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ABSTRACT 

This research investigates an approach to tactile perception for guiding a 

cutting tool attached to a robotic system processing red meat. Conventional tactile 

sensing methods, reliant solely on spatial force values, have met with inconsistent 

results when addressing the complex cutting conditions in red meat processing. The 

variability inherent in red meat workpieces, coupled with the deformations induced by 

processing forces, necessitates an innovative machine perception approach to 

match the adaptability required in red meat processing tasks. This research explores 

an alternative approach leveraging temporal sensory data to discriminate meat 

tissues and tissue interfaces in real-time, thereby informing the trajectory of the 

cutting tool relative to the position of the deforming meat tissues. The strategy 

correlates unique characteristic force transients in the force data with predefined key 

cutting events of the task. While the thesis focuses on developing and validating the 

tactile perception strategy through experimental setups, it does not extend to full 

deployment in a robotic system. The methodology has been validated through 

experimentation using a custom-designed test rig including a 6-axis robotic 

manipulator, 6-axis force sensor, and high-resolution cameras. The results showed 

high precision in identifying unique force transients in the data and the key cutting 

moments in the performed task relative to the cutting tissues and tissue interfaces 

involved, which were consistent across cuts on comparable tissue arrangements. 

These principles are relevant across trimming and separation operations, where 

following tissue interfaces that are not visible during the operation is necessary. The 

forces exerted at the cutting edge of the knife indicate when the knife is approaching 

an interface, while the orthogonal side forces detect the behaviour of the deformable 

meat tissues causing the knife to deviate from a predefined cutting path. The results 

have enabled the proposal of a simplified machine perception strategy for trimming 

striploin steak by cutting relative to the real-time position of tissues and tissue 

interfaces. The investigation has produced new understanding and knowledge on 

guiding cutting in meat along tissue interfaces, using correct interpretation of force 

feedback to formulate judgment and cutting strategy ready to be executed. The 

proposed 'skilled robot system' aims to replicate human operator adaptability for 

various cutting tasks. 
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CHAPTER 1: INTRODUCTION 

1.1. Research aim and objectives  

This research aims to produce a simplified cutting strategy for trimming 

striploin steak by cutting relative to the real-time position of tissues and tissue 

interfaces. This strategy is based on results from robotic tactile perception and the 

analysis of unique force transients observed during simple cuts relative to different 

tissues and their interfaces. The developed cutting strategy contributes to the 

development of a real-time machine tactile perception technique for automatically 

guiding a cutting tool attached to a robotic system. This tool operates near internal 

meat tissue interfaces to perform typical cuts in beef processing operations, similar 

to the approach used by skilled human operators during manual slicing in abattoirs. 

Normally achieved by highly skilled human operators, cutting operations 

require both the use of visual and tactile senses to plan, anticipate and determine the 

state of the cut during the process. In this way, the operator can execute cutting 

trajectories such that certain tissue interfaces are not penetrated to preserve high-

value meat mediums, maintain defined thickness of surface layers of fat above 

muscle tissue interfaces and to produce the desired shape for the product. 

Meat deforms in response to applied cutting forces and there are various 

tissue phenomena encountered when cutting. These are primarily tissue types, 

tissue interfaces and cavities within tissues. Some of these can offer guidance on 

cutting trajectories while others should not. 

A novel tactile sensing scheme is presented here that identifies with the force 

characteristics (spatiotemporal) as opposed to spatial force values only. These are 

used to discriminate cutting conditions amenable to the required cutting path. 

Temporal variations and signal transients can be interpreted automatically to 

discriminate the placement of cutting trajectory relative to tissue interfaces. Following 

this approach, cutting can be performed successfully. The approach is relevant as 

many industry meat cutting operations are guided relative to tissue interfaces.  

The focus of the study is to demonstrate the feasibility of tactile sensing as a 

perception tool to guide a knife when cutting red meat. The study assesses the 

accuracy of unique transients in the tactile signal data for discriminating between 

different tissue types (fat and muscle) and identifying the position when the blade is 

approaching or crossing the interfaces between them. The study also examines how 
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these tissues deform in response to cutting forces at critical stages of the operation. 

The insights gained are used to develop a simple cutting strategy for trimming a 

striploin steak, focusing on cutting relative to the interface between the fat and 

muscle layers.  

To achieve the aim of the study, the following research questions are 

proposed to guide the stages of the research:  

Question 1: What consistent mechanical features in red meat tissues can be 

reliably detected using tactile perception? 

Question 2: How feasible and precise is tactile perception in identifying red 

meat tissue features and behaviour during cutting? 

Question 3: What are the persistent unique transients in the tactile data that 

discriminate tissues and their interfaces?  

Question 4: How can the unique force transients related to the mechanical 

features of red meat be interpreted to identify key cutting events? 

Question 5: Can tactile perception-based techniques inform a control 

strategy to guide a cutting knife toward an automated cutting system? 

Accordingly, the objectives of this work are as follows: 

1- Review and evaluate both the state of robotics and automation in red meat 

and pork cutting and deboning, and the applicability of existing sensing 

technologies for guiding robotic systems in real-time.  

2- Develop a versatile testing rig to identify tissue cutting force characteristics 

through correlation with tissue presentation within samples and to be ready for 

further work to guide cutters automatically relative to tissues using the tactile 

sensing technique.  

3- Strategically choose test samples and experimental conditions that allow 

observations of cutting actions and tissues behaviour while processing. 

4- Investigate an approach to identify and discriminate key tactile characteristics 

of tissues and important structures to guide trajectories relative to meat tissue 

and tissue interfaces. 

5- Formalise an approach to identify and discriminate key tactile characteristics 

of tissues and important structures to guide trajectories relative to meat tissue 

and tissue interfaces was achieved. 

6- Create a cutting strategy for demonstration to perform a simplified version of 

cutting a typical marketable product (Striploin trimming). 
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1.2. Motivation and challenges of integrating robots in red meat processing  

The red meat and livestock industry is a significant contributor to the 

Australian economy. It constitutes 27% of the total agricultural sector with a value 

add of $13.5 billion from 2020 to 2021 (Meat & Livestock Australia, 2022). The 

industry revolves around the following animal stock: cows, veal, and buffalo, when 

slaughtered for beef these form a significant part of the market with sheep and goat 

forming a smaller contribution. These species are defined in the Australian market as 

the source of ‘red meat’. Within this industry, the processing industry subsector 

follows farming as the second largest contributor, adding 23% (or $3.1 billion) to the 

industry’s total value in terms of GDP. According to Meat & Livestock Australia (Meat 

& Livestock Australia, 2022), the red meat and livestock industry employs over 

400,000 individuals directly or through associated businesses, with the processing 

sub-sector accounting directly for 31,200 jobs. Furthermore, Australia also has a 

strong presence on the consumption side, ranking as the world’s seventh-largest 

beef consumer. 

In the red meat global market, Australia stands as a leading exporter. The 

country ranks as the fourth largest beef and veal exporter after Brazil, India and 

USA, while it leads the world in sheep meat and goat meat exports (Meat & 

Livestock Australia, 2022). It has a 3% share of global beef production and around 

6.7% of global sheep meat production (Meat & Livestock Australia, 2022). The 

national and international significance of the industry drives the motivation to take 

advantage of increasing opportunities in the rising new markets. Improving the 

processing sector is crucial to maintain competitiveness. 

1.2.1. Business challenges 

The industry faces numerous challenges related to manual labour in abattoirs. 

One of the major issues concerns employee-related costs, which are considered one 

of the highest in the world. This imposes disadvantage in the face of international 

markets and for consumers where pricing is critical. The disadvantage is increasingly 

more prominent given that competitors worldwide are rapidly improving product 

quality. Table 1 shows costs related to the industry in Australia and the other 

competition. In Australia, labour-related costs account for 85.4% of the total costs 

per head, while in USA, Brazil and Argentina, it is less than 50 %.  
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Table 1: Analysis of regulatory and related costs in red meat processing 

 Australia United States Brazil Argentina 

Cost 

category 

Cost per 

head 

(AU$) 

As % of total 

costs (excl. 

livestock 

purchases) 

Cost per 

head 

(AU$) 

As % of total 

costs (excl. 

livestock 

purchases) 

Cost per 

head 

(AU$) 

As % of total 

costs (excl. 

livestock 

purchases) 

Cost per 

head 

(AU$) 

As % of total 

costs (excl. 

livestock 

purchases) 

Labour-

related costs 

$210.54 85.4% $129.46 44.6% 75.63 43.9% $88.31 42.9% 

Utilities-

related costs 

$21.62 6.0% $12.26 4.2% 19.93 11.6% $13.05 6.3% 

Certification-

related costs 

$7.29 2.0% $1.49 0.5% 0.52 0.3% $2.28 1.1% 

Total (excl. 

livestock 

costs) 

$360.62 100.0% $290.15 100.0% 172.29 100.0% $205.96 100.0% 

Cost per kg 

HSCW 

$1.22  $0.80  0.70  $0.92  

 

Furthermore, the industry suffers from recruiting and retaining highly skilled 

operators. In an attempt to solve this problem, the industry has resorted to hiring 

temporary operators from overseas. This is an expensive solution. Despite these 

efforts, a 20% shortage in skilled labour remains. An alternative being considered is 

to increase livestock exports without prior processing. However, this would reduce 

significant added value by the industry.  

