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ABSTRACT

This research investigates an approach to tactile perception for guiding a
cutting tool attached to a robotic system processing red meat. Conventional tactile
sensing methods, reliant solely on spatial force values, have met with inconsistent
results when addressing the complex cutting conditions in red meat processing. The
variability inherent in red meat workpieces, coupled with the deformations induced by
processing forces, necessitates an innovative machine perception approach to
match the adaptability required in red meat processing tasks. This research explores
an alternative approach leveraging temporal sensory data to discriminate meat
tissues and tissue interfaces in real-time, thereby informing the trajectory of the
cutting tool relative to the position of the deforming meat tissues. The strategy
correlates unique characteristic force transients in the force data with predefined key
cutting events of the task. While the thesis focuses on developing and validating the
tactile perception strategy through experimental setups, it does not extend to full
deployment in a robotic system. The methodology has been validated through
experimentation using a custom-designed test rig including a 6-axis robotic
manipulator, 6-axis force sensor, and high-resolution cameras. The results showed
high precision in identifying unique force transients in the data and the key cutting
moments in the performed task relative to the cutting tissues and tissue interfaces
involved, which were consistent across cuts on comparable tissue arrangements.
These principles are relevant across trimming and separation operations, where
following tissue interfaces that are not visible during the operation is necessary. The
forces exerted at the cutting edge of the knife indicate when the knife is approaching
an interface, while the orthogonal side forces detect the behaviour of the deformable
meat tissues causing the knife to deviate from a predefined cutting path. The results
have enabled the proposal of a simplified machine perception strategy for trimming
striploin steak by cutting relative to the real-time position of tissues and tissue
interfaces. The investigation has produced new understanding and knowledge on
guiding cutting in meat along tissue interfaces, using correct interpretation of force
feedback to formulate judgment and cutting strategy ready to be executed. The
proposed 'skilled robot system' aims to replicate human operator adaptability for
various cutting tasks.
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CHAPTER 1: INTRODUCTION

1.1. Research aim and objectives

This research aims to produce a simplified cutting strategy for trimming
striploin steak by cutting relative to the real-time position of tissues and tissue
interfaces. This strategy is based on results from robotic tactile perception and the
analysis of unique force transients observed during simple cuts relative to different
tissues and their interfaces. The developed cutting strategy contributes to the
development of a real-time machine tactile perception technique for automatically
guiding a cutting tool attached to a robotic system. This tool operates near internal
meat tissue interfaces to perform typical cuts in beef processing operations, similar
to the approach used by skilled human operators during manual slicing in abattoirs.

Normally achieved by highly skilled human operators, cutting operations
require both the use of visual and tactile senses to plan, anticipate and determine the
state of the cut during the process. In this way, the operator can execute cutting
trajectories such that certain tissue interfaces are not penetrated to preserve high-
value meat mediums, maintain defined thickness of surface layers of fat above
muscle tissue interfaces and to produce the desired shape for the product.

Meat deforms in response to applied cutting forces and there are various
tissue phenomena encountered when cutting. These are primarily tissue types,
tissue interfaces and cavities within tissues. Some of these can offer guidance on
cutting trajectories while others should not.

A novel tactile sensing scheme is presented here that identifies with the force
characteristics (spatiotemporal) as opposed to spatial force values only. These are
used to discriminate cutting conditions amenable to the required cutting path.
Temporal variations and signal transients can be interpreted automatically to
discriminate the placement of cutting trajectory relative to tissue interfaces. Following
this approach, cutting can be performed successfully. The approach is relevant as
many industry meat cutting operations are guided relative to tissue interfaces.

The focus of the study is to demonstrate the feasibility of tactile sensing as a
perception tool to guide a knife when cutting red meat. The study assesses the
accuracy of unigue transients in the tactile signal data for discriminating between
different tissue types (fat and muscle) and identifying the position when the blade is
approaching or crossing the interfaces between them. The study also examines how

1



these tissues deform in response to cutting forces at critical stages of the operation.

The insights gained are used to develop a simple cutting strategy for trimming a

striploin steak, focusing on cutting relative to the interface between the fat and

muscle layers.

To achieve the aim of the study, the following research questions are

proposed to guide the stages of the research:

Question 1. What consistent mechanical features in red meat tissues can be
reliably detected using tactile perception?

Question 2: How feasible and precise is tactile perception in identifying red
meat tissue features and behaviour during cutting?

Question 3: What are the persistent unique transients in the tactile data that
discriminate tissues and their interfaces?

Question 4: How can the unique force transients related to the mechanical
features of red meat be interpreted to identify key cutting events?

Question 5: Can tactile perception-based techniques inform a control
strategy to guide a cutting knife toward an automated cutting system?
Accordingly, the objectives of this work are as follows:

Review and evaluate both the state of robotics and automation in red meat
and pork cutting and deboning, and the applicability of existing sensing
technologies for guiding robotic systems in real-time.

Develop a versatile testing rig to identify tissue cutting force characteristics
through correlation with tissue presentation within samples and to be ready for
further work to guide cutters automatically relative to tissues using the tactile
sensing technique.

Strategically choose test samples and experimental conditions that allow
observations of cutting actions and tissues behaviour while processing.
Investigate an approach to identify and discriminate key tactile characteristics
of tissues and important structures to guide trajectories relative to meat tissue
and tissue interfaces.

Formalise an approach to identify and discriminate key tactile characteristics
of tissues and important structures to guide trajectories relative to meat tissue
and tissue interfaces was achieved.

Create a cutting strategy for demonstration to perform a simplified version of
cutting a typical marketable product (Striploin trimming).



1.2. Motivation and challenges of integrating robots in red meat processing

The red meat and livestock industry is a significant contributor to the
Australian economy. It constitutes 27% of the total agricultural sector with a value
add of $13.5 billion from 2020 to 2021 (Meat & Livestock Australia, 2022). The
industry revolves around the following animal stock: cows, veal, and buffalo, when
slaughtered for beef these form a significant part of the market with sheep and goat
forming a smaller contribution. These species are defined in the Australian market as
the source of ‘red meat’. Within this industry, the processing industry subsector
follows farming as the second largest contributor, adding 23% (or $3.1 billion) to the
industry’s total value in terms of GDP. According to Meat & Livestock Australia (Meat
& Livestock Australia, 2022), the red meat and livestock industry employs over
400,000 individuals directly or through associated businesses, with the processing
sub-sector accounting directly for 31,200 jobs. Furthermore, Australia also has a
strong presence on the consumption side, ranking as the world’s seventh-largest
beef consumer.

In the red meat global market, Australia stands as a leading exporter. The
country ranks as the fourth largest beef and veal exporter after Brazil, India and
USA, while it leads the world in sheep meat and goat meat exports (Meat &
Livestock Australia, 2022). It has a 3% share of global beef production and around
6.7% of global sheep meat production (Meat & Livestock Australia, 2022). The
national and international significance of the industry drives the motivation to take
advantage of increasing opportunities in the rising new markets. Improving the
processing sector is crucial to maintain competitiveness.

1.2.1. Business challenges

The industry faces numerous challenges related to manual labour in abattoirs.
One of the major issues concerns employee-related costs, which are considered one
of the highest in the world. This imposes disadvantage in the face of international
markets and for consumers where pricing is critical. The disadvantage is increasingly
more prominent given that competitors worldwide are rapidly improving product
quality. Table 1 shows costs related to the industry in Australia and the other
competition. In Australia, labour-related costs account for 85.4% of the total costs

per head, while in USA, Brazil and Argentina, it is less than 50 %.



Table 1: Analysis of regulatory and related costs in red meat processing

Australia United States Brazil Argentina
Cost Cost per As % of total Cost per | As % of total | Cost per | As % of total | Cost per | As % of total
category head costs (excl. head costs (excl. head costs (excl. head costs (excl.
(AUS) livestock (AUS) livestock (AUS) livestock (AUS) livestock
purchases) purchases) purchases) purchases)
Labour- $210.54 85.4% $129.46 44.6% 75.63 43.9% $88.31 42.9%
related costs
Utilities- $21.62 6.0% $12.26 4.2% 19.93 11.6% $13.05 6.3%
related costs
Certification- $7.29 2.0% $1.49 0.5% 0.52 0.3% $2.28 1.1%
related costs
Total (excl. $360.62 100.0% $290.15 100.0% 172.29 100.0% $205.96 100.0%
livestock
costs)
Cost per kg $1.22 $0.80 0.70 $0.92
HSCW

Furthermore, the industry suffers from recruiting and retaining highly skilled

operators. In an attempt to solve this problem, the industry has resorted to hiring

temporary operators from overseas. This is an expensive solution. Despite these

efforts, a 20% shortage in skilled labour remains. An alternative being considered is

to increase livestock exports without prior processing. However, this would reduce

significant added value by the industry.

Arduous and hazardous conditions within abattoirs result in significant

financial losses due to prevalent health-related issues and injuries (Purnell &

Grimbsy Institute of Further & Higher Education, 2013). Moreover, direct human

contact with the meat can lead to the transfer of foreign bodies, which negatively

impacts the quality of the meat and its shelf life (Purnell & Grimbsy Institute of

Further & Higher Education, 2013). A typical deboning room operates at a fast pace,

leaving little time for workers to perform their assigned tasks accurately. This high-

pressure environment often leads to mistakes.

These factors, coupled with increasing demand for red meat and the

competitive pressure from the emergence of plant-based protein alternatives,

underline the urgent need for increased productivity. Consequently, the future of the

industry is predicted to be rooted in automation and robotics-based technology.

Implementing such technologies will mitigate the current issues and propel the

industry forward, ensuring it remains competitive on the global stage.



1.2.2. Operational Challenges in Implementing Robotics for Meat Processing

Successful implementation of robotics with any degree of autonomy in an
industrial process hinges on two factors where adaptive machine autonomy needs
further improvement to control response: the characteristics and properties of the
product being processed and the nature of the task itself.

Red meat as a material is characterised by inconsistent presentation and
unpredictable behaviour. The majority of red meat tissues comprise muscles and
fats, both of which possess plastic and visco-elastic properties (Choi et al., 2013).
This results in the carcass undergoing deformation. The shape of the carcass can
change due to external forces such as gravitational force depending on the way the
carcass is held and positioned, and during the cutting process when cutting forces
are applied. The deformation of red meat tissues is further influenced by the type of
tissues being cut, their distribution and the direction of the cut relative to the direction
of the tissues (Nabil et al., 2015). Moreover, the dimensions of red meat carcasses,
especially beef, can vary considerably. The structural consistency of these
carcasses is non-uniform and can differ significantly between animals due to
uncontrollable variables such as breed, gender, environmental conditions, and
feeding practices (Schumacher et al., 2022; Toldra, 2006).

The variable and dynamic nature of red meat tissue, combined with product
specificity, renders adopting conventional automation systems based on pre-
operative perception unsuited to industry needs. The current most common sensing
approaches, such as CT scanning and DEXA can only define fixed pre-operation
cutting trajectories without the ability to respond to real-time variations. The
technologies use ‘Snap shot’, pre-process measurements to determine spatial
values for guiding machines, without taking the response of the meat subjected to
varying gravitational or applied processing loads.

Conventional techniques for holding and handling products fail when applied
to red meat carcasses. Deviations during processing, whether due to tissue
deformation and deflection influenced by gravity or applied processing forces, the
slippery texture of the tissues, can cause the cutting tool to deviate from its
designated path. This will culminate in product damage and a consequent reduction
in yield.

For traditional automation of the past to be effective, every aspect of the
process needs to be predictable and to minimise variations requiring real-time

adaptation by processing machinery. A common characteristic emerges when
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looking at the three leading industries indicated in Figure 1. These have seamlessly
integrated automation technologies for processing: their target products are rigid and
exhibit consistent process behaviour, with minimal variation in presentation. This
stands on the opposite side of the product spectrum to processing natural products
and red meat.

Annual installations of industrial robots by customer industry - World
1,000 units

126
123

Automotive

Electrical/electronics

122

Metal and machinery

Plastic and chemical products

Food

All others

Unspecified
56

2019 m2018 m2017 Source: World Robotics 2020

Figure 1: Robotics in Various Industries (IFR International Federation of
Robotics, 2021)

Another further operational consideration lies in the selection of the
appropriate cutting tool. One cutting tool cannot suffice for all red meat cutting tasks.
The choice is influenced by the nature of the cut, its location, and the tissues
involved. Certain cuts are obscured, nestled within the carcass or beneath other
tissues, necessitating specialised tools to access these areas. Static knives of
different shapes and pneumatic cutters are suitable for softer tissues in trimming and
slicing operations. Static and electrically powered saws are used to cut through
bones (Figure 2).



Mect chop

Sticking Knde

Figure 2: Manual cutting tools
Market specifications are another factor, representing customer requirements
and contrasts between markets. The presentation and specification of the end
product must be appealing and precise, making the cutting process very delicate and
can be damaged by inappropriate handling. According to UNECE Standard (UNECE,



2016), two of the minimum requirements related to food safety that have to be met in

a cut are:

e The product must be intact and presentable. The product’s final shape must
appeal to the market (customers). Table 2 shows typical fat thickness
specifications in one particular meat product.

e The product must be free of broken bones. The cutting tool must not cut
through the bones and follow the interface between bones and muscles. For
maximum profit, the meat attached to bones has to be minimal.

Table 2: Fat limitations in a cut (UNECE, 2016)
Fat thickness code Category
0 Not specified
Peeled, denuded, surface membrane removed
Peeled, denuded
Practically free (75% lean/seam surface removed)
3 mm maximum fat thickness or as specified
6 mm maximum fat thickness or as specified
13 mm maximum fat thickness or as specified
25 mm maximum fat thickness or as specified
Chemical lean specified
Other

© 00 N o o B~ WN B

For a robotic system to be considered viable and investment-worthy, Meat
and Livestock Australia (MLA) has developed criteria that have to be met (Ruberg,
2021). This includes exceeding the accuracy of manual operation for the same cut,
improving the yield in the final product, and replacing the work of at least five
labourers per unit installation.

1.3. Solution rationale

Humans can interpret complex information from sensory perception and
respond appropriately with measured strategy in real-time to enable the required
result when ‘crafting’ a product. They are capable of discriminating between different
mediums, learning and anticipating unexpected occurrences, making decisions
driven by past experiences and present data, and adapting and solving new and
unforeseen problems. In contrast, in principle, industrial robots are general-purpose
programmable machines that could outperform human operators if programmed to
execute actions from a correct interpretation of appropriately presented sensory
information. These robots demonstrate high accuracy in performing fully specified

tasks, have endurance and consistency in operations, respond quickly to any sudden
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changes in the environment, and can work in extreme working conditions. The
combination of human-like perception capabilities to achieve superhuman qualities in
machines, given machine attributes of persistence in performing cuts, no fatigue, and
repeatability, could potentially yield a system that unifies the best of both worlds by
leveraging the attributes of both robotic systems and human operators.

The increasing capabilities of robotics and their role in ‘Industry 4.0’ highlight
the vast potential of the technology. However, a fundamental understanding of
critical process functions, such as the response of interaction with tools deployed in
natural workpieces, needs to be understood to address and position the machine
advantage.

Red meat cutting is based on the physical interaction between the cutting tool
and the carcass. Despite the non-uniformity and unpredictability of red meat
carcasses, consistent materialistic features across all carcasses can serve as the
base for a robust control strategy to guide a separation task. Every red meat cut
comprises three distinct mediums: bones, fats, and muscles, with connective tissues
in between, as illustrated in Figure 4. This makes all the cuts generated from a
carcass can be divided into four groups, delineated by the mediums involved:

o Muscle from muscle cut.

o Muscle from bone cut (deboning).

o Fat from muscle (that includes the trimming processes).
o Bone from bone (joints).




Figure 4: Types of Mediums: Fats, Bones, and Muscles (Left to Right) (Jacob,
2018)

Cuts are executed by following the interfaces between these mediums or
relative to them. Observing manual operators in deboning rooms provides insights
into the complexities of red meat tissue separation and the skills required to
accomplish it. Operators apply knowledge from experience about the target task to
determine the correct cutting path relative to the features of the carcass and the
specifications of the target market. These operators depend on their visual and
haptic senses to control the cutting tool with real-time interaction with the state of the
workpiece and apply judgment to ensure the knife follows the correct cutting path
and achieves the desired outcome. However, their primary reliance lies in their
sense of touch, given that much of the cutting occurs inside the carcass and
between tissues in areas not visible to the eye.

An example of a cut can be demonstrated in Figure 5. The presented cut is
crafted from a lamb forequarter. It is done by removing the foreshank, Humerus and
Scapular bones following the seams between the overlying and underlying muscles,
leaving the undercut attached (UNECE, 2016). The operator starts by marking the
interface line between the shoulder and rib cage, then follows the rib cage bone
interface all the way until the shoulder falls.

G

& .
w
Cutting path under the Cutting path relative
shoulder between the to the inside of the
shoulder and the rib cage shoulder and rib cage
Full forequarter pre- Forequarter after
cutting cutting

Figure 5: Full shoulder pre-cut and after-cut (UNECE, 2016)
These findings indicate that a similarly functioning robotic system is required
for handling such dynamic material. A hybrid system, combining the capabilities of

visual and tactile perception, would essentially mimic the techniques of skilled
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human operators. This integrated approach would offer a versatile solution capable
of managing the intricate task of processing highly variable and deformable natural
products, such as red meat. This approach presents a viable strategy to navigate the
challenges posed by the irregular nature of these products.

1.3.1. Tactile perception as a solution

Tactile perception based technology is the provision of information through
physical interaction with the surrounding environment. The technology goal is to
detect the mechanical properties or response of the operating medium through force
and torque feedback. The data obtained from contacting different objects could be
informative if the force transients are observed carefully and interpreted correctly. In
red meat processing, tactile perception is an under-researched area, even though
the essence of the procedure rests on the physical interaction between the cutting
tool and the carcass. Recent literature reveals that efforts to utilise tactile perception
in guiding a knife along complex cutting paths have been largely unsuccessful. A
significant reason for this is the conventional approach of viewing tactile data merely
as numerical values. However, in a natural environment such as that of red meat,
where the tissues are constantly changing, tactile data must be perceived differently.

Robotics technology in the medical field and surgical procedures has utilised
tactile data presented by force and torque sensors to develop real-time informative
sensing techniques with great accuracy. Brett et al.(Taylor, 2008) developed and
tested a successful technique to guide medical drilling, utilising both force and torque
feedback from the tip of the drill. This same technique was employed for needle
insertions, guided by the force feedback from the tip of the needle (Peter N Brett et
al., 1997; Maurin et al., 2004). The technique emphasised identifying the unique
transients and patterns in the tactile data rather than just viewing them as values.
These unique transients correlate with crucial moments during surgery, providing
invaluable insights to discriminate different mediums and to anticipate key events
during procedures.

Inspired by the technique’s success in the dexterous medical field, there’s
potential to adapt it for cutting red meat tissues. Learning from these medical
applications emphasises importance of the reactive transients in the tactile feedback
as an identification tool for discriminating features and states in red meat tissues
during operations in near real-time. This approach enables an appropriate response
to conditions by taking account of typical tissue behaviour that can be used to control
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during critical events. When cutting red meat, the response could be through
oscillating the knife to cut through an interface or tilting and rotating the knife to

counter deformation and restore the desired cut path.

1.4. Thesis layout

Each chapter contributes towards the investigation to identify an approach to
tactile perception for cutting red meat tissues. This will be covered in the following
chapters by fulfilling the objectives mentioned in Section 1.1. It should be noted that
the chapters with follow-ups are structured this way because they are published
papers with word limit constraints, which could not accommodate the additional
follow-up information.

Chapter 2.1: This chapter discusses complexities associated with integrating
robotics into the red meat processing industry. A review of the latest advancements
in automation systems for cutting and deboning red meat and pork is provided with a
specific focus on sensing technologies and perception techniques of these systems.
Furthermore, this chapter assesses the suitability of common sensing technologies
for real-time guidance, a crucial requirement for successful robotics implementation
to process dynamic red meat tissues. Emerging assistive technologies in the red
meat industry are also presented. These are potential alternative solutions before full
automation of red meat cutting tasks.

Chapter 2.2: This chapter expands on the review of the innovative
approaches to utilising tactile perception in robotics, focusing on applications that
process materials with properties similar to red meat.

Chapter 3: This chapter details the practical approach used to investigate
tactile perception in red meat cutting. It explains the rationale for the experimental
design, which is aimed at addressing the research questions and achieving the
overall research goal. The chapter provides an overview of the experiments
conducted throughout the thesis, detailing the aims, procedures, and approaches for
gathering and analysing data in each experiment. It also discusses all the variables
influencing robotic cutting and how they are controlled across the experiments.
Finally, the chapter introduces a theoretical model that shows the types of forces
applied to the knife during cutting and the distribution of these forces, including a
free-body diagram illustrating the forces acting on the knife.

Chapter 4, Section 1: This section of Chapter 4 outlines a systematic

approach aimed at investigating the viability of tactile perception in discriminating
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tissues and tissue interfaces, and identifying key cutting events while executing
simple cuts on different tissue types within prepared test samples. Tactile data is
represented through force measurements from a force sensor attached to a knife
mounted on a robotic manipulator. The feasibility of the technology is demonstrated
by identifying similarities in force patterns and recognising distinctive transients
associated with different cutting events.

Chapter 4, Section 2: Addressing one of the primary challenges encountered
in the experiment described in Chapter 4.1, this chapter investigates how the
accuracy of capturing unique force transients during the cutting process is affected
by the cutting depth of the knife.

Chapter 5, Section 1: This section of Chapter 5 extends the results and
observations from the experimental work of Chapter 4 to characterise a more
practical application: striploin chop trimming using force feedback. It explores the
effectiveness of using both the leading force component on the tip of the knife and
the orthogonal force components on the sides of the knife simultaneously to
discriminate the proximity of the knife relative to interfaces. In addition, the
correlation between the lateral force component and the contour of the tissue
interface the knife follows. The results obtained from this experiment were used to
develop a simplified cutting strategy for effectively trimming a layer of fat from the top
of a striploin chop relative to the interface between the fat layer and the muscle
tissue.

Chapter 5, Section 2: A continuation of Section 5.1, presenting further
experimental runs to enhance the findings by analysing additional cutting paths, key
cutting events, and the relative unique force transients recorded by the force sensor.

Chapter 6: This chapter discusses results and observations from the
experimental work within the broader spectrum of automated red meat processing.
The chapter aims to synthesise these findings, highlighting the significant
advancements made in tactile perception technology and its application in robotic
meat cutting.

Chapter 7: Conclusion of the research outcomes.
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CHAPTER 2
2.1. LITERATURE REVIEW - PAPER 1- ROBOTICS AND
SENSING TECHNOLOGIES IN RED MEAT PROCESSING: A
REVIEW

2.1.1. Introduction

This paper provides a comprehensive review of the advancements and challenges in
integrating robotics and sensing technologies in red meat cutting. It highlights the
need for automation in an industry characterised by physically and mentally
demanding tasks, particularly in the deboning rooms. We discuss the complexities
involved in automating meat processing, stemming from the diverse nature of red
meat carcasses and their unpredictable deformable behaviour during processing.
The paper also examines state-of-the-art technological solutions, focusing on
sensing technologies for precision cutting and methods for processing sensory

information.
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2.1.2. Published paper
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- The presence of human operators in the deboning room can cauze
foreign bodiez and microorganizms to be tranzferred into the meat,
necessitating a significant budget to maintain high levels of hygiene.

Moreover, the learning curve for different cuts iz high. A typical
deboning room has a chain speed where every deboner haz limited time
to perform the aszigned task of cutting. That makes red meat processing
unattractive for recruiting a new workforee and an unforgiving learning
environment for the new workers.

In recent years, Australia has been among the leading countries
globally for exporting red meat, including beef, sheepmeat, and goat-
meat. In 2019, Australia wasz the second-largest beef and veal meat
exporter and the largest zheepmeat exporter (Meat & Livestock
Australia, 2020). The red meat industry plays a crucial role in Australia’s
economy, providing employment to approximately 434,000 individuals
from different regions and remote areas, either directly within the in-
dustry or through associated businesses (Meat & Livestock Australia,
2020; Ruberg, 2021). Given the industry’s importance, Australia iz
motivated to capitalise on emerging opportunities.

The red meat industry faces a significant challenge regarding pro-
ceszing costz due to labour, with Australia experiencing a substantial
differenee in employee-related costz compared to other leading red meat
exporting nations (Ruberg, 2021; 5G Heilbron Economic & & Policy
Conzulting, 2018). For instance, the employee-related costz for beef
account for 57.7% ($210.54) per head of a total cost of $360.62, while
for cheep and lamb, it iz 55.2% (§22.4) of §40.67 (5G Heilbron Eco-
nomic & & Policy Consulting, 2012). With other countries improving the
quality of their productz to match Australian products, Australia iz
competing in the global market with a cost dizadvantage, ezpecially with
price-sensitive consumers (Fuberg, 2021). Statistics show that the
Anstralian labour-related cost rate iz 1.6 timez greater than the USA, 2.8
times greater than Brazil, and 2.4 times greater than Argentina (5G
Heilbron Eronomic & & Policy Conzulting, 2018). There i also pressure
to efficiently increase red meat production to meet the market demand
as the annual consumption of protein increaszes (Ruberg, 2021). Robotics
iz a key technology that can contribute to the required production in-
crease and reduce labour costs to maintain competitiveness.

Tranzforming live animal: into marketable productz involves
numeroes operations within the abattoir. While the sequence of theze
operations may vary slightly between zpeciez and countries, Fim et al.
provide a general outline of the typical slang houze line
(Kim, Ewon, Kim, Secl, & Cho, 2023%

1) Stunning

2} Bleeding

3) Skinning or dehairing

4) Evisceration

5) Carcass cutting (the focus of thiz paper)

All ztages of red meat procezzing are crucial to the quality of the final
product and could greatly benefit from automation. However, thiz paper
focures on carcass cutting, where the moest intricate and valuable cuts
are produced in the challenging environment of the cold deboning
rooms. The paper demonstrates some of the complexities with respect to
red meat az a natural material, and their implications for operational
aspects such asz the manipulation and gripping of carcassez. Shorteom-
ings of the existing automatic robotic systems and their sensing tech-
nology in handling red meat products in deboning rooms are presented.
Specifically, thiz review examines their ability to adapt to the non-
uniform cutting paths and the deformable nature of red meat tizsues.

The paper indicates that the zolution lies in a perception technology
to guide a robot that mimicz human perception capabilities by
dizeriminating events and states to inform machine control functions in
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real-time. Most of the commercial zolutionz reviewed utilized non-
reactive perception method: to guide a blade during cutting, uzing
preoperative zcans that dictate the cutting path for the manipulator.
However, thiz approach was limited to cutting tazks where little to no
adaptation was required during the cut. Thiz paper alzo showeases some
assistive technologiez that have the potential for short-term imple-
mentation, while paving the way towards fully automating the industry.

The structure of this paper iz as follows: Section 2 discusses the
technical and operational challenges associated with integrating ro-
botics to cut red meat. Section 3 describes the search methodology uzed
during the literature review process. Section 4 presents the current state-
of-the-art attempts to automate pork and red mear cutting and reviews
the primary senzing technologies uzed in these syztems. Finally, Section
5 highlight=s various azsistive technologies that could be implementsd in
the deboning room.

2, Complexities of red meat automation

Sucecessfully integrating robotic systems within any industry heavily
depends on the tasks involved in the process and product characteristics.
Adapting robotics to skillfully ‘craft’ red meat iz complex. Current
conventional robotics technology is not yet ready to process such me-
diumz and haz wariousz aspectz that still need to be explored. Highly
automated induostriez, such az the automotive, electrical/electronics,
and metal/machinery zectorz, have a commonality in their product
characteristics, enabling them to leverage automation to a greater axtent
(IFR International Federation of Roboticz, 2021). These industries have
the following attributes in common:

o Conslstency: the input product has known coordinates and mea-
surements before being handled. Features and properties of the
products are the same in terms of structure and zize, reducing the
need for adaptation to variations.

o Rigldity: the product's behaviour while processed iz predicrable,
allowing the reliance on preoperative data and simulation models to
be robust to drive the control system.

Conversely, processing natural products, including red meat, iz
complicated due to inconsziztencies that vary from the non-homogenous
structure, the variable dimenzion of the product, and the unpredictable
responses when handled. Additionally, the prezentation and specifica-
tions of the produect must be precize and vizually appealing, making the
cutting process delicate, az any inappropriate handling can cauze dam-
age (Purnell & Grimbsy Institute of Further & Higher Eduecation, 2013)
Moreower, market specifications are an essential consideration az they
reprezent the changing demands of customers across different locations
(UMECE, 2004). These zpecifications define the pre-operation cutting
plan and determine the performance score of the automated system. All
these challengez must be adequately addreszed to have a suecessfully
working robotic syztem in meat processing that can assist the industry in
achieving maximum profitability through improwing product quality
and minimizing lozzes. The following sections will address various fac-
tors contributing to the complexities involved in proceszing red meat,
which are largely attributed to the meat’s characteristics and how they
affect variouz azpects of handling.

2.1. Factors related to workpiece presentation

The first parameters required to be known for a manipulating robotic
gystem are the zize and dimensions of itz input Thiz iz particularly
challenging when it comes to red meat products, which are non-uniform
and vary in size. The input dimensions are impossible to anticipate due
‘to factors such as the chemical composition of the food fed to the animal
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and the variability between species, gender, age and geographical origin
of the animal (Schumacher, DelCurto-Wyffels, Thomson, & Boles, 2022;
Toldra & Leo, 2006). Bvenmth:ncursofm:ametypeanﬂuu,mmal
features such as tissue di and can vary signifi-
cantly. Border et al. observed such discrepancy when dissecting striploin
pieces of roughly the same length. The fat thickness varied randomly
between 2 and 75 mm. from the interface with the (Border,
Brett, & Baillie, 2019; Khodabandehloo, 2018).
Momom,:helocanonmdtrajemryofdncummpaﬂlmdﬂmtype
of cutting to the ity of the task. These
factors affect the p 's state when inp d into the system, the type
of cutting tool required, andﬂmmanipuhtionnedmiqueneeded.l‘or
example, d ting paths d by tissues are more chal-
lengmsmofnﬂowﬂlanexpoudmandreqmspeualhandhngand
tools ble of the areas. The traj v
ofthepathcouldbeaawnpleuamuhtlmeofunorﬁollnwmathe
complex bone profile around the joints. The types of mediums of sepa-
ration add to the complications of the cut. It iz harder to differentiate
between similar tissues visually or through haptics, and so performing a
cut between similar tissues is more difficult than distinctly different
ones.

3

2.2. Factors related to workpiece behaviour

The i ical prop p of red
meat tissues cause the niform of the prod: in the
abattoirs (Merenkova, Zinina, Khayrullin, Bychkova, & Mockvina,
2020). Red meat is mainly made up of deformable visco-elastic tissues:
muscles and fats (Choi, Zhang, Fuhlbrigge, Watson, & Tallian, 2013).
The stiffness of these tissues varies within the same specimen and across
them. Fat tissue is composed of fat cells connected by connective tissues.
The combinations of the fatty acids that create the fat cells decide the
stiffness of the fat (MLA & AMPC, 2008). There are six different main
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types of fatty acids in cattle and sheep with different Carbon chain
lengths and thus different mechanical properties (MLA & AMPC, 2008;
Schumacher et al., 2022). Similar to the carcass’s size, environment,
breed of the beast and diet are all factors that affect the composition of
the fatty acids and the distribution of the fats across the carcass (Schu-
macher et al., 2022). There are four types of fats in the carcass (Sheridan
etal, 1994):

olnn:mnacuhrﬁtulocaﬁedwm)mthemutmmde

ol fatis L d

© Subcutaneous fat or back fat is | meat and
skin. Mm&m’bumdulumpcafhthyenonthetopofm

dh

with tissues b these layers (Lonergan,
Topel, & Marple, 2019).
© Visceral fats are 1 d d the i 1 organs.

Skeletal muscles are the majority of the animal's soft tissues. It
Wumeedmhmtmdmepmﬂmbkmofm:mmm
muscles have a p ion with a ion of the
following components (See Fig. l) (Megias, Molist, & Pombal, 2023):

o The connective tissue that covers each is called E:

and is made of collagen.

