ROC PR MAE Dice ROC PR MAE Dice ROC PR MAE

FCN-8s54 0.468 0.925 0.363 0.006 0.509 0.962 0.606 0.011 0.586 0.981 0.686 0.009 0.637 0.963 0.642 0.005

DL_V3+ (s = 8)55 0.482 0.934 0.364 0.007 0.55 0.973 0.619 0.01 0.602 0.977 0.702 0.009 0.648 0.967 0.659 0.004

UNet-CL56 (semi-supervised) 0.166 – – – 0.365 – – – 0.382 – – – 0.475 – – –

U-Net51 0.521 0.927 0.382 0.005 0.57 0.967 0.643 0.011 0.607 0.982 0.726 0.009 0.655 0.977 0.683 0.003

Multi-class U-Net 0.515 0.923 0.389 0.005 0.547 0.967 0.647 0.01 0.618 0.982 0.731 0.01 0.649 0.976 0.685 0.004

AttentionU-Net57 0.536 0.942 0.435 0.006 0.576 0.974 0.678 0.009 0.637 0.984 0.762 0.007 0.689 0.98 0.712 0.003

Gated U-Net58 0.529 0.945 0.441 0.006 0.58 0.978 0.682 0.009 0.638 0.983 0.764 0.007 0.685 0.982 0.716 0.003

Dense U-Net59 0.559 0.959 0.469 0.004 0.617 0.981 0.697 0.007 0.649 0.978 0.775 0.008 0.723 0.985 0.726 0.002

U-Net++34 0.533 0.937 0.453 0.005 0.597 0.974 0.689 0.009 0.644 0.98 0.771 0.008 0.719 0.984 0.722 0.003

MD-UNet 0.548 0.915 0.524 0.005 0.611 0.958 0.724 0.006 0.635 0.972 0.691 0.008 0.724 0.978 0.756 0.003

SSMD-UNet (Ours) 0.579 0.951 0.646 0.004 0.653 0.967 0.824 0.004 0.662 0.988 0.790 0.0035 0.751 0.989 0.867 0.003

Table 2.  Performance evaluation of the proposed model on IDRiD and FGADR dataset.

Method

IDRiD FGADR

Accuracy IoU Accuracy IoU

SSMD-UNet 0.926 0.847 0.901 0.809

Table 3.  Quantitative results of deep learning-based lesion models on IDRiD dataset. The best results are 
illustrated in bold.

Methods

MA HE EX SE

Dice ROC PR Dice ROC PR Dice ROC PR Dice ROC PR

UNet 0.225 0.431 0.265 0.251 0.462 0.324 0.297 0.493 0.364 0.342 0.483 0.349

DeepLabV3+ 0.366 0.521 0.354 0.386 0.541 0.459 0.401 0.591 0.388 0.413 0.621 0.432

FCN 0.447 0.561 0.493 0.453 0.571 0.499 0.459 0.638 0.452 0.461 0.623 0.476

SSMD-UNet 0.735 0.668 0.584 0.873 0.691 0.781 0.917 0.812 0.899 0.884 0.813 0.752
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Effect of auxiliary tasks on primary task. To investigate the effect of addition of the auxiliary tasks, we 
perform experiments with four different settings, i.e., without any auxiliary task, with 1, 2, and 3 auxiliary tasks. 
We also perform experiments with and without the incorporation of SSL which helps to better understand the 
effect of auxiliary tasks. The results have been illustrated in Fig. 8, where SL represents with supervised learning 
and SSL represents with semi-supervised learning settings while, 0 on x-axis correspond to the experiments 
without any auxiliary task, and 1, 2, and 3 shows the respective auxiliary tasks.

The results suggests that the incorporation of auxiliary tasks remarkably enhances the performance of primary 
tasks for each disease (i.e., HEs, MAs, EXs, and SEs). For each disease we obtain almost similar trend, notably, 
when we add a single auxiliary task, a significant improvement in the performance is noticed likewise, adding 
the second task, performance further improves. However, after adding the third auxiliary task, only a slight 
improvement in the performance is witnessed. It is also noticeable that the exploitation of semi-supervised learn-
ing further helps to capitalize the effect of auxiliary tasks. Without the application of the SSL scheme; using no 
unlabelled samples, we trained our MD-UNET model, we can still get the improvement in the results in terms 
of dice score. However, the improvement is much lesser than the SSL settings, where we utilize 88,702 additional 
images from EyePACS dataset.