Arduous and hazardous conditions within abattoirs result in significant 

financial losses due to prevalent health-related issues and injuries (Purnell & 

Grimbsy Institute of Further & Higher Education, 2013). Moreover, direct human 

contact with the meat can lead to the transfer of foreign bodies, which negatively 

impacts the quality of the meat and its shelf life (Purnell & Grimbsy Institute of 

Further & Higher Education, 2013). A typical deboning room operates at a fast pace, 

leaving little time for workers to perform their assigned tasks accurately. This high-

pressure environment often leads to mistakes. 

These factors, coupled with increasing demand for red meat and the 

competitive pressure from the emergence of plant-based protein alternatives, 

underline the urgent need for increased productivity. Consequently, the future of the 

industry is predicted to be rooted in automation and robotics-based technology. 

Implementing such technologies will mitigate the current issues and propel the 

industry forward, ensuring it remains competitive on the global stage. 
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1.2.2. Operational Challenges in Implementing Robotics for Meat Processing 

Successful implementation of robotics with any degree of autonomy in an 

industrial process hinges on two factors where adaptive machine autonomy needs 

further improvement to control response: the characteristics and properties of the 

product being processed and the nature of the task itself.   

Red meat as a material is characterised by inconsistent presentation and 

unpredictable behaviour. The majority of red meat tissues comprise muscles and 

fats, both of which possess plastic and visco-elastic properties (Choi et al., 2013). 

This results in the carcass undergoing deformation. The shape of the carcass can 

change due to external forces such as gravitational force depending on the way the 

carcass is held and positioned, and during the cutting process when cutting forces 

are applied. The deformation of red meat tissues is further influenced by the type of 

tissues being cut, their distribution and the direction of the cut relative to the direction 

of the tissues (Nabil et al., 2015). Moreover, the dimensions of red meat carcasses, 

especially beef, can vary considerably. The structural consistency of these 

carcasses is non-uniform and can differ significantly between animals due to 

uncontrollable variables such as breed, gender, environmental conditions, and 

feeding practices (Schumacher et al., 2022; Toldrá, 2006). 

The variable and dynamic nature of red meat tissue, combined with product 

specificity, renders adopting conventional automation systems based on pre-

operative perception unsuited to industry needs. The current most common sensing 

approaches, such as CT scanning and DEXA can only define fixed pre-operation 

cutting trajectories without the ability to respond to real-time variations. The 

technologies use ‘Snap shot’, pre-process measurements to determine spatial 

values for guiding machines, without taking the response of the meat subjected to 

varying gravitational or applied processing loads.  

Conventional techniques for holding and handling products fail when applied 

to red meat carcasses. Deviations during processing, whether due to tissue 

deformation and deflection influenced by gravity or applied processing forces, the 

slippery texture of the tissues, can cause the cutting tool to deviate from its 

designated path. This will culminate in product damage and a consequent reduction 

in yield. 

For traditional automation of the past to be effective, every aspect of the 

process needs to be predictable and to minimise variations requiring real-time 

adaptation by processing machinery. A common characteristic emerges when 
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looking at the three leading industries indicated in Figure 1. These have seamlessly 

integrated automation technologies for processing: their target products are rigid and 

exhibit consistent process behaviour, with minimal variation in presentation. This 

stands on the opposite side of the product spectrum to processing natural products 

and red meat.   

 

Figure 1: Robotics in Various Industries (IFR International Federation of 

Robotics, 2021) 

Another further operational consideration lies in the selection of the 

appropriate cutting tool. One cutting tool cannot suffice for all red meat cutting tasks. 

The choice is influenced by the nature of the cut, its location, and the tissues 

involved. Certain cuts are obscured, nestled within the carcass or beneath other 

tissues, necessitating specialised tools to access these areas. Static knives of 

different shapes and pneumatic cutters are suitable for softer tissues in trimming and 

slicing operations. Static and electrically powered saws are used to cut through 

bones (Figure 2).  
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Figure 2: Manual cutting tools 

Market specifications are another factor, representing customer requirements 

and contrasts between markets. The presentation and specification of the end 

product must be appealing and precise, making the cutting process very delicate and 

can be damaged by inappropriate handling. According to UNECE Standard (UNECE, 
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2016), two of the minimum requirements related to food safety that have to be met in 

a cut are: 

• The product must be intact and presentable. The product’s final shape must 

appeal to the market (customers). Table 2 shows typical fat thickness 

specifications in one particular meat product.  

• The product must be free of broken bones. The cutting tool must not cut 

through the bones and follow the interface between bones and muscles. For 

maximum profit, the meat attached to bones has to be minimal.  

Table 2: Fat limitations in a cut (UNECE, 2016) 

Fat thickness code Category 

0 Not specified 

1 Peeled, denuded, surface membrane removed 

2 Peeled, denuded 

3 Practically free (75% lean/seam surface removed) 

4 3 mm maximum fat thickness or as specified 

5 6 mm maximum fat thickness or as specified 

6 13 mm maximum fat thickness or as specified 

7 25 mm maximum fat thickness or as specified 

8 Chemical lean specified 

9 Other 

 

For a robotic system to be considered viable and investment-worthy, Meat 

and Livestock Australia (MLA) has developed criteria that have to be met (Ruberg, 

2021). This includes exceeding the accuracy of manual operation for the same cut, 

improving the yield in the final product, and replacing the work of at least five 

labourers per unit installation.   

1.3. Solution rationale   

Humans can interpret complex information from sensory perception and 

respond appropriately with measured strategy in real-time to enable the required 

result when ‘crafting’ a product. They are capable of discriminating between different 

mediums, learning and anticipating unexpected occurrences, making decisions 

driven by past experiences and present data, and adapting and solving new and 

unforeseen problems. In contrast, in principle, industrial robots are general-purpose 

programmable machines that could outperform human operators if programmed to 

execute actions from a correct interpretation of appropriately presented sensory 

information. These robots demonstrate high accuracy in performing fully specified 

tasks, have endurance and consistency in operations, respond quickly to any sudden 
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changes in the environment, and can work in extreme working conditions. The 

combination of human-like perception capabilities to achieve superhuman qualities in 

machines, given machine attributes of persistence in performing cuts, no fatigue, and 

repeatability, could potentially yield a system that unifies the best of both worlds by 

leveraging the attributes of both robotic systems and human operators. 

The increasing capabilities of robotics and their role in ‘Industry 4.0’ highlight 

the vast potential of the technology. However, a fundamental understanding of 

critical process functions, such as the response of interaction with tools deployed in 

natural workpieces, needs to be understood to address and position the machine 

advantage. 

Red meat cutting is based on the physical interaction between the cutting tool 

and the carcass. Despite the non-uniformity and unpredictability of red meat 

carcasses, consistent materialistic features across all carcasses can serve as the 

base for a robust control strategy to guide a separation task. Every red meat cut 

comprises three distinct mediums: bones, fats, and muscles, with connective tissues 

in between, as illustrated in Figure 4. This makes all the cuts generated from a 

carcass can be divided into four groups, delineated by the mediums involved: 

o Muscle from muscle cut. 

o Muscle from bone cut (deboning).  

o Fat from muscle (that includes the trimming processes). 

o Bone from bone (joints). 
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Figure 4: Types of Mediums: Fats, Bones, and Muscles (Left to Right) (Jacob, 

2018) 

Cuts are executed by following the interfaces between these mediums or 

relative to them. Observing manual operators in deboning rooms provides insights 

into the complexities of red meat tissue separation and the skills required to 

accomplish it. Operators apply knowledge from experience about the target task to 

determine the correct cutting path relative to the features of the carcass and the 

specifications of the target market. These operators depend on their visual and 

haptic senses to control the cutting tool with real-time interaction with the state of the 

workpiece and apply judgment to ensure the knife follows the correct cutting path 

and achieves the desired outcome. However, their primary reliance lies in their 

sense of touch, given that much of the cutting occurs inside the carcass and 

between tissues in areas not visible to the eye.  

An example of a cut can be demonstrated in Figure 5. The presented cut is 

crafted from a lamb forequarter. It is done by removing the foreshank, Humerus and 

Scapular bones following the seams between the overlying and underlying muscles, 

leaving the undercut attached (UNECE, 2016). The operator starts by marking the 

interface line between the shoulder and rib cage, then follows the rib cage bone 

interface all the way until the shoulder falls.  

 

 

 

Figure 5: Full shoulder pre-cut and after-cut (UNECE, 2016) 

These findings indicate that a similarly functioning robotic system is required 

for handling such dynamic material. A hybrid system, combining the capabilities of 

visual and tactile perception, would essentially mimic the techniques of skilled 
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human operators. This integrated approach would offer a versatile solution capable 

of managing the intricate task of processing highly variable and deformable natural 

products, such as red meat. This approach presents a viable strategy to navigate the 

challenges posed by the irregular nature of these products. 