© A bundle of muscle fibres is grouped to form larger muscle masses
and is d with ther type of tissue called Peri-
myxmm These bundles are also called “grain” of meat, which have
4 de of

© Bpimysium or silver skin is the outer layer of connective tissue that

wraps the whole Unlike the p tissue, it is
made of a heavier type of protein called elastin.

o Ap of i fat exists b the bun-
dles(marbhng)

Fig. 1. Muscles” internal structure (Megizs et al., 2023).
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In some cazes, bones must be retained inside the product. Thiz makes
the bone, a more rigid and heavier medium, an important conzideration
while cutting. Joints between bone tizzues are connected through liga-
mentz, which iz another form of elastin-bazed connective tizzue. Alzo,
bones are connected to meat museles through connective tissue known
as tendons (Megiaz et al., 2023).

The prezence of two or more different mediums within a product can
result in non-uniform rheological properties during handling and pro-
ceszing. The vizcoelastic properties of these tiszues can cause phenom-
ena such as tissue relaxation over time due to variations in gravitational
force wectors and inertial forces, changes in structure as mass portions
are removed, and transient deformation induced by cutting tool forces
during dizazzembly. An experiment conducted to identify the rheolog-
ical parameters of beef round musclez showed that the meat exhibited
different deformational behaviours when a load was applied in three
directionz relative to the direction of meat fibrez (Mabil
Balhassen-Chedli, & Grigore, 2015).

2.3, Factors related to the setup and the process of cutting
a) Gripping and manipulation

Manipulating a carcasz involves holding it at certain positions
againzt the blade or changing itz orientation relative to the cutting tool.
How the workpiece iz presented to the cutting tool iz crucial for
following the target interface efficiently. Conwventional methods of
handling rigid materials are not suitable for proceszing red meat due to
the aforementioned factors (Choi et al., 2013). As a result, innovative
manipulation techniquesz inzpired by manual proceszing were deval-
oped, which can wvary for each cot The two common experimental
manipulation techniques are (Fhodabandehloo, 2022):

o In the first technique, the robot holds the cutting tool while the
workpiece iz fixed in a known position and orientation (Scott Tech-
nology Limited, 2013).
o In the second technique, the robot manipulater and holds the
workpiece against a fxed blade for cutting (Maunszell & Scoit
Technology Lid, 2018).

Properly securing a highly deformable object of warious structures
like red meat carcasses and fixing it against the blade in both techniques
iz crucial to achieving the dezired results. Any movement during the
process could cause deviations from the cutting trajectory, leading to
vield lozz or unsatisfactory damaged products. Bader and Rahimifard
hawve categorized the properties of material: and their impact on auto-
mation (Eader & Rahimifard, 2020). According to their classification,
the influence of natural materialzs that pozsess slippery surfaces, irreg-
ular thapes and sizes, and non or semi-rigid propertiez on automation
are:

oHigher probability of grip loss or slip-induced grip loss.
oaDamage rezulting from pressure.

The most common gripping technologies in the red meat industry are
hooks and clamp grippers with adjustable holding force powered by
either electrical motors or pneumatically (Foss, Korosoymaka,
Cordova-Lopez, & Mason, 2022). Takacs et al conducted a
state-pf-the-art review to azress the feasibility of various gripping con-
cepts and designs in the red meat industry (Takics, Mason, Christenzen,
& Haidegger, 2020). One of the types examined was prosthetic hands,
which were deemed too intricate and inefficient to be implemented in
the industry. Other grippers presented with under-actuated fingers,
which can mould themselves to the shape of the object they are holding,
making them ideal for grazping meat and deformable items. However,
there are concerns with the technology, such as the low payload capacity
and the cleanliness azpect of food zafety, az it iz constructed using 3D
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printing material Other unilateral grippers including vacuum, mag-
netic, gel, and penetrating grippers are not explored heavily in the red
meat industry. Rozz et al. reviewed theze optionz and found that mag-
netic and gel gripperz are not suitable for uze with meat doe to in-
compatibility, while penetrating grippers negatively affect the final
product’s appearance and can cause damage (Fozs et al, 2022). The
only viable option iz the vacuum gripper, which utilizes air suction or
vacuum to hold objects from one side without causing damage, being
simple, cheap, and easy to clean. However, vacuum grippers hawe
relatively higher yet limited holding forces, which iz a major concern
when it comes to handling heavy payloads of red meat primary cuts.
Therefare, the author :nggested that more rezearch iz needed to develop
new dezign configuration: and test their suitability in the industry.

b) Cutting tools

Cutting tools depend on the type of cut required and the types of
tiszues involved. Static knives of different shapes and pneumatic cutters
are suitable for zofter tizgoes in trimming and slicing operations, whilse
static and electrically powered saws are used to cut through bones. All
the current cutting tools perform the cut through direct contace with the
workpiece. Contact cutting requires constant sterilisation to prevent
contamination from spreading and periodic blade sharpening to ensure
clean cuts. To prevent such izzues, other technologies that provide
contactless cutting are being rezearched and tested (Foszter & Machinery
Automation & Roboticzs Pty Ltd, 2011; Fhodabandehloo, 2022),
including water jets, ultrasonic cutting, laser beams, and plazma. The
cutting tool impacts important cutting parameters and procedures, such
as the position of the workpiece, the manipulation technique and the

2.4, Health and safety considerations

The deployment of robotics in abattoirs with any level of automation
requires various health and safety considerations that must be taken into
aeccount. However, since integrating the technelogy into the red meat
zector iz a new concept, the available standards can be overly restrictive
and which prohibit the industry from exploring and implementing these
‘technolegies (Romanov, Korostynska, Lekang, & Mason, 2022).

Ome of the primary concerns iz ensuring the hygienic aspect of meat
processing, as foreign bodies such as bacteria, fungi and metal or plastic
fragments can contaminate the products, and the damp environment in
abartoirs can promote rust on the end-effector (FKim et al., 2023). The
equipment iz recommended to be specially dezigned to comply with
criteria zet by specialized standards zuch as the International Organi-
zation for Standardization (130) 14159 for machine design (Interna-
tional Organization for Standardization, 2002). Thiz includez using
food-grade materials for manufacturing closed machines that are easy
to clean and dizinfect without the rizk of getting rusty or causing any
chemircal reactions. It iz alzo ¥ o i periodic ¢
protocols to clean the manipulaters immediately between each cut to
prevent cross-contamination and at the end of each working shift. An
example of a comprehensive standard that can be applied iz IS0 22000,
which providez a framework for managing food safety (Internacional
Organization for Standardization, 2018).

Another important conzideration when implementing robotz in the
red meat sector iz safety, az working with robots at any lewvel of auto-
mation can be potentially dangerous. Takaes et al. conducted a review of
the standards and regulations that can be uzed az guideline: and found
that 15010218:2011 is the most relevant for the technology (Takacs
et al., 2023). This standard provides guidelines and requirements for the
zafe degign of machinery, including robots, presenting protective mea-
sures, foreseeable hazards, and suggestions to eliminate or reduce the
risks associated with them. Moreover, the effect of failure in the control
gystem must be examined to ensure safety. Lastly, hazards associaved
with specific robot applications must be asseszed and mitigated to
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prevent accidentz and enzure food zafety. Effective measures must be
implemented to addresz these safety izsues and ensure the szafe and
efficient operation of robotics in the red meat industry.

3. Research method

A structured search methodology was used to comprehensively
analyze commercially available and experimental automation systems
for meat processing, specifically for primal cutting and deboning tasks.
The zearch focused on systems that automatically measure the carcass
with a clearly dezcribed perception technology and then transfer it for
cutting automatically without huoman involvement. To collect the po-
tential publizhed rezultz, several databazes were searched, including
Science Direct, Scopus, JSTOR, Web of Science and Google scholar,
uzing the following keywords (excluding patents):

- "Automation in meat processing” OR

- “Meat processing robots” OR

- “Robots in abattoirs” OR

- "Artificial intelligence in abattoirs” OR
- “Automation in lamb deboning” OR

- “Robotics in lamb deboning” OR

- “"Automation in red meat deboning™ OR
- “Robotics in red meat deboning™ OR

- “Pig slaughter automation™ OR.

- “Robotic pig slaughter” OR

Due to the initial search yielding only a small number of rezultz, a
subeequent search was conducted uzing certain keywords from more
specific elements of automation systems, such as the sensing technolo-
giez utilized or zpecific tasks performed within the deboning room, such
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as fat wimming or shoulder deboning. In addition to academic publi-
cations, the review alzo included industry reports from organizations
such as the Australian Red Meat Gorporation (AMPC) and Meat and
Livestock Australia and the manuoals of products from major automation
companies such as Frontmatee, Marel, and S8COTT Automation. Tech-
nologies that zet important milestones towards implementing automa-
tion in the industry, such az Cobots, virtual reality, and augmented
reality, were alzo included in the review.

Itz important to note that the rezearch excluded all zolutions from
industries with rigid products or produocts vastly different from red meat,
zuch az poulty and fizsh. Uzing thiz struoctured methodology and search
strategy, the review aimed to provide a comprehensive analyziz of the
current state of commercially available and experimental automation
gystems for meat processing, specifically in primal cutting and deboning
tazks, while identifying potential rezearch gaps and future directions for
the feld.

The Technology Readiness Level (TRL) is a metrie that gauges the
maturity level of a technology or system. The TRL =cale ranges from 1 to
9, with 1 indicating the lowest level of marurity and 9 being the highest.
‘When a system iz assigned a TRL of 9, it means that it is a fully devel-
oped, proven technology that iz ready for commercial deployment. The
TEL assigned to each system in the meat industry iz baszed on several
facrors, including the lewel of technological advancement, the degree of
system testing and validation, and the readinesz for commercial
deployment.

For instance, the AGOL-800 and other commercially available zyz-
tems have a TRL of O bacausze they have been extensively tested and
validated in commercial applications. On the other hand, the experi-
mental systems have a TRL ranging from 5 to 7, depending on the level
of information available on the stage of the system. RoBUTCHER has the
highest TRL among the experimental systems, which is likely to be

Table 1
Automation oystems in the mear indusery.
Industry  System Task Availability Technalogy Sensing Technology
Readiness Level
(TRL)
Pork EcBUTCHER Primal cutting Experimental 7 computed tomography (CT) data + real-time
3D imagery + electromagnetic spectroscopies
AGOLE0 primal cutting Commsercial @ X-ray technaology + Vision camera
AMEL 1100 Pork mididle section deboning Commercial 5 30 vision camera
Chine bone saw Chine bone deboning Commsercial @ 3D vision camera
CECL-100
Automatic Eib Puller Ribs removing Commsercial @ 3D wision camera
ARPLE
Eohetic Belly Pork belly trimmer Commsercial @ 3D wision camera
Trimmer
Amtomatic Loin Pork boin trimmer Commercial El Ubirascnic sensor and imaging messurements
Trimmer ALTD-450
Antomatic Loin Pork boin trimmer Commercial El Optical probe
Trimmer ALTL-1100
Aurto Trimmer Model Pork butt trimmer Commsercial @ Optical probe
AT21-620
HAMDAS-EX Pork leg deboning Commsercial @ Xoray image system.
WANDAS-RX Pork shoulder debaning Commsercial @ Xoray image system.
SRIWiand robotic cell  Pork leg deboning Experimental Force sensor
Lamb X-Ray Primal System Lamb primal cuts Commsercial @ Xoray image system.
Middle System Middle part portioning {the spinal cord and lamb Commercial @ X-ray mage system
faps are remioves], ard the loin is separated from
the racks)
Forequarter System Forequaster portioning (rip the knuckle, remove the Commercial @ 3D vision camera
brisket bone, the shank and the peck, and split the
shoulder)
Hindquarter System Split the two legs from the femur bone Experimenial & Porce sensor
Lamb Chops Trimmesr  Trim the fats from lamb chops Experimenial 4 Vision gauge + CCD camern
Beef Robotic Beed Rib Cut across the ribs Commercial L] Xeray image system + 30 scanmer + Colour
Cuiting camera
SRDWViand robotic cell  Carcass quartering Bxperimental 5 Porce sensor + Structured light source and a
camera
ARMS robotic cell Separation of round and shank beef muscles Experimental 5 Parce sensor + Structured light scurce and &
camera
146
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around 7. The system has been tested in laboratory and pilot zettingz and
haz zshown promising resultz. However, further testing and validation
are necezzary before it can be widely deployed in commercial
applications.

In contrast, the TRL of the lamb hindquarter system iz estimated to be
6. The zystem has undergone testing with engineering-zcale models or
prototypes in a relevant environment. Other systems, soch as the
SRDViand robotic cell and ARMS robetic cell, have a TRL of 5. These
syztems hawe been tested in laboratory and pilot settingz, and promizing
resultz hawve been achiewed, but further testing and wvalidation are
neceszary before they can be widely deployed in commercial

Finally, the lamb chops trimmer haz a TRL of 4. The system haz
undergone design, development, and lab testing of technological com-
ponentz. The resultz indicate that the applicable component/process
performance targets may be attainable bazed on projected or modelled
systems. Table | provides an overview of the reviewed systems, their
availability, TRL, and the perception technology used to guide the cut-
ting blade through the task.

4. Technology review: automation In the meat Industry

A general architecture of a control system for automated meat pro-
ceszing capable of producing successful products can be envizaged to
have the subsystems shown in Fig. 2 (Border, Eoodabandehloo, & Brett,
2019). The three subsyztems that have different designs in an automatic
robotic system alzo dezcribe the three stages in which a deboner forms
an approach to making complex cuts:

o Perception: the deboner obzerves the overall shape of the workpiece
and feels the different medinms using a mix of visual and tactile
SEnges.

o Judgement: they compare the current state of the cut with the
final product shape requirement obtained from training and
experienca.

o Execution: they translare the information into action using proper
manipulation techniques and cutting tools.

Thiz zection will showease the commercially available and experi-
mental zystems for automating meat processing, focuzing on tazks in the
carcas? cutting process (primary cutting, deboning, trimming). The re-
view will cover the systems’ availability, which perception technologies
are uzed to guide the cutting blade, and the adaptability of the syzstems to
the ever-changing presentation and the random behaviour of red meat
tizgues during the cutting process. As the technology in red meat pro-
ceszing is stll in itz infancy, we will include automation systems in

e
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adjacent industriez, zuch az the pork industry.

4.1, Automation in the pork processing industry

Pork meat processing, which shares similarities with the red meat
indusztry, has found the most success in implementing automation in the
induztry. In the experimental domain, RoBUTCHER iz a European-
funded project to develop autonomous robotic cells called meat fae-
tory cell (MPC) (Mazon et al, 2021). MFC iz a concept to replace
traditional linear production systems with cell-bazed ones. The con-
ventional process in abattoirs typically involves sequential steps starting
with slaughter, followed by dehairing, evisceration, splitting the carcass
into halwes, and finally dizazzembling each half into primary and see-
ondary cuts after chilling. However, the MFC concept proposes rear-
ranging some tasks so that the autonomous cells receive the carcasses
directly after dehairing for hot boning of the primals, followed by in-
‘termal organs removal (Sedring et al., 2022). According to Mazon et al.,
the zystem comprizes two robotic arms, one designated for manipulation
and grazping tasks, and the other for cutting. Meanwhile, the carcass
handling unit (CHU) supperts and holds the carcass during the process
(Mazon et al, 2021).

The system iz capable of adapting to the variations between the
different carcaszes using a combination of detailed computed tomogra-
phy (CT) data, real-time 3D imagery, and human-expert cutting data for
neural netwaork training toward cutting trajectory planning. The visual
data provided by an RGBE-D camera aims to identify the carcass’s parts
and key attributes, feeding thiz information into a machine-learning
algorithm to determine the best gripping location and cutting paths
(de Medeiroz Esper et al, 2022; Mazon et al., 2021). At the same time,
zenzing techniques to guide a smart knife were explored to detesct
physical changes within the meat in areas where vizual zenzing devices
are ineffective, such az electrical impedance measurements, force
zenzing, optical methods, spectroscopic measurementz, and electro-
magnetic wave-based sensing (Alex Mason, Dmytro Fomanov et al,
2022). The researchers eoncluded that only two of these technologies,
optical and electromagnetic spectrozcopies, are suitable for further
development in meat antomation. Additional research was conducted,
which involved the use of EM spectrozcopy to guide a smart knife. The
results showed promising performance with only minor errors obzserved
in contact and depth detection (Mason, Romanov, Cordova-Lopez, &
Foroztynzka, 2022). The concept of the MFC delved into zeveral azpects
of autonomous roboticz and prezented many innovative technologies
and techniques that can be adopted in red meat.

Commercially, Frontmatec, one of the higgest meat procezzing
automation companies, haz developed a range of zucceszful automated
solutions for pork cutting, fat removal and rimming. AGOL-800 iz a
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Fig. 2. Conizol system for automated meat processing (Border, Brecr, & Baillie, 2019).
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system designed for primal cutting to divide half of the pork carcass into
three zections: leg, middle, and fore-end. The system employz X-ray
technology, specifically the pubic bone detector, for meazuring the
carcazs (Frontmatec, 2021c). Additionally, the system appears to utilize
vizion cameras for detecting the orientation and position of the carcass,
asz obszerved in the system's demonsiration video (Frontmatec, nd ).
Marel and E + V Technology hawve also developed primal cutting sys-
tems, but limited information iz available on these systems. However,
both zystems appear to utilize vizion perception to register the position
of the carcasz and determine the cutting trajectory (Fim et al., 2023;
Marel, 2023a).

For further dizassembly processing, AMBL 1100 is a versatile system
that divides the middle section of the pork into belly and loin, and
subzequently debones the loin. Thiz syztem employz 3D vizsion cameras,
which iz demonstrated in the description of the automatic chine bone
saw GBCL-100 (Frontmatec, 2022). Frontmatec offers other automated
systems for more intricate cutz of the midsection. An example is the
Automatic Rib Puller ARP15, which deploys a robotic arm with a zpe-
cialised cuotting instrument (Frontmatee, 20190 The robotic arm iz
programmed to move along the contours of the ribe, utilising camera
imagez and machine learning algorithms to create a digital model of the
pork careass and aceurately identify the loeation of the ribs (Fronmatec,
n.d). Onece located, the machine makes precize cuts to remove the ribs
from the surrounding tizzue. The robotic belly trimmer iz another syztem
dezigned to perform highly precize trimming of pork belly, specifically
rargeting the teat and backside areaz (Frontmatec, 2020). The system
incorporates a vision system and data from over 300,000 meazurements
to create a 3D model, which iz uzed to determine the shape of the belly.
The system then utilisez two G-axiz robots, each equipped with water jet
cutters, to carry out the rimming process.

For fat trimming, ALTD-450 is an automatie trimmer where each
piece iz scanned wsing an ultrasonic sensor and imaging measurements
to create a 3D profile of the product and detect the muscles,/fat interface
placement (Frontmatec, 2021a). Then, the piece rests flat on the fat zide
and iz fixed on a conveyor uzing a pressure wheel to go through the
rimming unit. The system uzes piano-like blades, which can be adjuzted
separately to match the required amount of fat to be trimmed from each
loin segment. The end product of the zyztem iz a loin covered with a
uniformly distributed layer of fat. According to Khodabandehloo et al.,
the zystem failed to perform the zame task for beef loin trimming
(Ehodabandehloo, 2018). There are other similar systems to trim and
remove pork fats, such as ALTL-1100 (Frontmatic) and Aute trimmer
model AT21-620 developed by Marel (Frontmatec, 20215b; Marel, n.d.).

HAMDAS-RX and WANDAS-RX are commercially available systems
introduced by Mayekaya company for pork shoulder and leg deboning
(MYCOM Global, 2020). The systems rely on X-ray vizion to identify the
path to cut the connective tissues before stripping the muscles from the
bone (de Medeiroz Ezper, From, & Mazon, 2021; MAYEEAWA MFG,
2016; MYCOM Global, 2020). These syrtems have an added feature to
help the knife follow the bone surface. A mechanical structure with two
springs fixed on the sidez of the cutting knife iz integrated to allow more
freedom of movement laterally for the cutting knife, to avoid getting
caught in the narrow areaz of the bone (MAVEEAWA MFPG, 2016;
MYCOM Global, 2020; Toyoshima, Umino, Matsumoto, Goto, & Kimura,
2016).

While the pork carcass shares stroctural similarities with beef and
lamb, pork tissues contain a greater proportion of unsaturated fatty acids
that hawe more fluid characteristics than the zaturated farty acidz pre-
sent in red meat tisspes (Fauffman, 2001; Valsta, Tapanainen, &
Mannizes, 2005; Wood et al, 2008). As a result, rimming systems that
rely on preoperative scanning and pushing cutz against adjustable
bladez are unzuitable for red meat due to itz greater deformability,
which neceszitates constant adaptation of the cutting trajectory during
the trimming process. Similarly, deboning techniques are only feazible
for pork, due to itz softer tizzue properties, which facilitate the separa-
tion of muscles from bones after a path is cut between them In addition
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to that and from observation, pork exhibitz a relatively uniform
anaromical structure, making it simpler to dezign effective machines and
systems for meat proceszing tasks. These unique characteristics and
propertiez have enabled the development of various selution: specif-
ically tailored for pork processing antomation.

4.2, Automation in the lamb processing industry

Technologiez with the ability to measure the internal structure of
materialz have been the focusz of rezearch in the field of automation in
red meat az an ideal enabler for control systems. One of the promising
technologies to guide an automatic robotic system iz Dual-energy X-ray
absorptiometry (DEXA). Coupled with 3D scanning cameras, SCOTT
Automation haz developed and commercialized an automatic lamb
debeoning room. Analyzing the online video published by SCOTT Auto-
mation, the system shows that the room is divided into an x-ray cutting
ystem, a primal cutting system, a forequarter cutting syztem, a middle
cutting system, and a hindquarter eutting system (Scott Technology
Limited, 2013). The DEXA device scans each lamb carcass to determine
the shkeletal characteristice (Green, Bryan, & Greenleaf Enterprize,
2014). The system uses the data to identify trajectoriez that provide
precize cut and dizzection for each carcaz: and then zend those trajee-
tories down the stream to the subsequent systems (Fig. 2.

The carcaszz iz then moved to the primal cutting system to be split into
three main parts: forequarter, middle, and hindquarter (de Medeiroz
Ezper et al, 2021; Green et al., 2014} In the forequarter system, the
forequarter part iz gripped by a robotic arm and scanned via a 3D vision
camera to create a model that identifies the cutting surfaces. The robotic
arm uszes a fixed saw band to tip the knuckle, remove the brisket bone,
the thank and the neck, and zplit the shoulder through the surfacesz
caleulated by the 3D image (de Medeiros Ezper et al., 2021; P.Green
et al., 2014; Starling & Robotic Technologies Limirted, 2011). In the
middle syztem, the spinal cord and lamb flapz are remowed, and the loin
iz separated from the racks. In the hindquarter zystem, the two legs are
=plit from the femur bone uzing a force zenzor (de Medeiros Ezper et al.,
2021; Scott Technology Limited, 2013).

The primal, forequarter and middle zystems perform straight line
cuts that do not require much cutting adaptability and manipulation if
the cutting trajectory and angle are determined correctly. Fig. 4 (a)
shows the primal system's outcome as an example of what these types of
cuts look like. It can be noticed that the cutting areas are straight lines
adjacent to certain structural features in the carcass.

The demonstration video shows a hindquarter cutting system, how-
ever it iz not commercially available on the company website due to the
shortcoming in yield produced in the final product (Maunzell & Scotc
Technology Led, 2018; Ruberg, 2021). The hindquarter cut requires
dexterity and accurate manipulation of the cutting tool to cut around the
complex profile shape of bone joints connecting the leg with the aitch
bone. The knowledge and understanding of the interpretation of force
information were insufficient to be used efficiently at thiz level of
complex manipulation. The bone profile of the aitch bone to be followed
for thiz cut can be shown in Fig. 4 (b). Meat and Livestock Australia
(MLA) partnered with Mayekawa Global company to have a subsequent
artempt at developing the zystem with no system available to date
(Maunzell & Scott Technology Led, 2018).

Purnell et al. carried out rezearch to develop a low-cost experimental
zystem for trimming a high-value piece of lamb (lamb chope) (Purnell &
Brown, 2004). In their attempt, the authors took advantage of the small
zize of each individual piece and the deformability of tizzues. Inztead of
following a non-uniform cutting path in a typical piece of lamb chop, a
movable segmented wall applies prezzure to deform the fat zo that the
cutting path becomes straightforward and easier to follow. This tech-
nigque if common in manual operations. [t resembles a deboner who
applies pressure with one hand and uszez the other to move the knife
parallel to the interfare between the muscles and fat leaving the desired
fat height above the muscles.
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Fig. 8. Output of DEXA preoperative scan (Oreen et al, 2014). (For i
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wverzsion of this article.)
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Fig. 4. a) Lamb primal cuts are d by cuts (Oreen
et al, 2014), b) The ununiform bone profile for the hindquarter is the cutting
path (Maunsell & Scott Technology Led, 2018). (For interpretation of the ref-
erences to colour in this figure legend, the reader iz referred to the Web verszion
of this article.)

In the machine, the lamb chops were positioned against an adjust-
able wall. That is combined with ten visual gauges fixed at the hinges of
themovmgelemenlsofd:ewallmdetmthemwfacebetweenfatand

using the in pixels intensity. In additi a g

P of the refe to colour in this figure legend, the reader is referred to the Web
sy’ ic errors in i g the interface and ing the g
path.

4.3. Automation in the beef processing industry

Similar to lamb, automation has been achieved in very few tasks
inside the ab ir for beef p An botic system was
developed by Scott A for rib scribing (Scot: Technology
Limited, 2022). It uses a circular saw attached to the end of a manipu-
lam to perform two straight-line cuts across the rib. The cutting path

ion is provided by a of X-ray (DEXA) and a colour
camera relative to the bones’ structure.

As a part of the SRDViand project, a different perception technique to
guldethecumngpmhzdwbemseuched Whilst all visual tech-

ing the 's 1 1 structure are expensive and
cameras cannot capture the internal cutting paths, tactile perception
using force feedback was the test target (Guire, Sabourin, Gogu, &
Lemoine, 2010; Subrin, Alric, Sabourin, & Gogu, 2011). The idea was to
program the robot to perform accurate anatomical cuts for ham
deboning using force control and adapt to changes in real-time. Similar
to the lamb hindquarter deboning system, the outcome did not fulfil the
final prod: specifl and d a deeper ¥ of
tactile perception and further system development.

Within the frame of the same project, a strategy was suggested uti-
lising vision and force simultaneously to perform a cut that requires less
mzmpuhnon, the Z cut for beef carcass quanenng (Guire et al., 2010).
The p i the of the hind ter and quarter
I(usedmenbcage asamﬁermmgmdememmugtool. Preoperative
visual data using light image was used to obtain the spinal column
profile, the four reference points (A, B, C, D), and the spatial posi-
tion/orientation of the cutting tool relative to them. The system detected
the of the using a str d light source and a

coupled device (CCD) camera was mounted above the workpiece to
provide images of the chop sides. While the system showed slight im-
pr over some d occurrences, such
as blood spots, ab; i caused

and

q g
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(Mosnier, Berry, & Ait-Aider, 2009). The camera captured the
light and extracted the carcass’s features from it (Mosnier et al., 2009).

Tactile p d in force feedback was used in real-time to
update tbe cumng mol trajectory to follow the rib cage with the aid of a
system to count the number of ribs being cut while locating the position
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of the knife accordingly. The steps to perform the cut are:

1) The vizual data is uzed to position the knife at starting point A.

2) Follow the 13th rib with a constant force level (machining function).

3) Usze the counting system to cut through the rib cage from points B to
C.

4) Move the cutting blade in a direction from C to I until a certain force
level iz detected sensing (assembly functioning), and the blade euts
through the spinal column marking the end of the cut.

More advanced techniques incorporating material modelling and
hybrid tactile,/wvizion perception were rezearched and dewveloped az part
of project ARMS, which specialized in robotizing muzcle zeparation of
meat cutting. Since manipulating the meat to have more control over itz
behaviour is not a viable solution, especially for sizable pieces, more
attention waz given to predicting the workpieces” behaviour wia
modelling and simulation. The models" tazk is to anticipate the changes
in the cutting medium, while the active perception technigque provides a
real-time update of the process” current state. [n reality, it iz imposzible
to accurately model the behaviour of a vizeoelastic material like meat
conzidering all the variables mentioned in the previousz zection while
feeding the outcome into a real-time control loop (Cotin, Delingstoe, &
Avache, 2000). Thus, a selution was suggested to use simpler models az
an indication of the behaviour rather than an attempt at accurate
prediction.

Mabil et al. investigated zeveral approaches to model and simulate
the approximate behaviour of red meat {(Mabil et al., 2015). Updated
wersions of the mazz-spring model (M3M) and tenzor mazs model (TMM)
showed promising results when uzed to reprezent realistic tissue motion
and physieal interaction with the cutting tool while maintaining mini-
mal computational time (Han, Wang, Liu, Chen, & Zhang, 2020; Nabil
et al, 2015). The modelz were simulated to reproduce the muscles
separation procesz between round and shank with three different ap-
proaches to dezeribe the anatomical cutting (Mabil et al., 2015):

o The model tears the muzcles if the applied pulling force exceedsz a
threzhold that varies with the actual thicknesz of the aponeurosiz.
o The model removes the aponeurassiz facing the knife's blade az long
as sufficient effort is applied (position-based).

© The model cutz through the spring simulating the aponeurosziz
when the calculated internal force berween the nodes exceads the
value of the experimental foree modulus.

Furthermore, a visual-based algorithm was presented to detect the
aponeurssis’'s trajectory by calenlating the path’s curvature features.
The experimental rig shown in Fig. 5 was developed as an extension of
the previous work to put zome of the strategies above into testing (Long,
Fhalil, & Martinet, 2014b). The pulling robot holds one zide of the
workpiece, and a camera iz attached to the cutting robot above the knife.

The cutting model uzed in thiz zimulation focuzed on the local
behaviour around the cutting trajectory, simplifying the modelling of
the two main muscles to reduce computational time. The cutting me-
dium was represented by a zeries of zpring-damper systems (mass-spring

Fig. 5. Experimental rig for beef round muocles separation (Long =c al, 20145).
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model) zpread between the two main muscles. Thiz step achieved po-
zitional cutting conditionz for each node of the cutting medium_ It iz
important to acknowledge that there iz a significant body of rezearch on
tiszue modeling and behavior. However, the models dizcuszsed in this
section are specifically those used in the context of the reviewed robotic
ystems.

The camera identified the cutting line location and wpdated the
trajectory with the changes due to the applied forces. The zystem used
the cutting conditions from the simulation to ensure that the knife was
cutting through the intermediate interface while avoiding the meat on
‘both zrides. Simultaneously, the pulling robot uses force feedback to open
the curting path in front of the blade. Stretching the cutting interfaceiza
common manipulation technique practized by human operators in the
deboning room. The method redoces the force needed to cut by
stretching the connective tizsues between the muscles to assist the knife
in following the natural seam.

Despite the effort applied to adapt to the meat deformation changes
and the improvement in following the sinew between the muscles, the
vision system required to focus on a small area around the eutting blade,
and the total cutting path had to be acquired and marked offline before
the process. Also, unexpected reziztive forces prevented the robot from
cutting the whole path length during the cut. In the following stage of
the experimental work, a force controller was integrated to detect the
accumulation of forces and zlicing movement was performed to reduce
them. Thiz strategy was tested on foam for validation and iz vet to be
tested in meat-cutting applications in future work (Long, Fhalil, &
Martinet, 2014a).

4.4 Perception technologies in the automoted systems

Humanz can understand complex information from sensory percep-
tion and respond appropriately with measured strategy in real-time to
enable the required result when crafting a product. Thiz section suggests
and dircuszes that the solution for the industry lies in producing a system
that can dizcriminate between the mediums in a human-like way and
utilize the machine's conzistency in performing cutz with no fatigue.

Observation of operators cutting in deboning rooms shows knowl-
edge, experience, judgment, and inspiration are being applied in real-
time to the changing conditions of perception of behaviour and state
of the workpiece (Fhodabandehloo, 2022; Pumnell & Grimbey Institute
of Further & Higher Education, 2013). Perception iz targeted to the
tazk’s parameters uzing multiples senzory information simultaneoushy.
‘Curting control iz applied with real-time interaction to produce a sue-
cezzful outcome.

