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Abstract 

Inter-furrow infiltration variability is often ignored during the evaluation and optimisation of 

furrow irrigation. Existing techniques for estimating infiltration parameters are generally too 

intensive in measurement and computation for routine application at the field scale and have 

therefore primarily been used to study the behaviour of single furrows. This paper identifies 

the inter-furrow infiltration variation within typical furrow-irrigated fields and determines 

that this variation can be adequately described using a log-normal distribution.  A procedure 

to predict whole field furrow infiltration characteristics using minimum field measurements is 

then presented. The technique uses a single advance measurement for single furrows and the 

log-normal probability distribution to predict the statistical distribution of infiltration 

functions across the field based on the measured infiltration curve for one or more fully 

evaluated furrows. This technique also considers the infiltration curve over appropriate 

ranges of opportunity time. Simulations using the predicted infiltration parameters 

demonstrate more accurate estimates of the whole field efficiency and uniformity than those 

extrapolated from infiltration measurements on a limited number of furrows as sampled in a 

conventional evaluation. 
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Nomenclature 

a, k empirical coefficients Vs volume on soil surface 

A0 upstream area of flow, m2 X distance, m 

AT completion time of the advance 

phase, min 
X  sample mean 

CV coefficient of variance, % σs sample standard deviation 

CVVB variance of DI, % Z cumulative infiltration, m
3 

m
-1

 

CVInfilt variance of Z, % Zp Z from estimated parameters, m
3 

m
-1

 

DI average depth of infiltration, m
3
 m

-1
 ZVal standardised position relative to 

mean 

f0 steady infiltration term, m
3
 m

-1
 min

-1
 ZVaIInfilt ZVal of the infiltration curve 

n Manning roughness ZVaIVB ZVal of DI 

N number of time values μ mean 

NC number of known infiltration curves σ standard deviation 

P limits of opportunity time, %  σy surface storage shape factor 

Q0 inflow rate, m
3 

min
-1

 τ opportunity time, min 

t time, min ωZVal correction factor for ZVal 

VI volume infiltrated, m3 ωCV correction factor for CV 

 

1.  Introduction 

Spatial differences in infiltration may be large and are an important consideration for many 

furrow irrigated fields due to their potential effect on management. A significant proportion 

of this variation may be natural and explained by differences in soil type or topography.  

However, management-induced variations can be introduced through the process of land 

levelling as significant volumes of soil are relocated, potentially exposing underlying soil 

horizons with differing hydraulic characteristics. Machinery-induced compaction of wheeled 

furrows is increasingly important with the adoption of controlled traffic farming. Significant 

temporal variations in infiltration may also occur due to soil structural degradation, water 

extraction and cultural practices. The irrigation schedule and past rainfall events also have an 

influence as the initial infiltration rate is strongly linked to the antecedent soil moisture 

content. In some cases the variation due to these seasonal factors is much greater (e.g. a 

variation in the cumulative depth of infiltration at 2000 min of 0.2 to 2.0 Ml ha
-1

) than the 

underlying spatial variation due to soil properties (Raine et al. 1998). Similarly, Elliot et al. 

(1983) observed a four-fold variation in the infiltration function during the course of a single 

season. 
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The depth of water applied by furrow irrigation is governed by interactions between the 

inflow discharge, field topography and surface roughness but most importantly by the soil 

infiltration function. The infiltrated volume at any point within a furrow is a function of the 

opportunity time and is therefore sensitive to the infiltration rates at all locations upstream of 

that point. Hence, the spatial distribution of applied depths along furrows is primarily the 

result of systematic trends in the opportunity time. However, field experiments (Amali et al. 

1997; Childs et al. 1993) have shown that differences in the soil infiltration characteristic 

between furrows may have a greater effect on whole field irrigation performance than the 

differences in opportunity time along the furrows, particularly where the opportunity time is 

much longer than the advance time. Obviously soil properties may also vary along the length 

of each furrow, which has been shown to pose significant limitations on the ability to 

estimate the uniformity of applied depths (Oyonarte and Mateos 2002). 

 

The infiltration characteristic is determined by a multitude of physical and chemical soil 

properties including crack volume, initial moisture content, bulk density, structural stability 

and surface sealing. Quantification of these properties, where possible, is difficult. 

Furthermore, many of these soil properties have been known to vary considerably in both the 

spatial and temporal dimensions. The variation in soil physical characteristics such as the clay 

percentage, bulk density and moisture content has been described using the normal 

distribution (Ersahin, 2003). However, the log-normal distribution provides a better fit to the 

hydraulic conductivity and infiltrated depths (Jaynes and Hunsaker 1989; Warrick and 

Nielsen 1980). The choice may also be influenced by scale as Sharma et al. (1983) found that 

the hydraulic conductivity and sorptivity were normally distributed at small scales (e.g. 1 m 

spacing) but at greater spacing (e.g. 10 and 100 m) tended to be log-normal distributed.  