1.3.1. Tactile perception as a solution  

Tactile perception based technology is the provision of information through 

physical interaction with the surrounding environment. The technology goal is to 

detect the mechanical properties or response of the operating medium through force 

and torque feedback. The data obtained from contacting different objects could be 

informative if the force transients are observed carefully and interpreted correctly. In 

red meat processing, tactile perception is an under-researched area, even though 

the essence of the procedure rests on the physical interaction between the cutting 

tool and the carcass. Recent literature reveals that efforts to utilise tactile perception 

in guiding a knife along complex cutting paths have been largely unsuccessful. A 

significant reason for this is the conventional approach of viewing tactile data merely 

as numerical values. However, in a natural environment such as that of red meat, 

where the tissues are constantly changing, tactile data must be perceived differently.  

Robotics technology in the medical field and surgical procedures has utilised 

tactile data presented by force and torque sensors to develop real-time informative 

sensing techniques with great accuracy. Brett et al.(Taylor, 2008) developed and 

tested a successful technique to guide medical drilling, utilising both force and torque 

feedback from the tip of the drill. This same technique was employed for needle 

insertions, guided by the force feedback from the tip of the needle (Peter N Brett et 

al., 1997; Maurin et al., 2004). The technique emphasised identifying the unique 

transients and patterns in the tactile data rather than just viewing them as values. 

These unique transients correlate with crucial moments during surgery, providing 

invaluable insights to discriminate different mediums and to anticipate key events 

during procedures.  

Inspired by the technique’s success in the dexterous medical field, there’s 

potential to adapt it for cutting red meat tissues. Learning from these medical 

applications emphasises importance of the reactive transients in the tactile feedback 

as an identification tool for discriminating features and states in red meat tissues 

during operations in near real-time. This approach enables an appropriate response 

to conditions by taking account of typical tissue behaviour that can be used to control 
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during critical events. When cutting red meat, the response could be through 

oscillating the knife to cut through an interface or tilting and rotating the knife to 

counter deformation and restore the desired cut path.  

1.4. Thesis layout  

Each chapter contributes towards the investigation to identify an approach to 

tactile perception for cutting red meat tissues. This will be covered in the following 

chapters by fulfilling the objectives mentioned in Section 1.1. It should be noted that 

the chapters with follow-ups are structured this way because they are published 

papers with word limit constraints, which could not accommodate the additional 

follow-up information.  

 Chapter 2.1: This chapter discusses complexities associated with integrating 

robotics into the red meat processing industry. A review of the latest advancements 

in automation systems for cutting and deboning red meat and pork is provided with a 

specific focus on sensing technologies and perception techniques of these systems. 

Furthermore, this chapter assesses the suitability of common sensing technologies 

for real-time guidance, a crucial requirement for successful robotics implementation 

to process dynamic red meat tissues. Emerging assistive technologies in the red 

meat industry are also presented. These are potential alternative solutions before full 

automation of red meat cutting tasks. 

Chapter 2.2: This chapter expands on the review of the innovative 

approaches to utilising tactile perception in robotics, focusing on applications that 

process materials with properties similar to red meat. 

Chapter 3: This chapter details the practical approach used to investigate 

tactile perception in red meat cutting. It explains the rationale for the experimental 

design, which is aimed at addressing the research questions and achieving the 

overall research goal. The chapter provides an overview of the experiments 

conducted throughout the thesis, detailing the aims, procedures, and approaches for 

gathering and analysing data in each experiment. It also discusses all the variables 

influencing robotic cutting and how they are controlled across the experiments. 

Finally, the chapter introduces a theoretical model that shows the types of forces 

applied to the knife during cutting and the distribution of these forces, including a 

free-body diagram illustrating the forces acting on the knife. 

Chapter 4, Section 1: This section of Chapter 4 outlines a systematic 

approach aimed at investigating the viability of tactile perception in discriminating 
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tissues and tissue interfaces, and identifying key cutting events while executing 

simple cuts on different tissue types within prepared test samples. Tactile data is 

represented through force measurements from a force sensor attached to a knife 

mounted on a robotic manipulator. The feasibility of the technology is demonstrated 

by identifying similarities in force patterns and recognising distinctive transients 

associated with different cutting events. 

Chapter 4, Section 2: Addressing one of the primary challenges encountered 

in the experiment described in Chapter 4.1, this chapter investigates how the 

accuracy of capturing unique force transients during the cutting process is affected 

by the cutting depth of the knife. 

Chapter 5, Section 1: This section of Chapter 5 extends the results and 

observations from the experimental work of Chapter 4 to characterise a more 

practical application: striploin chop trimming using force feedback. It explores the 

effectiveness of using both the leading force component on the tip of the knife and 

the orthogonal force components on the sides of the knife simultaneously to 

discriminate the proximity of the knife relative to interfaces. In addition, the 

correlation between the lateral force component and the contour of the tissue 

interface the knife follows. The results obtained from this experiment were used to 

develop a simplified cutting strategy for effectively trimming a layer of fat from the top 

of a striploin chop relative to the interface between the fat layer and the muscle 

tissue. 

Chapter 5, Section 2: A continuation of Section 5.1, presenting further 

experimental runs to enhance the findings by analysing additional cutting paths, key 

cutting events, and the relative unique force transients recorded by the force sensor. 

Chapter 6: This chapter discusses results and observations from the 

experimental work within the broader spectrum of automated red meat processing. 

The chapter aims to synthesise these findings, highlighting the significant 

advancements made in tactile perception technology and its application in robotic 

meat cutting. 

Chapter 7: Conclusion of the research outcomes. 
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CHAPTER 2 

 2.1. LITERATURE REVIEW - PAPER 1-  ROBOTICS AND 

SENSING TECHNOLOGIES IN RED MEAT PROCESSING: A 

REVIEW 

2.1.1. Introduction 

This paper provides a comprehensive review of the advancements and challenges in 

integrating robotics and sensing technologies in red meat cutting. It highlights the 

need for automation in an industry characterised by physically and mentally 

demanding tasks, particularly in the deboning rooms. We discuss the complexities 

involved in automating meat processing, stemming from the diverse nature of red 

meat carcasses and their unpredictable deformable behaviour during processing. 

The paper also examines state-of-the-art technological solutions, focusing on 

sensing technologies for precision cutting and methods for processing sensory 

information. 
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2.1.2. Published paper  
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2.1.3. Links and implications 

The paper "Robotics and Sensing Technologies in Red Meat Processing: A 

Review" discusses the complexities of implementing robotics in red meat processing, 

mainly due to the variability in meat properties. It explores the limitations of current 

robotic systems and perception methods in executing the intricate red meat cuts to 

the required market specifications. The paper highlights the potential of tactile 

sensing, a less researched technology in the red meat processing domain, drawing 

parallels to its successful use in medical surgeries. Tactile sensing could enable 

cutting robots to perceive and interpret data accurately, adjust strategies as needed, 

and perform cutting actions in real-time. The next chapter is a continuation of the 

literature review, expanding on reviewing and analysing tactile perception sensing 

technologies in different fields and applications.  
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2.2. TACTILE PERCEPTION 

This chapter builds on the literature review, concentrating on the application of 

tactile perception in robotic red meat cutting. It also explores innovative and 

successful applications of tactile perception in guiding robotic systems to process 

similar mediums. 

Red meat cutting is a sophisticated task that relies on the physical interaction 

between the cutting tool and the carcass. Skilled operators utilise their knowledge of 

meat tissue properties, strategically following or cutting along 'natural seams'—the 

natural divisions within the meat such as muscle groups or fat lines—to achieve 

precise outcomes. Operators leverage their sense of feeling, or tactile perception, to 

instantaneously respond to the unpredictable and deformable behaviour of red meat 

tissues, and to distinguish between the different tissues and interfaces. 

The conventional method of applying tactile perception in robotics typically 

involves relying on the accuracy of numerical data provided by sensors, combined 

with detailed simulations of the intended task. This approach is viable for solid 

materials, whose properties change only under extreme conditions such as high 

pressure or temperature. Consequently, robots can depend on robust criteria, 

including precise measurements and material models for accurate predictions of 

process-related risks and outcomes. However, the challenge in robotic red meat 

cutting lies in the material's deformation and variability, which defy the assumptions 

made for rigid materials. 

2.2.1. Mechanical features of red meat 

Red meat consists mainly of viscoelastic tissues such as muscle and fat, 

which exhibit non-linear mechanical properties and variability both within and 

between specimens (Choi et al., 2013; Merenkova et al., 2020). The stiffness of 

these tissues is influenced by the animal’s environment, breed, and diet (MLA & 

AMPC, 2008; Schumacher et al., 2022).  

Fat tissue is categorised into intramuscular, intermuscular, subcutaneous, and 

visceral fats, each characterised by unique physical properties that stem from their 

locations in the carcass and the compositions of their fatty acids (Lonergan et al., 

2019; Sheridan et al., 1994). Muscle tissue, the primary edible part of the carcass, is 

structured in complex layers of connective tissues—endomysium, perimysium, and 

epimysium—and contains intramuscular fat, or marbling (Megías et al., 2019).  
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Bones also affect the behaviour of the target cut; most cuts that include bones 

require following the profile of the bone by cutting the connective tissues (tendons) 

with the muscles or cutting the ligaments between the bones (Megías et al., 2019). 