Since perceiving the correct information iz the key to performing the
cut successfully, it iz important to highlight the two types of perception
that deboners rely on (Khodabandehloo, 2022):

© Visual perception: to determine the location of the cutting tra-
jectory, follow the cutting path of zome external cutz and identify
and react to the apparent behawiour of the workpiece.

o Tactlle perception: to distingnish between the different mediums
within the workpiere, follow the interfaces between tiszues and re-
adjust the cutting path to react to any obstacles.

It iz evident when referring to Table 1 that vizual data iz the most
be achieved through different types of camerasz for obtaining direct
image: or through optical probez or X-ray-bazed technologies to
generate images using tissue properties. As established in previous
zections, for an automatic robotic system to successfully guide a cutting
‘tool along an appropriate trajectory, it requires to be equipped with real-
time data perception capabilities and the ability to adapt to any changes
that may oceur during the task. Thiz involves a combination of suitable
senszing technology and a capable manipulator equipped with the proper
cutters working in tandem. In thiz section, we will assesz the
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applicability of the driving senzing technologies of the systems
mentioned earlier in the zaction to perceive real-time data on the inner
state of the carcazz. Theze zenzing technologies include vizsion cameras,
X-ray zenczing technologies, ultrazonic, optical probe: and tactile
senging.

441 Vision cameras
Vizion cameras of various types are essential in recognizing the
external attributez of a carcass, aiding in the acquizition of itz initial
nts and determining key features crucial for gripping and
manipulation. They also serve to guide a curting tool for making shallow
cuts or for instances where the internal state of the carcass is not
neceszary for the cutting process. In their experimental work, Han et al.
demonstrated vizion-bazed cutting control for deformable objects (Han
etal., 2020). Their proposed approach involved using a vision system to
capture surface images of the object and track itz contour. Control zig-
nals were then generated to adjust the cutting path based on the tracked
contour, leading to accurate and efficient cutting. The method's effec-
tiveness was validated through experiments on deformable objects such
as sponges, artificial tissues, chicken breasts, and pork liver. However,
the technique showed drawbacks due to the need for calibration and the
limitation of requiring a clear and unobstructed view of the object,
which may not be pozzible in a real-world abattoir environment.

4.4.2 X-ray semsing technologies

In the caze of X-ray technologies, the varying densities of the tizzues
are uzed to produce images by detecting the different degrees of atten-
uation of the X-rays (Delgado-Pando, Allen, Troy, & McDonnell, 20213,
Then, a cutting trajectory iz generated based on the various features in
the carcass, resulting in a two-dimenzional image. This technology in-
cludez DEXA and CT scanning. The implementation of DEXA technology
involves significant expenses, including the installation cost, space re-
quirementsz, and the need for periodic calibration to verify measure-
ments uzing a CT scanner, which iz also expenzive to implement and use.
(Auztralian Government Department of Agriculture, 2019; Jacob &
Calnan, 2012). Additionally, thiz technique haz been found to be inad-
equate when it comes to more complex forms of cutting, such as fat
rimming, az it cannot locate subsurface features in three dimensions
(Cook et al, 2017

4.4.3. Ulrasonic

Ultrazonic sensing is another imaging technique to capture the in-
ternal structure of an object. Thiz method operatez on the principle that
tizzues of varying densities have different acoustic properties, allowing
for the identification of different layers of tissue or objects (Pathak,
Singh, & Sanfay, 2011). Ultrazonic devices have two modes of operation:
A-mode and B-mode. A-mode iz a graph that shows tizsue information az
a function of depth, while B-mode provides real-time ultrazound images
by representing reflected zignal amplitude az pixelz (Pathak et al.,
2011). Howewer, the success of thiz technology in providing real-time
guidance for robotic systems in the red meat industry iz challenged by
several factorz. Specialised ultrasonic device dezigns are necessary to
accommodate the non-uniform shape of carcaszes for each zpecific cut.
The placement and orientation of the senzor in relation to the carcass
can significantly influence the meazurements. The abattoir environment
presents various hazards that may disrupt measurement accuracy.
Moreover, temperature and water content in the environment can also
affect the accuracy of measurements, while the prezence of air pockees
inside the carcass can lead to measurement inaccuracies (Border, Brett,
& Baillie, 2019).

4.4.4. Optical probes

Optical probe: are utilized for gauging the physical and chemical
properties of diverse materials by analyzing their responses to light,
including abzorbance, reflectance, and backscatter (Delgado-Pando
et al., 2021; Prieto, Pawloczyk, Dugan, & Aalbusz, 2017). The most
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commonly uzed type of optical probe in the meat industry iz NIR zpec-
trozcopy, which iz simple, cost-sffective, and robust for preoperative
zcanning. Itz effectiveneszz haz been demonstrated in commercial pork
loin trimming system: where it accurately measures fat depth (Front-
matee, 2021b; Marel, 2023b). To obtain measurements, optical diodes
are inzerted into the fat via a needle-like probe or device. For preoper-
ative scanning of pork products, a single inzertion at the product's centre
and averaging the data is sufficient, as the fat variation is less compared
to that in red meat counterparts. However, utilising optical probes in
real-time applications would require numerous readings, neceszitating
multiple probe insertionz into and across the carcass, which may
potentially damage the product (Border, Breet, & Baillis, 2019). Also,
‘uzing it to guide a cutting tool in real-time may lack zpeed and robust-
nezz, but adding artificial intelligence (Al) could aid in decizion-making
and data analysis to improve itz effectiveness (Alex Maszon, Dmytro
Romanov et al., 2022).

4.4.5. Tactile sensing

Rezearch has shown that the human sense of touch is zuperior to
vision at processing materials” properties, deflection, and details (Luo,
Bimbo, Dahiya, & Liu, 2017). Tactile force perception provides force
information through physical interaction with the surrounding envi-
ronment. The technolegy goal iz to detect the mechanical properties or
responze of the operating medium through force and torque feedback
(Luo et al., 2017). The daca obtained from contacting different objects
could be informative if the force transient: are observed carefully and
interpreted correctly.

Red meat cutting relies heavily on the phyzical interaction with the
meat workpiece through the cutting blade. Recent research and indus-
trial reports suggest that there iz a lack of understanding when it comes
to implementing real-time tactile sensing for accurately following the
cut path. Thiz deficiency iz apparent in the inability to use the tech-
nology to guide cutting tools in performing intricate cuts in some of the
robotic systems. Thiz iz due to the numerous factors that need to be
‘taken into account when relying on haptic technology, such as the di-
rection of the muzcle grain, the water content in the tizzues, the impact
of temperature on meat stiffnezz, and the non-uniformity of the medium
(Border, Brett, & Baillie, 2019).

Many distinet advantages of tactile sensing need more research and
investigation. Dario P. et al. demonstrated that understanding and
interpreting the paramesters related to physical contact with the sur-
rounding environment iz the key to complicated zensory techniques
capable of adaptively interacting with their surroundings (Duchemin,
Dombre, Pierrot, & Poignet, 2003). To adapt to the unexpected behaw-
iour of red meat-compliant tizsues, a real-time sensing technique iz
needed for registering the cutting tools to their unique internal features
(Taylor, 2008). The medical field has utilized force and torque sensors to
develop real-time informative sensing rechnigues with micro-lewel ac-
curacy. Thiz iz prezented by a method invented and applied by Brett
et al. to guide a medical drill through human tizzues by force and torque
feedback from the drill bit. The proper interpretation of the unique
transientz of force and torque, regardlesz of the values, provides infor-
mation to anticipate conditions on the cutting path and to locate with
precizion the burr of the drill relative to tizsue interfaces. The method
divided the trajectory of the drill inte four main events to discriminate
and control eritical stages in the process. Fig. ¢ shows how the force and
torque vary with tissue depth throughout the drilling process.

The reported method for dizeriminating tissuez and tizzue structure
offers possibilities for cutting meat. In a zimilar manner, guiding a knife
through red meat tizsuez to perform a cut requires dizcrimination be-
tween the unique featurez of the cutting mediums. Dewveloping tech-
miques to perform thiz dizcrimination requires a fundamental
understanding of critical process eventz and methods to detect theze
events zo that the system can react to the prominent conditions in real-
time. Although tactile zenzing iz not yvet ready for implementation in the
meat processing industry and requires further research and
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Fig. 6. Porce trancients during the drilling process (Taylor, 2008).

investigation, thiz doesz not diminish itz potential as a technology.
5. Assistlve technologlez

Although automation iz perceived to be the saviour of the industry, it
iz crucial to retain the skillset of workers, particularly with the current
shortage of zkilled labour. While zome tazks may not be antomated soon
due to their complexity, gradually reducing the human element iz zeen
to be the best approach to achieving full automation. In the short term,
the path will likely be assiztive technologies, which enhance manunal
operators’ capabilitiez and extend their ability to work for longer
periods.

Collaborative robots, or cobots, are assistive robots designed to work
in the zame vicinity az humanz to aszist them. The technology can
improve the work environment and attractiveness of jobz while
removing strenuons aspects and benefiting from the advantages offered
by machinery. One challenge of implementing such technology iz having
a way for the robot to distinguish between human body parts and waork
objectz while cutting. An approach propozed by Romanow et al. involves
using existing relatively cheap and proven technologies such az
manipulation arms, 3D cameras, augmented reality interfacez, and a
robust algorithm to tie the system together (Romanov et al., 2022). The
solution reliez on the human operator's knowledge of the most efficient
way to cut and i Ives a two-way Com ion interface between
the manipulator arm and the operator. Two scenarios for the approach
were suggested:

o The human operator uses the knife while the robot holds the meat
and suggests the optimal cutting trajectory.

o The human operator suggests the eurting trajectory while the robot
performs the cut.

The technology leverages the intricate perception of humansz to
evaluate the status of the cutting process, which iz currently difficult to
replicate through senzing technologies, while safeguarding human op-
erators from physical harm azzociated with performing the tasks. Thiz
waz demonstrated through experimental work conducted by Maithani
et al. that used a cobot to perform a pork cut and found that the force
required for cutting was reduced by 30% compared to manual operation
(Maithani et al, 2021). The technology alzo has the potential to save the
industry money by reducing the skill and phyzical demandz of the
workforee, as robots can assist in the cutting process by either per-
forming the cuts themselves or providing suggested cutting trajectories
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for the operators. Currently, cobots are uzed for packaging, labelling,
and quality control in meat proceszing plants, but as technology evolves,
cobotz will become more integrated into the meat proceszing industry,
improving efficiency, productivity, and safety for workers.

Exoskeletons are wearable robotic technologies that are designed to
enhance the phyzical performance of human operators. The technology
iz made up of a frame fitted with motors and sensors that provide sup-
port for the wearer's movements. The use of exoskeletons can be highly
‘beneficial in industries that require repetitive physzical labour and heavy
lifting, such as the red meat processing industry. Exoskeletons improwve
workplace safety standardz by reducing physical strain on waorkers,
providing support and assistance to jointz, and reducing pressure on
them (Christenzen & UCSD, 2023). They alzo stabilize the wearer's
movement: when uzing sharp toolz or lifting heavy equipment or
products, thereby enhancing safety in the work environment. Az a result,
there are fewer accidentz and health izzues, leading to increazed pro-
duetivity. The limitations of thiz technology for the rezearch domain are
itz weight and bulkiness, and it must be carefully dezigned to avoid
restricting the operator's motion during use (Paxman, D, Wu, & Dis-
sanayake, 2008).

Aungmented reality (AR) and virtual reality (VR) are two types of
wvisual technologies that can be uzed independently or as an interface to
control cobotz. AR involves superimposing digital elements onto the real
world to enhance the human perception of their surroundings or provide
additional data. Thiz technology iz typically accezzed through smart-
phones, goggles, or digital projections onto physical environments. AR
devicez are often connected to senzor: or camera: that provide the
prezented information. Recently, AR has shown a great deal of potential
in the abattoir. A case study conducted by Christensen & Engell-
Merregird showcaszed the technology's potential in assisting with the
trimming and cutting of pork belly {Christensen & Engell-Nerregird,
2016). The study involved producing three different pork belly products
from three different raw materialz, which varied in weight and tizzue
content. The raw materials were scanned using a CT scanmer and
tranzformed into coloured maps that divided the tiszues baszed on their
denzitiez (fat, meat, bone), with the fat thickness being represented by
different colours. Operators were provided with a colour-coded fat
cover, notifications of recipe ID and corrective actions, and identifica-
tion of cutting lines. Dezpite the challenge: encountered during the
study, the final product showed a greater vield compared to manual
operations. Thiz technology offers operators a window to see inzide the
carcase, which helpe them avoid mistakes that could lead to significant
financial loszez in the industry.
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On the other hand, VR iz an emersed digital szimulation where the
uzer dives into a tailored wirtual world via a headset. It serves az a
cutting-edge tool for testing machinery and performing tazks without
worrying about the conzequences. Thiz technology has been adopred for
employee iraining in the red meat processing indusiry. Providing a
wvirtual environment of hazardous abattoirs allows employees to practice
safety protocols and real-time reactions to any danger without putting
themselves in harm's way. Additionally, it offers the advantage of
allowing employees to practice complex cutz independently withour
requiring supervision or wasting resources on training.

6. Concluslon

The meat processing industry sector iz a significant contributor to the
Australian economy. Currently, productz of thiz industry have an
established lead on quality over overseas competitors, although the
higher Australian labour costz hinder competitivenesz. The arducus
work environment in the deboning room and the physically and
mentally demanding nature of the tasks promote automation to be zeen
as a key solution. Howewer, the highly variable nature of red meat and
the accurateness to which product acceptance iz defined, coupled with
the magnitude of deformation encountered during proceszes, setz an
overwhelming challenge for current techmiquer in automation
rechnology.

Manual operators in the deboning room uze their vizual and haptic
senses combined with the complex ability of 2 human to anticipate and
react to changes in real-time to perform a cut. Similarly, a robotic system
capable of producing a successful product can be envizaged to perceive
and interpret data correctly from the workpiece, apply cormective stra-
tegies if needed and execute cutting actions in real-time. In reviewing
the attempts to develop and implement robotic systems in red meat
processing, it iz evident that the known zuccessful attempts are to
perform simple straight-line fixed cuts that do not require adaptability.
Theze methods rely on preoperative scans from technologies such as X-
rays, optical probes, ultrazonic sensors, vision cameras, or a combina-
tion thereof On the other hand, tactile sensing haz not been able to
achieve commercial succezs yet. Upon reviewing these sensing tech-
nologies for real time perception over the cutting process, it was clear
that all have many challenges to overcome. However, optical probes and
tactile technologies are suggested for further experimental research in
thiz area_

Although the advantages of automation for the red meat industry are
well establizhed, it iz essential to recognise that developing a depend-
able, fully automated robotic system for implementation will take some
time. The optimal approach to achieving automation in the industry iz
by gradually incorporating intelligence into abartoirs and reducing the
reliance on manual operators. Thiz can be achieved through the uze of
asziztive technologies such az cobots, exoskeletons, AR, and VR. Theze
technologies mitigate some of the limitations of human operators while
atill depending mainly on the prezence of human operators to carry out
the cutting tasks.
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2.1.3. Links and implications

The paper "Robotics and Sensing Technologies in Red Meat Processing: A
Review" discusses the complexities of implementing robotics in red meat processing,
mainly due to the variability in meat properties. It explores the limitations of current
robotic systems and perception methods in executing the intricate red meat cuts to
the required market specifications. The paper highlights the potential of tactile
sensing, a less researched technology in the red meat processing domain, drawing
parallels to its successful use in medical surgeries. Tactile sensing could enable
cutting robots to perceive and interpret data accurately, adjust strategies as needed,
and perform cutting actions in real-time. The next chapter is a continuation of the
literature review, expanding on reviewing and analysing tactile perception sensing

technologies in different fields and applications.
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2.2. TACTILE PERCEPTION

This chapter builds on the literature review, concentrating on the application of
tactile perception in robotic red meat cutting. It also explores innovative and
successful applications of tactile perception in guiding robotic systems to process
similar mediums.

Red meat cutting is a sophisticated task that relies on the physical interaction
between the cutting tool and the carcass. Skilled operators utilise their knowledge of
meat tissue properties, strategically following or cutting along 'natural seams'—the
natural divisions within the meat such as muscle groups or fat lines—to achieve
precise outcomes. Operators leverage their sense of feeling, or tactile perception, to
instantaneously respond to the unpredictable and deformable behaviour of red meat
tissues, and to distinguish between the different tissues and interfaces.

The conventional method of applying tactile perception in robotics typically
involves relying on the accuracy of numerical data provided by sensors, combined
with detailed simulations of the intended task. This approach is viable for solid
materials, whose properties change only under extreme conditions such as high
pressure or temperature. Consequently, robots can depend on robust criteria,
including precise measurements and material models for accurate predictions of
process-related risks and outcomes. However, the challenge in robotic red meat
cutting lies in the material's deformation and variability, which defy the assumptions
made for rigid materials.

2.2.1. Mechanical features of red meat

Red meat consists mainly of viscoelastic tissues such as muscle and fat,
which exhibit non-linear mechanical properties and variability both within and
between specimens (Choi et al., 2013; Merenkova et al., 2020). The stiffness of
these tissues is influenced by the animal’s environment, breed, and diet (MLA &
AMPC, 2008; Schumacher et al., 2022).

Fat tissue is categorised into intramuscular, intermuscular, subcutaneous, and
visceral fats, each characterised by unique physical properties that stem from their
locations in the carcass and the compositions of their fatty acids (Lonergan et al.,
2019; Sheridan et al., 1994). Muscle tissue, the primary edible part of the carcass, is
structured in complex layers of connective tissues—endomysium, perimysium, and

epimysium—and contains intramuscular fat, or marbling (Megias et al., 2019).
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Bones also affect the behaviour of the target cut; most cuts that include bones
require following the profile of the bone by cutting the connective tissues (tendons)
with the muscles or cutting the ligaments between the bones (Megias et al., 2019).
This composite nature of red meat results in non-uniform rheological properties
during handling and processing (Nabil et al., 2015).

2.2.2. Tactile perception in dynamic environments:

Red meat cutting, culinary settings, and surgical theatres, despite their
diverse applications, face similar challenges when it comes to precision cutting.
These environments require real-time adaptation to handle the variable and
unpredictable nature of the materials involved, such as different types of food and
biological tissues. Traditional robotic cutting systems, however, often rely on pre-
defined settings based on initial scans of the input product. This approach can lead
to inefficiencies in cutting, increased wear on cutting implements, and potential
damage to the materials being processed. Such limitations highlight the need for
more adaptable and responsive robotic technologies that can better mimic the
nuanced human touch.

The following sections will discuss and evaluate the role of tactile perception
in enhancing systems designed for slicing red meat (beef and lamb), as well as other
materials with similar properties, such as pork, various foods, and in medical
surgeries.
2.2.2.1 Tactile perception in meat cutting:

Efforts have been made to utilise tactile perception for guiding cutting tools in
meat processing. Scott Technology developed a system aimed at guiding a cutting
tool around the intricate bone joints between the leg and the aitch bone for
hindquarter cutting. However, this system did not achieve commercial success due
to suboptimal yields in the final product (Steven Maunsell & Scott Technology Ltd,
2018; Ruberg, 2021). Figure 6 illustrates the complex structure of the aitch bone and
compares a robot-cut piece with yield loss to the desired outcome. In a further
initiative, Meat and Livestock Australia (MLA) collaborated with Mayekawa Global to
refine and advance this technology, though a viable system has yet to be introduced
to the market (Steven Maunsell & Scott Technology Ltd, 2018).
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Robot boned Desired outcome

Figure 6: The figure shows the complex bone profile of the aitch bone and the yield
loss from using robotics in deboning lamb hindquarter (Steven Maunsell & Scott
Technology Ltd, 2018)

In the SRDViand (Robotis’es de D’ecoupe de Viande) research project, an
attempt was made to program a robot to perform cuts for ham deboning using force
control, adapting to changes and path non-uniformity in real-time (Guire et al., 2010;
Subrin et al., 2011). The study focused on optimising the robotic cutting process to
closely follow bone profile without causing damage or leaving excess meat. It
highlighted crucial cutting parameters like angle (a), feed rate speed (Vf), and the
perpendicular speed to Vf (Vn), which significantly influence cutting quality (Figure
7). For example, maintaining a cutting angle a under 30° could reduce cutting forces
by 30%, minimising bone and meat damage. Force control was essential for real-
time path adjustments due to variations in bone size and shape, and meat texture
and firmness. This control allowed the robotic system to adjust blade pressure based
on the meat's resistance, emulating a skilled butcher's touch. However, similar to
previous efforts with lamb hindquarter deboning, the outcomes did not meet market
specifications for the final product.
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a: Cutting angle

V;: Feed rate speed

V, : Normal speed to ¥V
F,: Cutting effort

F;: Contact Effort

Figure 7: Robotic system for pork leg deboning and the bone cutting parameters
(Guire et al., 2010; Subrin et al., 2011)

Within the same project, a strategy was proposed that combined vision and
force feedback to perform a 'Z-shape cut' for beef carcass quartering (Guire et al.,
2010). This approach involved separating the hindquarter from the forequarter, using
the rib cage as a reference to guide the cutting tool, with real-time tactile feedback
updating the tool's trajectory. In Figure 8, the cutting process begins by using visual
data to position the knife at the starting point A, then follows the 13th rib with
constant force from A to B. It then uses a counting system to cut through the rib cage
from B to C, and concludes by moving the blade from C to D also using force
sensing until a specific force level is reached, indicating the blade has cut through
the spinal column. The force sensor ensures the tool maintains contact with the ribs

while following their contour.

Carcass Holder

Manipulator

Figure 8: The cutting path of the Z-cut for beef quartering (Guire et al., 2010)

Research under project ARMS explored advanced techniques, combined
material modelling and hybrid tactile/vision perception systems to automate muscle
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separation in meat cutting. The models' task is to anticipate the changes in the
cutting medium, while the active perception technique provides a real-time update of
the process’ current state. Although accurately modelling the viscoelastic properties
of meat in real-time is highly challenging, simpler models were suggested as a way
to indicate potential behaviour rather than to predict it precisely (Cotin et al., 2000).
Nabil et al. (2015) evaluated various approaches to simulate the approximate
behaviour of red meat (Nabil et al., 2015). Updated versions of the mass-spring
model (MSM) and tensor mass model (TMM) proved effective in representing
realistic tissue motion and interactions with cutting tools while optimising
computational efficiency (Han et al., 2020; Nabil et al., 2015). These models
facilitated simulations of muscle separation between the round and shank, employing
different approaches for cutting (Figure 9 (a)).

Additionally, a visual-based algorithm was developed to trace the
aponeurosis's trajectory by analysing the path's curvature features. An experimental
setup was developed to test these strategies, featuring a robot that pulls on one side
of the meat to widen the cutting path, a technique derived from manual deboning that
reduces cutting force by stretching connective tissues (Figure 9 (b)) (Long et al.,
2014b). Despite advancements, the robots still faced unexpected resistive forces,
which impeded complete cuts. Integrating a force controller has helped detect and
mitigate these forces, although this system has only been validated on foam, with

further meat-cutting trials planned (Long et al., 2014a).
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Pulling robot

Vision System

(b)
Figure 9:a) Beef round simulation (Nabil et al., 2015), b)Experimental rig for beef
round muscles separation (Long et al., 2014a)

Similarly, Xie et al. developed a system that incorporated vision as a
primary perception technique assisted by tactile perception for lamb hindquarter
deboning. The system employed a Multi-scale Dual Attention U-Net (MDAU-Net) for
the image-based segmentation of sheep carcasses, enhancing semantic
segmentation accuracy critical for precise robotic cutting (Xie et al., 2021). This
system also incorporates a hybrid control strategy that utilises both force and
position feedback to prevent collisions with the hip bone during the cutting process.
Figure 10 illustrates the cutting path generated from visual segmentation, which is to

be followed with the aid of tactile perception.
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Figure 10: Cutting path around the hip bone using visual segmentation

Liu et al. (2024) developed a method that advances robotic tactile perception
and control for soft tissue cutting tasks (Liu et al., 2024). Their approach utilises
Dynamic Movement Primitives (DMPs) as a high-level behaviour generator to create
flexible motion trajectories that mimic human operators. This is assessed by Inverse
Velocity Admittance Control (IVAC), a low-level control scheme that accurately
translates desired cutting paths into actual robot joint movements. Force sensor is
embedded in the cutting tool, providing real-time force feedback for admittance
control and tactile perception. The system's data acquisition involves capturing
cutting movements and force data from multiple demonstrations, which are then
encoded into a low-dimensional latent space using Principal Component Analysis
(PCA) and Gaussian Mixture Models (GMM) for effective pattern recognition and
behaviour prediction. Gaussian Mixture Regression (GMR) is employed to learn from
this data, generating target behaviour trajectories for the robot. During operations,
the robot dynamically adjusts its actions based on this learned model and real-time
force feedback, ensuring precision and adaptability to variations in tissue structure.
This method significantly enhances the robot’s ability to perform complex cutting
tasks with human-like finesse. Figure 11 displays various scenarios from the
experimental work on hindquarter deboning, with the trajectories indicated.
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(a) scc;nario 1 (b) scenario 2 (c) scenario 3:
Figure 11: Different cutting scenarios generated for hindquarter deboning using
machine learning (Liu et al., 2024)
Maithani et al. proposed a pHRI (Physical Human-Robot Interaction)-
based assistive strategy for an industrial meat cutting system (Maithani et al., 2021).
This system combines the complex perception and judgment of a human operator
with real-time force feedback and advanced machine learning, utilising RNN-LSTM
networks to dynamically adjust assistive forces during meat cutting operations.
Impedance control, paired with force and torque sensors, ensures optimal alignment
and effectiveness of the cutting tool, despite the variable nature of meat. This
approach enhances both performance and ergonomic safety by leveraging tactile
data for real-time control and by anticipating future actions. Figure 12 displays the
system and the outcome of the approach applied to cutting foam, including a graph
that plots the cutting forces exerted by a user with and without the intent prediction
module. When the module is activated, the user applies only 20 percent of the force
compared to when it is deactivated.

25 ———with intent prediction module AL et AL g
| ——without intent prediction module ) ety

20

Force (ﬁ)

Time (s)
Figure 12: The cutting system and the results comparison between the forces
required for cutting when the prediction module is on and off (Maithani et al., 2021)
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2.2.2.2. Tactile perception in other applications:

In natural environments, relying solely on raw sensor values is unreliable.
Instead, it is more effective to identify persistent trends in the form of transient
sensory data and use these unique patterns to discriminate between conditions and
materials. This approach has been successfully applied in both culinary
environments and surgical theatres, which share similar challenges in handling
cutting tasks involving materials like red meat.

A study conducted by Kato et al. highlights this point through their exploration
of flexible materials such as tofu and agar, analysing how these substances deform
under pressure—either elastically or plastically (Kato et al., 2021). They utilised a
Time-Delay Neural Network (TDNN) model, which was specifically trained to extract
relevant features from force and position data collected by a robotic arm equipped
with a force sensor. An example of how data transients were labelled to discriminate
between the materials and their deformation states is illustrated in Figure 13 (a). The
TDNN proved adept at recognising and classifying the materials based on their
distinct deformation characteristics, effectively using the relationship between force
changes and position as a discriminator for the type of deformation and material. The
conditions investigated included both elastic and plastic deformations of tofu and
agar, as well as the robot's free unstressed movements.

Similarly, a study by Gemici and Saxena explored the use of haptic data to
map physical properties like hardness and adhesiveness in various food items,
employing both supervised learning and Dirichlet Processes for compact
representation of these properties (Figure 13 (b)) (Gemici & Saxena, 2014). This
haptic-based method informed robotic manipulation strategies, enabling precise and

context-aware actions necessary for complex meal preparation.
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Figure 13: a)Training the TDNN model by correlating the contact state of the different
materials (Kato et al., 2021), b) Features extraction of different food groups for
machine learning models (Gemici & Saxena, 2014)

Spagnoli et al. demonstrated the impact of blade inclination and friction on
resistance during cutting (Spagnoli et al., 2019). Their research provides theoretical
and practical insights relevant to applications from industrial food processing to
surgical procedures. Precise control over cutting forces, facilitated by strategies such
as altering the blade's contact area or orientation, can prevent damage to delicate
materials. The investigation presented the principle of oblique cutting as an example,
where angling the blade reduces resistance through a slice-push effect, a technique
where the blade is angled to effectively combine slicing and pushing motions.

Xiaogian Mu and Yan-Bin Jia used a similar approach to develop a method
that enhances robotic cutting systems by enabling robots to adapt by optimising knife
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trajectories based on real-time estimations of material properties (Mu & Jia, 2022).
Using a recursive least-squares algorithm, their system estimates critical material
properties, such as Poisson’s ratio, fracture toughness, and the coefficient of friction
from data collected via force and torque sensors attached to the knife. With these
parameters, the system can dynamically generate knife trajectories that optimise
cutting effectiveness. By setting an appropriate slice-push ratio the system can
significantly reduce the force required for cutting while improving the precision and
smoothness of the cuts. However, the current optimization method primarily uses
local, immediate sensor data to adjust trajectories, which may not provide the best
path for complex tasks. The authors suggest potential improvements, such as
employing advanced algorithms like Model Predictive Control, which would take
future conditions into account, and expanding the method to include knife rotations
for a more comprehensive cutting strategy.

The medical field has utilised force and torque sensors to develop real-
time informative sensing techniques with micro-level accuracy. The technology is
very effective in minimally invasive surgeries (MIS); given the surgeon’s perception
and dexterity limitation, the operation becomes significantly challenging (Bandari et
al., 2019). Adding haptic technology helps improve surgery results by increasing
tools' precision and stability (Moreira et al., 2014). A few minimally invasive surgeries
utilise such technology to provide precise control during operations and reduce any
potential tissue damage or injuries.

Needle insertion in surgeries is an application that benefits from force
feedback. Force can provide valuable information regarding the depth and trajectory
of the needle, discriminate between the tissues, and provide control feedback to
minimise tissue deformation and needle deflection (Abolhassani, Patel, & Ayazi,
2007). Cheng et al. created a finite element simulation based on experimental results
of a needle inserted in a homogenous phantom with different velocities (Cheng et al.,
2015). The phantom represented the muscle tissue and was used to provide more
consistent results for testing purposes. The experiment aimed to interpret the
resultant forces on the needle tip. The force analysis was based on a previous study
by Okamura et al. that identifies the total force acting on a needle, including cutting
force to penetrate the first tissue, stiffness force from deformation, and friction force
(Okamura et al., 2004). Cheng et al. improved this theoretical framework by
considering the effect of tissue viscosity.
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The experiment results showed the relation between the total force with
needle depth and material viscosity at different velocities. A consistent force increase
was presented the deeper the needle penetrates the sample, and the force required
increases with the velocity. Since the needle bevel is very sharp, the force to fracture
the phantom is too small, and the resultant forces are due to viscosity and friction
that increase with needle velocity and depth.

The epidural procedure is another medical application that has benefited from
the correct interpretation of force. It involves the insertion of Tuohy needle to apply
anaesthetic in the epidural cavity. Brett et al. developed a mechanical simulator
based on tactile information derived from experiments for training purposes and a
handheld tool to feed the needle at a constant speed (Brett et al., 2000; Peter N Brett
et al., 1997; Cotin et al., 2000). The experiments correlated the force data relative to
the occurring actions and needle position in the different tissues. There are three
main mediums initial membrane (skin), fatty tissue, ligament tissues (supraspinous
ligament, interspinous ligament), and finally, the ligament cavity interface
(ligamentum flavum) before entering the epidural cavity.

Two experimental tools were developed for tests (Brett et al., 2000). An
automated needle tool equipped with a strain gauge force sensor and pressure
transducer to measure feed force and pressure inside the laboratory. A needle and
syringe equipped with a piezoresistive sensor to measure fluid pressure for
experiments performed outside the laboratory.

The needles were inserted with different velocities. Similar results were
obtained with minor differences between the two tools. Throughout all the results,
similar transients and trends were observed that were averaged and summed up in
Figure 14.
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Figure 14: The unique force transients during the epidural procedure (Peter N Brett et
al., 1997)

Two high peaks of accumulated resistive force define the responses of elastic
and viscoelastic behaviour prior to the penetration of the skin membrane and the
ligaments before the epidural cavity (regions a and d). Region b shows a steadier
force profile due to the friction between the needle shaft and the surrounding skin
tissue. Finally, in region c, the fatty tissue that has the behaviour of viscous fluid
applying a slightly increasing resistive force proportional to the length of the needle
within it.