 

Some researchers (e.g. Jaynes and Hunsaker 1989) have described the variations in 

infiltration using spatial correlations and autocorrelations. Others have concluded that a large 

proportion of this variation is random or cannot be explained using simple field 

measurements. Regardless, it is difficult to characterise soil infiltration variability without 

densely spaced measurements over a large proportion of the field area (Bautista and 

Wallender 1985).  
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Attempts have been made to alter and manage the variability of soil characteristics through 

practices such as controlled soil compaction and furrow smoothing (Allen and Musick 1997; 

Fornstrom et al. 1985; Hunsaker et al. 1999). Such practices may only be effective for limited 

soil types and are inappropriate in some situations due to the adverse effects of compaction 

on root growth and soil aeration. It is conceivable that significant variation will remain even 

with the best efforts to ameliorate soil variability. Hence, investigation should instead focus 

on strategies to measure and manage irrigation systems whilst accounting for the inevitable 

soil variability. 

 

The commercial evaluation of surface irrigation performance generally involves a small 

sample of furrows. For example, the Irrimate
TM

 (Raine et al. 2005) approach typically 

involves monitoring four to eight wetted furrows. To simplify measurement, these furrows 

are often located adjacent to each other and therefore cannot adequately describe the field 

scale spatial variation. In addition, while the inverse solution techniques (e.g. IPARM (Gillies 

et al. 2007) and INFILT (McClymont and Smith 1996)) used commercially to estimate the 

infiltration function are ideal for a small number of furrows, they are generally too data-

intensive for identification of infiltration functions for all furrows across the field. 

Consequently, the recommendations for field management are commonly based on a 

simulation of a single furrow. 

 

The purpose of this paper is to (a) to describe and evaluate a statistical inference technique to 

predict the infiltration characteristics for individual furrows using a surrogate measure of 

inter-furrow variations and (b) to demonstrate the benefits of estimating inter-furrow 

infiltration variations for evaluating whole field irrigation performance. Although soil 

conditions may vary considerably along the length of a single furrow, surface irrigation 

simulations typically require a furrow-averaged infiltration characteristic. Hence, this study is 

restricted to the variation laterally across the field between furrows and the temporal variation 

within furrows. 

 



5 

 

2.  Theoretical Development  

2.1  Infiltration function 

The modified Kostiakov, also known as the Kostiakov-Lewis equation (Walker and 

Skogerboe 1987) is commonly used in surface irrigation to evaluate the cumulative infiltrated 

depth Z (m
3
 m

-1
) at a given opportunity (ponding) time τ (min): 

  
  0

aZ k f t  
 ..................................................... Eq. 1 

where a, k and f0 are empirical parameters, with f0 (m
3
 m

-1
 min

-1
) approximating the final 

infiltration rate. The choice of infiltration function is arbitrary, and the prediction technique 

described herein uses but is not restricted to this equation. 

 

2.2  Predicting the statistical distribution of infiltration 

It is proposed that the statistical distribution of infiltration curves between furrows can be 

described using simple field measurements.  Where the infiltration curves for a small number 

of furrows are measured, it should be possible to estimate the range of infiltration functions 

and the individual furrow infiltration parameters using surrogate spatial data. Khatri and 

Smith (2006) suggested the use of the mid-point advance as a surrogate measure of 

estimating inter-furrow infiltration variations where the purpose was to allow sufficient time 

for a real-time control response. However, a single advance time at the tail end of the furrow 

is a better choice of surrogate for whole field evaluations as it facilitates easy access for 

setup, observation and recovery of the measurement apparatus. The tail end advance time 

also provides infiltration information representing the full length of the furrow over a longer 

range of opportunity times. 

  

The volume balance as applied to an irrigation furrow is simply stated as: 

 0 s IQ t V V 
  ........................................................ Eq. 2 

where Q0 is the inflow rate (m
3 

min
-1

), t is the time (min) taken to reach the advance point 

distance x (m) from the inlet, VS is the volume (m
3
) of water temporarily stored in the furrow, 

and VI is the volume infiltrated (m
3
).  
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Re-arrangement and substitution for the two volume terms results in an expression for the 

average depth of infiltration DI (m
3
 m

-1
): 

 

0 0y
I

Q t A x
D

x




 .................................................... Eq. 3 

where A0 (m
2
) is the upstream cross sectional flow area and σy is the surface shape factor. 