This composite nature of red meat results in non-uniform rheological properties 

during handling and processing (Nabil et al., 2015). 

2.2.2. Tactile perception in dynamic environments: 

Red meat cutting, culinary settings, and surgical theatres, despite their 

diverse applications, face similar challenges when it comes to precision cutting. 

These environments require real-time adaptation to handle the variable and 

unpredictable nature of the materials involved, such as different types of food and 

biological tissues. Traditional robotic cutting systems, however, often rely on pre-

defined settings based on initial scans of the input product. This approach can lead 

to inefficiencies in cutting, increased wear on cutting implements, and potential 

damage to the materials being processed. Such limitations highlight the need for 

more adaptable and responsive robotic technologies that can better mimic the 

nuanced human touch. 

The following sections will discuss and evaluate the role of tactile perception 

in enhancing systems designed for slicing red meat (beef and lamb), as well as other 

materials with similar properties, such as pork, various foods, and in medical 

surgeries. 

2.2.2.1 Tactile perception in meat cutting:  

Efforts have been made to utilise tactile perception for guiding cutting tools in 

meat processing. Scott Technology developed a system aimed at guiding a cutting 

tool around the intricate bone joints between the leg and the aitch bone for 

hindquarter cutting. However, this system did not achieve commercial success due 

to suboptimal yields in the final product (Steven Maunsell & Scott Technology Ltd, 

2018; Ruberg, 2021). Figure 6 illustrates the complex structure of the aitch bone and 

compares a robot-cut piece with yield loss to the desired outcome. In a further 

initiative, Meat and Livestock Australia (MLA) collaborated with Mayekawa Global to 

refine and advance this technology, though a viable system has yet to be introduced 

to the market (Steven Maunsell & Scott Technology Ltd, 2018). 
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Figure 6: The figure shows the complex bone profile of the aitch bone and the yield 

loss from using robotics in deboning lamb hindquarter (Steven Maunsell & Scott 

Technology Ltd, 2018) 

In the SRDViand (Robotis’es de D’ecoupe de Viande) research project, an 

attempt was made to program a robot to perform cuts for ham deboning using force 

control, adapting to changes and path non-uniformity in real-time (Guire et al., 2010; 

Subrin et al., 2011). The study focused on optimising the robotic cutting process to 

closely follow bone profile without causing damage or leaving excess meat. It 

highlighted crucial cutting parameters like angle (α), feed rate speed (Vf), and the 

perpendicular speed to Vf (Vn), which significantly influence cutting quality (Figure 

7). For example, maintaining a cutting angle α under 30° could reduce cutting forces 

by 30%, minimising bone and meat damage. Force control was essential for real-

time path adjustments due to variations in bone size and shape, and meat texture 

and firmness. This control allowed the robotic system to adjust blade pressure based 

on the meat's resistance, emulating a skilled butcher's touch. However, similar to 

previous efforts with lamb hindquarter deboning, the outcomes did not meet market 

specifications for the final product. 
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Figure 7: Robotic system for pork leg deboning and the bone cutting parameters 

(Guire et al., 2010; Subrin et al., 2011) 

Within the same project, a strategy was proposed that combined vision and 

force feedback to perform a 'Z-shape cut' for beef carcass quartering (Guire et al., 

2010). This approach involved separating the hindquarter from the forequarter, using 

the rib cage as a reference to guide the cutting tool, with real-time tactile feedback 

updating the tool's trajectory. In Figure 8, the cutting process begins by using visual 

data to position the knife at the starting point A, then follows the 13th rib with 

constant force from A to B. It then uses a counting system to cut through the rib cage 

from B to C, and concludes by moving the blade from C to D also using force 

sensing until a specific force level is reached, indicating the blade has cut through 

the spinal column. The force sensor ensures the tool maintains contact with the ribs 

while following their contour. 

 

Figure 8: The cutting path of the Z-cut for beef quartering (Guire et al., 2010) 

 

Research under project ARMS explored advanced techniques, combined 

material modelling and hybrid tactile/vision perception systems to automate muscle 
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separation in meat cutting. The models' task is to anticipate the changes in the 

cutting medium, while the active perception technique provides a real-time update of 

the process’ current state.  Although accurately modelling the viscoelastic properties 

of meat in real-time is highly challenging, simpler models were suggested as a way 

to indicate potential behaviour rather than to predict it precisely (Cotin et al., 2000). 

Nabil et al. (2015) evaluated various approaches to simulate the approximate 

behaviour of red meat (Nabil et al., 2015). Updated versions of the mass-spring 

model (MSM) and tensor mass model (TMM) proved effective in representing 

realistic tissue motion and interactions with cutting tools while optimising 

computational efficiency (Han et al., 2020; Nabil et al., 2015). These models 

facilitated simulations of muscle separation between the round and shank, employing 

different approaches for cutting (Figure 9 (a)). 

          Additionally, a visual-based algorithm was developed to trace the 

aponeurosis's trajectory by analysing the path's curvature features. An experimental 

setup was developed to test these strategies, featuring a robot that pulls on one side 

of the meat to widen the cutting path, a technique derived from manual deboning that 

reduces cutting force by stretching connective tissues (Figure 9 (b)) (Long et al., 

2014b). Despite advancements, the robots still faced unexpected resistive forces, 

which impeded complete cuts. Integrating a force controller has helped detect and 

mitigate these forces, although this system has only been validated on foam, with 

further meat-cutting trials planned (Long et al., 2014a).   
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Figure 9:a) Beef round simulation (Nabil et al., 2015), b)Experimental rig for beef 

round muscles separation (Long et al., 2014a) 

          Similarly, Xie et al. developed a system that incorporated vision as a 

primary perception technique assisted by tactile perception for lamb hindquarter 

deboning. The system employed a Multi-scale Dual Attention U-Net (MDAU-Net) for 

the image-based segmentation of sheep carcasses, enhancing semantic 

segmentation accuracy critical for precise robotic cutting (Xie et al., 2021). This 

system also incorporates a hybrid control strategy that utilises both force and 

position feedback to prevent collisions with the hip bone during the cutting process. 

Figure 10 illustrates the cutting path generated from visual segmentation, which is to 

be followed with the aid of tactile perception. 
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Figure 10: Cutting path around the hip bone using visual segmentation 

          

 Liu et al. (2024) developed a method that advances robotic tactile perception 

and control for soft tissue cutting tasks (Liu et al., 2024). Their approach utilises 

Dynamic Movement Primitives (DMPs) as a high-level behaviour generator to create 

flexible motion trajectories that mimic human operators. This is assessed by Inverse 

Velocity Admittance Control (IVAC), a low-level control scheme that accurately 

translates desired cutting paths into actual robot joint movements. Force sensor is 

embedded in the cutting tool, providing real-time force feedback for admittance 

control and tactile perception. The system's data acquisition involves capturing 

cutting movements and force data from multiple demonstrations, which are then 

encoded into a low-dimensional latent space using Principal Component Analysis 

(PCA) and Gaussian Mixture Models (GMM) for effective pattern recognition and 

behaviour prediction. Gaussian Mixture Regression (GMR) is employed to learn from 

this data, generating target behaviour trajectories for the robot. During operations, 

the robot dynamically adjusts its actions based on this learned model and real-time 

force feedback, ensuring precision and adaptability to variations in tissue structure. 

This method significantly enhances the robot’s ability to perform complex cutting 

tasks with human-like finesse. Figure 11 displays various scenarios from the 

experimental work on hindquarter deboning, with the trajectories indicated. 
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Figure 11: Different cutting scenarios generated for hindquarter deboning using 

machine learning (Liu et al., 2024) 

         Maithani et al. proposed a pHRI (Physical Human-Robot Interaction)-

based assistive strategy for an industrial meat cutting system (Maithani et al., 2021). 

This system combines the complex perception and judgment of a human operator 

with real-time force feedback and advanced machine learning, utilising RNN-LSTM 

networks to dynamically adjust assistive forces during meat cutting operations. 

Impedance control, paired with force and torque sensors, ensures optimal alignment 

and effectiveness of the cutting tool, despite the variable nature of meat. This 

approach enhances both performance and ergonomic safety by leveraging tactile 

data for real-time control and by anticipating future actions. Figure 12 displays the 

system and the outcome of the approach applied to cutting foam, including a graph 

that plots the cutting forces exerted by a user with and without the intent prediction 

module. When the module is activated, the user applies only 20 percent of the force 

compared to when it is deactivated.  

 

Figure 12: The cutting system and the results comparison between the forces 

required for cutting when the prediction module is on and off (Maithani et al., 2021) 
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2.2.2.2. Tactile perception in other applications:  

In natural environments, relying solely on raw sensor values is unreliable. 

Instead, it is more effective to identify persistent trends in the form of transient 

sensory data and use these unique patterns to discriminate between conditions and 

materials. This approach has been successfully applied in both culinary 

environments and surgical theatres, which share similar challenges in handling 

cutting tasks involving materials like red meat.  