Utilising a similar approach, Brett et al. developed one of the few successful
examples of adapting tactile technology into tissue-guided surgical robotics
represented in handheld cobot drills for cochleostomy surgical procedures (Brett et
al., 2007). The drilling system assists the surgeons in drilling through the cochlea
bone without penetrating the membrane behind it. The control system is required to
accurately detect the drill bit's position relative to bone tissue interfaces and account
for the compliant behaviour of the bone. The drill is guided by force and torque
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feedback from the drill bit. The proper interpretation of the transient signatures of

force and torque provides information to anticipate conditions on the cutting path and

to locate with precision the burr of the drill relative to tissue interfaces. The method
divided the trajectory of the drill into four main events to discriminate and control
critical stages in the process.

Figure 15 shows how the force and torque vary with tissue depth throughout
the drilling process.
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Figure 15: Force transients during the drilling process (Taylor, 2008)

2.2.3. Conclusion

The chapter highlights the potential and possibilities of tactile sensing
technology in robotics, particularly in applications with similar characteristics as red
meat cutting. The reviewed methods of implementing tactile sensing include using it
as the primary perception method, integrating it into hybrid systems combined with
vision, simulation models, or machine learning. Among these innovative techniques,
the most promising ones utilise tactile perception in a manner similar to human
sensory processing, focusing not on the numerical values of the tactile data but on
discriminating between different mediums and conditions.

The potential of tactile-sensing technology can be identified from use in
reviewed applications where there are distinct parallels in medium characteristics
with red meat. The reported method for discriminating natural deformable materials
and their characteristics offers possibilities for cutting red meat. Similarly, guiding a
knife through red meat tissues to perform a cut requires developing a technique that
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can discriminate between the unique features of the cutting mediums and react to
the prominent conditions in real-time through a fundamental understanding of critical
process events and identify methods to detect them. The learnings from the
reviewed applications emphasise the importance of the reactive transients in tactile
feedback as an identification tool for the detectable materialistic features and states
of red meat tissues.

A robotic system capable of producing a successful product can be envisaged
to perceive and interpret data correctly from the workpiece, apply corrective
strategies if needed and execute cutting actions in real-time. In reviewing the
attempts to develop and implement robotic systems in red meat processing, it is
evident that the known successful attempts of red meat cutting are to perform simple
straight-line cuts that do not require adaptability. Other trials to follow more complex
cutting profiles using tactile perception proved the need to step back and start from
the basics to understand the data perceived and how it can indicate the changing
structure and behaviour of red meat in simpler cuts.

The next chapter outlines the methodology used to study tactile perception in
red meat cutting. It covers the experiment's structure, the various cutting variables
and how they are addressed, the experimental equipment, and the cutting model.
This model explains the forces exerted on the knife during cutting and how these
forces are distributed.
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CHAPTER 3: METHODOLOGY

This chapter details the methodology and experimental design used to
investigate tactile perception in robotic red meat cutting. The systematic review in
Chapter 2 highlights the shortcomings of conventional sensing techniques in guiding
robotic cutting of red meat and identifies a significant gap in our understanding of the
role of tactile perception in this area. It also shows the absence of thorough studies
that provide detailed information and results on the challenges encountered when
robots process red meat using tactile perception. This gap in research prompted the
development of the experimental approach of this study, designed to advance our
fundamental understanding of tactile perception in robotic red meat cutting.

3.1. Experiments structure

The primary objective of this study is to establish a novel, fundamental
understanding of how tactile perception can be utilised to guide a robotic red meat
cutting. The experiments conducted are aimed at answering 5 main research
guestions:

Question 1: What consistent mechanical features in red meat tissues can be reliably
detected using tactile perception?

Question 2: How feasible and precise is tactile perception in identifying red meat
tissue features and behaviour during cutting?

Question 3: What are the persistent unique transients in the tactile data that
discriminate tissues and their interfaces?

Question 4: How can the unique force transients related to the mechanical features
of red meat be interpreted to identify key cutting events?

Question 5: Can tactile perception-based techniques inform a control strategy to
guide a cutting knife toward an automated cutting system?

The experiments were structured to progressively explore robotic meat cutting
throughout the study. Initially, the variables involved in the cutting process were
simplified for basic fundamental research. As the research progressed, the gained
knowledge facilitated a systematic addition of complexity to the experiments. This
incremental strategy was essential for managing the inherent uncertainties and
challenges of robotic meat manipulation. Such a phased approach ensures that each
layer of added complexity is well-informed by the insights gained in the preceding
stages, thereby enhancing the robustness and relevance of the findings. The
following list will present the sequence and structure of the experiments in the thesis.
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3.1.1. Experiment 1: tactile sensing for tissue discrimination in robotic meat
cutting: a feasibility study (Section 4.1)

The experiment investigates the feasibility and accuracy of tactile perception
in discriminating between red meat tissues and identifying specific cutting events
under controlled conditions in a defined observational setup.

Procedure:

Simple straight-line cuts were performed across various tissues and interfaces
to observe the tactile data response. The setup aimed to investigate cutting actions
and phenomena during straight-line cuts that travel through fat tissue, muscle tissue,
and their interfaces in one motion.

A total of 18 cutting tests were conducted using two striploin chop pieces, split
across four sides. In half of the tests, the cutting began from the muscle side towards
the fat layer, and in the remaining half, it started from the fat layer towards the
muscle. The knife was positioned vertically to the test sample surface, aligned with
the cutting path, and operated at a fixed feed velocity of 20 mm/sec for better control.
The cut depth was approximately 20 mm, measured by moving the knife downward
from the upper surface of the sample. The sample temperature was maintained at
approximately 9°C to simulate abattoir conditions. Figure 16 presents the cutting
trajectories, and Table 3 lists the experiment's variables.

Muscles to Fat |

Cutting Path 2

Figure 16: Cutting trajectories of experiment 1
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Table 3: Experiment 1 variables

Type of cut Striploin steaks

Total number of cuts performed 18 cuts

Cutting Tissues Fat layer and muscles
Cutting Speed 20 mm/Sec

Sample Temperature =9°C

Cutting depth =20 mm.

Data analysis:

The force transients captured in the tactile data are processed and analysed
to correlate with the location of the knife within the sample. Cross-correlation
analysis of the data was undertaken to identify patterns and similarities in the force
profiles across different tissues. This analysis aimed to interpret how these distinct
force transients represent various cutting events and to evaluate their consistency
when identical cuts were made on the same tissue arrangements. The extracted
data focused on the force component in the X-axis, which corresponds to the
direction of the cut affecting the tip of the knife.

3.1.2. Experiment 2: sensitivity of cutting force transients to the depth of cut
(Section 1 of Chapter 4)

The experiment explores how variations in cutting depth affect the ability to
discriminate unique force transients related to tissues, their interfaces, and overall
product behaviour. It follows Experiment 1 to address challenges in maintaining
consistent cutting depths due to the non-uniform characteristics of the meat.
Procedure:

Following a similar approach as in Experiment 1, the robot performed linear
cuts on striploin chops at three different depths: 10 mm, 20 mm, and 30 mm. The
depths were measured from the upper surface of the test sample by moving the knife
downward in the Z direction (Figure 17). Each depth was tested twice, totalling six
trials. The cuts were made across fat tissue, muscle tissue, and their interfaces. The
cutting velocity was fixed at 20 mm/sec, and the sample temperature was

approximately 9°C during the experiments. This method allowed for a systematic
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exploration of how varying cutting depths affect the cutting force and tissue
interaction, considering the inherent properties of meat tissues such as stiffness and

deformation.

Cutting direction

Fat layer Meat

Figure 17: Experiment 2 cutting paths at different depths measured from the
upper surface of the test samples

Table 4: Experiment 2 variables

Type of cut Striploin steaks

Total number of cuts performed 6 cuts

Cutting Tissues Fat layer and muscles
Cutting Speed 20 mm/Sec

Sample Temperature =9°C

Cutting depth =10, 20 & 30 mm.

Data analysis:

The analysis concentrated on comparing the force transients for similar tissue
arrangements at different depths. Cross-correlation analysis and visual observations
were used to assess the impact of depth on the force data and identify the unique
force transients related to different tissue features.

3.1.3. Experiment 3: robotic fat trimming: characterisation of red meat tissue
structure using tactile perception (Sections 5.1 & 5.2)
Aim:
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This experiment adds the lateral force on the side of the knife as another
source of tactile data that, combined with the forces on the tip of the knife, gives
more details about the tissue structure and behaviour around the knife. The study
aims to use tactile sensory data transients along two orthogonal axes on the knife to
characterize the force transients of a robotic knife while trimming fat from striploin
steaks relative to the fat/lean interface, focusing on how these forces vary at critical
cutting events while trimming, such as leaving the fat layer or approaching tissue
interfaces, and the ability to guide the knife based on these variations.

Procedure:

The study conducted a total of 17 straight-line cuts over the sides of six
different pieces of striploin steaks test samples in the fat layer with different angles
and distances relative to the fat/lean interface to mimic different cutting movements
in the trimming of striploin steaks. Figure 18 shows a representation of the cutting
paths in the experiment. Out of those cuts, 8 were directed away from the fat/lean
interface towards the outer edge of the fat layer, and 9 interacted with the fat/lean
interface and the surrounding natural path between the fat layer. The cutting velocity
was fixed at 20 mm/sec, and the sample temperature was approximately 9°C during
the experiments.

Figure 18: A representation of the cutting trajectories in experiment 3

50



Table 5: Experiment 3 variables

Type of cut Striploin steaks
Total number of cuts performed 17 cuts
Cutting Tissues Fat layer with different angles and

distances from the fat/lean interface

Cutting Speed 20 mm/Sec
Sample Temperature =9°C
Cutting depth =20 mm.

Data analysis:

The analysis focused on the interpretation of the unique force transients of Fx
(forces on the tip of the knife) and Fy (lateral forces) within the context of the
occurring cutting event. The analysis included visual observations of the trends in the
data patterns, applying different types of correlation analysis between the forces and
observing the rate of change of the lateral force as a way to inform the effective
direction of the forces on the sides of the knife.

3.2. Addressing key variables related to robotic meat cutting

The primary challenges of integrating robotics into the red meat industry, as
explained in Chapter 2, revolve around the variability in carcass structure and the
unpredictable behaviour of red meat tissues. This unpredictability is observed both in
stationary states, affected by factors such as temperature and gravity, and in
response to external forces applied during handling and cutting. The distinctive
characteristics and properties of red meat carcasses require specialised
manipulation techniques, adapted to the shape and features of the desired cut.
Additionally, a specialised cutting tool is required to access the target seams for
effective cutting.

This research explores an approach leveraging tactile temporal sensory data
to discriminate meat tissues and tissue interfaces in real-time. The strategy
correlates unique force transients in the force data with materialistic features of the
carcass and key cutting events of the task. Within the context of this scope, the
variables involved in red meat cutting were addressed as follows:

Inconsistent presentation of each workpiece:

1- The dimensions of the input products are challenging to determine

accurately.
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2- The size of each workpiece can change drastically.

3- The structure of each workpiece is non-uniform.

4- Tissue distribution and tissue interface placement can vary between

carcases, which changes the location of the cutting path.

The first three factors significantly impact the optimal manipulation technique,
including how the carcass is held and interfaced with the knife, and the selection of
the appropriate cutting tool to reach and follow the intended cutting trajectory. These
challenges, identified in the literature review chapter, are acknowledged as research
gaps in the implementation of robotics in the red meat industry and warrant further
investigation. These factors were addressed and simplified in this study by selecting
striploin steaks as the test samples.

The striploin steak, a simple yet high-value product, is produced by sectioning
the striploin primary cut from the beef carcass. The striploin is estimated to be worth
approximately 15% of the carcass value. The dimensions and weight of the striploin
primary and an average of the striploin steak dimensions are presented in Figure 19
and Table 6 (Border et al., 2019; Khodabandehloo, 2018; Standard, 2015).

With its well-defined tissue interfaces, the striploin steak serves as an
appropriate model for evaluating the precision and efficacy of robotic cutting
techniques. Its relatively uniform thickness and predictable structure allow for
controlled experimental conditions, while still capturing the typical variations found in
red meat. In this study, the manipulation technique involved a simple fixation of the
carcass in front of the cutting tool, which was a deboning knife. This choice was
made because the non-powered deboning knife is the most commonly used tool for
slicing and helps reduce some of the complexities that might arise if an electrically
powered tool were used, as such tools could influence the force data. This approach
ensures a consistent and representative environment for testing tactile perception in
robotic meat cutting.

The fourth factor is one of this study's points of focus: exploring the capability
and sensitivity of tactile perception to discriminate different tissues and their

interfaces and to locate the cutting tool relative to these features.
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Hindquarter

Figure 19: Primary unprocessed striploin product and measurements of a
striploin chop
Table 6: Measurements of a striploin cut (Khodabandehloo, 2018)

Maximum Minimum

Length 605 mm. 450 mm.

Width 245 mm. 200 mm.
Height 125 mm. 90 mm.
Weight 13 Kg. 5.4 Kg.

Unpredictable tissue behaviour and responses
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1- Meat relaxation with time due to the variation in gravitational force vectors,
inertial forces, and the changes in the ambient temperature.

2- Transient deformations are induced by cutting tool forces during the
cutting process affected by the speed of cutting, the sharpness of the
cutting tool and the depth of the cutting tool in the tissues.

To address the first factor, the temperature of the test samples was
maintained at 9°C throughout the experiment, mirroring the temperature conditions
of deboning rooms in abattoirs. Test samples were stored in a sealed container in
the refrigerator and were only removed immediately before experimentation. This
approach helped mitigate meat relaxation, as meat becomes more malleable with
temperature increases. The impact of gravitational forces is more pronounced on
hanging carcasses and larger cuts. In this study, striploin steaks were placed on a
flat surface at all times, including during experiments, to minimise the influence of
gravitational forces.

The second factor is central to the scope of this research, focusing on
observing tissue deformation at various cutting stages. Deformation serves as a
direct indicator of tissue rigidity and provides a robust indication of the knife's
location during different cutting phases. Influential factors such as the speed of the
knife were kept constant at 20 mm/s. This speed was found to be appropriate to
prevent meat clamping around the knife. The depth of the knife inside the cut is
another factor that could not be controlled and is part of the research investigation.

To summarise the factors involved in the experiments, Table 7 illustrate these
factors and how they are addressed in the experiments.

Table 7: Addressing the cutting variables during the experiments

Dimension and - Striploin steaks are cut into portions with similar dimensions (Figure 19 &
Structure Table 6).

- Striploin steaks have a relatively consistent structure and tissue
arrangement.

- Striploin steaks have an almost two-dimensional tissue representation,
facilitating visual observations.

Handling and - A simple manipulation technique was used by securing the test sample
Manipulation against the knife with custom-made meat clamps and holding corners.
Temperature - Approximately 9°C to match the temperature of deboning rooms.

Speed - A speed of 20 m/sec was chosen for better control over the cutting process

and to prevent excessive deformability and meat clamping around the knife.
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Depth

- As mentioned in Section 3.1.2, titled “Experiment 2: Sensitivity of Cutting
Force Transients to the Depth of Cut,” the depth is investigated as a variable
in Chapter 4 at 10 mm, 20 mm, and 30 mm.

Cutting Tool - A slicing knife, typically used in meat slicing tasks, is recommended by
skilled butchers.
Sharpness - Three knives were used across the experiments; a different knife was used

for each experiment to ensure sharpness. Each knife performed approximately
11 cuts.

Cutting Angle
Relative to the
Sample Surface

- The knife is perpendicular to the meat's surface plane.

Cutting
Trajectories

- Straight line cuts relative to the sample features.

Mediums of Cuts

- Muscles and fat tissues.

3.3. Equipment

The testing equipment setup used in the experiments was designed for

flexibility, accommodating the needs of this research and adaptable for future studies

within the same field. Consequently, not all equipment is fully utilised at this stage.

The components used in the experiments include (Figure 20):

e ABB IRB 1200 manipulator with 6-axis movement capability.

e ABB 6-axis force sensor 165.

e Static deboning knife (see Appendix D for more details about its features and

specifications).

e Clamps and holding corners to secure the meat.

e Sony FDR-X3000 action cameras.
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Figure 20: Test rig setup

3.4. Experimental Procedure

3.4.1. Preparatory steps
Before starting the experiments, essential preparatory steps were undertaken.
These included load identification and calibration of the force sensor. Load
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identification was performed using an internal recorded program on the robot. The
task of this program is to identify the components mounted on the robot, which
include the force sensor, knife bracket, and knife. The identification process
calculated and recorded critical parameters such as weight, dimensions, inertia, and
the tool centre point of the attached knife. Based on the tool centre point, the
operational space of the knife, including its coordinates, was established. The robot’s
work object was adjusted to align the knife's movement orientation with the axes of
the force sensor. This alignment ensures that the cutting direction movement
corresponds to the Fx axis of the force sensor, while the perpendicular direction
aligns with the Fy axis, which measures the side forces on the knife. The force
sensor was calibrated to detect contact forces while filtering out the effects of
gravitational forces. See Appendix C for further details on the force calibration
process.
3.4.2. Cutting process setup

The robot was programmed to guide the knife along a predetermined path
perpendicular to the plane of the test sample. An internal timer was activated at the
start of the cutting process. After each experiment, the robot recorded the knife’s
coordinates, the timer readings from when the knife began to move, and the

corresponding force measurements, saving these as a .csv file.

3.4.3. Video documentation

The experimental procedure was documented using two Sony FDR-X3000
action cameras placed to capture the knife's position and the test sample's behaviour
during cutting.
3.4.4. Video and data synchronisation

To correlate the knife's position with force readings accurately, the timers of
the recorded videos were synchronised with the robot's internal timer. Videos of the
cutting process were edited to start precisely when the knife began to move, aligning
with the start of the robot's internal timer. This synchronization allowed timestamps in

the videos to be reliably correlated with the force data captured by the sensor.

3.4.5. Data analysis

The combined data from the force sensor and the video footage facilitated the
derivation of a force-time series during the cutting process. This data could be
correlated with the properties of the tissue and its reaction during cutting, providing
deeper insight into the mechanical interactions involved. After each experiment
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concluded, MATLAB was utilised to process the data and generate the
corresponding graphs.
3.5. Modelling of cutting forces in robotic meat cutting

This section describes a concept as a model to explain the cutting force
transients in the tactile sensory data taking place during specific yet crucial stages of
a straight-line cutting across different tissues. The approach draws inspiration from
similar models (Azar & Hayward, 2008; Hu et al., 2012; Khadem et al., 2016;
Okamura et al., 2004) of force descriptions applied to explain tissue fracturing within
clinical surgical applications where there are similar phenomena in cutting and
penetration processes.

Force, by definition, is a vector quantity that possesses both magnitude and
direction. In the context of cutting meat tissues, the total applied cutting force Frotal Iin
the X direction affecting the leading edge of the knife can be described as the sum of
compressive and frictional components (Khadem et al., 2016; Okamura et al., 2004).
The compressive force component Fcompressive IS the reaction to the cutting of tissues
(Figure 21). The frictional force Frriciion IS the reactive component to resistive forces,
attributed to the interaction with the tissue acting as shear on the sides of the knife.

The compressive reactive force component Fcompressive acting on the knife
during the slicing of meat tissues can be described as the sum of two further distinct
force components: the component required to initiate a crack at the surface such that
the blade enters the tissues (Fcuting) and the component reacting to elastic tissue
deformation (Fpeformation). The lateral force in the Y direction (Fy) on the side surfaces
of the knife is primarily due to the side pressure from tissue deformation.

Then

Fx = Frotal = Fcompressive + Frriction (2)

Where

FCompressive = FCutting + Fpeformation (2)
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Figure 21: Free body diagram represents the force components acting on the
knife blade

Since the tissues undergo elastic fracture, where they deform to a structural
limit before fracturing, the deformation around the crack is non-reversible or plastic.
The process is considered quasi-static, where the cutting speed is sufficiently slow
and maintains equilibrium. Energy conservation can be used to explain factors
affecting forces at different stages of cutting. Expressed as equation (3) (Azar &
Hayward, 2008; Hu et al., 2012),

Fdu+dU;= J,cdA+dA+ Pdu 3)
Where
Fdu is the work done by the knife cutting to an effective force F during a
displacement of du
U, is the strain energy stored in the membrane before any external forces are
applied. The tissues are considered at rest and dU; is zero;
Jic dA is the resistance to fracture the tissues J,¢ at a cutting surface area of dA4;

dA is the stored elastic energy in the tissues during deformation;
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P du is the work done by the friction force P to resist the knife movement during the
displacement d
As the knife penetrates the first layer of tissue (Figure 22), the blade causes
the tissue to deform from its steady state position. With increasing force from the
knife, the tissue continues to deform, reaching its structural limit when penetrated. At
this stage, there is negligible friction or resistance caused by tissue fracture, and the
response of the meat tissue relative to the knife position is entirely due to the release
of internal elastic energy stored in the tissues during deformation. Consequently,
equation (3) is adjusted accordingly:
Fdu = dA 4)
du

-
I

I
i

Fﬁl

Figure 22: First tissue interface penetration

The equation shows that the applied force causes elastic deformation of the
first tissue layer. It is known that for meat tissues, the force is related to displacement
by a non-linear function. The effect is elastic with temporal as a result of stress
relaxation. For purposes of describing the mechanisms, the linear behaviour is
assumed and described by Hooke's law (Mavko et al., 2020). The value of the elastic
modulus is determined by the stiffness of the tissue layer during the cutting
conditions, such as temperature, which affects the value of the required deforming
force. Figure 6 (a) in Chapter 4 shows the deformation difference between the
muscles and fat. In this area, the force transient shows an increasing trend until the
knife fully penetrates the first interface.

After the knife penetrates the surface of the first layer of tissue, the initial
crack propagates in the direction of cutting and equation (1) becomes

Fdu= J;cdA+ P du (5)
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This equation demonstrates that the work done is to slit the bonds between
meat tissues (fracture resistance) and overcome friction caused by the clamp
between the knife's sides and the surrounding fat tissues. The deformation around
the blade (dA) is negligible at this stage and can be disregarded. The force required
to propagate the crack and overcome the fracture resistance depends on factors
such as the crack's area (depth and width) and the local stiffness of the material. The
force levels in these areas remain more stable as long as the knife does not
encounter interfaces or air gaps. Figure 23 shows the case of cutting through meat

tissues after penetrating the first interface.

Fat
Knife cutting through fat layer

[ [ N FaniN D

Knife cutting through muscles k

Figure 23: Knife cutting through meat tissues

Following an interface also exhibits stable and low force levels, as the bonds
between the tissues are much weaker. These low force levels can be maintained
unless the knife crosses an interface and cuts through it (Figure 24). When the knife
is cutting towards the interface leading to the natural pathway between tissues, the
force required for cutting increases because of the interface or the gap between the
tissue layers at this region. Consequently, the deformation force must be added to
Equation 5, which then becomes:

Fdu = J;cdA+ P du+dA (5)
As mentioned earlier, in this case, the side forces are used to guide the knife to
follow this interface and to maintain stable and minimum force transients on the tip of
the knife.
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Figure 24: A representation of a knife attempting to follow an interface

The following chapter will examine the feasibility of using tactile sensing to
guide a knife. It will focus on discriminating key features in red meat tissues and
locating the knife's position relative to these features (Experiment 1).
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CHAPTER 4
4.1. PAPER 2 - TACTILE SENSING FOR TISSUE
DISCRIMINATION IN ROBOTIC MEAT CUTTING: A
FEASIBILITY STUDY

4.1.1. Introduction

This paper demonstrates the feasibility of a tactile sensing-based approach
for guiding a knife in cutting red meat tissues. The method utilises force data from a
sensor attached to a knife to discriminate between various red meat tissues and their
interfaces. The unique transients in the force data are identified and then correlated
with the knife’s cutting movements to precisely locate its position relative to meat
features. The cutting task is segmented into critical stages, informed by the
characteristics identified along the knife’s trajectory. As an initial step in validating
this technique, the study focuses on performing simple, straight-line cuts across
different tissues under controlled experimental conditions and within a well-defined
observable setup.
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This investigation explores an approach for tactile sensing to guide a knife attached to a robot to cut red meat.
During cutting, the discrimination of tissue types and the approach to tizus interfaces ia an important factor in
thiz variable, deforming medium. Using a force senzsor hed toa dard knife lled by a &-axis robotic
manipulator, cuts were performed to a depth of approximately 20 mm across striploin chops. Force patterns
showed significant similarity in cross-correlation analysia, with an 80-97% correlation coefficient The force

ed identifiable

sensor reading exhibi

that could be tracked to pinpoint critical stages of the cutting

proceaa, validating the potential of tactile sensing in meat proceszsing. The ingights gained will facilitate the

development of d

for mai the knife on the

P and

desired cutting path relative o tismue interfaces, adapting to the deformable nature of the meat in real-time.

1. Introduetion

The red meat proceszing industry iz a major contributor to the
Aunstralian economy. Locally, the industry iz responsible for employing
over 400,000 employee: directly and through aszociated busineszesz
(Meat & Livestock Australia, 2020; EY Building a Better World, 2017
Australia iz globally recognized as one of the leading exporters of
high-quality red meat produects (Meat & Livestock Australia, 20200,
MNonetheless, the industry grapples with hurdles in price-zensitive mar-
kets az Australia’s labour expenses rank among the highest compared to
other red meat exporting countries (Ruberg, 2021; Heilbron et al.,
2018). Furthermore, the hazardous work environment and the
exhausting tasks demand processors to allocate funds for work-related
health issues and potential injuries, which are very common in the in-
duztry (Purnell, 201 3). Swict hygiene standard: and procedures are alzo
indizpenzable to enzure that human-meat interaction doezn't compro-
mize food zafety by introducing bacteria or pathogens.

The incorporation of robotics in thiz sector has the potential to
addrezss these izsues, improving health and zafety conditions in abattoirs
while enhancing profitability without negatively impacting product
quality or inflating pricez. The successful integration of robotics in the
pork proceszing sector cthoweases the potential benefite the red meat

proceszing industry could reap, az the two zectors share similar opera-
tional aspects. For instance, the Danizh pig slaughter industry haz
recorded improvement= in work environment health and zafety, along
with increased production, without compromizing the quality of the
final product (Hinrichzen, 2010). While pig, cattle and sheep carcaszes
share structural similarities, the softer and more fluid properties of pig
tiszues make the conwventional precperative sensing techniques to guide
a blade along a pre-determined cutting path an applicable approach as
the tissnes deform less (Kauffman et al., 2001; Khodabandehloo, 2018)
This distinction was highlighted in a study by Fhodabandehloo et al.
(Ehedabandehloo, 2018), where attempts to employ the ALTD-450 pork
automatie trimmer on beef striploin proved unsuecessful. The red meat
tizzuez thowed more deformation rezponse and heavily variable far
thickness distribution acrosz the product, requiring the knife to
constantly adapt during cutting.

While the adoption of robotics in the deboning room iz envizioned az
a tranzformative measure for the industry, the unique characteristics of
red meat create intricate obstacles to automation. Recent reviews
thoroughly elucidate the engineering aspects and physical properties of
red meat that influence the application of robotics and automation
within the sector (Aly et al., 2023a; Romanov et al., 2022). Red meat,
being non-rigid and highly wariable in nature, presentz a set of
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challenges for automation. The input productz are characterized by
unknown, non-uniform structures, varying sizes, and randomly diserib-
uted tissues (Toldra and Leo, 2006). Additionally, carcaszes undergo
constant shape alterations owing to tissue relaxation over time (Choi
et al, 2013; Mabil et al_, 2015). The unpredictable response of tissues
during di embly when exposed to cutting forces add:z to the
complexity, as the products comprize fatz, muoscles, bones, and con-
nective tiszues, each contributing to diverse stiffness levels leading to a
broad spectrum of rheological parameters (Mabil et al | 2015). These
factors not only influence additional aspeets, such as carcass gripping
and the zelection of an appropriate cutting tool, but also highlight the
unreliability of pre-operation data and simulation models for guiding
the cutting blade. Instead, these challenges underzcore the necezzity for
real-time adjustments during the process.

The complex properties of red meat causes the absence of commer-
cially available robotic zystems specifically for beef cutting in the
deboning rooms (Aly et al., 2023a; Kim et al | 2023). While lamb cutting
lacks automation in abattoirs, a few successful applications have been
made possible due to the smaller carcass zize. Scott Automation has
developed the only available automated boning room for lamb cutting,
capable of producing primal cuts and portioning the forequarter and
middle partz of the lamb carcass (Scott Technology Limited). This sys-
tem reliez on zimple straight-line trajectoriez for the cutting blade,
guided by an X-ray vision system and 3D vision cameras to determine
the carcass’s unique features (Scott Technology o, 2022a, 2022b)
Initially, the deboning room was designed with a hindquarter proceszing
syztem guided by force senzing for a more intricate cutting path around
the lamb's aitch bone. Howewer, thiz system did not reach the market
due to itz inability to meet the yield requirements for the final product
[(Maunsell and Seott, 2018).

Purnell et al. (Purnell and Brown, 2004) made an attempt to trim
lamb chops using a system that harnessad the malleable properties of the
meat. The zystem rechaped the trimming path by exerting focused
pressure from the fat layer side to create a more uniform and predictable
trajectory. Another zystem focuszed on separating the main muscle
groups of a high-value cut in the cattle (beef round) (MNabil et al., 2015
It incorporated simulation attempts to anticipate the behaviour of the
cutting trajectory and the local muscle tizsuez arcund it while vision
cameras actively update the system with the current state of the work-
piece (Mabil et al., 2015; Long et al., 2014). Simultanecusly, a force
control attached to a pulling robot stretches the connective tissues be-
tween the muscles and opens the path in front of the cutting blade (*abil
et al., 2015). Also, a system was attempted for beef guartering, using
both wizion (structured light image) and tactile (force senszing) percep-
tions to separate hindquarter and forequarter (Guire et al., 2010). The
blade followed three ztraight cutting trajectories shaped az the letter £
guided by the rib cage and backbone profiles. To date, all the com-
mercial robotic systems in red meat and pork procezzing can only
perform the types of cuts with straight cutting paths that require mini-
mum to no real-time adaptability.

A zuceessful robotie system for red meat cutting can be envizioned to
mimic the techniques and =killz of a manual operator in the deboning
room. Thiz zystem should perceive and interpret essential product data,
respond adaptively to changes in cutting conditions, and perform the
most efficient cutz in real-time. Recent reviews aszsessed prevalent
sensing technologies in existing automation systems, including X-rays,
optical probesz, ultrazonic sensors, vizion cameras, and tactile senzing for
real-time perception during cutting, and identifled that optical probez
and tactile sensing are ideal candidate technologies for further experi-
mental research (Aly et al., 2023a; Mason et al., 2022)

The nature of cutting operationz performed in abattoirs rely heavily
on the physical interaction between the cutting tool and the careass
suggesting tactile zensing is a dominant perception modality in cutting.
It identifies properties and behawiour in responze, such az material
stiffmess and deflections (Luo et al | 2017). Valuable information can be
extracted from tactile feedback if signal data iz interpreted correctly
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(Dario et al,, 1958). Thiz claim iz supported by the obszervation and
analyziz of zkilled operators in the deboning rooms and their reliance on
touch senze to locate and guide the knife relative to surrounding tissues
and tizzue interfaces. However, implementing force control to follow a
complex cutting trajectory in a robotic system requirez an alternative
approach to force value alone. An alternative approach is needed in the
application to more fully interpret the feedback signal in real-time (A%v
et al., 2023b).

Thiz paper reportz on a fundamental study on the potential appli-
cation of a tactile perception technigue able to guide cutting in red meat.
The study focuses on two primary objectives. Firstly, to demonsztrate the
practicality and sensitivity of tactile zignalz in identifying key features
during the cutting process. Second, to establizh correlation between the
features and distinctive force transients caprured using a force sensor.