The results demonstrates that the addition of auxiliary tasks enhances the generalisation of latent representa-
tion generated by the encoder, which subsequently eases the decoder of the primary task to segment the relevant 
lesion. We also noted that while adding the auxiliary task, initially performance improves drastically, however 
beyond two tasks we observe a plateauing effect. This is a critical observation that may lead the researchers to 
choose the optimal number of auxiliary tasks.

Effect of using additional data. In this section, we further analysed the impact of incorporation of addi-
tional data on the performance of a primary task. We used additional unlabelled data during the unsupervised 
phase, where we train the network only for reconstruction tasks. We assess the effectiveness of additional data 
where we perform experiments by training the networks with different amounts of data and by following the 
same training strategy as mentioned in “Training strategy”. To further expand our analysis, we also experiment 
without using additional data; only multitask learning in the supervised phase is performed. Figure 9 demon-
strates the results of our experiments for each disease in terms of dice score. The results depict the inclusion of 
additional data enormously improves the performance for primary tasks for each disease. As we increase the 

Figure 6.  Segmentation results of FGADR dataset for MAs, HEs, EXs and SEs diseases from UNet, UNet++, 
MD-UNet and SSMD-UNet has been shown. Where MA, HE, EX and SE diseases are represented with green, 
blue, red and yellow colors, respectively.
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Figure 7.  Segmentation results of IDRiD dataset for MAs, HEs, EXs and SEs diseases from UNet, DeepLabV3+, 
FCN, and SSMD-UNet has been shown. Where MA, HE, EX and SE diseases are represented with green, blue, 
red and yellow colors, respectively.

Figure 8.  Illustrate the (a) MA (b) HE (c) EX and (d) SE results of proposed MD-Unet without SSL and with 
SSL Auxiliary tasks.
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amount of data, performance for primary task also improves in each disease. However, the improvement is not 
consistent in each disease and follows a different pattern. Particularly, in the case of MAs and HEs, a drastic 
improvement in performance is observed till the addition of 40,000 images which is different for other diseases 
(i.e., EXs and SEs). Here we also notice that for each disease the performance drastically improves till a certain 
point after which it still improves but in a very gradual manner. This indicates that the encoder branch learns the 
meaningful information during the unsupervised phase and this learning improves when more data is provided. 
However, after a certain level, the incorporation of additional data does not significantly improve the results.

Robustness analysis. To evaluate the robustness of propose scheme, we performed cross-dataset valida-
tion. We trained our model with EyePACS dataset in unsupervised phase and use whole  FGADR5 dataset dur-
ing the supervised phase. To verify the generalisation ability of proposed scheme, we use the IDRiD dataset for 
evaluation without training the models on IDRiD. However, to better compare our results with previous works, 
we retrained the proposed SSMD-UNet scheme by adding 20% of IDRiD into the training dataset. In Table 4, the 
results have been compared with other studies that have also utilized IDRiD dataset for training the models. The 
cross-data performance has been evaluated against various parameters listed in “ Evaluation parameters” along 
with another parameter (i.e., sensitivity) for better transparency. The results demonstrate that the proposed 
scheme achieve better performances in comparison with the previous technique. These results also suggest that 
the incorporation of a large EyePACS dataset during the unsupervised phase, enables the encoder block to learn 
the meaningful information in a generalized manner. Subsequently, the model further refine its learning in the 
supervised phase which lead to a highly robust solution.

Conclusions and future works
We propose a novel semi-supervised learning based Multi-Decoder UNet for the segmentation of DR lesions 
including HEs, MAs, EXs, and SEs using fundus images. Our proposed architecture consists of single encoding 
and five decoding blocks (i.e., one for reconstruction and four for segmentation tasks). Specifically, we trained 
our model in a semi-supervised way to utilise the readily available unlabelled data to improve the generalisa-
tion of model that subsequently leads to an improved performance for each disease. The proposed scheme has 
been extensively evaluated on two datasets including FGADR and IDRiD. The results illustrate that our scheme 
has outperformed the state-of-the-art techniques and also has demonstrated significant robustness while cross-
dataset analysis. Future work includes the incorporation of adversarial learning to further improve the repre-
sentation learning of encoder branch by enforcing the desired distribution which may help the classification.

Figure 9.  Effect of additional data on the performance of the system (a) MAs (b) HEs (c) EXs and (d) SEs dice 
score.
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Data availability
The IDRiD dataset is publicly available online at: https:// ieee- datap ort. org/ open- access/ indian- diabe tic- retin 
opathy- image- datas et- idrid and Kaggle-EyePACS dataset is available online in the repository at: https:// www. 
kaggle. com/c/ diabe tic- retin opathy- detec tion, while the FGADR dataset is available from the corresponding 
author on reasonable request.
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