A study conducted by Kato et al. highlights this point through their exploration 

of flexible materials such as tofu and agar, analysing how these substances deform 

under pressure—either elastically or plastically (Kato et al., 2021). They utilised a 

Time-Delay Neural Network (TDNN) model, which was specifically trained to extract 

relevant features from force and position data collected by a robotic arm equipped 

with a force sensor. An example of how data transients were labelled to discriminate 

between the materials and their deformation states is illustrated in Figure 13 (a). The 

TDNN proved adept at recognising and classifying the materials based on their 

distinct deformation characteristics, effectively using the relationship between force 

changes and position as a discriminator for the type of deformation and material. The 

conditions investigated included both elastic and plastic deformations of tofu and 

agar, as well as the robot's free unstressed movements. 

Similarly, a study by Gemici and Saxena explored the use of haptic data to 

map physical properties like hardness and adhesiveness in various food items, 

employing both supervised learning and Dirichlet Processes for compact 

representation of these properties (Figure 13 (b)) (Gemici & Saxena, 2014). This 

haptic-based method informed robotic manipulation strategies, enabling precise and 

context-aware actions necessary for complex meal preparation.  
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Figure 13: a)Training the TDNN  model by correlating the contact state of the different 

materials (Kato et al., 2021), b) Features extraction of different food groups for 

machine learning models (Gemici & Saxena, 2014) 

Spagnoli et al. demonstrated the impact of blade inclination and friction on 

resistance during cutting (Spagnoli et al., 2019). Their research provides theoretical 

and practical insights relevant to applications from industrial food processing to 

surgical procedures. Precise control over cutting forces, facilitated by strategies such 

as altering the blade's contact area or orientation, can prevent damage to delicate 

materials. The investigation presented the principle of oblique cutting as an example, 

where angling the blade reduces resistance through a slice-push effect, a technique 

where the blade is angled to effectively combine slicing and pushing motions.  

Xiaoqian Mu and Yan-Bin Jia used a similar approach to develop a method 

that enhances robotic cutting systems by enabling robots to adapt by optimising knife 
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trajectories based on real-time estimations of material properties (Mu & Jia, 2022). 

Using a recursive least-squares algorithm, their system estimates critical material 

properties, such as Poisson’s ratio, fracture toughness, and the coefficient of friction 

from data collected via force and torque sensors attached to the knife. With these 

parameters, the system can dynamically generate knife trajectories that optimise 

cutting effectiveness. By setting an appropriate slice-push ratio the system can 

significantly reduce the force required for cutting while improving the precision and 

smoothness of the cuts. However, the current optimization method primarily uses 

local, immediate sensor data to adjust trajectories, which may not provide the best 

path for complex tasks. The authors suggest potential improvements, such as 

employing advanced algorithms like Model Predictive Control, which would take 

future conditions into account, and expanding the method to include knife rotations 

for a more comprehensive cutting strategy. 

          The medical field has utilised force and torque sensors to develop real-

time informative sensing techniques with micro-level accuracy. The technology is 

very effective in minimally invasive surgeries (MIS); given the surgeon’s perception 

and dexterity limitation, the operation becomes significantly challenging (Bandari et 

al., 2019). Adding haptic technology helps improve surgery results by increasing 

tools' precision and stability (Moreira et al., 2014). A few minimally invasive surgeries 

utilise such technology to provide precise control during operations and reduce any 

potential tissue damage or injuries. 

Needle insertion in surgeries is an application that benefits from force 

feedback. Force can provide valuable information regarding the depth and trajectory 

of the needle, discriminate between the tissues, and provide control feedback to 

minimise tissue deformation and needle deflection (Abolhassani, Patel, & Ayazi, 

2007). Cheng et al. created a finite element simulation based on experimental results 

of a needle inserted in a homogenous phantom with different velocities (Cheng et al., 

2015). The phantom represented the muscle tissue and was used to provide more 

consistent results for testing purposes. The experiment aimed to interpret the 

resultant forces on the needle tip. The force analysis was based on a previous study 

by Okamura et al. that identifies the total force acting on a needle, including cutting 

force to penetrate the first tissue, stiffness force from deformation, and friction force 

(Okamura et al., 2004). Cheng et al. improved this theoretical framework by 

considering the effect of tissue viscosity.  
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The experiment results showed the relation between the total force with 

needle depth and material viscosity at different velocities. A consistent force increase 

was presented the deeper the needle penetrates the sample, and the force required 

increases with the velocity. Since the needle bevel is very sharp, the force to fracture 

the phantom is too small, and the resultant forces are due to viscosity and friction 

that increase with needle velocity and depth.  

The epidural procedure is another medical application that has benefited from 

the correct interpretation of force. It involves the insertion of Tuohy needle to apply 

anaesthetic in the epidural cavity. Brett et al. developed a mechanical simulator 

based on tactile information derived from experiments for training purposes and a 

handheld tool to feed the needle at a constant speed (Brett et al., 2000; Peter N Brett 

et al., 1997; Cotin et al., 2000). The experiments correlated the force data relative to 

the occurring actions and needle position in the different tissues. There are three 

main mediums initial membrane (skin), fatty tissue, ligament tissues (supraspinous 

ligament, interspinous ligament), and finally, the ligament cavity interface 

(ligamentum flavum) before entering the epidural cavity.  

Two experimental tools were developed for tests (Brett et al., 2000). An 

automated needle tool equipped with a strain gauge force sensor and pressure 

transducer to measure feed force and pressure inside the laboratory. A needle and 

syringe equipped with a piezoresistive sensor to measure fluid pressure for 

experiments performed outside the laboratory. 

The needles were inserted with different velocities. Similar results were 

obtained with minor differences between the two tools. Throughout all the results, 

similar transients and trends were observed that were averaged and summed up in 

Figure 14.  
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Figure 14: The unique force transients during the epidural procedure (Peter N Brett et 

al., 1997) 

Two high peaks of accumulated resistive force define the responses of elastic 

and viscoelastic behaviour prior to the penetration of the skin membrane and the 

ligaments before the epidural cavity (regions a and d). Region b shows a steadier 

force profile due to the friction between the needle shaft and the surrounding skin 

tissue. Finally, in region c, the fatty tissue that has the behaviour of viscous fluid 

applying a slightly increasing resistive force proportional to the length of the needle 

within it.  

Utilising a similar approach, Brett et al. developed one of the few successful 

examples of adapting tactile technology into tissue-guided surgical robotics 

represented in handheld cobot drills for cochleostomy surgical procedures (Brett et 

al., 2007). The drilling system assists the surgeons in drilling through the cochlea 

bone without penetrating the membrane behind it. The control system is required to 

accurately detect the drill bit's position relative to bone tissue interfaces and account 

for the compliant behaviour of the bone. The drill is guided by force and torque 
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feedback from the drill bit. The proper interpretation of the transient signatures of 

force and torque provides information to anticipate conditions on the cutting path and 

to locate with precision the burr of the drill relative to tissue interfaces. The method 

divided the trajectory of the drill into four main events to discriminate and control 

critical stages in the process.  

Figure 15 shows how the force and torque vary with tissue depth throughout 

the drilling process.  

 

 

Figure 15: Force transients during the drilling process (Taylor, 2008) 

 

2.2.3. Conclusion 

The chapter highlights the potential and possibilities of tactile sensing 

technology in robotics, particularly in applications with similar characteristics as red 

meat cutting. The reviewed methods of implementing tactile sensing include using it 

as the primary perception method, integrating it into hybrid systems combined with 

vision, simulation models, or machine learning. Among these innovative techniques, 

the most promising ones utilise tactile perception in a manner similar to human 

sensory processing, focusing not on the numerical values of the tactile data but on 

discriminating between different mediums and conditions. 

The potential of tactile-sensing technology can be identified from use in 

reviewed applications where there are distinct parallels in medium characteristics 

with red meat. The reported method for discriminating natural deformable materials 

and their characteristics offers possibilities for cutting red meat. Similarly, guiding a 

knife through red meat tissues to perform a cut requires developing a technique that 
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can discriminate between the unique features of the cutting mediums and react to 

the prominent conditions in real-time through a fundamental understanding of critical 

process events and identify methods to detect them. The learnings from the 

reviewed applications emphasise the importance of the reactive transients in tactile 

feedback as an identification tool for the detectable materialistic features and states 

of red meat tissues.  

A robotic system capable of producing a successful product can be envisaged 

to perceive and interpret data correctly from the workpiece, apply corrective 

strategies if needed and execute cutting actions in real-time. In reviewing the 

attempts to develop and implement robotic systems in red meat processing, it is 

evident that the known successful attempts of red meat cutting are to perform simple 

straight-line cuts that do not require adaptability. Other trials to follow more complex 

cutting profiles using tactile perception proved the need to step back and start from 

the basics to understand the data perceived and how it can indicate the changing 

structure and behaviour of red meat in simpler cuts.   

The next chapter outlines the methodology used to study tactile perception in 

red meat cutting. It covers the experiment's structure, the various cutting variables 

and how they are addressed, the experimental equipment, and the cutting model. 