The complexities involved in red meat cutting suggest a simplified
approach to determine the most rezponzive cutting strategy. Cutling
samplez were prepared to enable ‘2D cutting' with consistent tissue
prezentation and responsiveness across the specimen  Constraining the
cuts to 2D provided an experimental advantage in known tizsue features
within the medium and quantifiable, observable meat responsze. Alzo, a
zingle-axis force vector zenzor was enough to determine the reactive

While the experiment does not replicate real-market cuts, it serves to
explore the capability of tactile sensing to differentiate and characterize
wvarious features of red meat tizsue under controlled conditions. This
rezearch forms part of a broader investigation into interpreting the
tactile data to formulate judgement and strategy to execute required
tazks by cutting relative to meat tissnes and tizsue interfaces. The find-
ings from thiz study can contribute to the development of robotic zys-
tems capable of real-time anticipation and response to the specific
nature of red meat products and facilitate the automation of process
cutting operations.

The zcope of work encompaszes a strategy to apply tactile senzory
information that will augment automated machine real-time perception
in cutting processes within meat tizzues. Responding to deformation and
the prezence of critical structures and other phenomena are required ina
cutting strategy when processing high value beef cuts to the required
precizion.

1.1. Tactle senzing and medium discrimination

Tactile perception involve: obtaining force information through
physical interaction with the surrounding environment. The technology
goal iz to detect the mechanical properties and responzes of the oper-
ating mediums through force feedback (Luo et al., Z017). When inter-
acting with various objects, the foree transientz provided through these
encounters can offer insightful data if carefully obzerved and correctly
interpreted.

Similar to red meat processing, surgical medical procedures oceur in
deformable non-uniform mediums. Tactile-based assistive robotic
technologies hawe succeeded in the medical field, providing zurgeons
with critical information unperceivable by human zensez. Thiz adds a
degree of precizion and stability to the surgical instruments. The
‘perception techniques take advantage of unique cues from the tactile
zignal: to identify the cutting mediume and locate the position of the
cutting tool relative to the surrounding tizsue and tissue interfaces.

The epidural procedure iz an example that has benefited from tissue
dizcrimination wia tactile perception to reach the epidural eavity and
apply anaesthetic guided by foree feedback (Bretcetal, 1997). Fig. 1 (a)
shows the trajectory of the needle and the tizrnes encountered during
the procedure. The foree data was uzed to discriminate the tissues and
locate the depth of the needle relative to the interfacez. The trajectory
was divided into four areas represented by notable changes in forces
shown in Fig. 1(b). The elaztic and viscoelastic properties of the tissues
cauzed the deformation of the tizzues around the needle tip, increasing
the resistive forces before the needle successfully penetrates the first
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Fig. L. a) The needle path during the epidural procedure in grouped inte typea of tizsues needle encounters during each stage (Brect et al, 1997), b) The unique force

tranzients during each stage of the epidural procedure (Bretr =t 2l 15997).

interface of tissue or breaks through the last layer of tissue (regions a &
d). Region b shows a more steady profile of force: while the tizzues
around the needle relax, with the friction between the needle and the
tizzuesz being the dominant force. The fatty tizsues in region c show a
moderate build-up in the resistive forces proportional to the needle
length due to its viseous fluid properties. It ean be obszerved that the
dominant trends in the force profile explain the needle actions. The
absolute values of the foree waried between euts, but the trends consiz-
tently showed the zeparate stages of the insertion.

The experiment in thiz paper explorez a similar interpretation
approach of tactile sensing, identifying the unique force transients and
the sensitivity of forces corresponding with certain conditions or pa-
rameters while cutting acrosz various tizznesz and tizsue interfaces of red
meat. The identifiable trends of forces could aid in the dizcrimination
and prediction of featurez within the time-zeries zensory data, estab-
lishing a comrelation with surrounding meat mediums and conditions.

The interpretation of the force data iz based on knowledge of the
anatomical strocture of the test sample. As any red meat carcass pri-
marily conszistz of bones, fatz, muscles, and connective tissue, all cuts
from a carcass can be divided into four groups conceming the medioms
involved. These include muscle separation, deboning, trimming, and
joint zeparation. The analyziz of profesrional operators cutting showed
that any cutting procesz could be divided into stagesz based om two
consistent cutting actions performed acrozs any task.

1) Interface penetration: this includes penetrating the first interface at
the start of a cut, breaking through the last layer of tiszue indicating
the end of a cut and cotting through the connective tizsue that zep-
arates any two mediume. Theze interfaces mark the tranzition of the
blade from one medium to another.

2} Interface followlng: cutting through a medium with similar me-
chamical characteristics relative to an interface. Thiz could be
following the interfare line between two medinms to zeparate them
or to cut through a medium parallel to an interface line.

In the experiment, the author first establizhed the cutting trajectory
and monitored the different tizzues and interfacez encountered by the
knife. Then, the cut was divided into stages where the knife performed
one of the above mentioned actions. Finally, the tactile feedback rep-
resented by force applied on the blade in the direction of the cut was
examined for features and events that were correlated with sensory data
transients.
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2., Methodology

2.1. Egquipment

The testing setup was constructed to perform the cuts uzing an ABB
IRB 1200 manipulator with G-axiz movement capability mounted on a
moveable cabinet. An adjustable table was attached to the front of the
cabinet to hold meat samples. Two 90° stainlezs steel corners were fixed
to the table using G-clamp to hold the test sample against the blade. The
rig was dewveloped to be food-grade and IP67-rated to ensure that all
components were dustproof and waterproof to be regularly cleaned. The
setup of the rig iz illustrated in Fig. 2.

The experimental procedure waz documented through Sony FDR-
X3000 action cameras, with two devices strategically set at distinet
angles. Thiz arrangement aimed to capture a comprehenzive vizual re-
cord of the knife's position and the behavicural responze of the test
zample during the cutting process.

A knife blade was stripped of itz handle and secured to a customized
‘bracket. The bracket was attached to a 6-axiz ABB force senzor 165, and
both were attached to the robot arm manipulator. Thiz sensor haz a
maximum threshold of 165 N in both the X and ¥ axes, and 495 N in the
Z direction (ABE, 2015).

The force zenzor integrated into thiz setup reliez on the principles of
strain gauge technology, a commaonly adopted approach in robotic sya-
tems. Ezzentially, a strain gauge force senzor operates by detecting the
deformation or strain of a material as force iz exerted upon it Thiz
deformation subzequently alters the electrical rezistance of the material,
a change that can be measured and used to calenlate the applied foree.
Multiple strain gauge rezistors are deployed in tandem to detect forces
applied across different axes.

The combination of data captured by the sensor and the video
footage from the camera enabled the derivation of a force-time series
during the execution of the cutting process. Thiz data can be correlaved
with the properties of the tissue and the reaction during cutting, offering
deeper inzight into the mechanics encountered.

22 Test sample preparation amnd structure

A piace of meat prepared from Striploin beef primary cut will be uzed
as the test zample for the experiment. A typical beef striploin product
contain: two mediums, muscles covered with layerz of fatz and con-
nective tizsues between them (UNECE, 2004). The Striploin primary



BA Alyetal

ABB IRB 1200
6-axis
manipulator

Adjustable table

Journal of Food Engineering 363 (2024) 111754

Fig. 2. Test rig setup.

piece is divided into smaller slices that are easier to manipulate. Fig. 3(a)

2.3. Experiment procedures

shows the original product provided by an ir and a test pl

prepared from it The fat medium (sub fat) is d in Prior to the exp crucial prep Yy steps were executed,
layers on the top of muscle tissues, with air gapsin b The ! luding load identification and force sensor calibration. The load
medium consists of groups of muscles separated by a sheath of inter- identification was ied out by ing an i 1 load identifica-

muscular fats. Each muscle is broken down into smaller bundles of
muscle fibres (meat gram) enveloped in connective tissue made of

tion routine program via the robot. This routine was programmed to
identify the items mounted on the robot’s end effector encompassing the
force sensor, knife bracket, and knife. The identification process

11 called Perimy with i lar fats ‘“‘intbem
(see F:g 3(b)) (Megias et al). 8. 1 p was d at
9 °C, to imi the 1 conditions in an

ahattoxr The test sample was preserved, kept wrapped in the laboratory
fridge, and removed when the experiment preparations were ready.
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puted and stored pertinent parameters, including the weight, di-
mensions, inertia, and tool centre point of the attached knife. The force
sensor was calibrated to focus solely on d i forces, thereby
ehmmznngmﬂuenceﬁvmmvnzuonalfommkmfemononm
constrained to axial feed, and the reactive forces in the X-axis direction
are the significant component on the knife blade in the direction of
movement.

The robot was programmed to guide the knife along a pre-
d ined cutting path perpendicular to the test le plane, with
an internal timer set into motion at the onset of the cutting process. After
each experimental iteration, the robot stored the knife coordinates, the
timer readings from when the knife initiated movement and their cor-
responding force readings. The knife took approxi ly 9sto )!
amatm&ommsnmgpoanon,durmgwmchfmumadmssm

gathered at a frequency of 1333.3 per d, i 1g app

12,000 readings.

The setup shown in Fig. 4 was designed to i igate the i
actions and the iated ph while p i axnnple

mghthnecutﬂmmghthedlﬂermtnsmesofredmatmﬂmamp
‘was determining the cutting path on the workpiece and identifying the
tissue’s features along that path. After that, the knife was positioned
wvertically to the surface of the test le and aligned with the i
path,madympufomtbecuLmﬁeedulocnyonheknﬁeukeptlow
and fixed at 20 mm/s to have better 1 over the beh of the
sample. The depth of the cut was ch to be appr 20 mm
from the upper surface. Cutting any deeper showed meat compression
around the knife that saturated the force sensor as oscillating the knife
‘was not part of the experiment. On the other hand, shallower depth than
20 mm could potentially cause the knife to miss part of the cut (espe-
cially the muscles) where the tissues are likely to relax.
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Fig. 4. Experiment setup.

Despite efforts to maintain a depth throughout the cut, it
should be noted that cutting through muscles always resulted in a
lightly sh depth d to the fat layer. This discrepancy
arises from meat deformation and relaxation over time, affecting knife
penetration depth.

In order to align the knife's location in the test sample with the force
readings, the timer of the recorded videos was synchronised with the
robot’s i 1 timer. The cap d videos of the cutting process were
trimmed to commence precisely when the knife began to move, marking
the start of the robot's internal timer. As a result, the beginning of the
edited videos colnuded with the robot internal timer. This synchrom—
sation all i ps to be reli lated b ting
actions depicted in the videos with fome transient data output by the
force sensor.
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Istramuscular Fat
(Marbling)

Fig. 5. a) The main interface during the cut, b) Features of fat and muacles.

the p of and in the force
profiles g!nmted across different tissues. To ensure accurate compu-
tations, interpol was perfi d to align the length of the compared
data sets. This analysis offered a means to quantify the level of similarity
betwemvammsenofumemsdmﬁeuw—comhnoncoem

cient obtained from the 1 lysis is b 1and-1.

3. Results and observations The value of the ber indi the th and di of the

relanonshnpbetweenmodata sets. Acone]zuon coefficient closer to 1

This section outlines the findings and the obser indi a strong p cor that as values in one
obtained from the experiment. E: 1 cuts were cond dwitha data set increase, values in the other data set also tend to increase.

specific purpose - to observe and identify the unique rranxlenu in the
tactile feedback, which can be utilised to discri

Cro lation coeffl
made in the same direction are presented in Table 1 & Table 2. Bach

between force value datasets for cuts

mediums and events, and preemptively adapt to them. y, desp table ek shows the ber of the ion coefficients
the heterogeneity found within red meat i inh b the cuts in the main row and column. For example, the cross-
mofmdmatexmwhmhmef&cuvelygmdeacumngm ion coefficient b: cut 1 and cut 2 is 0.96758. The results

The initial deflning feature is at tissue interfaces. These can be indi astrong 1 among all cuts in the same direction.

identified at the layers different di where the knife
penetrates to transition from one medium to the next. Depending on the
cutting direction, such transitions may be from air to muscle, muscle to
fat, or fat to air. These interfaces can be seen in Fig. 5 (a). Other sig-
mﬂcmfemm;temﬂlespeﬂﬂctypeofussnebemgcutmdm

h h istics. This is p d by i lar fats among
muscle groups and air gaps wmun the fat layer, as illustrated in Fig. 5
(b). Identifying these el ib to our und ding of the
lmife's i in relation to these The experiment tests the

'y and precision of tactile percep to distinguish these fea-
mmsandmmdxcatekmfeacnonandthetemebehawonrofthemn
in response to applied force at the cutting stages.

Cutting tests were di d 18 times, divided b the four
sides of two pieces of striploin chops. The direction of 9 of these tests
were executed starting from the muscles side towards the fat layer and
the remaining tests were performed in the oppogsite direction from the
fat layer side the The robot d the forces, rela-
tive displacement, and time data in.csv format. MATLAB was employed
for processing this data.

A 1aii 1

is of the colk 1 data was performed to

Y
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Even the lowest coefficient, approximately 0.8, demonstrates a signifi-

cant degree of similarity between the data.
The effective forces in this experiment were explained in the high-
light of Khadem et al (2016) and Okamura et al. (2004) work due to the
bl in the i di similar to red meat. The reactive

fomonaneedkpemuanngnsmscanbedmbedasmesumof
conmbubory force P P fri and
defor force p The p ing force P is

present when the knife is penetrating an interface. The elastic properties
of the tissues result in deformation around the blade tip while pene-
trating an interface. The friction component acts tangentially along the
blade surface inside the test sample, and is attributed to coulomb fric-
tion, tissue adhesion and d ing (viscosity) effects. These resist motion
of the knife. The g force comp is d in slitting tis-
suuandmopenmgmecumngpathmresponnmthekmfedmplace—
ment. Thesethmeforcecomponemsmcombmed at any glvennme
during the cut and can be ied to di knife i with
tissue types and tissue interfaces.
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Table 1

Crose-correl coefficients L the forcen obtained from each data set for each cut with the direction from the meat side to fac.

Mt to Far
Cut 2 Cut & Cut 4 Cut 5 Cut & Cut 7 Cut 8 Cut9

Cae 1 Q96758 OTSE07 BTAI2 095543 QS7ATE 0.9292 09018 OBBEAZ
Cat 2 082781 wETIFI DO6E30 09a3a5 089625 90756 0BTI6
Cak 3 092947 OETARE 0.80977 0.9073% 0.95104 090631
Cak 4 DA 0.87853 086038 0.93733 0.93436
Cak 5 057381 0ea133 0.93399 0.94779
Cak & 085005 91285 [k 30
Cak ¥ 090434 0.aETE
Cor & 053562

Table 2

Crose-correl coefficients b the forces obtained from each data set for each cut with the direction from the far side to the musclea.

Pat to Mear
Cut 2 Cut & Cut 4 Cut 5 Cut & Cut 7 Cut 8 Cut9

Cae 1 3366 OLBGA03 B3I 093197 Q92625 091645 aBF1I7 0. BBE0G
Cat 2 OASTAE 91614 DOZTEE Q96912 094355 090528 093641
Cat 3 94338 093111 QA9622 091781 0.BBES] 089453
Cat 4 OETES2 QI6104 090626 OLBTAGE 030842
Cat 5 Q9626 054471 0LB9532 030633
Cat & 0.95463 0.9129 O S2646
Cae 7 09802 097544
Cak & 095348

3.1. Penetration of first interface

The robot initiates the cutting trajectory and the force readings are at
their no-load values before contacting the first tissue layer. Upon the
blade contact with the sample, whether from the muscle or the fat side,
force is applied to the tizzues comprezzing the meat sample againzst the
stainless-steel bracket before penetration. The meat tissue deforms
locally in the direction of the force. With increazing applied foree, the
tizguez deform around the blade. When the mechanical limit of the
contacting meat tiszue layer iz reached, the knife penetrates thiz tizzue
layer. The effective force of cutting through the first layer is the punc-
turing foree that indoces the limiting strain in tissue deformation. In
contrast, the cutting and friction forces are negligible.

When cutting through muscle tissue, significant deformation oceurs
in the vicinity of the blade. This deformation canses tissue dizplacement
of up to 50 mm, with an average dizplacement of 38 mm across all cuts,
before the knife reaches the maximum force required for penetration at
the first tizsue interface.

In contrast, fat tissue exhibits rigidity, leading to minimal deforma-
tion and fazter tiszue breakdown. The tiszue dizplacement obzerved in
thiz caze results from the pressure applied by the knife on the fat layer,
which cauzes the meat to be compressed between the fat layer and the
holding bracket, while the fat tissue itzelf undergoes minimal
deformation.

Fig. G (a) showcazes the deformation behaviour of muscles and fat
tizzues, highlighting their contrasting characteristics through wvizmal
examples from the experiment. Fig. 6 (b) plots illustrate the average
force pattern of penetrating the first interface acrozz all cutz for both
muszcle and fat seenarios. The force profiles display a pozitive gradient,
indicating an upward zlope, with the peak force walue indicating the
point at which tizzue breakdown occurs. Notably, when cutting through
muszcle tizzue, the force increasze iz zlower before reaching the point of
tizzue breakdown compared to the penetration of fat tizzue. Similarly,
the force profile demonstrates a similar behaviour when the knife pen-
efrates the intermediate interface between the fat and muscle tissues
during the transition from one tiszue to another.

3.1.1. Cutting through tizsues
After penetrating the first layer of tissue and the knife enters the
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zample (regardless of the medium), the force values are sustained at the
level needed for cutting the subsequent tissues. The effective forces
switched from the puncturing force caused by meat deformation to the
cutting and frictional forces. The dominant cutting force enables the
knife to slice through tissues, surpassing the friction induced by
clamping the sides of the knife and the surrounding tizzues. Any sudden
rise in the average foree lewel iz an indication of meat deformable
‘behaviour to rezist cutting through an intermediate interface or moving
‘between tizsne layers.

The two main tizsue types in the test zamples, muscle and fat, have
wvarying force profiles in rezponse to their internal mechanical proper-
ties, tissue characteristics and the direction of the cutting motion. Dif-
ferential stiffneszez are the most prominent feature that can be uzed to
discriminate between cutting through the two mediums Muscles are
more pliant and require less average force to cut. In some regions, thick
intramuscular fat requirez more force to cut through compared to the
surrounding lean muscle tissue. The inframuseular fat resizted the
blade's cutting movement, cauzing the zample to deform untl cutting
through. Thiz leads to a sudden increaze in force within the tiszoe due to
the added deformation component of force. Cutting through fatty tizzue
yields a higher average force across the layer with more pronounced and
steep fluctuations due to cracks and air gaps within the fatty tizsue.

Fig. 7 exhibits the average force profile throughout a complete cut-
ting run, encompassing all cuts while highlighting the two specific
cutting areas: through the muscles and the fat layer. The graph dem-
onstrates that az the knife cuts through lean museles the foree progresses
smoothly with minor oscillations. In contrast, cutting through the fat
layer iz represented as a zingle force spike ending with the knife exiting
the sample. Thiz behaviour iz attributed to the relatively small width of
the fat layer obeerved acrozz the majority of the zamples. Howewer, it iz
important to note that the width of the force reprezentation of the far
area can vary depending on the width of the fat layer, which will be
further illuztrated through an example later in thiz section.

Table 3 presents the recorded forces while cutting fat and muscle
tiszuez. It provides information on the maximum, minimum, and
average force values observed in each tissue. While the primary foeus of
this paper revolves around force changes rather than the specific force
values, the presented values offer insights into tissue structure and
stiffness under experimental conditions. On average, cutting through
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Fig. 6. 2) An example from two cuts to visually show the differences in the defc

behaviour b

the fat and the muscles, b) Average force profile and

tisue behaviour when penetrating the first tisoue interface of fat and muocles for all cuta.

muscles requires less force than cutting through fat tissues. The process
of cutting through the fat layer displays higher changes due to the
presence of air gaps. As the knife moves through these gaps, the sample
deforms ahead of the knmife at the ponding tissue interf;
resulting in a high spike in force.

3.1.2. Cutting examples
Fig. & shows a force profile of one of the cuts to provide valuable
insight into the cutting process. It demonstrates the cutting path, the
different stages undertaken by the knife, and the force profile generated
by the force sensor throughout the cut. The cutting trajectory is
d into the followi

1) Stage 1: This stage shows the penetration of the first interface and
the tissue’s deformation before the knife is entirely inside the test
sample. It starts when the knife touches the test sample and ends
when the blade is inside it.

2) Stage 2: In this stage, the knife cuts through the meat. The force
graph displays a ther progression, and the ab: of sudd:
force spikes during the cut suggests the muscles are lean with min-

penetrates the first interface and ends when the blade touches the
interface between the meat and the fat layer.

3) Stage 3: Rep the ition zone b the two primary
tissues, where the knife cuts through the interface b the
muscles and the fat. The force pattern exhibits a distinct shift be-
tween two levels of force readings. This stage starts when the blade

hes the i diate interface and ends when the blade is inside
the fat layer.

4) Stage 4: This stage signifies cutting through the fat tissue. The force
drop in the middle occurs due to the presence of a crack (air gap) in
the fat layer, leading the knife to exit and then re-enter the fat layer.
This stage starts when the blade is in the fat layer and ends when the
blade begins breaking through the last layer of fat tissue.

5) Stage 5: In the final stage, the knife breaks through the final tissue
interface before exiting the test specimen.

Force of Fig. 8 d the accuracy in timing be-
tween force sensor data transients and the observed internal dynamics of
the cutting process. [t shows the forces measured by the robot over time,
while the black dots represent the timing of each stage as observed in the

imal intramuscular fats. This stage starts when the blade
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video, d d in Table 4. Notably, there is a clear

ang
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Fig. 7. The average force profile of all the cuta that start from the muscles side.
Table 5
The maximum, minimum and average forcen while the knife iz cutting through the muecle and fat tizoues.
Cut Muscles Fat
Maximum Porce Minimum Force Avernge Force Maximum Foroe Minimum Porce: Awerage Foroe
1 13.2879 51322 TETG 186389 2403 128420
2 10.1457 3.6465 G567 A2 3090 11800 264718
3 26075 2111 5.0839 Sx1e0 &5 221572
4 14.6881 32740 65869 26,7857 B.3405 168765
5 B4 22938 38491 38724 $.9583 16.3505
& 6 1664 1.765% 33064 439371 114632 22 4884
7 S 2066 3.20445 49676 46.337 9.2046 236836
a 84619 1.9186 44853 313121 131382 189103
9 65716 laxlz 46965 329264 121866 167847
Total average B3N 2007 H

comrespondence between the observed tranzition pointz in the video,
indicating the knife's movement from one stage to another, and distinet
changes in the force profile.

Additionally, Fig. 9 and the accompanying Table 5 illustrate the
same stages. However, here the cut ztarts from the other side, moving
from the fat layer towards the muscles. This alternative perspective re-
inforces the consistency and reproduocibility of the observed stages and
their associated force profiles.

The rezult: from the tactile feedback demonstrate a high lewel of
precizion across all the test samplez. The force sensor suecezzfully cap-
tures the nuances of the cutting process, providing accurate and reliable
information about the internal dynamics of the tizssue. Theze findingz
underseore the efficacy and reliability of the tactile feedback system in
dizcerning different cutting stagez and their corresponding force
signatures.

The findingz of thiz zection show that tactile perception effectively
distinguishes berween tissues and cutting stages close to the blade dur-
ing a cutting procedure in experimental zettings. We further propose to
leverage the mechanical response of composite meat tizzue structures as
a predictive tool Thiz approach is crucial given the unpredictable and
dynamic nature of the mechanical properties of these structures.

Our next aim iz to develop a real-time control srategy that adjusts
the cutting trajectory based on the tizzue's location and responze. Thiz
strategy would employ the characteriztic features of the time-series data
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to align with crucial conditions. Thiz predictive model could indicate
when the knife iz approaching a tizzue interface, enabling application of
evazive manceuvres or oscillatory movements to facilitate cutting.

An effective vet straightforward approach, drawn from previous
observations, is to monitor force gradients over a certain period. A
perzistently increasing gradient might suggest that the knife is encoun-
tering more resistance than usual, indicative of the zample deforming as
the knife approaches an interface. Fig. 10 shows the force profile of ‘Cut
1' after being smoothed to reduce the noize in the data using a moving
average filter and the firse gradient plot (first derivative). The cutting
stages can be identified by obzerving key phenomena For instance,
during stage 2, the force gradient exhibits a smoother profile compared
to cutting through the fat layer, which iz characterized by sharp changes
in stage 4. Also, during stage 3, a notable increaze occurs when
approaching the intermediate interface. Theze unique transients could
be uzed to automatically identify the cutting stages.

4. Dizeussion

The rezults of thiz zertion show that tactile senzory information can
be interpreted to dizeriminate different approaching tizsues, interfaces
and other incluzions in close proximicy to the blade during a cutting
process. Thiz capability offers potential to cut meat relative to tizsue
interface position in real-time; an eszsential attribute when trimming
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Fig. B. The otages of cutting through the red meat tizswes otarting from the muocles gide.
ble envizaged to include a vision system to initially scan the product and
Tal 4 - - - - -
. N . ) establizh a eutting trajectory, while tactile perception ensurez adherence
The time interval of each cutting stage extracted from the cutting videoa. to this trajectory, adjusting the blade in real time to task-related cutting
Time: Catting. Cutting actica incidents. For instance, detecting the dewiation of the blade from the
peeomds) Eges cutting path and re-aligning the cutter to stay on track relative to tissue
147 ;o 3.49 Siage 1 Penetration of first interface positioning during the procedure. Blade deviation can be detectad by
i:gz:_}: s'“g‘: mm“‘:‘“‘ﬂ_ﬂ“m e hear el £ measuring the net lateral forces, as the deviation is a result of the tissue
) 8 mm% aee deformation pushing the blade away from the correct cutting path.
5.75 m 6.3 Seage 4 Cutting through the fat layer Fig. 11 shows an example of the effect of the far layer structure and the
629 1o 6.6 Stnge 5§ Breaking through the last layer of tissue and deformation of the tizsues on a knife trying to follow a predefined
leaving the sample straight cutting path. The effective direction of the forces on the sides of

Total time = 5135

meat products and in tissue zeparation operations. The next stage in the
research is to azzemble a machine responze with an appropriate change
in cutting motion for the detected state in the process and meat
workpiece.

Striploin trimming iz the task of focus to be characterized in the
highlight of tactile perception to perform the tazk by following the
cutting path relative to the fat/lean interface. The trimming syztem iz
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the knife (blue arrows) indicates the direction of the deviation. The
strategy encompasses the blade taking neceszary measzures to counteract
deviating forees, ensuring it maintains a consistent foree profile on the
cutting equipment.

The work in tactile perception iz building towards a successful
implementation of robotics in the red meat industry in ways zimilar to
those experienced by the pork industry. Similar operational results are
expected, such az enhancing production efficiency, reduring operating
costz and loszer, and improving the owerall quality of the end-product
(Hinrichzen, 2010). The scope of thiz paper did not delve into key
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Fig. 9. The stages of cutting through the red meat tissues starting from the fat layer side.
5. Conclusion
Table 5
The time interval of each cutting stage extracted from the cutting videos. This paper establi o e z S
Time Cutting Cutting action transients as a guide for cutting beef using a knife deployed on a
(seconds) stages pul The experi 1 design was inspired by the success of
1.35t0 2.63 Seage 1 Penetration of first intesface using tactile ing in deli dical p d such as guidi
2830381 Stage 2 Cutting through the fat layer : needles. focu: examining tactil
381w4ll Stage 3 Penetrating the interface between the lean and the surgical 3 .Theal:udyl.us .“don - e?emxy
fat layer data transients when executing a simple straight cut across different
4.11 0 6.61 Stage 4 Cutting through the meat tissues in a preprepared striploin chop product and ion b
661069 Swage 5 Breaking through the last layer of tissue and tissue features, tissue response and events. Through performing 18 cuts
leaving the sample using a static knife hed to a rob ip . the analysis of

Total time = 5.49 s

considerations like process speed and end-product quality. He 3
once a 1 1 gy is in place, these factors will be
addressed. The focus will then shift from fundamental studies and proof
of concept to developing a system more suited for the market.
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10

force to discriminate cor ting patterns to fi
meat led similarity through lati lysis. C

coefficients ranging from 80% to 97% were found. Through synchro-
nising and correlating cutting events in the cutting videos and the
unique transients in forces, the force signal was shown to isolate iden-
tifiable features that can be used to discriminate tissues and tissue

in the
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Fig. 11. The fat tizoue structure and tissue deformation causing the knife to deviate from the predefined cutting path.

interfaces when cutting in an automatic process.

The findings have effectively demonstrated the potential of tactile
sensing in meat processing and can be used to identify critical stages of
the cutting process. This validation of tactile sensing opens opportunity
to develop an automated perception and corrective actuation strategy.
The approach can be used to maintain knife trajectory on the desired
cutting path relative to tissue interfaces. The method prepares for real-
time adaptation to the deformable nature of the meat.

74

Credit author statement

Basem Ade Aly: Conceptualization, Investigation, writing- original
draft. Professor Peter Brett: Conceptualization, Tobias Low: Writing-
review & editing. Derek Long: Writing-review & editing. Craig Bailie:
Writing-review & editing.

Role of funding source

The research is funded by the University of Southern Queensland



BA Aly etal

international stipend rezearch rcholarship and the Univerzity of South-
ern (ueenzland international fees research scholarship. There iz no
involvement of any external sponzorship.

The University of Southern Queenzland iz involved in the rezearch
through the supervisory team to guide the author and ensure they meet
the university requirements to complete their Ph.D. by publications.

Declaration of competing Interest

The authorz declare that they have no known competing fAinancial
interezts or personal relationships that could have appeared to influence

the work reported in thiz paper.
Data avallability
Data will be made available on request.

Referances

ABE, 2015, Integrated Parce Gontrol [/ Available: hitps://search.abb. com,/Bhrar
¥/ Daownload.aspx?Document| D=9AEE101 03 46006& LanguageCode —end Docume
ntFartid=&Action=Launch.

Aly, B.A, Low, T., Long, [, Baillie, €., Brett, P., 2023a. Robotics and sensing

in red meat pr @ vewview. Trends Pood Sci, Technal. hetps:/dol.
org 10, 1006 rifs 20X3.05.015.

Aly, B.A., Low, T., Long, D, Baillie, €.,
Challenges and Oppontunitiss.

Brett, PM,, Parker, T., Harrison, AJ., Thomas, T A, Carr, A., 1957, Simulation of
resistance forces on surgical needles. Proc. IME H J. Bng. Med. 211 (4],
3A35-247. hrtpe//doloeg 10,1243 /098441 1 97 | EI4467.

Ghoi, 5., Zhang, ., Publbcigge, T, Watson, T, Tallan, R, 2013. Applcations and

robots in mear In: IEEE
= on Science and (CASE), wal. 2013, [ERE,
PP 110P-1112. hitps://dok cag/ 10,1109 CoASE 2013, 6653967 [Online]. Available:
httpe/fiesexplore jeee.arg/document AAEEIDET,

Ihrh:,? Bergnmasco, M., Fiorilla, A., 1988, Porce and tactile fox robots. Sensons

and Serscry for Advanced Robots 43, 153-185. https: 7 dloi. org /101007,
OFE-3642-83410:3 7.

EY Building a Better Warld, 2017. Independent Review of the proposed installation of
DEXA in AUS MEAT registered facilities. imwe 2. hitps//cdn2 hubspot ne
t/hubis, 331 7097 M2 0Amp et 200uly2 01 7 /Pl DEXA- Independent- Review- [mues.
Paper- 2 FINAL pof. (Acoessed 18 July 2022).

Guire, 6., Sabourin, L, Gogu, G, Lemcine, B., 2010. Robotic cell for beef carcass primal
cutting and pock ham in ment industry. Indl. Robat 37 (8), B32-541. hetps://
dodorg,/ 1001 108,01 43951 101 1061687,

Heilbron Economic, 56, Consulting, Policy, 2018, Analysis of Regulatory and Related
Costs in Red Mear [Omline]. Available: htps-//australianabatioirs. com’
wp-conbent/uploads, 201 3/03, FINAL_Cost_to Operate_ Report Oct 2018.pdE

Hinri L., 2010. in the Danish pig slaughter incustry.
Meat Sci. 84 (2], 271-276. hatps://doi.org/ 10. 1016/ meatsci 30059.08.012.