Values of σy ranging from 0.7 to 0.8 are found in the literature (e.g. Scaloppi, et al., 

1995;Elliott & Walker, 1982; Valiantzas, et al., 2001; Renault & Wallender, 1997; (Mailhol 

& Gonzalez, 1993). Here the surface shape factor is assumed to be equal to 0.77 to be 

consistent with past work by the authors.  

 

In the volume balance approach for estimation of the infiltration function, the infiltration 

volume (VI) is evaluated as the integral of infiltrated depth (Eq. 1) over the advance distance 

with opportunity times determined by the advance trajectory. To simplify numerical 

techniques, this advance trajectory is commonly characterised using a power curve (e.g. 

Elliott and Walker 1982; Gillies and Smith 2005) and requires a minimum of two measured 

advance points to adequately describe the advance curve. The infiltrated volume becomes a 

function of subsurface storage terms derived from the parameters of the fitted advance curve.   

 

Here a distinction is maintained between the Z calculated from the infiltration function (Eq. 

1) and DI as calculated from the volume balance (Eq. 3) using measured advance data. 

However, it is hypothesised that these two terms will be linearly related. Formulation of a 

direct empirical relationship between Z and DI will eliminate the need to fit the advance curve 

and evaluate the subsurface storage terms. 

 

Assuming that both DI and Z follow a log-normal distribution for a given opportunity time, it 

is possible to characterise any individual furrow using the population variance term (CV) and 

the standardised position (ZVal) of each furrow relative to the mean (μ). If X is a random 

continuous variable then the standard normal variant, ZVal is given by:  

 

X
ZVal








  ....................................................... Eq. 4 

where σ is the standard deviation. When considering a subset of the population these terms 

are replaced with the sample mean X  and sample standard deviation σs, respectively.  
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For the volume balance term, the variance (CVVB) is evaluated by dividing the standard 

deviation of log DI by the mean of log DI:  

 

 

 

ln

ln

Is D

VB

I

CV
D




 ...................................................... Eq. 5 

where DI is calculated from Eq. 3 and  IDln  is the average across all furrows (or all 

irrigations) in the field. The standardised difference in infiltrated volume between any single 

furrow and the field average, ZValVB is evaluated by applying Eq. 4 to the values of log DI 

from Eq. 3: 

 

   

 IDs

II

VB

DD
ZVal

ln

lnln






  ............................................. Eq. 6 

Similarly for infiltration at a specific opportunity time: 

 

     

  ln

ln ln
point

s Z

Z Z
ZVal



 






  ...................................... Eq. 7 

 

The volume balance (Eq. 3) evaluated at a given advance point yields a single value of DI and 

hence Eq. 5 and 6 are valid. However the expression for infiltration, Z(τ) (Eq. 1), is a 

continuous function of opportunity time. Hence, it is necessary to consider the infiltration 

curve over a range of opportunity times rather than at a single point in time. The typical 

concave form of the advance trajectory forces the distribution of opportunity times to become 

negatively skewed, favouring the later part of the infiltration curve. Also, infiltration 

parameters estimated through inverse techniques are only valid over opportunity times less 

than or equal to that of the field measurements from which they are derived. Therefore the 

ZVal statistics are evaluated over a range of opportunity times related to the average final 

measured advance time (AT). The average variance (CVInfilt) over that range of opportunity 

time is defined as: 

 

  

  
ln

0 ln

N
s Z

i

Infilt

Z
CV

N






 
 
 
 





  ..................................... Eq. 8 
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and the position (ZValInfilt) of each infiltration curve relative to the mean as: 

 

     

  0 ln

ln lnN

i s Z

Infilt

Z Z

ZVal
N



 









  .................................... Eq. 9 

Z(τ) is evaluated at N evenly spaced intervals of opportunity time (τ) between a pre-defined 

upper and lower limit:  

 































 











1

100

100 N

PP
AT

i
P

AT

LowerUpper

Lower

  ............................. Eq. 10 

where PLower and PUpper are percentage values of the average final advance time (e.g. 50% and 

100%) . 

 

2.3  Predicting individual furrow infiltration characteristics 

The preceding section has shown that the ZValInfilt is linearly related to ZValVB: 

 
.Infilt ZVal VBZVal ZVal

  ............................................ Eq. 11 

where ωZVal is a correction factor which may differ between fields. A similar relationship is 

proposed for the coefficient of variance, where CVInfilt is related to the equivalent volume 

balance term using a coefficient ωCV.  