This model explains the forces exerted on the knife during cutting and how these 

forces are distributed. 
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CHAPTER 3: METHODOLOGY 

This chapter details the methodology and experimental design used to 

investigate tactile perception in robotic red meat cutting. The systematic review in 

Chapter 2 highlights the shortcomings of conventional sensing techniques in guiding 

robotic cutting of red meat and identifies a significant gap in our understanding of the 

role of tactile perception in this area. It also shows the absence of thorough studies 

that provide detailed information and results on the challenges encountered when 

robots process red meat using tactile perception. This gap in research prompted the 

development of the experimental approach of this study, designed to advance our 

fundamental understanding of tactile perception in robotic red meat cutting. 

3.1. Experiments structure   

The primary objective of this study is to establish a novel, fundamental 

understanding of how tactile perception can be utilised to guide a robotic red meat 

cutting. The experiments conducted are aimed at answering 5 main research 

questions: 

Question 1: What consistent mechanical features in red meat tissues can be reliably 

detected using tactile perception? 

Question 2: How feasible and precise is tactile perception in identifying red meat 

tissue features and behaviour during cutting? 

Question 3: What are the persistent unique transients in the tactile data that 

discriminate tissues and their interfaces?  

Question 4: How can the unique force transients related to the mechanical features 

of red meat be interpreted to identify key cutting events? 

Question 5: Can tactile perception-based techniques inform a control strategy to 

guide a cutting knife toward an automated cutting system? 

The experiments were structured to progressively explore robotic meat cutting 

throughout the study. Initially, the variables involved in the cutting process were 

simplified for basic fundamental research. As the research progressed, the gained 

knowledge facilitated a systematic addition of complexity to the experiments. This 

incremental strategy was essential for managing the inherent uncertainties and 

challenges of robotic meat manipulation. Such a phased approach ensures that each 

layer of added complexity is well-informed by the insights gained in the preceding 

stages, thereby enhancing the robustness and relevance of the findings. The 

following list will present the sequence and structure of the experiments in the thesis. 
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3.1.1. Experiment 1: tactile sensing for tissue discrimination in robotic meat 

cutting: a feasibility study (Section 4.1) 

 Aim:  

The experiment investigates the feasibility and accuracy of tactile perception 

in discriminating between red meat tissues and identifying specific cutting events 

under controlled conditions in a defined observational setup. 

Procedure:  

Simple straight-line cuts were performed across various tissues and interfaces 

to observe the tactile data response. The setup aimed to investigate cutting actions 

and phenomena during straight-line cuts that travel through fat tissue, muscle tissue, 

and their interfaces in one motion.  

A total of 18 cutting tests were conducted using two striploin chop pieces, split 

across four sides. In half of the tests, the cutting began from the muscle side towards 

the fat layer, and in the remaining half, it started from the fat layer towards the 

muscle. The knife was positioned vertically to the test sample surface, aligned with 

the cutting path, and operated at a fixed feed velocity of 20 mm/sec for better control. 

The cut depth was approximately 20 mm, measured by moving the knife downward 

from the upper surface of the sample. The sample temperature was maintained at 

approximately 9°C to simulate abattoir conditions. Figure 16 presents the cutting 

trajectories, and Table 3 lists the experiment's variables. 

 

 

Figure 16: Cutting trajectories of experiment 1 
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Table 3: Experiment 1 variables 

Type of cut  Striploin steaks 

Total number of cuts performed  18 cuts 

Cutting Tissues  Fat layer and muscles  

Cutting Speed 20 mm/Sec 

Sample Temperature  ≈ 9°C 

Cutting depth ≈ 20 mm. 

 

Data analysis: 

The force transients captured in the tactile data are processed and analysed 

to correlate with the location of the knife within the sample. Cross-correlation 

analysis of the data was undertaken to identify patterns and similarities in the force 

profiles across different tissues. This analysis aimed to interpret how these distinct 

force transients represent various cutting events and to evaluate their consistency 

when identical cuts were made on the same tissue arrangements. The extracted 

data focused on the force component in the X-axis, which corresponds to the 

direction of the cut affecting the tip of the knife.  

 

3.1.2. Experiment 2: sensitivity of cutting force transients to the depth of cut 

(Section 1 of Chapter 4) 

Aim:  

The experiment explores how variations in cutting depth affect the ability to 

discriminate unique force transients related to tissues, their interfaces, and overall 

product behaviour. It follows Experiment 1 to address challenges in maintaining 

consistent cutting depths due to the non-uniform characteristics of the meat. 

Procedure: 

 Following a similar approach as in Experiment 1, the robot performed linear 

cuts on striploin chops at three different depths: 10 mm, 20 mm, and 30 mm. The 

depths were measured from the upper surface of the test sample by moving the knife 

downward in the Z direction (Figure 17). Each depth was tested twice, totalling six 

trials. The cuts were made across fat tissue, muscle tissue, and their interfaces. The 

cutting velocity was fixed at 20 mm/sec, and the sample temperature was 

approximately 9°C during the experiments. This method allowed for a systematic 
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exploration of how varying cutting depths affect the cutting force and tissue 

interaction, considering the inherent properties of meat tissues such as stiffness and 

deformation. 

 

Figure 17: Experiment 2 cutting paths at different depths measured from the 
upper surface of the test samples 

 

Table 4: Experiment 2 variables 

Type of cut  Striploin steaks 

Total number of cuts performed  6 cuts 

Cutting Tissues  Fat layer and muscles  

Cutting Speed 20 mm/Sec 

Sample Temperature  ≈ 9°C 

Cutting depth ≈ 10, 20 & 30 mm. 

 

Data analysis:  

The analysis concentrated on comparing the force transients for similar tissue 

arrangements at different depths. Cross-correlation analysis and visual observations 

were used to assess the impact of depth on the force data and identify the unique 

force transients related to different tissue features. 

3.1.3. Experiment 3: robotic fat trimming: characterisation of red meat tissue 

structure using tactile perception (Sections 5.1 & 5.2) 

Aim:  
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This experiment adds the lateral force on the side of the knife as another 

source of tactile data that, combined with the forces on the tip of the knife, gives 

more details about the tissue structure and behaviour around the knife. The study 

aims to use tactile sensory data transients along two orthogonal axes on the knife to 

characterize the force transients of a robotic knife while trimming fat from striploin 

steaks relative to the fat/lean interface, focusing on how these forces vary at critical 

cutting events while trimming, such as leaving the fat layer or approaching tissue 

interfaces, and the ability to guide the knife based on these variations. 

Procedure:  

The study conducted a total of 17 straight-line cuts over the sides of six 

different pieces of striploin steaks test samples in the fat layer with different angles 

and distances relative to the fat/lean interface to mimic different cutting movements 

in the trimming of striploin steaks. Figure 18 shows a representation of the cutting 

paths in the experiment. Out of those cuts, 8 were directed away from the fat/lean 

interface towards the outer edge of the fat layer, and 9 interacted with the fat/lean 

interface and the surrounding natural path between the fat layer. The cutting velocity 

was fixed at 20 mm/sec, and the sample temperature was approximately 9°C during 

the experiments. 

 

Figure 18: A representation of the cutting trajectories in experiment 3 
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Table 5: Experiment 3 variables 

Type of cut  Striploin steaks 

Total number of cuts performed  17 cuts 

Cutting Tissues  Fat layer with different angles and 

distances from the fat/lean interface  

Cutting Speed 20 mm/Sec 

Sample Temperature  ≈ 9°C 

Cutting depth ≈ 20 mm. 

 

Data analysis:  

The analysis focused on the interpretation of the unique force transients of Fx 

(forces on the tip of the knife) and Fy (lateral forces) within the context of the 

occurring cutting event. The analysis included visual observations of the trends in the 

data patterns, applying different types of correlation analysis between the forces and 

observing the rate of change of the lateral force as a way to inform the effective 

direction of the forces on the sides of the knife. 

3.2. Addressing key variables related to robotic meat cutting  

The primary challenges of integrating robotics into the red meat industry, as 

explained in Chapter 2, revolve around the variability in carcass structure and the 

unpredictable behaviour of red meat tissues. This unpredictability is observed both in 

stationary states, affected by factors such as temperature and gravity, and in 

response to external forces applied during handling and cutting. The distinctive 

characteristics and properties of red meat carcasses require specialised 

manipulation techniques, adapted to the shape and features of the desired cut. 

Additionally, a specialised cutting tool is required to access the target seams for 

effective cutting.  

This research explores an approach leveraging tactile temporal sensory data 

to discriminate meat tissues and tissue interfaces in real-time. The strategy 

correlates unique force transients in the force data with materialistic features of the 

carcass and key cutting events of the task. Within the context of this scope, the 

variables involved in red meat cutting were addressed as follows:  

Inconsistent presentation of each workpiece:   

1- The dimensions of the input products are challenging to determine 

accurately.  
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2- The size of each workpiece can change drastically.  

3- The structure of each workpiece is non-uniform. 

4- Tissue distribution and tissue interface placement can vary between 

carcases, which changes the location of the cutting path.  