Eauffman, R.G., 300]1. Meat compositicn. Inc Hui, Y.H, Hip, W.E., Rogems, BW,,
Young, O.A- (Eds.), Mear Science and Applications. CRC Press, pp. 41-60,

2023b. Robotics in Red Meat Processing:

75

12

Journal of Food Bgineering 363 (3024} 111754

Ehadem, M., Rossa, ©., Sloboda, RS, Usmani, M., Tavakoli, M., 2016. Mechanics of
tissue cutting during needle insertion in biclogical tissue. IEEE Rob. Aubom. Lett. 1
(2), BO0-807. httpe: //ddoi.arg/10.1109/LEA 2016 2528301

KL K, 2018. T gY For Pat R l for Beef
Leaving a Uniform Thickness behind [Online]. Available: hiips:/wwwampe.com.
o/ getmediag | FASA85E Fabb-4c07 a7 3h-T2R02eb] bl 61,/ AMPC technologyBva
hationForPatRemoval FinalReport pdffext=. pdf.

Kim, J., Kwen, ¥.-K., Kim, H-W., Secl, K.-H,, Cho, B-K., 2023. Robot technology for pork
and beef meat slanghtering process a review. Animals 13 (4], 651. hrtps//dolorg)
10.3390,/ani] 3040651,

Long, P., Rhalil, W., Martinet, P., 2014. I‘umM-mmnlﬁmbnﬂ:cllﬁngufnﬁ

In: IEEE/RES Riobots and Systems,
vol. 2014, IEER, Chicago, IL, USA, pp. ﬂlb—"ﬂl hetps:/doiorg 10,1109/
TRCHS 00 4.6943 233,
Luso, &, Bimbo, J., Dahiya, R., Lin, H, 3017, Robotic tactile perception of chject
a review. ics 48, 54-67. hitps://doi.org 01016/,
mechatronics 200711002

Mason, A., Romanov, D., Cordova-Lopez, L.B., Ross, 5., Korostynska, O, 2022, Smart
Emnife- technological advances towards smart cutting tools in meat indusiry
antomation. Sens. Rev. 42 (1), 1-12. htrps://dod.org, 101 108,/5R-09-202] 03] 5.

Maunsell, 5., Scott, Technology LTD., 2018. Lamb Boning Leap 2 {Hindquarter)
Australian Site Reacy Prototype [Online]. Available: hirps:Ssww mila com.oau/oo
mtentassets, /34 bofnad | 7904 ShdnGE 4 26403 bde 34,/ p.psh. 0736, final_repart. pdf.

Meat & Livesiock Ausiralia, 2020, State of the Industry Repart 2020 [Online). Available
Iittps:/ Awwrw. mia. comoaw/globalassets /min- corporate price s-markess,”
documents,trends-analysis, ‘soti-report/mia-state-of i ndustry -repart -2 020, pdf.
(Accessed 18 July 2022).

M. Migins, . Molist, and M. Pombal "Atlas of Plant and Animal Hissology.” University of
Vigo. https://mmegios webs.uvigo.es/02-english/index himaccessed 3).

Mabil, £, Belhassen-Chedl, B, Grigore, G., 2015, Soft material modeling for robatic task
formulation and controd inthe muoscle ion Roboe. Comput. Inbegrated
Manuf 32, 37-53. hitps://doi.org/10. 1006/ Jrcim. 200 4.09.003,

Clkamura, A M, Simone, C., O leary, MLy, 2004, Porce modeling for mesdls insertion
info soft tissue, [EEE Trars. Biomed. Eng. 51 (10), 1707-1716. biipe//doiorg/
1001103, TEME. 2004.B31 542,

Pumell, G., 2013 Grimbey institute of further & higher education, "robotics and
automation in meeat processing,”. Inc Robotics and Automation in the Food Industry.
Elsevier, pp. 304-328.

Pumell, G., Brown, T., 2004. Equi fat ing of lamb
Comput. Electron. Agric. 45 (1-2), 109-124 hitps://doi.org/ 1010064
compag-2004. 06004,

Bomamoy, ., Korostynska, O, 'l.:i.lq,ol Mason, A, 2022 Towards human-robot

in meat and possibilities. J. Food Bng., 111117
Bittpe:/ /o org/ 10,1016/, jfocdeng, 2022111117,

Buberg, C., 2021. "In pursuit of the world's best steak-achvanced robotics and X-ray
technology to transfocm an industry,”. Joumal of Applied Business & Broncenics 23
(4], 257-270 [Cnline). Available: http:/ www. na-businesspress. comy/JABE/JAE
EZ3-4,/20 RubergFinal pdf.

Seott Technology Limited. baning room. hitps://scottaubomation. comy/en-us
Aproducts ‘meatJamb// boning-room. (A d 22 July 2022).

Scott Technology Limited, 2022a. Forequarter system. In: hitps://scottautomation. comy
assets, Sectors Meal-processing /Resources, Lamb, Pocequarter-System-Scolt. pdf.

‘Scott Technology Limited, 2022b. X-ray primal system. Inc hirps: //soottautomation. com,’
assets, Sectors /Meak-processing /Resources, Lamb, XRay- Primal -5 ystem- Scott. pdf.

Toldrd, F.N., Leo, M.L., 2006, Advanced Technclogies for Meat Processing, 1 ed. CRC
Press, p. 463,

UHECE, 2004. Bovine Meat Carcases and Cuts [Online]. Available: hitps://uneceorg/
DA M trade /agr /standard ‘meat/e/Bovine 2004 e Publication. pdf.




4.1.3. Links and implications

The study presented in 'Tactile Sensing for Tissue Discrimination in Robotic
Meat Cutting: A Feasibility Study' highlights the capability of the proposed tactile
perception approach to interpret the actions of a knife during meat cutting by
distinguishing the behaviour and features of different tissues along the knife's path.
The primary focus was on the force exerted on the knife's tip in the cutting direction.
We visually validated this approach by observing the sensor's accuracy in capturing
distinct force transient responses, which are specific force patterns in the data,
related to various tissue features and behaviours. Furthermore, we conducted an
analytical validation by demonstrating the consistency of these patterns in repeated
cut by performing cross-correlation analysis on the collected data. The forthcoming
Section 4.2 builds upon this experiment, using the same setup to investigate the
impact of knife depth on cutting performance. This aspect is particularly challenging

to control due to the inherent physical properties of meat tissues.
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4.2. SENSITIVITY OF CUTTING FORCE TRANSIENTS TO
THE DEPTH OF CUT

While efforts in Section 4.1 were made for a consistent cutting depth across
all experiments, the inherent variable properties of meat tissues— stiffness,
deformation, and external influences such as gravity and temperature—made this a
challenge. This chapter determines the sensitivity of the nature of cutting force
transients to cutting depth. Working with the same experimental setup as Section
4.1, the robot was used to cut samples of Striploin chops to varying depths.

4.2.1. Introduction

Cutting depth is an influencing factor on the effective cutting force, particularly
when the knife penetrates the initial interface and continues cutting through the
tissue. An increase in the cutting depth requires more compressive force and leads
to greater contact between the sides of the knife and the surrounding tissues,
causing increased friction.

Maintaining a constant cutting depth during manual operation is not possible
in most situations. Process Operators are unable to visualise the interior of the meat,
and depth is gauged by the changes perceived in reactive force detected as the knife
progresses in the meat tissues using tactile sense when cutting with a knife. The
complex structure of red meat, comprising various tissue types, presents differing
impedance levels to the cutting knife. This variation in resistance can be detected
along the knife’s cutting trajectory.

Further judgement is applied by the operator, often accompanied by visual
information as the meat workpiece will likely deflect, deform and then relax when
responding to applied cutting forces. Judgement is complex, relating projected
visualisation of the final product form combined with the knowledge of the presence
of meat tissue structures within the workpiece. Using real-time sensory perception to
estimate position, combined with high-level interpretation skills to form a
representative perception, operators can achieve accurate cuts by identifying the
events and phenomena related to the blade position and motion within the local
surrounding tissues.

In the laboratory and during the experiments, the previously mentioned factors
regarding the structure of the test samples and the nature of red meat tissues, along
with occasional unavoidable errors while cutting the test samples, can cause slightly
uneven samples. Moreover, meat deformation due to cutting forces results in
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inconsistent cutting depths between experiments. These variations underline the
importance of understanding how depth affects force transients during cutting
events. The experiment aims to determine how depth influences the ability to
discriminate the unique force transients related to the tissues, their interfaces, and
the overall product behaviour.

4.2.2. Results and Observations

Using striploin chop samples, cuts were performed at different depths from
the surface of each sample. The knife tip was advanced into the tissue from the
external surface of the sample on parallel cutting trajectories separated by known
increments and was programmed to descend in the Z direction 10 mm lower
sequentially between each trial cut. The three cutting depths were 10 mm, 20 mm
and 30 mm. Two cutting trials were performed for each depth, resulting in a total of 6
trials. Representation of the cutting paths is shown in Figure 25. Table 8 presents the
length of each cutting path divided between the length of the cut in the fat layer and
muscles. The table also shows the pre-adjusted depth and the knife’s actual depth

inside the sample measured using a stainless steel rule.

78



Cutting direction

- — - Cutting path 1

- - Cutting path 2

- —- Cutting path 3

Fat layer Meat

i

Cutting path 3 [/
(30 mm.) 2z

Cutting path 2
Figure 25: Representation of the cutting paths

Table 8: Measurements data

Data 1 Length of fat layer = 25 mm. Actual depth in fat =5 mm
Pre-adjusted depth =10 mm

Data 2 Length of fat layer = 19 mm. Actual depth in fat = 9 mm.

Pre-adjusted depth =10 mm

Data 3 Length of fat layer = 17 mm. Actual depth in fat = 15 mm

Pre-adjusted depth =20 mm

Data 4 Length of fat layer = 25 mm. Actual depth in fat = 16 mm

Pre-adjusted depth =20 mm

Data 5 Length of fat layer = 16 mm. Actual depth in fat = 28 mm

Pre-adjusted depth =30 mm

Data 6 Length of fat layer = 21 mm. Actual depth in fat = 21 mm

Pre-adjusted depth = 30 mm

Temperature =8°C
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Figure 26 shows detectable features within the tissues of the meat test sample. The
cutting can be divided into five stages:

1- Penetration of the first interface.

2- Cutting through the fat layer.

3- Penetrating the intermediate interface between the muscles and the fat layer.
4- Cutting through the muscles.

5- Breaking through the last layer of tissue and leaving the sample.

g
2
@®
2
®
]
=)
3

Intramuscular fat
< (marbling) N

Figure 26: An example of a cutting line showing the direction of one cut and the
structural features of the test sample

The precision in identifying the previously mentioned cutting stages based on the
unique force transients for each cutting depth was evaluated by correlating the status
of the cutting task with force data. This was done by synchronising the time recorded
by the robot with the time stamps from the cutting videos. The correlation involved
plotting the force-versus-time data (Figure 27) provided by the robot for each cut.
The time stamps for each of the cutting stages were marked on the plot. These
stages were represented by black dots on the graph and were observed from the
video (refer to Table 9). Each cutting stage is colour coded and numbered and is a

‘Correlating Time Stamp’.
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Table 9: The timestamps of the different stages of cutting as measured and observed
from the cutting videos

Data Fat Penetrating the
Penetration of Cutting through | interface between
first fat tissue fat layer (Sec.) the fat and
interface (Sec.) muscles (Sec.)

1 2.23 2.7 2.7 3.89 3.89 4.26
2 1.96 3.04 3.04 3.79 3.79 4.33
3 1.93 3.13 3.13 4.23 4.23 4.96
4 1.39 3.06 3.06 4.29 4.29 5.29
5 1.3 2.76 3.23 4.31 4.31 4.86
6 1.46 3.29 3.29 4.43 4.43 5.03

First stage: The penetration of first tissue begins when the knife contacts the
sample and ends when the full length of the blade is inside the fat layer. During this
stage, two phenomena are observed. The first is the deformation of the first layer of
tissue before the penetration. The second is the layer of fat responding to push and
deform the muscle tissue beneath. Muscle tissues are more malleable than the fat,
which is fixed using the holding brackets. This stage is characterised by gradually
increasing forces until fat tissues reach their limiting mechanical stress and allow the
blade inside the sample.

Second stage: Cutting through the fat tissues. The tissues are filled with cracks and
air gaps, which cause spikes in force while the knife crosses the interfaces
associated with these gaps.

Third stage: Cutting through the interface between the fat layer and the muscles.
The interface is marked by a sinew that extends over the sample, varying in
thickness in different areas. It is a transitional stage, where the knife moves from one

cutting medium to another.

Fourth stage: Cutting through muscle tissue is represented by a lower average of
the force values and more smooth transients punctuated by the small peaks
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associated with the knife crossing muscle fibrous tissue, which indicates leaner meat
with less intramuscular fat between the muscle groups.

The final stage involves cutting through the last layer of tissue and exiting the
sample. The force pattern decreases throughout this stage until it reaches the no-
load force values. Intramuscular fat may present at the end of the cut, leading to a
slight increase in force values just before the knife exits the sample.

The plotted data capture accurate and distinct variations in the force transients
corresponding to the different cutting stages observed in the videos, regardless of
the depth of the cuts. The distinction between the stages and the pattern similarity
was affirmed and demonstrated statistically through cross-correlation analysis
between the data sets. The data sets were normalised and the cross-correlation
analysis was performed between each two data sets using MATLAB. Table 10
presents the resulting cross-correlation coefficients at 0 lag between each data set in
the first column and first row. Since the data is normalised, coefficients are between
-1 and 1. A coefficient of 1 indicates exact linear similarities between the data sets, -
1 suggests inverse relation, and 0 shows no relation. The cross-correlation
coefficients reveal high force pattern similarities across all the data sets, regardless
of the cutting depth. The smallest coefficient is 0.8814, indicating over 88% similarity.

Force vs. Time - Data 1

Force Vs Time provided by the robot

@  Time stamps from the cutting videos

Force (N.)
Pre-adjusted 10
mm depth setting
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Time (Sec.)

Force vs. Time - Data 2
1 1 I 1 1
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Force Vs Time provided by the robot 1 Time 3.79

15 [ ] Time stamps from the cutting videos
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Figure 27: The stages of cutting through the red meat tissues starting from the fat

layer side
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Table 10: Cross-correlation coefficients between the forces obtained from each data
set for each cut across the tissue interface from fat to muscle

Fat to Meat
Data?2 | Data3 | Data4 | Data5 | Data 6
Datal | 0.94305 | 0.9114 | 0.87707 | 0.90488 | 0.91381

Data 2 0.89288 | 0.8814 | 0.88443 | 0.88459
Data 3 0.92721 | 0.95402 | 0.9262
Data 4 0.9021 | 0.92403
Data 5 0.97608

On the other hand, as anticipated, the change in depth affected the force required to
perform the cut. The deeper the knife goes into the sample, the higher the average
force values across the cut are. This is demonstrated in Table 11

Table 11: Maximum, minimum and average forces at each depth

Fat Muscles

Data | Maximum | Minimum | Average
Force Force Force
11.0122 3.8086 6.8263
18.8778 5.837 11.5177
42.8863 | 15.7821 | 25.3095
64.4527 14.3995 | 33.0239
106.023 21.5763 | 49.2839
75.8358 24.6712 | 46.9735

o O B~ W N

4.2.3. Conclusion

The results have demonstrated that the depth of the knife in red meat tissues
does not affect the capture of the characteristic force transients associated with the
key cutting stages, which are defined relative to tissue types and interfaces. Visual
observation of the data showed a precise and consistent correlation between the
cutting stages and the unique force transients in the collected force data. Repetitive
cutting tests at different depths yielded high cross-correlation coefficients,
underscoring the consistency of the force data profile, provided the features remain
unchanged. The effect of depth appeared in the magnitude of force values, not in the
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pattern, as evidenced by the average force values at the different stages of cutting.
However, our experimental setup, which did not include oscillating movements for
slicing tissues, revealed that deeper cuts might cause the meat to clamp around the
knife, leading to increased resistance. This necessitates higher forces for cutting,
potentially saturating the sensor’s readings. Additionally, deeper cuts could cause
displacement of the samples, as they are fixed to the cutting table. Therefore, while
cutting depth does not inherently affect the force transients, which is the focus of the
research, shallow cuts are recommended in our experimental setup to mitigate these
issues. The next set of experiments in Chapter 5 extends the approach and applies it
to the more practical cut of striploin trimming.

CHAPTER 5
5.1. PAPER 3 - ROBOTIC FAT TRIMMING:
CHARACTERISATION OF RED MEAT TISSUE STRUCTURE
USING TACTILE PERCEPTION

Basem Adel Aly"2, Peter Brett?, Tobias LowP, Derek Long 2°¢
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ABSTRACT

This study investigates reactive force transients for discriminating meat
tissues and guiding a robot when cutting beef. Using a 6-axis anthropomorphic robot
manipulator with static knife and a 6-axis force sensor, cuts were performed relative
to the principal meat tissue interface of striploin steak. Reactive force transients on
the knife showed high correlation, mostly over 95%, confirmed by complementary
analyses. The correlation diminished on approach to interfaces. Lateral force
component exhibited sensitivity to the contour of the natural cutting path in close
proximity to the tissue interface, whereas the orthogonal cutting axis force
component discriminated knife entry onto this path. Applied to automatic trimming of
striploin steak the results inform a novel real-time approach for tactile sensing in
machine perception. Further exploration of the approach to automatic application in a
trimming operation will serve to confirm levels of accuracy and robustness that can
be achieved.
KEYWORDS
Tactile
Perception
Force sensor
Robot
Beef cutting

1. INTRODUCTION

The Australian red meat industry is a production leader of high-quality beef.
While the industry is a significant contributor to Australian GDP, it is highly
dependent on overseas labour for manual operations in meat production, as
nationally the required skills are scarce. Both staff retention and national recruitment
are exacerbated by the perceived near-freezing conditions and risks of the work
environment, which do little to compete with working conditions in other industries

Postal Address: West Street, Center for Agricultural Engineering, University of Southern Queensland,
Toowoomba, 4350, QLD, Australia
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(Romanov et al., 2022). The resulting production labour costs are the highest
amongst international competition (SG Heilbron Economic & Policy Consulting,
2018).

Automation is anticipated as the industry solution, encouraged by the success
and benefits reported in other industrial sectors (IFR International Federation of
Robotics, 2021). However, the machine processing of meat workpieces, with the
significant variations and the deformation of these natural mediums, requires high
capability in machine perception, judgement, and adaptation to compete with
exacting product specifications achieved by skilled human operators. Whether tasks
involve separating meat tissues, slicing, or trimming to achieve finesse in high-value
products, automation will need to respond to the presence of meat tissue interfaces,
deflections and deformation induced by applied cutting forces. Near real-time
machine perception will be needed to automatically determine corrective cutting
trajectories and to maintain desired cutting paths relative to the tissue medium.
Acceptable product presentation and yield are highly dependent on these factors.

Working toward this requirement, this paper reports research on a novel
approach to tactile sensing able to discriminate and follow tissue interfaces during
cutting operations. Tactile sense offers potential to discriminate the nature and
behaviour of internal meat tissue structures at the point of cutting. This investigation
on the search for a suitable tactile sensing approach for the task has focused on
separating fat from lean tissue with defined proximity to the fat/lean tissue interface
by using striploin steaks. In this form, the presentation of meat tissues is amenable

to experimental verification of cutting relative to internal meat structures.

1.1. Description of the striploin trimming operation

Striploin is a valuable beef cut estimated to be 15% of carcass value. The cut
extends between the rib cage and rump adjacent to the spine region covering from 0O
to 3 ribs (Figure 1) (Standard, 2015). The dimensions and weight range are stated in
Table 12 (Khodabandehloo, 2018).
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Hindquarter

Forequarter

Figure 28: The location of the striploin primary cut in the cattle carcass
(Standard, 2015)

Table 12: Typical measurements of a striploin cut (Khodabandehloo, 2018)

Maximum Minimum
Length 605 mm. 450 mm.
Width 245 mm. 200 mm.
Height 125 mm. 90 mm.
Weight 13 Kg. 5.4 Kg.

Two primary tissue components of striploin are: muscle and fat. The trimming
operation occurs within the fat medium (subcutaneous fat) located peripheral to the
muscle tissue. The primary substance of fat tissues is triglycerides consisting of
glycerol and fatty acids. Firmness of the fat is influenced by the contents of fatty
acids and the length of carbon chains (Schumacher et al., 2022; Wood et al., 2008).
Subcutaneous fat is presented in a layered structure with air gaps randomly
distributed (Khodabandehloo, 2018; Lonergan et al., 2019). Fat distribution is
affected by age, breed, gender, environment and weight of the beast (Schumacher
etal., 2022).

The thickness range of the fat layer is 5 to 60 mm (Border et al., 2019;
Khodabandehloo, 2018). Striploin trimming operations remove excess fat and
connective tissues from the beef striploin along the contour of the underlying muscle
interface, leaving a residual layer of fat on top of the muscles. In the final form, the
thickness of the residual fat and the overall shape of the trimmed cut is defined by
market requirements. Excessive residual fat can lower the value of the product,
whereas over-trimming can reduce yield and affect the taste of the meat when
cooked (Khodabandehloo, 2018; Savell & Cross, 1988).
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In the manual process of trimming, operators use sharp boning knives. The
product is placed on a flat board with the fat side facing upwards (Figure 29).
Operators begin from one side of the product and make progressive angled, shallow
cuts (slicing) to remove the outer layer of fat, guided by the tissue interface between
fat and muscle tissue. When trimmed, operators may portion it into smaller, market-
ready products such as striploin steaks.

Skilled operators use a combination of visual and tactile perception to perform
the trimming task. Visual perception is used to locate the cutting path, monitor the
external state and behaviour of the workpiece, and determine the position of the
cutting tool relative to the external features of the carcass. In contrast, tactile
perception dominates where visual information is not possible. In temporal form,
tactile sense enables discrimination on approaching tissues and tissue structures
and to estimate the location of the cutting tool relative to the meat tissue interface
even though the meat deforms in response. The operator makes informed judgments
using this information, combined with knowledge and previous experience. Using
tactile sense, the operator responds with strategy to achieve the required residual fat
layer and the shape of the product by guiding the knife with anticipation of behaviour,
the expected encounters with tissue features in the meat tissue and changes in

response to the medium.

Figure 29: Manual trimming of striploin primary cut (Gordon Food Service,
2022)
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1.2. Automation for striploin trimming

At present, no known commercially available robotic or other automation
system is capable of performing the task of beef striploin trimming relative to the
real-time position of tissue interfaces. Deformation in the meat during cutting
operations requires real-time perception and corrective strategies to maintain cutting
paths relative to meat tissue interfaces. Two important goals are to produce a
product of conforming shape and tissue content, and to maximise yield.

Innovative approaches to automatically trim fat tissue from the striploin to form
a consistent residual layer over the top of the product and to meet market
requirements have been reviewed. Mechanical systems to push the workpiece
against trimmers is one such example. This approach is without means to measure
fat depth, which will vary accordingly to the distribution of stiffness of underlying
tissues. Examples of such systems are described in patents submitted by Leblanc
and Long et al. (Leblanc, 1992; Long & Thiede, 1995).

Other approaches revealed in details of patents generally follow the
automation scheme of Figure 30 (Albert, 1980; Black & Lauritzen, 2015; Bolte &
McKenna, 2012; Cate & McCloskey, 2000; Chenery, 1981; Johnson & Vandenbroek,
2005). This structure includes an upstream measurement unit, a processing unit, and
a downstream trimming unit, all connected by means of transfer (rollers, pulleys and
conveyors) to progress the product through the processing operation.
Khodabandehloo et al. (Frontmatec, 2021) illustrated the significance of deformation
induced errors using a commercial system for pork trimming. This method proved
successful in pork trimming and not in red meat processing. Although there are
structural similarities between beef, lamb and pork, the latter has more uniform fat
distribution containing a greater concentration of unsaturated fatty acids, rendering
tissues softer and more fluid such that peeling and trimming are readily achieved
(Kauffman, 2001; Valsta et al., 2005; Wood et al., 2008).

Figure 30: General structure for fat-trimming automatic units
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The concept demonstrated in the above-mentioned systems relies on pre-
operation data to perform the task of trimming and assumes negligible change in
behaviour, position of tissues, and tissue interfaces during the operation. The
approach also assumes near-uniform distribution of fat tissue across the workpiece.

Non-homogeneous shape is the norm across carcasses with significant
variation in size. This combined with the deformable nature of meat tissues requires
adaptive robotic systems to accommodate factors similar to manual skilled
operators. Machine perception is a key function to discriminate between different
hidden mediums when cutting and to follow a corrective cutting path by strategically
adjusting the cutting trajectory in real-time.

Cutting meat tissues by machine to prescribed specifications will likely
combine the merits of machine vision and tactile sensory capabilities. How to
interpret tactile sensory data as real-time perception that will enable a robotic system
to adapt in the automated task of cutting meat is the focus of this work. Tactile
sensing provides an opportunity for perception to guide cutting in proximity to meat
tissue interfaces where tissues and interfaces are hidden visually (Aly, Low, Long,
Balillie, et al., 2023), however the means to retrieve appropriate information from
tactile sensory data requires investigation. Previous attempts to use this sensory
mode for following complex non-uniform cutting profiles, such as the aitch bone of
the lamb hindquarter in (Steve Maunsell & Scott Technology LTD, 2018) and the
femur bone of pork leg in (Guire et al., 2010), did not provide the anticipated yield.

The gquestion to answer is not necessarily related to force values but rather
the trends and character of persistent presentation in the form of sensory data
transients. Here relevant information can be found to discriminate working conditions
and the response of mediums during processing. This experience is typical when
automatically sensing other natural mediums, such as on farms to detect weeds or
pick fruits (Koirala et al., 2019; McCarthy et al., 2010) and within human tissue
mediums in medical procedures to control micro-drilling and needle insertion-based
procedures (Abolhassani, Patel, & Moallem, 2007; Brett et al., 1995; Brett et al.,
2000; Peter N Brett et al., 1997; Peter N. Brett et al., 1997; Taylor, 2008).

In this paper, orthogonal (side of knife blade) reactive cutting force transients
are explored in conjunction with force component transients of the leading tip of the
knife to discriminate the orientation of the knife and its proximity to interfaces during
the striploin steak trimming task. The work builds on a previous investigation (Aly,

Low, Long, Brett, et al., 2023) where the effectiveness of reactive force transients on
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a knife to discriminate between tissues and the process of cutting meat tissue
interfaces was demonstrated.

During the cutting process, the trajectory of the knife path needs to align with
the interface between the fat layer and muscle tissue. The experiments described
here characterise how force transients vary in response to a static knife approaching
common features encountered within the meat. Additionally, the study proposes a
cutting strategy to follow through with an automated process informed by the

experimental results.

2. Methodology

Successful trimming of a striploin steak can be broken down into two steps.
The first step involves recognising when the knife is approaching the interface
between the fat layer and muscles tissue. The second step is to follow a cutting
trajectory that encapsulates this interface at a relatively consistent distance from it.
To achieve this, force transients from two different axes are considered. The force
acting on the tip of the knife can be used to determine when the knife is approaching
and penetrating an interface in the direction of cut, similar to the approach used in
the experimental work of (Aly, Low, Long, Brett, et al., 2023). At the same time,
orthogonal forces acting on the sides of the knife inform its direction to follow the
path along the interface. Both these forces are crucial for discriminating irregularities
or disturbances in the structure adjacent to the interface between the fat layer and
the muscle.

For the purpose of exploring the influence of meat structure on the force
transients, the trimming task has been simplified into shallow straight-line cuts. Each
cutting path is progressively closer to the fat/lean interface in the striploin chop test
samples. The advantage of using a straight-line simplification in the investigation is
to enable observation and the identification of correlation between unique force
transients and the path of the knife in the meat tissues.

2.1. Selection of sample for experimental investigation

Test samples were prepared using a whole striploin. This was sectioned into
40 mm thick portions to create striploin steaks. The choice of striploin steaks offers
experimental advantages: (1)There is flexibility in the use of the same loin for
different cutting investigations and for consistency in comparison; (2)The tissue
structure of striploin chops closely resembles a two-dimensional model, and
simplifies the process of correlating force sensor feedback with the position of tissue
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interfaces during deformation when using machine vision measurements and manual
observation. Figure 31 illustrates a portion of a striploin steak derived from the

primary cut.

Figure 31: Portioning striploin primary cut into striploin chops for experimental
trials

2.2. Testrig structure

The experimental configuration was devised to represent conventional cutting
procedures and used a 6-axis anthropomorphic ABB IRB 1200 manipulator. This
manipulator was mounted on a support cabinet, and integrated with an adjustable
table platform for accommodating meat samples. The rig is food-grade and IP67-
rated. This ensures that all components are dustproof and waterproof, allowing for
regular cleaning. Brackets were employed to secure the meat in place while enabling
passage of the knife to cut through the fat layer (Figure 32).

Figure 32: The trimming bracket for holding the meat from the sides and
enabling the knife to trim fat tissue
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Experimental sessions were recorded using two Sony FDR-X3000 Action
Cameras. The cameras were strategically positioned at varying angles to capture
visuals of the knife position and motion response of the test sample. A knife blade
with its grip removed was mounted on a customised bracket. The bracket, attached
to a 6-axis ABB 165 force sensor, was attached to the manipulator final axis. The
sensor is capable of 165 N maximum load in both the X and Y directions. The setup
is shown in Figure 33. The recorded data from both the sensor and the camera
enabled the extraction of force-time series data during the cutting process, which can

be correlated with tissue characteristics and the cutting response.

S— B
ABB 6-axis force
sensor 165

Q /£
Figure 33: Test rig setup
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2.3. Experimental preparation

Prior to conducting cutting experiments, the force sensor was calibrated to
detect only the contact forces between the knife and meat specimen. The cuts were
performed using ‘Points programming’, the cutting trajectory was determined and
programmed 10 mm above the test sample (line 1 in Figure 34), and upon execution
the manipulator lowered the knife by 30 mm such that cutting was achieved to a
depth of 20 mm in the fat layer (line 2 Figure 34). Experiments have shown that the
depth of the cut affects force values from the force sensor, but not the nature of the
force transients resulting in discrimination of tissue interfaces. The velocity of the
knife was set to be low, at 20 mm/second, and maintained at this constant rate
throughout all experimental runs for consistency in controlled response to meat
behaviour. Parameters such as the knife blade sharpness and surfaces were
maintained after each series of cuts. The ambient temperature of the meat sample
was maintained at a constant 9°C, similar to that of an abattoir. The blade cutting
angle as applied to the meat was maintained on a perpendicular cutting plane

aligned with the direction of motion of the knife.

. +FZ
+Fx C—I

Cutting direction

Fat layer

Figure 34: Programming the cutting line

An internal timer of the robot system was activated at the start of the cutting
process. Following each experimental run, the robot saved data including the timer
readings, and the corresponding force readings in .csv format. MATLAB was used
for processing the data. The force sensor and video cameras were synchronised
with the internal timer of the manipulator using a time stamp corresponding with the

start of motion.
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3. Results and observations

This section discusses the findings obtained from the experiments, including
the observation and correlation of force transients with the location of cutting in meat
tissues. This tactile interpretation identifies consistent trends and features in the
force data that can be used by a machine to discriminate cutting events and update
a cutting strategy in the meat. The forces instrumental to the discrimination of these
events are illustrated in the schematic of Figure 35.

The effective force exerted at the knife tip in the cutting direction, the X-axis,
is Fx and will be referred to as the compressive reactive force component
(Fcompressive). This force comprises two components: one is required to initiate a crack
and overcome the bonds between the tissues (Fcuting), and the other responds to
elastic tissue deformation (Fpeformation). There is a friction force component opposing
Fx that acts in a shear direction across the surfaces of the knife blade. In the
orthogonal direction of the Y-axis the force component is Fy and results from side
pressure within the meat.

F,
Fy
” Force results from the
P side pressure

Figure 35: Concept schematic representation of the force components
acting on the knife blade in the direction of cutting

In this particular cutting application, the approach needs to maintain an
acceptable proximity of cutting trajectory within the fat and relative to the tissue
interface. Notably, despite the heterogeneity found within red meat carcasses,
consistent inherent traits of red meat exist and can be used to guide a cutting tool. A
gap separating fat tissues envelopes the tissue interface, which is a common feature
within the fat of a striploin. For this investigation, it serves as a natural pathway
between the outer and inner fat layers and experimental studies have focused on

96



discriminating entry into the feature and forces that guide following it on a cutting
path.