 VBCVonInfiltrati CVCV .
  .............................................. Eq. 12 

 

Rearrangement of Eq. 7 and substitution for σsln(Z(τ)) results in an expression to predict the 

average of Z(τ) for a given opportunity time τ based on a known infiltration curve Z(τ)j and 

the ZVal of that furrow: 

 

  
  

_

ln
ln

. 1

j

Infilt Infilt j

Z
Z

CV ZVal


 


  .................................... Eq. 13 
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For the case of two or more known infiltration curves, sum and take the average: 

 

  

  
_1

ln

. 1

ln

CN
j

Infilt Infilt jj

C

Z

CV ZVal

Z
N






 
 
 
  



  ............................... Eq. 14  

where j is the curve number and NC is the total number of known curves.  

 

The parameters for the infiltration function located a given relative distance ZValInfilt from the 

mean are estimated by minimising the sum of squares between the ZVal from the predicted 

infiltration parameters (Eq. 9) and ZValInfilt based on the volume balance term (Eq. 11): 

 

     

  

2

0

ln ln

ln

N

Infilt

i Infilt

Zp Z
Minimise ZVal

CV Z

 



              



................... Eq. 15 

Zp represents the predicted infiltration depth calculated from Eq. 1 using the test values for a, 

k and f0. The algorithm considers the infiltration curve over N equal intervals of opportunity 

time given by Eq. 10. The values of a, k and f0 are solved though a regression technique 

following a group search approach similar to that used in IPARM (Gillies and Smith 2005). 

The infiltration parameters for the average infiltration curve are determined by applying Eq. 

15 with ZValInfilt set to zero. 

 

The procedure to estimate the infiltration characteristics for a group of furrows based on a 

single advance point in each furrow can be summarised as follows: 

1. Collect detailed measurements (i.e. multiple advance points and/or runoff) from a 

single furrow or small number of furrows and estimate the infiltration parameters for 

these furrows using IPARM or equivalent - these are the “known” furrows. 

2. Measure inflow rates and single advance points for all other furrows (these are the 

“target” furrows) 

3. Calculate DI (Eq. 3) for all known and target furrows (from steps 1 and 2) using the 

single advance point; A0 is estimated using the Manning equation. 

4. Calculate CVVB (Eq. 5) and ZValVB (Eq. 6) based on all known and target furrows. 

5. Estimate CVInfilt (Eq. 12) for the group and ZValInfilt (Eq. 11) for each furrow. 

6. From ZValInfilt for the known furrow(s), estimate and store the values of the average 

infiltration curve using Eq. 14 over the range of τ given by Eq. 10. 
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7. Substitute the average curve into Eq. 15 and solve for the infiltration parameters of 

the first target furrow using the ZValInfilt (Eq. 11) for that furrow.  

8. Repeat step 7 for each of the target furrows. 

This process was automated using computer code developed in C++. 

 

3. Infiltration data  

3.1  Field measurements 

Data used in this study were selected from the 200 individual furrow irrigation evaluations 

conducted by the NCEA (Smith et al. 2005) in the cotton-growing areas of southern 

Queensland, Australia. Table 1 summarises the data for each field, where the average 

completion time is the time taken for the water to reach the end of the furrow averaged across 

events and furrows. Similarly the soil moisture deficit prior to the irrigation varied between 

events, hence the average value is presented in the Table. All sites were operated under 

normal commercial conditions with inflow rates and cut-off times as normally used by the 

farmer. Measurements had been conducted using the tools and techniques of the Irrimate
TM

 

surface irrigation evaluation system developed by the NCEA, as described by Dalton et al. 

(2001). The data that were recorded included inflow hydrographs, furrow dimensions and 

advance times for up to six locations along the furrow length. 

 

Table 1 – Summary of field data 

Field 
No. 
Events 

Total 
No. 

Furrow 
Events 

Field 
Length 

Slope 
Average 
Inflow 
rate 

Inflow 
range 

Average 
Inflow 
time 

Average 
Deficit 

Average 
completion 

(m) (%) (l s
-1

) (l s
-1

) (min) (mm) (min) 

D 5 20 565 0.1 3.26 2.90 – 3.68 737.7 100 615.1 

C 5 17 250 0.08 3.66 0.83 – 7.92 768.2 59.6 229.6 

T17 8 27 1120 0.141 5.77 3.97 – 7.12 649.7 69.6 499.7 

T18 6 13 725 0.151 3.52 3.18 – 4.00 575.9 57.2 486.7 

Ca 6 9 600 0.1 3.07 2.25 – 5.14 701.4 96.6 409.6 

Cb 2 7 350 0.1 4.96 4.54 – 5.51 439.1 76.6 165.3 

Cc 3 11 450 0.1 5.48 4.43 – 6.15 548.7 92.4 161.5 
 

Fields in bold represent those used in the primary analysis 

 

 

Field D was situated on a cracking clay soil (Black Vertosol). Measurements were available 

from four furrows over five consecutive irrigation events. Inflow hydrographs were available 

for all 20 furrows with no significant temporal variation observed during each irrigation. 