The first three factors significantly impact the optimal manipulation technique, 

including how the carcass is held and interfaced with the knife, and the selection of 

the appropriate cutting tool to reach and follow the intended cutting trajectory. These 

challenges, identified in the literature review chapter, are acknowledged as research 

gaps in the implementation of robotics in the red meat industry and warrant further 

investigation. These factors were addressed and simplified in this study by selecting 

striploin steaks as the test samples.  

The striploin steak, a simple yet high-value product, is produced by sectioning 

the striploin primary cut from the beef carcass. The striploin is estimated to be worth 

approximately 15% of the carcass value. The dimensions and weight of the striploin 

primary and an average of the striploin steak dimensions are presented in Figure 19 

and Table 6 (Border et al., 2019; Khodabandehloo, 2018; Standard, 2015).  

 With its well-defined tissue interfaces, the striploin steak serves as an 

appropriate model for evaluating the precision and efficacy of robotic cutting 

techniques. Its relatively uniform thickness and predictable structure allow for 

controlled experimental conditions, while still capturing the typical variations found in 

red meat. In this study, the manipulation technique involved a simple fixation of the 

carcass in front of the cutting tool, which was a deboning knife. This choice was 

made because the non-powered deboning knife is the most commonly used tool for 

slicing and helps reduce some of the complexities that might arise if an electrically 

powered tool were used, as such tools could influence the force data. This approach 

ensures a consistent and representative environment for testing tactile perception in 

robotic meat cutting. 

The fourth factor is one of this study's points of focus: exploring the capability 

and sensitivity of tactile perception to discriminate different tissues and their 

interfaces and to locate the cutting tool relative to these features. 
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Figure 19: Primary unprocessed striploin product and measurements of a 

striploin chop 

Table 6: Measurements of a striploin cut (Khodabandehloo, 2018) 

 Maximum Minimum 

Length 605 mm. 450 mm. 

Width 245 mm. 200 mm. 

Height 125 mm. 90 mm.  

Weight 13 Kg. 5.4 Kg. 

 

 

 

 

 

Unpredictable tissue behaviour and responses  



54 
 

1- Meat relaxation with time due to the variation in gravitational force vectors, 

inertial forces, and the changes in the ambient temperature. 

2- Transient deformations are induced by cutting tool forces during the 

cutting process affected by the speed of cutting, the sharpness of the 

cutting tool and the depth of the cutting tool in the tissues.  

To address the first factor, the temperature of the test samples was 

maintained at 9°C throughout the experiment, mirroring the temperature conditions 

of deboning rooms in abattoirs. Test samples were stored in a sealed container in 

the refrigerator and were only removed immediately before experimentation. This 

approach helped mitigate meat relaxation, as meat becomes more malleable with 

temperature increases. The impact of gravitational forces is more pronounced on 

hanging carcasses and larger cuts. In this study, striploin steaks were placed on a 

flat surface at all times, including during experiments, to minimise the influence of 

gravitational forces. 

The second factor is central to the scope of this research, focusing on 

observing tissue deformation at various cutting stages. Deformation serves as a 

direct indicator of tissue rigidity and provides a robust indication of the knife's 

location during different cutting phases. Influential factors such as the speed of the 

knife were kept constant at 20 mm/s. This speed was found to be appropriate to 

prevent meat clamping around the knife. The depth of the knife inside the cut is 

another factor that could not be controlled and is part of the research investigation.   

To summarise the factors involved in the experiments, Table 7 illustrate these 

factors and how they are addressed in the experiments. 

Table 7: Addressing the cutting variables during the experiments 
 

Dimension and 

Structure 

- Striploin steaks are cut into portions with similar dimensions (Figure 19 & 

Table 6).  

- Striploin steaks have a relatively consistent structure and tissue 

arrangement. 

- Striploin steaks have an almost two-dimensional tissue representation, 

facilitating visual observations. 

Handling and 

Manipulation 

- A simple manipulation technique was used by securing the test sample 

against the knife with custom-made meat clamps and holding corners.  

Temperature - Approximately 9°C to match the temperature of deboning rooms. 

Speed - A speed of 20 m/sec was chosen for better control over the cutting process 

and to prevent excessive deformability and meat clamping around the knife. 
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Depth - As mentioned in Section 3.1.2, titled “Experiment 2: Sensitivity of Cutting 

Force Transients to the Depth of Cut,” the depth is investigated as a variable 

in Chapter 4 at 10 mm, 20 mm, and 30 mm. 

Cutting Tool - A slicing knife, typically used in meat slicing tasks, is recommended by 

skilled butchers. 

Sharpness - Three knives were used across the experiments; a different knife was used 

for each experiment to ensure sharpness. Each knife performed approximately 

11 cuts.  

Cutting Angle 

Relative to the 

Sample Surface 

- The knife is perpendicular to the meat's surface plane. 

Cutting 

Trajectories  

- Straight line cuts relative to the sample features. 

Mediums of Cuts - Muscles and fat tissues. 

 

3.3. Equipment 

The testing equipment setup used in the experiments was designed for 

flexibility, accommodating the needs of this research and adaptable for future studies 

within the same field. Consequently, not all equipment is fully utilised at this stage. 

The components used in the experiments include (Figure 20): 

• ABB IRB 1200 manipulator with 6-axis movement capability. 

• ABB 6-axis force sensor 165. 

• Static deboning knife (see Appendix D for more details about its features and 

specifications). 

• Clamps and holding corners to secure the meat. 

• Sony FDR-X3000 action cameras.                      
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Figure 20: Test rig setup 

3.4. Experimental Procedure 

3.4.1. Preparatory steps 

Before starting the experiments, essential preparatory steps were undertaken. 

These included load identification and calibration of the force sensor. Load 
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identification was performed using an internal recorded program on the robot. The 

task of this program is to identify the components mounted on the robot, which 

include the force sensor, knife bracket, and knife. The identification process 

calculated and recorded critical parameters such as weight, dimensions, inertia, and 

the tool centre point of the attached knife. Based on the tool centre point, the 

operational space of the knife, including its coordinates, was established. The robot’s 

work object was adjusted to align the knife's movement orientation with the axes of 

the force sensor. This alignment ensures that the cutting direction movement 

corresponds to the Fx axis of the force sensor, while the perpendicular direction 

aligns with the Fy axis, which measures the side forces on the knife. The force 

sensor was calibrated to detect contact forces while filtering out the effects of 

gravitational forces. See Appendix C for further details on the force calibration 

process. 

3.4.2. Cutting process setup  

The robot was programmed to guide the knife along a predetermined path 

perpendicular to the plane of the test sample. An internal timer was activated at the 

start of the cutting process. After each experiment, the robot recorded the knife’s 

coordinates, the timer readings from when the knife began to move, and the 

corresponding force measurements, saving these as a .csv file. 

3.4.3. Video documentation  

The experimental procedure was documented using two Sony FDR-X3000 

action cameras placed to capture the knife's position and the test sample's behaviour 

during cutting. 

3.4.4. Video and data synchronisation  

To correlate the knife's position with force readings accurately, the timers of 

the recorded videos were synchronised with the robot's internal timer. Videos of the 

cutting process were edited to start precisely when the knife began to move, aligning 

with the start of the robot's internal timer. This synchronization allowed timestamps in 

the videos to be reliably correlated with the force data captured by the sensor. 

3.4.5. Data analysis  

The combined data from the force sensor and the video footage facilitated the 

derivation of a force-time series during the cutting process. This data could be 

correlated with the properties of the tissue and its reaction during cutting, providing 

deeper insight into the mechanical interactions involved. After each experiment 
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concluded, MATLAB was utilised to process the data and generate the 

corresponding graphs. 

3.5. Modelling of cutting forces in robotic meat cutting 

This section describes a concept as a model to explain the cutting force 

transients in the tactile sensory data taking place during specific yet crucial stages of 

a straight-line cutting across different tissues. The approach draws inspiration from 

similar models (Azar & Hayward, 2008; Hu et al., 2012; Khadem et al., 2016; 

Okamura et al., 2004) of force descriptions applied to explain tissue fracturing within 

clinical surgical applications where there are similar phenomena in cutting and 

penetration processes.  

Force, by definition, is a vector quantity that possesses both magnitude and 

direction. In the context of cutting meat tissues, the total applied cutting force FTotal in 

the X direction affecting the leading edge of the knife can be described as the sum of 

compressive and frictional components (Khadem et al., 2016; Okamura et al., 2004). 

The compressive force component FCompressive is the reaction to the cutting of tissues 

(Figure 21). The frictional force FFriction is the reactive component to resistive forces, 

attributed to the interaction with the tissue acting as shear on the sides of the knife.  

The compressive reactive force component FCompressive acting on the knife 

during the slicing of meat tissues can be described as the sum of two further distinct 

force components: the component required to initiate a crack at the surface such that 

the blade enters the tissues (FCutting) and the component reacting to elastic tissue 

deformation (FDeformation). The lateral force in the Y direction (Fy) on the side surfaces 

of the knife is primarily due to the side pressure from tissue deformation.  