Manual cutting observations have shown that this natural separation feature
becomes more visible as the knife approaches it, offering a natural guide for
trimming. The surrounding tissue exerts pressure and the surrounding tissues
deform, funnelling the knife further into this natural gap. This phenomenon was
reflected in the force transients as a recognisable pattern acting on the sides of the
knife. Reactive force transients can be identified to discriminate following as opposed
to entering or exiting this cavity. Primarily, lateral forces on the sides of the knife can
be used to follow the space. Figure 36 illustrates some typical features of a striploin
cut and shows the path between the fat layers. As depicted in the figure, the pathway

encompasses the interface between the fat layer and the meat.

Natural pathway in
the fat layer extends
across the sample and
encapsulate the fat-
lean interface

| The interface between
. the fat layer and

4l muscles extend across
¢ the sample

Figure 36: Features of fat layer

The investigation progressed in multiple stages, as outlined in this section:
1. Investigate and identify changes in force transients when approaching tissue
interfaces using visual and analytical observations.

2. Examine the unique force transients indicating that the knife is approaching
and cutting through the pathway between the fat layers. Study how
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interactions between the knife and this pathway are reflected in the force
transients.

3.1. Force transients on the approach to tissue interfaces

The first step is to identify the proximity of the knife to the fat/lean interface as
it informs a decision of steering the knife towards or away if required. As the knife
approaches the elastic sinew between the fat layer and the meat, the adjacent
tissues begin to separate in anticipation of the blade. To investigate how force
transients can be used to indicate the proximity of the knife from the fat/lean
interface, three different cutting paths were performed in series with a rotation of five
degrees between each cutting path towards the interface. Figure 37 shows the
cutting paths with the corresponding measured reactive force transients on the tip of
the knife Fxand the side Fy. Both visual inspection and statistical analyses were
employed to contrast the transient force patterns as the knife moved closer to the
interface on the sequence of paths 1-3. The experimental observations show that the
workpiece geometry and some variations in material properties near the interface
significantly influence the force distribution. This concept was empirically validated
through a series of cuts that progressively approached the fat/meat interface.

Before cutting

After cutting

(a)
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Figure 37: Representation of cutting paths approaching the fat/meat interface

Visual observation of normalised cutting path data in Figure 38 shows that the
forces on the tip of the knife fluctuate constantly due to the nature of fat as a material
and randomly distributed air pockets within the fat layer. These forces only begin to
increase abruptly as a result of local deformation when encountering and actively
crossing an interface, as shown in cutting path 3. In contrast, the side forces are
more stable and only begin to change when the knife encounters abnormalities on its
sides.
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Figure 38: Normalised Fx and Fy on the knife for each cutting path

The visual observation of normalised cutting path data was confirmed by

performing cross-correlation and data time warping (DTW) of Fxand Fy for each

cutting path between the forces on the knife. The cross-correlation analysis and the

DTW offer different aspects of comparing signals. Cross-correlation quantifies the

degree to which two time series correspond to each other at different time lags (Yoo

& Han, 2009). It is particularly useful for determining the level of similarity between

two signals at the same time or with slight shifts. A high cross-correlation coefficient

of normalised signals (close to 1) indicates linear similarities between the data,

whether they are in-phase or out-of-phase. The signals are highly correlated if the

cross-correlation plot has the highest peak at or near zero lag.

Alternatively, DTW is a technique that measures the similarity between two

time series by optimally aligning them, even if they are out of sync (Muller, 2007).

DTW allows for "warping" the time axes of the signals to make them more similar.

The DTW score quantifies the "effort" needed to make the two signals identical.

Unlike cross-correlation, which assumes a linear relationship between time series at

various lags, DTW allows for non-linear warping of the time axis to align the series.

Normalising the data prior to analysis focuses the comparison on the shape of the

time series rather than their absolute values.
Table 13 shows the cross-correlation coefficient between Fx and Fy, and

the

DTW score for each cutting path. All three cutting paths showed positive correlations

near zero lag in the cross-correlation analysis, with Paths 1 and 2 presenting very

high coefficients of 0.95 and 0.97, respectively. This suggests an almost
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instantaneous and highly synchronised interaction between Fx and Fy, an
observation substantiated by their low DTW distances (1.2 and 2.61). These low
distances imply a strong similarity between the forces, suggesting a consistent and
efficient cutting process.

On the other hand, Path 3 exhibited much lower cross-correlation coefficients
(0.79) and elevated DTW distances (5.76). The path with fewer similarities and less
closely matched forces in the DTW-aligned graphs reflects fluctuations in material
properties supported by observations from the cutting videos near and at the
interface.

Table 13: Cross-correlation coefficient and DTW score of cutting paths 1,2 and 3

Cross-correlation coefficient DTW Score
Cutting path 1 0.95 1.2
Cutting path 2 0.97 2.61
Cutting path 3 0.79 5.76

It is instrumental to focus discussion on cutting path 3, as it is the most close
to the fat/meat interface from which to discriminate when the knife is approaching
and penetrating the natural gap between the fat layers, and how this gap can be
utilised to guide the knife relative to the interface.

Analysing the regions where Fx and Fy diverge can provide insights when the
knife is approaching an interface. One simple approach is to compute the Pearson
correlation coefficient between Fx and Fy over a predetermined window length of
data throughout the time series. Although similar to normalised cross-correlation,
Pearson correlation coefficients are calculated over a predetermined window length.
The coefficient range is between 1 and -1 and is evaluated similarly to the cross-
correlation coefficient. By selecting appropriate window lengths and step sizes, real-
time calculation of the Pearson correlation coefficient is feasible. Setting a threshold
for the linear similarity between the signals allows one to identify regions close to the
interface.

In the analysis performed, the correlation between Fx and Fy was calculated
over a window of 1 second to examine similarities between Fx and Fy for cutting
path 3. In the figure, regions are highlighted green with strong correlation and red
and orange with an opposite and weaker correlation. Figure 39 illustrates time
periods when correlation is weak between Fx and Fy, indicating that the knife is
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approaching an interface and following the pathway between the fat layers. Table 14
shows the Pearson coefficient for each period.

Cutting Path 3
T

1

09

08

Normalised Force
&
T

Figure 39: Visual representation of Pearson coefficient and the correlation
between Fy and F, for cutting path 3 (the data are filtered and normalised)
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Table 14: Pearson coefficient for cutting path 3

Start time End time Pearson Correlation
Coefficient between Fxand
Fy

39.2 40 0.997542

40.2 41 0.94705

41.2 42 0.978612 Strong
42.2 43 0.653762

43.2 44 0.861972

3.2. Interpretation of force transients

The force applied to the knife tip axis (Fx) was monitored by observing its rate
of change (gradient). This approach was chosen based on previous observations
(Aly, Low, Long, Brett, et al., 2023). The knife approaching or penetrating an
interface is consistently marked by a spike in force gradient. The gradient of the
force was computed from transients at 0.2 second intervals, a frequency sufficient to
detecting significant force fluctuations and at a rate to reinforce persistent and reject
anomalous readings when approaching an interface or when cutting through. Figure
40 indicates forces exerted on the knife tip (Fx) and their corresponding rate of
change. In the rate of change graph, the focus is on two key features: the regions
above the zero line, that indicate increasing force, and the points where the curve
intersects the zero line, signifying regions where the force peaks before diminishing.
Region 1 shows the first interface penetration at the start of the cut, region 2 shows
the increase of deformation while the knife is approaching and entering the natural
gap between the fat layer and region 3 shows the knife breaking through the last
tissue interface, exiting the sample.
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Figure 40: The force transient on the tip of the knife (Fx) and its rate of change

Figure 41 shows the correlation between the side forces Fy and the rate of
change dFy/dt with the features of the cutting path. Figure 41 (a) shows the
predefined trajectory of cutting path 3 laid out on the actual cutting path, displaying
how the pathway between the fat layers migrates from the straight-line trajectory.
The blue lines represent time stamps at which the rate of change of Fy intersected
with the zero line, representing local maxima or minima and shift of the side forces
on the sides of the knife. The regions depicted with green arrows represent an
increasing net force from the interface side and a positive rate of change, whereas
the regions with red arrows represent the opposite.

At the start of the trimming trajectory immediately following penetration of the
first interface, the rate of change force plotted as a function of time in Figure 41 (b)
shows a positive trend. This indicates an increase in force exerted on the inner side
of the knife from the interface direction of the sample (green area on the plots).
Concurrently, an increase in the net force is observed, peaking at 39.37 seconds at
the end of the first region. This phenomenon can be attributed to the positioning of
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the holding bracket. The fixed bracket serves as a focal point for maximal stress as it
immobilises the sample. Subsequently, as the knife approaches and penetrates the
natural separation between the fat layers, a comparison of the final cutting path to
the predefined trajectory (indicated by the black dotted line) reveals the knife's
tendency to deviate from the planned course as the tissues deform elastically
against the knife and force alignment along the natural split within the fat layers.
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Figure 41: Side forces rate of changes during the trim

Another straight-line incision was performed on a different piece of meat,
targeting a trajectory similar to cutting path 3 above. This incision, executed in close
proximity to the fat/lean interface, also traversed the natural pathway between the fat
layers. The purpose was to confirm the unique force transients observed in Fx shown

in Figure 40 and to confirm the relationship between Fy and the structural
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characteristics of the cutting trajectory similar to Figure 41. Figure 42 shows the new
incision, both the planned trajectory and the resulting cut.

Planned cutting T et~ T S
trajectory 2

Natural pathway
between fat
layers

Before cutting

After cutting

Figure 42: The planned cutting trajectory and the result after performing the
cut

Figure 43 displays similar patterns in force transients to those described
earlier in Figure 40. The pattern similarity was confirmed using a further DTW
analysis between the rate of change of Fxin Figure 40 and the rate of change of Fx in
Figure 43. This yielded a similarity score of 1.41. Both graphs show unique
transients represented by force peaks across three regions with smoother force
transients in between. Region 1 depicts the initial interface penetration at the
commencement of the cut, region 2 illustrates the increase in deformation as the
knife approaches and enters the natural gap between the fat layers, and region 3
indicates the knife cutting through the final tissue interface before exiting the sample.
At the same time, The side forces (Fy) and their rate of change in Figure 44 show a
close correlation on how the natural path between the fat layer can guide the knife

during the cut, similar to Figure 41.
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Figure 44: Side forces rate of changes during the trim
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3.3. Formulation of a cutting strategy

The results have shown that the nature of force transients can be used to
discriminate important conditions in cutting where decisions may be made to adjust
guidance of the knife during cutting. The next step is to encapsulate this new
knowledge into a strategy for machine guidance in the cutting operation. A cutting
strategy based on the results and observations above can be summarised as
follows:

1- Based on the external features and shape of the striploin steak, the knife is
positioned to have a cutting trajectory aligned with the natural pathway between the
fat layers in close proximity to the interface between the fat layer and muscles.

2- The knife makes initial contact with the carcass and starts the first tissue
interface penetration in region 1 (as shown in Figure 40). In this region, the forces
(Fx) increase and the tissues deform under the applied force until a mechanical
limitation is reached.

3- Once the knife is fully inside the carcass, the force readings are maintained
at a level to slice tissues. Sensor signals are monitored to discriminate the proximity
of the knife to the fat/lean interface region.

4- The red region of Figure 39 and region 2 in Figure 40 show spikes in forces
(Fx) in front of the knife due to deformation of the tissues as the knife approaches the
natural pathway. This is on the approach to interface surrounding the cavity.

5- Upon entering the natural pathway, the knife follows the trajectory that
offers the least resistance. The direction of the path trajectory is determined based
on the directions of the force on the sides (Fy) by reorienting the knife based on the
force signal shown in Figure 44.

6- The knife completes the cutting path by breaking through the last bit of
tissue (region 3 in Figure 40).

The experimental evidence on force transients to discriminate the approach to
tissue interfaces, discussed above in the paper, can be embodied in an automated
sensory perception system that uses specified forms of tactile force transients to
discriminate the important cutting conditions for the task at the knife blade. Following
identification the strategy is to maintain the desired cut path with respect to the
detected tissue conditions and either maintain the conditions or correct the cut path
to avoid the incursion. This requires decision functions to select and control the path
of the manipulator in near real-time. In the trimming operation for striploin steaks, the

aim is to guide the knife and achieve a specified range of proximity relative to the
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fat/lean tissue interface. Using this approach will enable control of the knife to take
recovery action in response to range of disturbances that are normally encountered
within the tissue medium to maintain the planned cutting path.

In the task of trimming a striploin steak, a crucial decision involves identifying
when the knife is approaching the fat/lean interface and entering the pathway
between the fat layers. Then, react to the side forces to navigate the turning points
accurately and follow the path of separation. This decision entails either rotating the
knife to follow the shape of the path and react to the side forces presented in Figure
41 and Figure 44.

4. Conclusion

This paper introduces an approach to discriminate common tactile force
features during a beef cutting operation that can be used to guide a knife attached to
a robotic manipulator. The study focused on analysing tactile sensory data transients
along two orthogonal axes on the knife, aiming to discriminate key interfaces during
cutting. The two forces analysed are the side force transients and the orthogonal
leading edge cutting force at the knife's tip. Coupling of the transients from these
orthogonal force components showed a robust combination of signalling to
discriminate the approach to tissue interface, which is a common feature to support
machine perception when cutting meat.

Experimental confirmation of the correlation between events and the nature of
force transients was used. The research derived the evidence by executing three
straight-line cuts to represent the trimming of striploin steaks. Each path
progressively approaches the primary interface between the fat layer and muscle
tissue. Visual observations supported by cross-correlation and dynamic time warping
analyses revealed stronger similarities in the orthogonal force transient components
for paths farther from the interface, yielding 95% and 97% cross-correlation
similarities and DTW scores of 1.2 and 2.6. However, as cutting approached the
interface, the correlation weakened due to disturbances and tissue breakdown at this
juncture. The cross-correlation in this case was 79% and the DTW score was 5.76.
Pearson correlation analysis for the cut near the interface indicated that the decline
in correlation began as the knife approached and sliced through the interface
between fat layers near the main fat/lean interface.

For trimming striploin steaks, the interface between the fat layers serves as a
pathway the knife can automatically follow, offering the least resistance and thus
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naturally guiding it in a manner similar to the technique used by skilled operators
performing beef cuts by following such interfaces. The pressure exerted by the
surrounding tissue channels the knife further into this natural gap. Moreover, lateral
forces on the knife's sides demonstrated acute sensitivity to the contour of the
natural path near the tissue interface, while forces aligned with the cutting direction
indicated the knife's penetration into this path.

This paper demonstrates a novel approach to integrate tactile sensing for
real-time machine perception during cutting that can be used in knife guidance by
machine relative to tissue position. While the approach has proven robust and
repeatable in identifying key features, further investigations are needed on a broader
range of samples and applying these principles to different cuts.
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5.2. EXTENDED RESULTS

This Section presents the results of additional experimental runs conducted

during the study of trimming fat from striploin steaks using robotic technology. The

aim is to expand on Section 5.1 findings by analysing twelve cutting paths, key

cutting events, and the unique force transients captured by the force sensor.
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Section 5.1 detailed results from five experimental runs, which demonstrated
clear correlations between the forces detected on the knife and the behaviour of the
surrounding tissues. The study highlighted two main points. First, cross-correlation
analysis can determine when the knife is approaching an interface. Second,
interpreting the combined force transients from the knife's sides and tip can
discriminate tissues and interfaces during cutting, as well as locate the knife relative
to them.

The experiments in this chapter provide additional insights into the nuanced
interactions between the cutting tool and the tissue under varying conditions. The
experimental setup is the same as described in Section 5.1.

The section includes twelve experimental cutting runs, divided among four pieces of
striploin steaks. The additional cutting runs are divided into 1) two sets of five cuts
across the fat layer with varying insertion angles (see Figure 45 a) and 2) two
individual cuts along a fat gap within the fat layer of the striploin (see Figure 45 b),
totalling four new workpieces added to the experiment. The cutting paths and
rotation angles were selected deliberately to cover a wide range of insertion angles,
taking into account the thickness of the fat layer in the samples. Table 15 describes

the samples.
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(b)
Figure 45: a) Cutting paths with varying rotation angles as they near the fat/lean
interface, b) An example to show cutting across the fat layer near or through an

interface
Table 15: Description of the samples
Sample number Number of Description
cutting paths

Striploin sample 5 Cuts Each cut gets progressively

1/2 closer to the lean/meat

interface by rotating the knife

Striploin sample 1 Cut A cut across the fat layer

3/4 across interfaces.

The objectives of the analysis performed are as follows:
1. Reflecting Key Events: In all twelve cuts, test the capability and accuracy of
the force transients in reflecting key cutting events, material features of the

sample, and tissue behaviour around the knife.
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2. Approaching Interfaces: In the ten cutting paths that progressively get
closer to the interface in striploin samples 1 and 2, test the capability of cross-
correlation analysis in revealing whether the knife is cutting away or
approaching interfaces. As mentioned in Subsection 3.1, "Force Transients on
the Approach to Tissue Interfaces,” of Section 5.1, when the knife approaches
the lean/meat interface, the perpendicular force components on the knife (Fx
and Fy) become increasingly disturbed, reducing the cross-correlation
coefficient between them.

3. Exiting Fat Layer: In cutting paths 1, 2, and 3 from striploin samples 1 and 2,
which cut through the fat tissue away from the fat/lean interface, explore
whether both Fx and Fy can indicate if the knife is nearing the edge of the fat
layer, suggesting the need to rotate inward to prevent exiting.

4. Following Interfaces: In cutting paths 4 and 5 from both striploin samples 1
and 2, as well as the cutting paths from striploin samples 3 and 4, analyse the
sensitivity of the lateral forces to the surrounding tissue behaviour and the
contours of the encountered interfaces. This part should support the
observations demonstrated in Subsection 3.2 “Interpretation of force
transients” in Section 5.1.

5.2.1. Force transients on the approach to tissue interfaces

This section focuses on identifying the proximity of the cutting trajectory to the
intermediate interface between the fat layer and the muscles. A cross-correlation
analysis between the forces Fx and Fy was conducted on each cutting path of
striploin samples 1 and 2. Table 16 presents the cross-correlation coefficients for
cutting paths 1 to 5.

A high similarity between Fx and Fy indicates that the knife encounters no
disruptions, such as interfaces or air pockets while cutting. For cutting paths 1 to 3,
the cross-correlation coefficients show high similarity, confirming a smooth cutting
trajectory. In contrast, for paths 4 and 5, the knife actively cuts through interfaces,
resulting in significantly lower similarity between the forces. These results align with

the findings in Subsection 3.1 of Section 5.1.

Table 16: Cross-correlation coefficients between Fy and Fy for cutting paths 1, 2, 3, 4,
and 5 across test samples 1 and 2
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Striploin 1 Striploin 2

Cross-correlation coefficient
Cutting path 1 0.971881 0 0.986034
Cutting path 2 0.954827 0.981252
Cutting path 3 0.987867 0.970036
Cutting path 4 0.836709 0.875335
Cutting path 5 0.807018 0.761868

5.2.2. Cutting away from interfaces

This section examines cutting trajectories that diverge from the fat/lean
interface, represented by cutting paths 1, 2, and 3, which exhibit high correlation
coefficients between the force components on the knife (Fx and Fy). The stage of the
cut of interest is when the knife is nearing the outer edge of the fat layer. This
information helps in identifying the correct timing and location relative to the
surrounding tissues, where the knife should execute the necessary rotation to trim or
slice a uniform fat layer relative to the fat/lean interface.

The analysis of force data and tissue behaviour during cutting, in relation to
the knife's position within the sample, reveals that the knife is nearing the outer edge
of the fat layer when the force on the knife tip (Fx) starts to decrease gradually
(indicated by a negative dFx/dt) and the net lateral forces on the sides of the knife
(Fy) reach their maximum on the inner side of the knife. These instances are
depicted in Figure 46 for cutting paths 1, 2, and 3 of striploin 1, and in Figure 47 for
cutting paths 1, 2, and 3 of striploin 2.
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When slicing through a fat layer, the force on the tip of the knife increases
upon penetrating the initial tissue interface until it reaches the necessary force
required to slit the bonds between the fat tissues (Aly, Low, Long, Brett, et al., 2023).
Subsequently, the force values stabilise as the knife progresses through the fat
layer, depending on the length of the path. As the knife gets closer to the final tissue
interface, the force on the tip of the knife (Fx) starts to gradually decrease (dFx/dt is
negative) as the knife gets closer to exiting the fat layer.

At the same time, the thickness of the tissue on the outer side of the knife
diminishes causing the net lateral forces on the sides of the knife (Fy) to reach their
maximum. The effective direction of the force component Fy is towards the inner side
of the knife from the direction of the fat/lean tissue interface. The figures above
illustrate the knife's location when these force conditions are met. It is noticeable that
the knife is consistently positioned close to the outer edge of the fat layer, which is
an ideal location for rotation if an automatic control strategy is implemented to guide
the knife.

A MATLAB script was created to simulate the receipt of data in real-time and
detect the cutting conditions mentioned above. The way the script works is that it
loads the data from the Excel files and then processes each data point as if it were
being received in real-time. A simple moving average noise filtering technique with a
window size of 10 is applied to both Fx and Fy to smooth out short-term fluctuations
and noise in the data. The derivative of Fx with respect to time is computed and also
filtered from noise to identify the rate of change of force on the tip of the knife.

The script detects peaks in Fy data using the findpeaks function. It then
iterates through the data points, updating a buffer that tracks the most recent data
points. During each iteration, the script checks if dFx/dt is negative and checks when
a peak in Fy occurs during the period. When both conditions are met—dFy/dt being
negative for at least 0.5 seconds and a peak in F,—the script records the time and
relevant values of Fy, Fy and highlights them on a plot of Figure 48 and Figure 49.
The table shows the times of the exiting conditions determined manually by
correlating the force transients from the graphs with the cutting videos, and by using
MATLAB. The MATLAB code is provided in Appendix B.
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Figure 48: MATLAB simulation to detect the time window that indicates the
knife is approaching exiting the fat layer for cutting paths 1,2 and 3 of striploin 1
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Figure 49:MATLAB simulation to detect the time window that indicates the
knife is approaching exiting the fat layer for cutting paths 1,2 and 3 of striploin 2
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Table 17: The time window of the knife close to exiting the fat layer detected manually
and using MATLAB code

Manual Method MATLAB
Path 1 8 8.3
Piece 1 Path 2 23.3 23.5
Path 3 41.3 41.3

5.2.3. Cutting through interfaces

The focus of this section is the cutting paths that encounter interfaces and
natural air gaps in the cutting trajectory. The experimental trials detailed here aim to
demonstrate the ability to identify instances where the knife cuts through interfaces
or natural gaps and to show that the lateral forces observed reflect the behaviour of
the surrounding tissues. Since cutting path 4 in striploin 2 only engages with a small
part of the interface, the examples that will be presented are cutting paths 4 and 5 of
striploins 1, cutting path 5 of striploin 2, and the cutting paths in striploins 3 and 4.
The assessment of tissue behaviour in response to knife movement is derived from
analysing cutting videos captured from various angles and correlating the timing from
the videos with the force-time data provided by the force sensor integrated into the
robot.

In cutting path 4 for striploin 1, Figure 50 illustrates the force transients on the
tip of the knife (Fx) and the areas where the knife penetrates interfaces and moves
between tissues. In the first region between 56 and 58.5 seconds, the tissue deforms
while the knife penetrates a thin fat layer and the fat/lean interface, causing resistive
force to accumulate before the penetration of the interface. Subsequently, there is a
brief drop in forces between 58.5 and 59.7 seconds as the knife follows part of the
interface within the cutting trajectory. Fx then increases as the knife returns to the fat
layer until it begins to decrease steadily again as it approaches the final interface
before exiting the fat layer.
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Figure 50: Force transients in the X-direction showing the instances of interface
penetration for cutting path 4 in Striploin 1

On the other hand, the side forces (Fy) and their rate of change demonstrate
the effect of the tissues on the sides of the knife. The behaviour of the force
transients relative to the surrounding tissues showed similar patterns observed in
Subsection 3 of Section 5.1. The direction of the changes in the lateral forces reflects
the position of the fat/lean interface relative to the knife. Regions indicated by green
arrows signify an increasing net force from the interface side, accompanied by a
positive rate of change, whereas those marked with red arrows indicate the opposite.

Figure 51 displays the correlation between the lateral forces (Fy) and the rate
of change (dFy/dt) with features of the cutting path. It presents the predefined
trajectory of cutting path 4 overlaid on the actual cut, demonstrating how the pathway
among fat layers deviates from a straight-line trajectory due to tissue deformation.

At the onset of the trimming trajectory, following penetration of the first
interface, the plot of the rate of change of force over time shows a positive trend.
This signifies an increase in the force exerted on the inner side of the knife from the
interface direction of the sample, as evidenced by the green region 1 on the plot
between 56.2 and 58.1 seconds, where the net force on the knife's side reaches its
peak. This can be attributed to the curved shape of the striploin steak and the
positioning of the holding bracket, both acting as focal points for maximal stress as
they immobilise the sample. Consequently, as the knife advances and penetrates the
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natural separation between the fat layer and the muscles, the rate of change of the
lateral forces becomes negative. This occurs because, as the knife follows the
fat/lean interface, the more malleable muscles end up on one side of the knife, while
the stiffer fat layer is on the other side, causing a shift in the lateral forces.

As the knife re-enters the fat layer (green region 3 and red region 4), the
pattern of lateral forces and their rate of change closely resembles that observed for
cutting paths 1, 2, and 3. The force exerted on the inner side of the knife from the
direction of the fat/lean interface increases until it nears the exit of the fat layer,

where it begins to gradually decrease again (at 62.7 seconds).
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Figure 51: Force transients in the Y-direction showing the effect of the tissue

behaviour and distribution on the lateral forces for cutting path 4 of striploin 1
In cutting path 5 of striploin 1, we observe a notable encounter unique to this
path, a piece of fat located across the striploin. The penetration of this area is
reflected in the spike of Fx due to tissue deformation at 80.2 seconds (Figure 52 (a)).
For cutting path 5 of striploin 2, the first highlighted region that ends at time
74.3 shows the penetration of both the first interface followed by the fat/lean
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interface due to the short cutting distance between them (Figure 52 (b)). The lateral
force profile of cutting paths 5 of striploins 1 and 2 is shown in Figure 53.
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Figure 52: Force transients in the X-direction showing the instances of interface
penetration for cutting path 5 of striploins 1 and 2
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Figure 53: Force transients in the Y-direction showing the effect of the tissue
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The experimental trial performed on Striploin 3 had a similar issue as the
cutting of Striploin 1, a slight misalignment between the knife and the test sample
caused the experiment to commence from a position different from the intended one.
Moreover, excessive tissue deformation resulted in the knife not only trimming the fat
but also cutting through the muscles. However, the results still revealed a robust and
precise correlation between the forces applied to the knife and the tissue behaviour.

Two instances of deformation were observed and demonstrated in Figure 54:
the first instance, occurring approximately between 2 seconds and 4.6 seconds,
depicts the knife penetrating interface number 1 from the fat layer to the muscles,
while the second instance, between 5.9 seconds and 7.05 seconds, illustrates the
knife's movement back from the muscles to the fat layer. Additionally, it was noted
that the average force level decreased when cutting through the muscles, aligning
with the findings reported by Aly et al. (2023) (Aly, Low, Long, Brett, et al., 2023).

The muscle-cutting region lies between the two peaks of the interface crossing.
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Figure 54: Force transients in the X-direction showing the instances of interface
penetration for cutting path in Striploin 3
The side forces accurately represented the lateral forces resulting from tissue
deformation around the knife and the structural layers within the sample that affected
the knife's trajectory. As the cutting commenced, with the knife crossing interfaces
from the fat layer towards the muscles, the side forces acting on the knife depicted
tissue deformation. In region 1, where the knife crosses the interface from the fat
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layer towards the muscles, the tissues rotated, exerting pressure on the inner side of
the knife. This rotation led to a positive increase in the rate of change of the lateral
force derivative, indicating that the net lateral forces were higher on the inner side of
the knife (region 1 in Figure 55). Region 1 ended at 4.6 seconds when the knife
successfully crossed the interface and began cutting through the muscles.

In Region 2, from 4.6 to 7.05 seconds, the knife cut through the muscles in
close proximity to the intermediate interface between the fat and the muscles. This
positioning caused the interface to exert pressure on the outer side of the knife, as
illustrated in region 2 in Figure 55. In the latter part of region 2, from 7.05to 7.7
seconds, although the knife crossed back to the fat layer, it encountered a natural
gap between the fat layers. This prolonged the force on the outer side of the knife,
resulting in a slight deviation from its straight trajectory. In Region 3, the knife
continued cutting through solid fat, with the net side forces from the side of the

interface, the inner side of the knife.
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Figure 55: Force transients in the Y-direction showing the effect of the tissue
behaviour and distribution on the lateral forces for the cutting path in Striploins 3
The cutting path in striploin 4 exhibits a trajectory that traverses across the fat
layer, gradually converging towards the natural path between the layers within the
sample. Consistent with the observed trends in other cuts, the lateral force transients
follow a similar pattern along the trajectory. Initially, there is a force exerted on the
inner side of the knife where the sample is held. Subsequently, there is a discernible
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gradient shift in the lateral force, indicating a change in the direction of the effective
force towards the outer side of the knife as it approaches the interface. This shift is
facilitated by the increasing compressibility of the meat as the knife moves closer to
the interface and cuts towards it. Upon penetration of the natural gap between the fat
layer, the cutting direction is dictated by the contour of the gap. The dynamics of the

force transients are illustrated in Figure 56.
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Figure 56: Force transients of Fx and Fy for the cutting path in striploin sample 4

5.2.4. Conclusion

Section 5.2 presented the results of additional experimental runs conducted
during the study of trimming fat from striploin steaks. The results were based on the
interpretation of the unique force transients of the force components on the tip of the
knife (Fx) and the forces on the sides of the knife (Fy) and their rate of change
(dF/dt). The correct interpretation of these force components, both individually and
combined, provides invaluable information about the behaviour of the tissues
surrounding the knife and the location of the knife at key cutting moments. This
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understanding allows for real-time adjustments to optimise cutting efficiency by
adapting to varying tissue resistances.

The force on the tip of the knife showed the resistance accumulated on the
cutting edge of the knife in the direction of motion. The main observation consistently
realised across all cuts was that the rate of change of Fx typically increases when the
knife approaches an interface or an air gap due to tissue deformation, necessitating
extra force to overcome the resistance and manage to cut through the interface or air
gap. On the other hand, the side forces Fy, representing the net lateral forces on the
knife, provided insights into the tissue behaviour surrounding the knife. Fy and its
rate of change, dFy/dt, indicated how the lateral forces change over time, with shifts
in dFy/dt suggesting changes in tissue resistance and the effective direction of
forces.

This chapter successfully confirmed the capability and accuracy of force
transients in reflecting key cutting events, material features, and tissue behaviour
around the knife across all twelve cuts, despite their differences. The force transients
consistently provided insightful data, validating their effectiveness in various cutting
scenarios.

In the ten cutting paths that progressively approached the interface in striploin
samples 1 and 2, cross-correlation analysis effectively revealed whether the knife
was cutting away or approaching interfaces. The results showed a decrease in the
cross-correlation coefficient as the knife approached the interface area due to the
increasing disturbance between the perpendicular force components (Fx and Fy)
near the lean/meat interface. This aligns with the observations and results in
Subsection 3.1, "Force Transients on the Approach to Tissue Interfaces," of Section
5.1.