11 

 

Inflow rates were also similar between furrows (coefficient of variance (CV) = 5.95 %). 

Runoff measurements from every furrow were collected close to the end of the field using 

trapezoidal flumes.  However, the short storage phase prevented the onset of steady runoff 

rates and hence did not permit direct identification of the steady intake rate.  

 

Field C was located on the western Darling Downs on a Black Vertosol soil. Unlike field D, 

inflow rates varied considerably between irrigation events ranging from 0.83 to 7.92 l s
-1

 and 

were constant during each irrigation event.  

 

Field T17 was situated close to Goondiwindi in Southern Queensland and is characterised by 

a Grey Vertosol soil. In this case the measurements cover a total of eight irrigation events 

with a different number of furrows observed during each event. Similar to field C, the inflow 

rates varied from irrigation to irrigation (3.97 to 7.12 l s
-1

) and were constant within each 

event.  

 

Each dataset represents the results from between 1 – 5 furrows over a number of irrigation 

events. For the purposes of this paper this dataset represents the combined population of 

temporal and spatial variability of furrow infiltration within each field.  

 

3.2  Soil infiltration function 

The infiltration parameters (of Eq. 1) were evaluated for every furrow using IPARM V2 

(Gillies et al. 2007) which estimates the parameters of the modified Kostiakov equation by an 

inverse fit of the volume balance model. IPARM applies a least squares approach to identify 

the unique set of infiltration parameters that minimise the difference between model-

simulated and measured advance times or advance times and runoff rates. In the absence of 

runoff or variable inflow data, IPARM essentially functions identically to INFILT 

(McClymont and Smith 1996) which has been shown to provide more reliable estimates of 

the parameters than other volume balance approaches (Khatri and Smith 2005).  

 

For field D, infiltration parameters were estimated from the runoff hydrograph (during the 

inflow time) in conjunction with the advance data (with equal weighting between runoff and 

advance data points). None of the field data included reliable measurements of the water 

depth in the furrow. Hence, the upstream flow area required by the volume balance 
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calculation was computed from the inflow rate using the Manning equation and a roughness 

coefficient of n = 0.04. This Manning value was recommended by the US Soil Conservation 

Service for smooth bare soil (Clemmens 2003) and also suggested by ASAE (2003). It is 

worth noting that the furrow hydraulics are insensitive to small changes in the Manning n 

(McClymont at al. 1996) 

 

The infiltration curves estimated for the three fields have been presented by Gillies (2008). 

  

4.  Validation 

4.1 Fitting inter-furrow infiltration variability to the distribution 

function 

Distribution functions are typically applied to single continuous variables. To enable 

description of the infiltration curves, the fit to each distribution was evaluated at several 

discrete values of opportunity time. Accuracy may be compromised where the infiltration 

curve is extrapolated past the measured advance points used for calibration. Hence, four 

opportunity times (50%, 75%, 100% and 150%) were selected for each field as ratios of the 

average advance completion time (AT). Values of AT for fields D, C and T17 were 615, 230 

and 500 min, respectively. Frequency histograms (Fig. 1) were created for each dataset at 

50%, 75%, 100% and 150% AT and compared with the superimposed theoretical probability 

curve.  

 

The frequency histograms do not follow the shape of either statistical model exactly, but it 

does appear that the log-normal curve provides the slightly better fit. The bi-modal pattern of 

some distributions (e.g. Fig. 1e) may be caused by the multi-event nature of the field data, as 

the infiltration curves tend to cluster between furrows in the same irrigation. It is interesting 

to note that field C, having the largest variance in cumulative infiltration, produced the 

greatest difference between the two statistical models and the best fit to the log-normal 

distribution. The Shapiro-Wilks test, which is considered to be the most appropriate choice 

with samples sizes of less than 50 (Myers and Well 2003), was used to test the model fit. For 

fields D and C, neither model could be rejected as a possible fit to the cumulative infiltration 

at the 0.05 level of significance over the opportunity times considered. The bimodal nature of 

the frequency distribution for field T17 prevented both statistical models from being possible 
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fits at opportunity times of 50%, 75% (Fig. 1f) and 100% (Fig. 1e) AT. This is not surprising 

as this site has a cracking clay soil and there were only a small number of irrigation events for 

which data were available.  Under these conditions, the data represent the distribution of 

crack volumes from a limited sample of possible crack volumes. It is hypothesised that, for 

all sites, the fit of the log-normal distribution will improve with increased numbers of 

infiltration curves. 
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 (b)  Field D (75% AT) 
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 (c)  Field C (100% AT) 
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 (d)  Field C (75% AT) 