In cutting paths 1, 2, and 3 from striploin samples 1 and 2, which traversed
the fat tissue away from the fat/lean interface, both Fx and Fy reliably indicated when
the knife was nearing the edge of the fat layer. The results showed that the point of
maximum net force on the inner side of the knife from the lean/fat interface direction,
coupled with a decreasing trend of the force on the tip of the knife, indicates that the
knife is exiting the fat layer. At this point, the knife should rotate inward to prevent
exiting, demonstrating the practical application of these force components in guiding
precise cutting. Figure 57 shows an example of the position of the knife when these
conditions are met.
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Figure 57: The location of the knife at fat exit conditions from the fat layer of
striploins 1 & 2
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In cutting paths 4 and 5 from both striploin samples 1 and 2, as well as in the
cutting paths from striploin samples 3 and 4, the lateral forces accurately reflected
the tissue behaviour on the sides of the knife. One observation was that the direction
of the effective forces shifted towards the fat tissue when the knife encountered more
deformable meat tissues on one side and stiffer fat tissues on the other. Another
observation was that when the knife entered a natural path between the fat layers,
the shifts in the forces on the sides of the knife accurately represented the contour of

this path. This indicates the potential to follow the path if an appropriate automatic
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control strategy is applied. These observations support the findings presented in
Subsection 3.2, "Interpretation of Force Transients," in Section 5.1, confirming the
lateral forces' responsiveness to tissue variations and their utility in maintaining

cutting accuracy along interfaces.
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CHAPTER 6: IMPLICATIONS OF THE RESULTS AND
FUTURE WORK

This thesis has explored machine tactile perception techniques for integration
in automated beef processing. The techniques aim to discriminate tissue features in
the carcass and cutting events related to the performed task. Unlike automated
processing of workpieces in many other industrial sectors, there are substantial
spatial and mechanical property variations and deformations in response to cutting
forces encountered between workpieces in beef processing. The developed
technique aims to discriminate meat tissue interfaces. This is crucial for tissue
separations and deboning processes that involve producing products, where a
machine must follow tissue interfaces or anticipate their approach. Using the
approach described in Chapters 3, 4 and 5 for machine tactile sensing and the
suggested cutting strategy of slicing fat layer from striploin steak product in Chapter
5, an automated system can be set up to discriminate a tissue interface encountered
on a starting cutting path and then guide the knife along the interface. In this sense,
the research has established a generic approach for cutting meat relative to the real-
time position of meat tissue along the tissue interface. This approach accounts for
expected natural variations and the significant deformations that occur in response to
cutting forces.

Tactile sensing has been shown to be appropriate for cutting meat tissue
interfaces. This is particularly relevant when the interfaces and the tissue response
are externally invisible. However, the literature review of Chapter 2 showed that the
previous work relied on tactile sensing for detection by force measurement value
alone was not a robust approach. Instead, Chapters 3 and 5 have shown that the
interpretation of force transients with an understanding of how these are related to
meat tissue interface presentation is a reliable scheme to aid perception of the
cutting dynamics.

There is a similarity with skilled human operators who guide cutting. They rely
on detecting changes in knife reactive forces, which are interpreted based on their
expectations of the tissue to be encountered. This understanding informs their
cutting path. The expectation is based on previous experience in physical skill
development and the knowledge of tissue configuration with respect to the anatomy

of the animal. Just as an operator will need to develop new perceptions and skills for
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new cuts, we can expect adjustments in machine perception to be needed to
process new operations.

In this chapter, the findings from the experimental work will be contextualised
within the wider field of automated red meat processing. We will discuss the benefits
this technology offers to the industry and how the work fits and aligns with future
work in the field to develop control systems and technology implementation

readiness.

6.1. Tactile perception for tissue-guided robotics in beef processing

A red meat carcass comprises three primary mediums for cutting: bones, fats,
and muscles interspersed with connective tissues. The butchery process generates
various cuts, categorised based on their relation to these mediums by following
tissue interfaces when cutting (Figure 58):

o Muscle from muscle cut: Involving the separation of muscle from adjacent
muscle along natural connective tissue seams and tissue interfaces, these
cuts focus on isolating individual muscles or muscle groups for steaks or
roasts.

o Muscle from bone cut (deboning): This essential butchery technique
separates muscle from bone at the tissue interface, aiming to produce
boneless cuts ideal for specific cooking styles. Skilful deboning maximises
muscle retention while minimising waste.

o Fat from muscle (that includes the trimming processes): This process
involves removing excess fat from muscle tissue. Trimming varies in extent,
influenced by desired fat content in the final product. Often achieved through
a slicing operation to identify and follow with given proximity to the tissue
interface, it is a key final stage in product preparation.

o Bone from bone (joints): This refers to separating bones at the joints. This
process is used for preparing cuts where the joints themselves, or the meat
around them, are the focus. It is commonly seen in cuts such as oxtail, where
the joints are part of the culinary appeal, or in preparing certain roasts, where
the joint is removed for easier carving.

These cutting categories highlight a consistent principle in beef butchery: the
importance of the capability to follow interfaces, or natural seams, between tissues.
The definition of the seam between tissues from observations, conversations with

skilled operators and personal experience can be identified as the natural line
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between groups of tissues within a carcass. It is a crucial landmark used to guide the
cutting process. Following these less resistant pathways enables the efficient
dissection of carcasses into various cuts with minimal waste. When cutting meat, the
force required at the cutting edge of the knife is reduced along these less resistant
pathways, as the cutting edge can more easily navigate through the softer
connective tissue and fat that make up these seams. The same is true for the sides
of the knife, which encounter friction as they slide through the meat. The value of
frictional resistance experienced during cutting is a function of the density and
texture of the meat. In areas where the meat is more dense or tough (such as within
the fat tissues or muscles), the value of frictional resistance is greater. Conversely,
along seams (the pathway of least resistance), where muscle tissue is less dense
and with greater occurrence of connective tissue or fat, the frictional force
component is lower, easing the progress of the knife along the cut path.

The seam between the muscles The connective tissues between the fat layers and The tendons between the bone and
group between the fats and muscles muscles

Figure 58: Types of interfaces between different tissues

The technique can be used to significantly enhance automation capability in
abattoir cutting operations. Chapter 4 showed the ability of the tactile perception
technique to trim individual pieces of striploin steaks precisely by following interfaces
in the product. This advanced capability for automation presents a unique
opportunity for abattoirs: the production of intricate added-value cuts, such as
striploin steaks, traditionally associated with butcher shops. The introduction of a
specialised machine capable of processing the loin primary cut into individual steaks
and performing precise trimming is not normally considered in abattoir operations.
This innovation diversifies the abattoirs’ product range by offering substantial labour

savings.
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The tactile perception approach has potential application to a wide range of
cuts. For example, this method could be used to separate the round muscle into
three major muscle groups: inside, thick flank, and silverside. The beef round has a
visually detectable seam between the muscle groups (Figure 59). As outlined in
Chapter 2, previous research has targeted this specific cut, attempting to follow the
muscle seams primarily using vision and simulation (Long et al., 2014a). A force
sensor was deployed on a pulling robot to stretch the interface ahead of the cutting
knife. However, this approach was unsuccessful due to the absence of a real-time
adaptive sensing technique capable of reacting to unexpected resistive forces, which
prevented the robot from completing the cut.

The sensing technique proposed in this thesis can rectify these issues by
replacing the vision and simulation components previously used to guide the cutting
knife. As substantiated in Chapters 2 and 3, one of the critical advantages of the
tactile perception technique is its precision in detecting increases in resistive force
and responding accordingly, either by oscillating the knife or reorienting it to maintain
the correct cutting trajectory. This method is more simple and computationally
efficient without requiring simulation for trajectory tracking. The approach does not
eliminate the use of vision and simulation techniques. Instead, that can be more
usefully applied as supportive tools to enhance accuracy rather than as the primary
method for guiding the knife.

Fw Follow the
‘ seam between
the muscles

@\ 3 7 5

1) Inside
2) Thick Flank
3) Silverside

Figure 59: Separation of the round cut muscle groups
In deboning, where muscles are separated from bones, although the tissue
types differ, the underlying concept remains the same, and is potentially easier due

to the distinct properties between bone and muscle. The focus here is to maintain
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side contact with the bone without cutting into it and simultaneously avoiding
penetration into the muscle seam.

It is critical to recognise the role of cutting tools and handling techniques,
particularly when employing tactile perception in meat processing. The manipulation
technique in the study was simple: the meat was secured against the knife,
executing a slow, straight-line motion along a predefined trajectory. This was
specifically applied to striploin steaks in the experimental setup. In practical settings,
carcass handling and manipulation techniques become more significant. Carcasses
are often hung in front of the operator during splitting and primary cuts, leveraging
gravity for tissue separation. Smaller cuts are performed on benches, with manual
manipulation by operators using techniques such as stretching and fixing the product
in place for precise cuts.

Regarding cutting tools, static knives of various sizes and shapes are chosen
for their suitability to the specific cut. Operators employ mixed movements, such as
oscillating motions, to ease cutting, especially against increased resistance from
meat deformation at interfaces. Sometimes, cuts are made at multiple depths,
progressively deepening until complete. All these techniques are reactive responses
to unique transient forces encountered during cutting.

Furthermore, the type and working mechanism of the cutting tool is crucial,
especially when considering unique force transients and using non-static blades
such as rotary, jet, or oscillating blades. Each tool type introduces different dynamics
requiring analysis and adaptation for optimal performance.

6.2. Research outcome as part of future work

Chapter 2, the review chapter, revealed that varying characteristics and
deformable nature of red meat require real-time perception to guide cutting tools
relative to meat tissue position during processing. An approach for tactile sensing to
discriminate tissue interfaces and anticipate deflection within the medium has not
been established before. Tactile perception represents a largely untapped sensing
method to aid machine perception in red meat processing, holding promise for real-
time tool guidance during cutting operations. In this thesis, tactile data is examined
from a novel perspective, drawing inspiration from the perceptual skills of human
operators. Human operators interpret tactile data not as mere numerical values but
recognise shifts and patterns, utilising this understanding to discriminate tissues and
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identify specific cutting events within a product, informed by their accumulated
knowledge and experience.

The application of machine learning and pattern recognition technigues aims
for automation machines imbued with human-like perceptual skills. By identifying
distinct patterns in force data, such models can discriminate between tissues and
tissue interfaces, thereby enhancing the precision and efficacy of automated cutting
systems. Having correlated the nature of cutting force transients to the guiding tissue
features of the cut path opens the possibility of developing machine learning and
pattern recognition to guide a knife in red meat cutting. Additionally, exploring
stochastic time series models like ARIMA could potentially model the temporal
characteristics of cutting forces, providing another layer of predictive capability to
enhance real-time tool guidance. These models can capture the underlying patterns
and trends over time, which may further improve the understanding and prediction of
cutting events.

The research conducted in this thesis represents the initial steps to
developing machine learning and pattern recognition to guide a knife in red meat
cutting. It involves data collection and labelling by recording the force exerted on the
knife under controlled cutting conditions and correlating the unique force transients
with crucial cutting events. For example, the experimental results show that cutting
through different tissue types leads to noticeable force changes. Cutting across
muscle requires less force compared to cutting through fat, and following along
tissue interfaces requires minimal force due to weaker bonds between the tissues, a
technique commonly used in manual cutting for blade guidance. Additionally, the
lateral forces on the sides of the knife reflect the contours of tissue interfaces,
suggesting their potential as a navigational aid.

The second step focuses on analysing and extracting features from this data
that characterise the cutting scenarios. These features include the shape of the
unique transients in the data indicative of certain cutting events. Features include the
detection of peaks during interface penetration by monitoring the force rate change
on the tip of the knife and the higher mean force required to cut through fat
compared to muscle. Also, the direction of the meat pressure on the sides of the
knife is represented by the direction of the rate of change of the lateral force
component. These features are crucial for discrimination and enhanced precision in
automated systems.
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Subsequent steps involve pre-processing. In this research, simple noise
filtering techniques, such as the moving average method and Savitzky-Golay filter,
were applied. Other frequency-based filter methods remain to be explored, as
distinct frequency patterns were observed while cutting different tissues.
Normalisation was also critical to standardise data for consistent analysis, focusing
on patterns over magnitude.

Further pre-processing is expected to be the next step to progress the work
performed in this research. Time-domain analysis identifies peak forces, while
frequency-domain analysis, using methods such as Fast Fourier Transforms (FFT),
discerns the force pattern’s frequency components. For non-stationary signals typical
in meat cutting, time-frequency methods such as the Short-Time Fourier Transform
(STFT) or Wavelet Transforms are effective (Sejdic et al., 2009).

Machine learning algorithms, such as support vector machines (SVM) and
neural networks, are then employed to efficiently classify different types of cuts or
textures. The accuracy and reliability of force measurements in automated meat
cutting can be significantly enhanced by combining force sensing technology with
intelligent data processing, such as neural networks. These algorithms are designed
to draw on detailed pattern observations from previous studies, allowing for the
discrimination of various tissue types and cutting events. For example, Maithani et al.
(2021) illustrated a force amplification strategy and an intent prediction strategy
using an unrolled Recurrent Neural Network (RNN), which enabled a KUKA LWR
robot to provide assistive forces to a professional butcher (Maithani et al., 2021).

The applications of these signal processing techniques extend beyond just
enhancing automated cutting systems. They contribute significantly to culinary
training, food texture research, and even the design of more ergonomic and efficient
cutting tools. This exploration into real-time signal processing of force transient data
in meat cutting offers insights into the mechanics of cutting and potential
improvements in automation and efficiency. Future research could delve into more
advanced machine-learning techniques and improved sensor technologies for more

precise analysis.

CHAPTER 7: Conclusion

A real-time machine tactile perception technique for automatically guiding a
cutting tool attached to a robotic system for cutting red meat has been achieved in
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this work. The approach has utilised information in the temporal (time-series)
sensory data to discriminate conditions and tissues in real-time through
characteristic behaviours of the medium to enable guidance on the trajectory of the
cutting path in the deforming meat tissues. The research findings have been applied
to develop a simplified cutting strategy to guide a knife to slice a fat layer from the
top of a striploin steak by cutting relative to the interfaces in the product.

The current state of robotics and automation in red meat and pork cutting and
deboning and the applicability of existing sensing technologies for guiding robotic
systems in real-time were reviewed and evaluated. The review identified the
shortcomings and challenges of current robotics implementations, and the suitability
of existing sensing technologies to guide robotic systems in real-time have been
identified. Tactile sensing has not been used significantly, as using force values to
discriminate working conditions in meat is unreliable. Yet, this sensing mode enables
exact positioning between the cutter and the tissue, provided the tissue can be
discriminated. The technique established here has accomplished this requirement.

A versatile industrially appropriate testing rig to identify tissue cutting force
characteristics correlated with tissue presentation and the deformation taking place
has been developed for the experiments. The rig included a 6-axis robotic
manipulator, a 6-axis force sensor, a static knife mounted on a cabinet, and an
integrated adjustable table for meat specimen. The food-grade and IP67-rated rig
material enabled machine maintenance, and the setup was easily cleaned following
experiments.

The robotic manipulator, selected for its suitable workspace and payload,
proved to be well-suited for the experimental tasks. Adjustability and versatility in the
table design enabled a wide variety of cutting trajectories and meat specimens to be
attached to the cabinet, allowing enhancements by adding extra brackets, which
were instrumental in securing and precisely positioning the test samples in front of
the knife. The force sensor exhibited high sensitivity to all types of force components
on the knife and its direction, which was critical for understanding the cutting
dynamics. The precision was presented through the accurate real-time correlation
between the force data from the sensor and the cutting events performed by the
knife, ensuring accuracy in the observations and analysis. The implementation of
high-resolution cameras enabled capturing of clear footage from various angles.

The test samples were chosen to allow observations and correlation of cutting

action, tissue response and force transients in a frame approaching two dimensions.
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The sample used was striploin steaks, where the tissues are almost constant
through the thickness of the medium.

An approach to identify and discriminate key tactile characteristics of tissues
and important structures to guide trajectories relative to meat tissue and tissue
interfaces was achieved. The tactile sensing technique explored interprets
characteristic transients in the tactile feedback data to discriminate between different
tissues and tissue interfaces encountered during cutting and anticipate the approach
to key structures during the cutting operation. When cuts were made across various
tissues, there was significant precision when comparing the positions of the knife in
the tissues, as observed in recorded cutting videos, to the force transients provided
by the force sensor through the robot. Cutting through lean muscles exhibited lower
average force requirements and smoother characteristic transients compared to the
fat tissue layer, where additional interfaces surrounding air gaps are encountered
within the tissue. The interface between these two primary tissues — muscle and fat —
represents a critical transition zone, where the knife encounters the interface
between them. The characteristic force transients here show a distinct shift between
two levels of force values and a prominent peak attributed to deformation of the
tissues responding in the presence of the elastic nature of the interface. An analysis
of these force characteristics, when cutting across tissues with similar arrangements,
revealed a high degree of consistency through cross-correlation analysis. Correlation
coefficients ranged from 80% to 97% when similar cuts were performed on
comparable tissue arrangements.

Controlling the depth of the knife in the tissues is a challenging aspect of
cutting, both in manual and automated operations. This difficulty arises due to
several factors: tissue interfaces inside are invisible from the outside of the meat
sample, the non-uniformity of tissues, and varying relaxation rates of tissues
influenced by temperature and gravity. Experimental work revealed that the depth of
cutting using the knife impacts only amplitude values of force transients, not the
observed characteristics of the different stages of cutting. Force pattern analysis
showed substantial similarity across different cutting depths (10, 20, and 30 mm from
the sample surface), with cross-correlation coefficients ranging from 88% to 97%.

Formalisation of techniques for discriminating tissues, tissue interfaces, and
the meat's response have been achieved, along with a cutting strategy proposed to
perform a simplified version of cutting a typical marketable product (Striploin

trimming). The approach was tested on striploin steak trimming task by following
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interfaces. Two orthogonal forces transients were used, leading knife edge cutting
force and side force. The methodology effectively indicated when the knife was
approaching and cutting through an interface. The leading edge force transient was
employed to identify when the knife is approaching an interface, while the side force
transient was used to delineate the contour of the interface being followed, as
evidenced by the meat pressure on the sides of the knife.

Visual observations, supported by formal cross-correlation and dynamic time
warping (DTW) analyses, showed stronger similarities in the orthogonal force
transient components for paths in uniform parts in the fat layer further from any
interfaces, yielding cross-correlation similarities of 95% and 97%, and DTW scores
of 1.2 and 2.6. However, as ascutting approached the interface, the correlation
weakened due to disturbances and tissue breakdown at this critical juncture. In these
instances, the cross-correlation dropped to 79%, and the DTW score increased to
5.76. Pearson correlation analysis for cuts near the interface indicated a decline in
correlation as the knife neared and sliced through the interface, particularly between
fat layers near the main fat/lean interface. Concurrently, the side forces
demonstrated high sensitivity and precision in response to pressure exerted by
tissues against the sides of the knife.

The research contribution lays down a practical framework for the real-time
application of tactile sensing in meat processing. The findings indicate that when
enhanced by tactile sensing, machine perception can successfully navigate the
complexities of meat cutting, a task characterised by variations in carcass

presentation and mechanical properties.
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APPENDIX A: GRAPHS OF ALL RAW DATA

This section presents the graphs of all the raw data for all the experiments. The cuts
are divided by chapters.
A.1l. Chapter 4 data (Sections 4.1 and 4.2)

A total of 24 cutting paths were conducted. Of these, 18 were part of the
investigation presented in Chapter 4.1, and 6 were part of Chapter 4.2. Eight cuts
were performed as straight-line cuts across the tissues from the fat layer towards the
muscles, and another 8 were performed in the opposite direction. Six cuts were
performed at different cutting depths: 10, 20, and 30 mm.
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A.1.1. Cutting paths directed from the fat layer towards the muscles
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A.1.2. Cutting paths directed from the muscles towards the fat layer
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A.1.3. Cutting at different depths

Forces (Fx) Vs Time for Depth 10 mm 1

10f
8 |
6 -
z
(%]
(O]
o
S 4t
2 |
O |
0 2 4 6
Time (Sec)
Forces (Fx) Vs Time for Depth 10 mm 2
17.5}
15.0f
12.5¢
=)
=~ 10.0}
(%]
(O]
o
o
= 7.5t
5.0f
2.5¢
0.0f
0 2 4 6 8

Time (Sec)

161



Forces (N)

Forces (N)

40t

30F

201

10+

60

50F

40

30F

20

10|

Forces (Fx) Vs Time for Depth 20 mm 1

2 4 6
Time (Sec)

Forces (Fx) Vs Time for Depth 20 mm 2

2 4 6
Time (Sec)

162



Forces (N)

N)

Forces (

100

80

60

40

201

701

60

50

40

201

10|

Forces (Fx) Vs Time for Depth 30 mm 1

2 4 6
Time (Sec)

Forces (Fx) Vs Time for Depth 30 mm 2

2 4 6
Time (Sec)

163



A.2. Chapter 5 data (Sections 5.1 and 5.2)

The first three pieces have cuts progressively moving away from the fat/lean
interface. The last three pieces have cuts made across the fat layer from one side to
the other, near the fat/lean interface.
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A.2.3. Piece 3
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A.2.5. Piece 5
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APPENDIX B: MATLAB CODE TO DETECT THE FAT
EXISTING CONDITIONS (Section 5.2)

% Set formatting variables
lineWidth = 3;

markerSize = 20;

fontSize = 20;
axisLineWidth = 3;
axisFontSize = 20;

% Load the data
data_fx = readtable('TrimlX.xlsx'); % Excel sheets name
data_fy = readtable('TrimlY.xlsx');

% Apply simple moving average for filtering the data from noise
window_size = 10; %The window size of the filter
data_fx.Fx_smooth = movmean(data_fx.Fx, window_size);
data_fy.Fy_smooth = movmean(data_fy.Fy, window_size);

% Compute the derivative of Fx with respect to time
data_fx.dFx_dt = [NaN; diff(data_fx.Fx_smooth) ./ diff(data_fx.Timer)];
data_fx.dFx_dt_smooth = movmean(data_fx.dFx_dt, window_size);

% Initialize buffers for live data simulation
buffer_size = 50; % Size of the buffer to hold recent data

% Initialize buffers

buffer_fx = NaN(buffer_size, 1);
buffer_fy = NaN(buffer_size, 1);
buffer_time = NaN(buffer_size, 1);

% Variable to store the index where the condition is met
condition_met_index = NaN;

% Simulate live data input, This loop receives the data points one by one, adds
them to the buffer, and starts looking for the predetermined cutting conditions.
for t = 1:height(data_fx)

% Simulate new data point

new_time = data_fx.Timer(t);

new_fx = data_fx.Fx(t);

new_fy = data_fy.Fy(t);

% Process the new data point
condition_met = process_new_data(new_time, new_fx, new_fy, window_size,
data_fx, t); %This function looks for the cutting conditons

% Pause to simulate real-time data acquisition
pause(0.01); % Adjust based on your data acquisition rate

% Exit loop if the condition is met
if condition_met
condition_met_index = t;
break;
end
end
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% If a condition is met, plot the results
if ~isnan(condition_met_index)
% Extract relevant information
relevant_indices = max(1, condition_met_index-
buffer_size+1):condition_met_index;
relevant_fx = data_fx.Fx(relevant_indices);
relevant_fy = data_fy.Fy(relevant_indices);
relevant_time = data_fx.Timer(relevant_indices);
relevant_dFx_dt_smooth = data_fx.dFx_dt_smooth(relevant_indices);

% Plot the smoothed data

figure;

subplot(3, 1, 1);

plot(data_fx.Timer, data_fx.Fx, '-b', 'LineWidth', lineWidth);
hold on;

plot(data_fx.Timer, data_fx.Fx_smooth, '--r', 'LineWidth', lineWidth);
xlabel('Time (Sec)', 'FontSize', fontSize);

ylabel('Force (N)', 'FontSize', fontSize);

title('Force (Fx) vs. Time', 'FontSize', fontSize);
legend('Original Fx', 'Smoothed Fx');

set(gca, 'LineWidth', axisLineWidth, 'FontSize', axisFontSize);
grid on;

subplot(3, 1, 2);

plot(data_fy.Timer, data_fy.Fy, '-b', 'LineWidth', lineWidth);

hold on;

plot(data_fy.Timer, data_fy.Fy smooth, '--r', 'LineWidth', lineWidth);
xlabel('Time (Sec)', 'FontSize', fontSize);

ylabel('Force (N)', 'FontSize', fontSize);

title('Force (Fy) vs. Time', 'FontSize', fontSize);

legend('Original Fy', 'Smoothed Fy');

set(gca, 'LineWidth', axisLineWidth, 'FontSize', axisFontSize);

grid on;

subplot(3, 1, 3);

plot(data_fx.Timer, data_fx.dFx_dt_smooth, 'LineWidth', lineWidth);

hold on;

plot(data_fx.Timer(condition_met_index),
data_fx.dFx_dt_smooth(condition_met_index), 'ro', 'MarkerSize', markerSize);

xlabel('Time (Sec)', 'FontSize', fontSize);

ylabel('dFx/dt (N/s)', 'FontSize', fontSize);

title('Smoothed Derivative of Force (Fx) vs. Time', 'FontSize', fontSize);

legend('Smoothed dFx/dt', 'Point of Interest');

set(gca, 'LineWidth', axisLineWidth, 'FontSize', axisFontSize);

grid on;

% Plot the peaks in Fy and points of interest in dFx/dt
figure;
subplot(2, 1, 1);
plot(data_fy.Timer, data_fy.Fy_smooth, 'LineWidth', lineWidth);
hold on;
plot(data_fy.Timer(condition_met_index),
data_fy.Fy smooth(condition_met_index), 'ro', 'MarkerSize', markerSize);
xlabel('Time (Sec)', 'FontSize', fontSize);
ylabel('Force (N)', 'FontSize', fontSize);
title('Forces on the side of the knife (Fy)', 'FontSize', fontSize);
legend('Smoothed Fy', 'Point of Interest');
set(gca, 'LineWidth', axisLineWidth, 'FontSize', axisFontSize);
grid on;
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subplot(2, 1, 2);

plot(data_fx.Timer, data_fx.dFx_dt_smooth, 'LineWidth', lineWidth);

hold on;
plot(data_fx.Timer(condition_met_index),

data_fx.dFx_dt_smooth(condition_met_index), 'ro', 'MarkerSize', markerSize);

end

xlabel('Time (Sec)', 'FontSize', fontSize);

ylabel('Rate of change of force (N/s)', 'FontSize', fontSize);
title('First derivative of Fx', 'FontSize', fontSize);
legend('Smoothed dFx/dt', 'Point of Interest');

set(gca, 'LineWidth', axisLineWidth, 'FontSize', axisFontSize);
grid on;

% Function to process new data point
function condition_met = process_new_data(new_time, new_fx, new_fy,
data_fx, current_index)

persistent buffer_fx buffer_fy buffer_time buffer_size negative_

start_time peak_detected

if isempty(buffer_fx)
buffer_size = 50;
buffer_fx = NaN(buffer_size, 1);
buffer_fy = NaN(buffer_size, 1);
buffer_time = NaN(buffer_size, 1);
negative_duration = 9;
start_time = NaN;
peak_detected = false;

end

% Update buffers with new data

buffer_time = [buffer_time(2:end); new_time];
buffer_fx = [buffer_fx(2:end); new_fx];
buffer_fy [buffer_fy(2:end); new_fy];

% Apply moving average for smoothing
smoothed_fx = movmean(buffer_fx, window_size);
smoothed_fy = movmean(buffer_fy, window_size);

% Compute the derivative of Fx
dFx_dt = [NaN; diff(smoothed_fx) ./ diff(buffer_time)];

% Apply smoothing to the derivative
smoothed_dFx_dt = movmean(dFx_dt, window_size);

% Store the smoothed derivative in the original data table
data_fx.dFx_dt_smooth(current_index) = smoothed dFx_dt(end);

% Detect peaks in Fy
[~, peak_indices] = findpeaks(smoothed_fy);

% Track duration where dFx/dt is negative
if smoothed_dFx_dt(end) < @

if isnan(start_time)

start_time = buffer_time(end);

end

negative_duration = buffer_time(end) - start_time;
else

start_time = NaN;
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negative_duration = 9;
end

% Check if there is a peak in Fy during the negative duration
if negative_duration >= 0.5
% Check if any peak is detected during this period
for i = 1:length(peak_indices)
if buffer_time(peak_indices(i)) >= start_time &&
buffer_time(peak_indices(i)) <= buffer_time(end)
peak_detected = true;
peak_time = buffer_time(peak_indices(i));
break;
end
end
else
peak_detected = false;
end

% If both conditions are met, display the result and return true
if peak_detected
disp(['Conditions met at time: ', num2str(peak_time)]);
disp(['Fx: ', num2str(buffer_fx(peak_indices(i))),
", Fy: ', num2str(buffer_fy(peak_indices(i))), .
", dFx/dt: ', num2str(smoothed_dFx_dt(peak_indices(i)))]);
condition_met = true;
else
condition_met = false;
end
end
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APPENDIX C: FORCE SENSOR SETUP AND CALIBRATION

The section explores one specific force sensor, ABB 165. The way it is set up
and appropriately calibrated to provide accurate force readings. Then, it views the
general basic theory of work and the different configurations behind strain gauge-
based force sensors.

C.2 Sensor set up
C.2.1 Hardware connection
The ABB force sensor comes with the following components (ABB, 2015):
i. Force sensor plate
ii.  Voltage measurement box
iii.  Control cable
iv.  Sensor cable
v. Adapter plate

Figure 60: ABB force sensor 165 hardware components (ABB, 2015)

The sensor is connected to the manipulator using the adapter plate after
correctly orienting the sensor’s coordinates relative to the manipulator coordinates by
lining up the axes marks on both sides. The correct orientation of the sensor to be

connected to the robot arm can be shown in Figure 61.
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Figure 61: ABB force sensor 165 alignment lines (ABB, 2015)
After that, the sensor is interfaced with the IRC5 controller using the voltage

Figure 62: ABB force control connections (ABB, 2015)

C.2.2 Software calibration
For accurate readings, the zero offsets of the sensor will need to be calibrated
to remove the noises that could interfere with the data. The attached software allows
the user to calibrate the sensor readings by applying the following instructions:
o Set up gravity compensation.
o Set up sensor offset calibration.
o Define the weights attached to the sensor, such as the weight of the cutting
tool.
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After calibration, the sensor will be tested by applying forces in each direction
on the attached cutting tool and examining the sensor's values. The expected zero

offset readings of the sensor are shown in Figure 63.

Sunrise Instuments Calibration Report

i
\ddress:2nd Floor Building B2 19#Keyuan Xishi Read Manning Guangxi Province China S30007

*hone:+86 771-389-9499 Fax:+86 771-3589-9497
“mail sri@srisensor.com SE{

Zalibration Mo. SRI-OR-39308 Cal Date 2018-3-13
odel No. 3HACD4B8735-001 Serial No. 5984
fechnician Wang Temp{CyHum.(%). 230/710
Zustomer ABB Excitation{\'} 5.0026
Jescription FBE0N D104MM LT Cable Length

Zomments SHCS MB:13N.m

Voltage Calibration

Bridge Capacity Zero Offset Nonlinearity Hysteresis M;:L Sensitivity Change
MN/Nm W %FS %FS W WIEU %
Fx -660 -0.0139 -0.23 -0.66 -6.8593 1.0393E-02 0.00
FY 660 -0.0139 021 0.64 68649 1.0401E-02 0.00
FZ -1980 -0.014%9 -0.0% -0.07 -7 1572 3.6148E-03 0.00
MX 60 -0.0153 017 -0.26 -7.2745 1.2124E-01 0.00
MY 60 -0.0152 -0.12 -0.10 -5.9928 1.1655E-01 0.00
MZ B0 -0.0176 0.32 0.31 TEIT4 12712E-01 0.00
Wire Color Codes

FUNCTION fuimx fyimy fzimz

+EXC

+51G

Exc CONMECTOR,COLOR CODE SEE SPEC SHEET

-5IG

sensor ID

D Retum

Reference Load Cell
danufacturer Model Type Model No. Serial No. Cal Due Date
SUNRISE Golden Standard M3002-2000MN 123 18/07/18

Traceable to the Mational Insfitute of Metrology China (NIMC)
Tis calibration folllows the calibration document SRILAB-BZ-001:2014 which defined in the Sunrise Instruments Lab

The load cell calibration system consists of a 300KN load frame CMTS305 made by SANS Testing Machine Co.,
solden reference load cell by Interface. Data acquisition system by Mational Instruments.

Calibrated by Approved by
Page 10of2

Figure 63: ABB force sensor calibration values
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APPENDIX D: CUTTING KNIFE DESCRIPTION

This high-end carbon stainless steel boning knife is designed and crafted for

the specialized task of boning meats, catering to both professionals and home

cooks. The knife features a stiff, curved blade that provides leverage and precision

cutting Figure 64.

Figure 64: The cutting used in the experiments

D.1 Key Features:

High carbon stainless steel
Ergonomic nylon handle
Rockwell Hardness: 56-58
Made in Switzerland
Lifetime Warranty

Product code: #138300

D.2 Specifications:

Construction: High carbon stainless steel, Nylon handle
Hardness: Rockwell 56-58

Dimensions: 16 cm

Features: Stiff curved blade

Cleaning/Care: Dishwasher safe, can be sterilised
Made in: Switzerland

Warranty: Lifetime
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