0 0.1 0.2 0.3 0.4 0.5
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

Cumulative Infiltration (m
3
/m)

F
re

q
u

e
n

c
y

 

 (e)  Field T17 (100% AT) 
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 (f)  Field T17 (75% AT) 
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Fig. 1 – Frequency histograms for infiltrated depth at 100% and 75% of the final advance time (AT) 

 

4.2  Validation of the proposed relationship between the infiltration 

function and the volume balance 

The strength of correlation in ZVal (Eq. 11) was evaluated using measurements from fields D, 

C and T17 (Fig. 2), with the ZVal terms calculated over the range of opportunity times of 50 

to 100% of the advance time. The plot Fig. 2d contains the combined results from fields T18, 

Ca, Cb and Cc. As anticipated, the values of ZValInfilt were found to be strongly linearly 

correlated with the ZValVB computed from volume balance term. Slopes of the resulting 

regression line range from 0.908 to 0.974 and the y intercept is consistently close to zero. 
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These results provide evidence for a direct 1:1 relationship between the two normalised 

distributions.  

 

  (a) Field D 
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 (c) Field T17 
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 (b) Field C 
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 (d) Fields T18, Ca, Cb and Cc  
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Fig. 2 – Correlation between ZValInfilt and ZValVB. 

 

The relative variance, given in this case by the CV, was also found to be correlated (Fig. 3) 

between the two quantities with a slope of 0.960 (R
2
=0.768) for the three primary fields (D, C 

and T17) and a slope of 0.981 (R
2
=0.710) across all seven fields. Ignoring all other possible 

sources of variability, the CV of the infiltration curves should be approximately equal to that 

of the volume balance (i.e. the ωCV term in Eq. 12 equals 1). In reality the non-linear form of 

the advance trajectory alters the relationship between the volume balance and infiltration 

terms at different opportunity times. With the available data it is not possible to separate the 

sources of variation as the infiltration curves produced by IPARM are themselves strongly 
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dependent on the final advance point. Separation of the infiltration variability from other 

potential sources of variation would require measures of soil infiltration rates independent of 

the water advance. The spread of the points in Fig. 3 also suggests that this relationship may 

change in different circumstances. 
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Fig. 3 – Correlation between the variances of the infiltration curve (CVInfilt) and volume balance term 

 

Tests were also carried out to determine the most suitable range of opportunity times for 

evaluation of CVInfilt and ZValInfilt. These tests are described in Gillies (2008) and confirmed 

the choice of 50 to 100% of AT as used above. 

 



16 

 

5. Case studies of the prediction technique 

5.1  Predicted infiltration characteristics 

Several case studies were chosen to demonstrate the infiltration characteristic prediction 

technique. Infiltration parameters were predicted using the final advance point and inflow 

rate for each furrow in: 

- Case study A – Field D using Irr1 Fur3, 

- Case study B – Field D using all four furrows from Irr2, 

- Case study C – Field C using Irr4Fur3 and Irr4Fur4, 

- Case study D – Field C using Irr1Fur1 and Irr2Fur1, 

- Case Study E – Field T17 using the two furrows from Irr1, 

- Case Study F – Field T17 using all four furrows from Irr7. 

 as the “known” furrow(s). The resulting infiltration curves have been provided by Gillies 

(2008). 

 

The accuracy of the proposed technique was evaluated using the correlation between the 

predicted and IPARM estimated infiltration curves. Infiltration parameters were predicted for 

all furrows including the “known” furrows to eliminate any possible bias towards these 

curves (which would otherwise be perfectly correlated). Linear correlations with a zero 

intercept were performed between the IPARM estimated and predicted infiltrated depths at 

four opportunity times, namely: one third and two thirds of average final advance time (AT), 

the average final advance time, and an additional later time (Table 2).  

 

The prediction technique was found to provide satisfactory estimates when compared to the 

infiltration curves derived from the complete set of advance measurements (from IPARM) in 

every one of the six tests. Considering case study A, the predicted infiltration curves tended 

to slightly over-estimate the variance when compared to the IPARM generated parameters, 

but the relative positions of each curve have been preserved. Similar behaviour was noted 

amongst the other fields and furrow selections. However, the predicted curves do not 

consistently either underestimate or overestimate the variance.  

 

One important feature of the predictive technique is that it fails to reproduce all possible 

different forms of the infiltration curve (evident in some fields) because it forces the furrows 
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to conform to a single general curve shape, defined by the curves for the “known” furrows. 

This may be an advantage in those cases where the inconsistent shape amongst the IPARM 

estimated curves is a result of errors or missing values in the field data. In other cases, where 

the shape difference results from real infield differences in soil infiltration properties, the 

predictive technique will not reproduce the true form of the curves for all furrows. 

  

Table 2 – Comparison of predicted infiltration curves to measured (IPARM) values 

 

  Opportunity Time (% AT) 

  33.3% 66.7% 100%  

F
ie

ld
 D

 Case A 
 Irr1 F3 

Time (min) 205 410 615 800 

RMSE (m
3
 m

-1
) 0.0253 0.0263 0.0300 0.0332 

Slope 0.960 0.980 0.998 1.003 

Case B 
Irr2 Fur 1-4 

Time (min) 205 410 615 800 

RMSE (m
3
 m

-1
) 0.0348 0.0349 0.0358 0.0380 

Slope 0.844 0.884 0.910 0.928 

F
ie

ld
 C

 Case C 
Irr4 Fur 3-4 

Time (min) 77 153 230 500 

RMSE (m
3
 m

-1
) 0.0471 0.0333 0.0314 0.0683 

Slope 0.824 0.931 0.998 1.130 

Case D 
Irr1 Fur 1 
+Irr2 Fur 1 

Time (min) 77 153 230 500 

RMSE ((m
3
 m

-1
) 0.0441 0.0361 0.0338 0.0589 

Slope 1.009 1.042 1.049 1.026 

F
ie

ld
 T

1
7
 Case E 

Irr1 Fur 1-2 

Time (min) 167 333 500 700 

RMSE (m
3
 m

-1
) 0.0078 0.0124 0.0226 0.0339 

Slope 0.972 1.041 1.090 1.136 

Case F 
Irr7 Fur 1-4 

Time (min) 167 333 500 700 

RMSE (m
3
 m

-1
) 0.0084 0.0109 0.0197 0.0301 

Slope 0.964 1.013 1.013 1.090 

 

 

The root mean square errors (RMSE) for each case presented in Table 2 were calculated from 

the differences between the measured (IPARM) and predicted infiltrated depths for each 

furrow at the stated opportunity times. The RMSE statistic reflects the average estimation 

error for individual furrows. Regression slopes less than unity indicate that on average the 

predicted infiltration curves over-estimate the measured values. For Field D, the use of 

additional known furrows (case study B) did not improve the estimation considering either 

the slope or RMSE (Table 2). Hence, increasing the number of known furrows does not 

necessarily improve the accuracy of the predicted infiltration parameters, particularly when 

the known infiltration curve is a good representative of the population average. The 

advantages of multiple known furrows would have been more apparent where the single 

known furrow does not reflect the general form of the infiltration curves. However, in 
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practice where the user has no knowledge of the target furrows, the use of larger samples of 

known furrows should improve the reliability of the technique. 

 

5.2  Simulation of whole field irrigation performance 

Simulation models provide the ability to predict the advance and recession trajectories, runoff 

hydrograph and distribution of applied depths. Moreover they are used to assess the 

performance of an irrigation event through various efficiency and uniformity indices. These 

models (e.g. SIRMOD of Walker 2003) typically simulate individual furrows only and hence 

study of field scale variability is difficult. For this reason Gillies (2008) developed a multiple 

furrow simulation model, IrriProb, based on the full hydrodynamic (continuity and 

momentum) equations. IrriProb employs the full hydrodynamic model of McClymont (2007) 

to predict the water distribution in individual furrows and combines the results to predict the 

spatial distribution of applied depths across the field. The model also allows selection of the 

flow rate and time to cut-off to give the best or any preferred performance for the field.  

When applied across multiple irrigations, IrriProb evaluates the seasonal performance in a 

similar manner. 

 

In this paper the three performance measures of application efficiency (AE), requirement 

efficiency (RE) and distribution uniformity (DU) have their usual definitions (Walker and 

Skogerboe 1987). 

 

The whole field irrigation performance was modelled for each field using the IrriProb 

simulation model and using the complete set of infiltration parameters for all “measured” 

furrows in the field. The measured performance values in Table 3 represent the combined 

irrigation performance across the entire furrow set using the IPARM estimated infiltration 

parameters and measured inflow rates and times. In addition to the standard efficiency terms, 

Vrun represents the volume of runoff per furrow and DDD is the average depth of deep 

drainage. “Known only” corresponds to simulation using the known furrows only from the 

case study and “Predicted” represents simulation of all furrows using the predicted infiltration 

parameters along with the measured inflow rates and cut-off times for each target furrow. For 

the examples studied, it was found that the estimated irrigation performance was sensitive to 

the furrow(s) chosen as the known data. The predicted performance (i.e. irrigation simulation 

using the predicted infiltration parameters) tends to deviate from the measured values, but is a 
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far better estimate than that from simulation of the known furrow(s) alone. For example, if 

Field D was evaluated using only measurements from Irr1Fur3 (case study A) the estimated 

performance values would be an AE of 69%, RE of 100%, DU of 86% and a volume of 

runoff (Vrun) of 27.6 m
3
 per furrow, a poor estimate compared to the measured (of 74%, 94%, 

65% and 10.9 m
3
, respectively) results (Table 3). In comparison, the simulation results from 

the predictive technique provide a closer fit to the measured efficiency and uniformity terms 

(for example AE, RE and DU of 71.7%, 91.4% and 60.6% respectively).  This same trend is 

repeated across all 6 case studies (Table 3) where simulations using infiltration parameters 

estimated using the predictive technique provide far better estimates of the performance 

values. Simulation based exclusively on the known furrow(s) may over-predict or under-

predict the efficiency terms depending on random chance. However, reliance on the known 

furrows should lead to over-estimates of uniformity terms such as DU in the majority of 

cases.  

 

Table 3 – Comparison of the estimated field performance between simulations using predicted infiltration 

curves and those based on measured (IPARM) curves 

 
  AE (%) RE (%) DU (%) 

Vrun (m
3
) 

per fur 
DDD 

(mm) 

F
ie

ld
 D

 

Measured 74.1 95.5 69.2 10.83 23.7 

Case A 
 Irr1 F3 

Known only 69.3 99.7 86.2 27.61 19.6 

Predicted 71.7 92.5 63.8 13.6 24.3 

Case B 
Irr2 Fur 1-4 

Known only 83.0 95.5 77.3 8.81 11.7 

Predicted 71.8 92.3 55.9 7.30 29.7 

F
ie

ld
 C

 

Measured 21.4 98.9 43.7 58.44 80.3 

Case C 
Irr4 Fur 3-4 

Known only 36.3 100.0 60.7 26.34 52.1 

Predicted 21.5 99.4 67.5 59.98 76.9 

Case D 
Irr1 Fur 1 

+Irr2 Fur 1 

Known only 24.1 92.5 31.1 34.30 105.5 

Predicted 20.9 96.7 47.1 52.63 95.9 

F
ie

ld
 T

1
7
 

Measured 67.7 93.3 72.3 62.11 11.3 

Case E 
Irr1 Fur 1-2 

Known only 59.3 100 96.6 72.53 16.6 

Predicted 63.5 87.5 63.9 88.45 8.3 

Case F 
Irr7 Fur 1-4 

Known only 83.8 93.1 90.2 28.17 0.3 

Predicted 64.5 89.0 64.2 76.70 8.1 

 

 

It is important to note that the choice of known furrows in each case study is arbitrary. There 

may be other possible furrows or combinations of known furrows which show further 

advantages of the predictive technique. The ability of field evaluations to adequately 
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characterise the field performance is determined by the furrows chosen for full 

instrumentation. In practice, with no additional knowledge of other furrows, one must trust 

that these few selected furrows are representative of the field. The predictive technique 

described provides the opportunity to reduce the uncertainty in the evaluation process, 

ultimately leading to improved water management decisions.  

 

It should be noted that the data used to illustrate the approach outlined in this paper were 

sourced from a limited number of furrows across a small number of fields. Hence, further 

studies are required to validate this technique using a more extensive dataset of furrows in a 

single irrigation event. 

 

7.  Conclusions 

The data from three different fields were used to characterise the spatial and temporal 

variability in the infiltration curves for individual furrows. The magnitude of infiltration 

variability differed significantly between the sites tested. Statistical analysis of the curves 

demonstrated that both the normal and log-normal distributions were possible fits to the 

distribution of infiltration curves. 

 

A technique was developed to predict the variation in infiltration functions across irrigated 

fields using the log-normal probability function, simple measurements of final advance time 

(or some other point) for the furrows of interest and accurate infiltration curves from one or 

more furrows in the same field. The resultant predicted infiltration functions provided 

matches for the measured values over opportunity times equal to the average final advance 

time. Simulations using the predicted infiltration functions were found to produce reasonable 

estimates of the field-wide performance parameters such as application efficiency and 

distribution uniformity. Furthermore, these values were far more representative of the 

measured field performance when compared to estimates based solely on evaluation of the 

furrows with accurate infiltration functions. The proposed technique for infiltration prediction 

at the field level still requires some further work to refine the numerical relationships. The 

procedures developed here aim to reduce the data requirements to assess irrigation 

performance across large spatial scales. Hence, this research provides a step towards feasible 

and routine whole field irrigation evaluations. 
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