Then 

FX = FTotal = FCompressive + FFriction             (1) 

Where 

                             FCompressive = FCutting + FDeformation                (2)       
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Figure 21: Free body diagram represents the force components acting on the 

knife blade 

Since the tissues undergo elastic fracture, where they deform to a structural 

limit before fracturing, the deformation around the crack is non-reversible or plastic. 

The process is considered quasi-static, where the cutting speed is sufficiently slow 

and maintains equilibrium. Energy conservation can be used to explain factors 

affecting forces at different stages of cutting. Expressed as equation (3) (Azar & 

Hayward, 2008; Hu et al., 2012), 

𝑭𝒅𝒖 + 𝒅𝑼𝒊 =  𝑱𝑰𝑪 𝒅𝑨 + 𝒅∆ + 𝑷 𝒅𝒖        (3) 

Where 

𝑭𝒅𝒖 is the work done by the knife cutting to an effective force F during a 

displacement of 𝒅𝒖 

𝑼𝒊 is the strain energy stored in the membrane before any external forces are 

applied. The tissues are considered at rest and 𝒅𝑼𝒊 is zero;  

𝑱𝑰𝑪 𝒅𝑨 is the resistance to fracture the tissues  𝑱𝑰𝑪 at a cutting surface area of 𝒅𝑨; 

𝒅∆ is the stored elastic energy in the tissues during deformation;  
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𝑷 𝒅𝒖 is the work done by the friction force P to resist the knife movement during the 

displacement 𝒅 

As the knife penetrates the first layer of tissue (Figure 22), the blade causes 

the tissue to deform from its steady state position. With increasing force from the 

knife, the tissue continues to deform, reaching its structural limit when penetrated. At 

this stage, there is negligible friction or resistance caused by tissue fracture, and the 

response of the meat tissue relative to the knife position is entirely due to the release 

of internal elastic energy stored in the tissues during deformation. Consequently, 

equation (3) is adjusted accordingly: 

𝑭𝒅𝒖 =  𝒅∆         (4) 

 

Figure 22: First tissue interface penetration 

The equation shows that the applied force causes elastic deformation of the 

first tissue layer. It is known that for meat tissues, the force is related to displacement 

by a non-linear function. The effect is elastic with temporal as a result of stress 

relaxation. For purposes of describing the mechanisms, the linear behaviour is 

assumed and described by Hooke's law (Mavko et al., 2020). The value of the elastic 

modulus is determined by the stiffness of the tissue layer during the cutting 

conditions, such as temperature, which affects the value of the required deforming 

force. Figure 6 (a) in Chapter 4 shows the deformation difference between the 

muscles and fat. In this area, the force transient shows an increasing trend until the 

knife fully penetrates the first interface. 

After the knife penetrates the surface of the first layer of tissue, the initial 

crack propagates in the direction of cutting and equation (1) becomes  

                                           𝑭𝒅𝒖 =  𝑱𝑰𝑪 𝒅𝑨 + 𝑷 𝒅𝒖            (5)                  
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This equation demonstrates that the work done is to slit the bonds between 

meat tissues (fracture resistance) and overcome friction caused by the clamp 

between the knife's sides and the surrounding fat tissues. The deformation around 

the blade (d∆) is negligible at this stage and can be disregarded. The force required 

to propagate the crack and overcome the fracture resistance depends on factors 

such as the crack's area (depth and width) and the local stiffness of the material. The 

force levels in these areas remain more stable as long as the knife does not 

encounter interfaces or air gaps. Figure 23 shows the case of cutting through meat 

tissues after penetrating the first interface.  

 

Figure 23: Knife cutting through meat tissues 

Following an interface also exhibits stable and low force levels, as the bonds 

between the tissues are much weaker. These low force levels can be maintained 

unless the knife crosses an interface and cuts through it (Figure 24). When the knife 

is cutting towards the interface leading to the natural pathway between tissues, the 

force required for cutting increases because of the interface or the gap between the 

tissue layers at this region. Consequently, the deformation force must be added to 

Equation 5, which then becomes:  

𝑭𝒅𝒖 =  𝑱𝑰𝑪 𝒅𝑨 + 𝑷 𝒅𝒖 + 𝒅∆                     (5) 

As mentioned earlier, in this case, the side forces are used to guide the knife to 

follow this interface and to maintain stable and minimum force transients on the tip of 

the knife. 
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Figure 24: A representation of a knife attempting to follow an interface 

The following chapter will examine the feasibility of using tactile sensing to 

guide a knife. It will focus on discriminating key features in red meat tissues and 

locating the knife's position relative to these features (Experiment 1).  
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CHAPTER 4 

4.1. PAPER 2 - TACTILE SENSING FOR TISSUE 

DISCRIMINATION IN ROBOTIC MEAT CUTTING: A 

FEASIBILITY STUDY 

4.1.1. Introduction 

This paper demonstrates the feasibility of a tactile sensing-based approach 

for guiding a knife in cutting red meat tissues. The method utilises force data from a 

sensor attached to a knife to discriminate between various red meat tissues and their 

interfaces. The unique transients in the force data are identified and then correlated 

with the knife’s cutting movements to precisely locate its position relative to meat 

features. The cutting task is segmented into critical stages, informed by the 

characteristics identified along the knife’s trajectory. As an initial step in validating 

this technique, the study focuses on performing simple, straight-line cuts across 

different tissues under controlled experimental conditions and within a well-defined 

observable setup. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



64 
 

4.1.2. Published paper 
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4.1.3. Links and implications 

The study presented in 'Tactile Sensing for Tissue Discrimination in Robotic 

Meat Cutting: A Feasibility Study' highlights the capability of the proposed tactile 

perception approach to interpret the actions of a knife during meat cutting by 

distinguishing the behaviour and features of different tissues along the knife's path. 

The primary focus was on the force exerted on the knife's tip in the cutting direction. 

We visually validated this approach by observing the sensor's accuracy in capturing 

distinct force transient responses, which are specific force patterns in the data, 

related to various tissue features and behaviours. Furthermore, we conducted an 

analytical validation by demonstrating the consistency of these patterns in repeated 

cut by performing cross-correlation analysis on the collected data. The forthcoming 

Section 4.2 builds upon this experiment, using the same setup to investigate the 

impact of knife depth on cutting performance. This aspect is particularly challenging 

to control due to the inherent physical properties of meat tissues. 
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4.2. SENSITIVITY OF CUTTING FORCE TRANSIENTS TO 

THE DEPTH OF CUT  

While efforts in Section 4.1 were made for a consistent cutting depth across 

all experiments, the inherent variable properties of meat tissues— stiffness, 

deformation, and external influences such as gravity and temperature—made this a 

challenge. This chapter determines the sensitivity of the nature of cutting force 

transients to cutting depth. Working with the same experimental setup as Section 

4.1, the robot was used to cut samples of Striploin chops to varying depths.  

4.2.1. Introduction 

Cutting depth is an influencing factor on the effective cutting force, particularly 

when the knife penetrates the initial interface and continues cutting through the 

tissue. An increase in the cutting depth requires more compressive force and leads 

to greater contact between the sides of the knife and the surrounding tissues, 

causing increased friction. 

Maintaining a constant cutting depth during manual operation is not possible 

in most situations. Process Operators are unable to visualise the interior of the meat, 

and depth is gauged by the changes perceived in reactive force detected as the knife 

progresses in the meat tissues using tactile sense when cutting with a knife. The 

complex structure of red meat, comprising various tissue types, presents differing 

impedance levels to the cutting knife. This variation in resistance can be detected 

along the knife’s cutting trajectory.  

 Further judgement is applied by the operator, often accompanied by visual 

information as the meat workpiece will likely deflect, deform and then relax when 

responding to applied cutting forces. Judgement is complex, relating projected 

visualisation of the final product form combined with the knowledge of the presence 

of meat tissue structures within the workpiece. Using real-time sensory perception to 

estimate position, combined with high-level interpretation skills to form a 

representative perception, operators can achieve accurate cuts by identifying the 

events and phenomena related to the blade position and motion within the local 

surrounding tissues.  

In the laboratory and during the experiments, the previously mentioned factors 

regarding the structure of the test samples and the nature of red meat tissues, along 

with occasional unavoidable errors while cutting the test samples, can cause slightly 

uneven samples. Moreover, meat deformation due to cutting forces results in 
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inconsistent cutting depths between experiments. These variations underline the 

importance of understanding how depth affects force transients during cutting 

events. The experiment aims to determine how depth influences the ability to 

discriminate the unique force transients related to the tissues, their interfaces, and 

the overall product behaviour. 

4.2.2. Results and Observations 

Using striploin chop samples, cuts were performed at different depths from 

the surface of each sample. The knife tip was advanced into the tissue from the 

external surface of the sample on parallel cutting trajectories separated by known 

increments and was programmed to descend in the Z direction 10 mm lower 

sequentially between each trial cut. The three cutting depths were 10 mm, 20 mm 

and 30 mm. Two cutting trials were performed for each depth, resulting in a total of 6 

trials. Representation of the cutting paths is shown in Figure 25. Table 8 presents the 

length of each cutting path divided between the length of the cut in the fat layer and 

muscles. The table also shows the pre-adjusted depth and the knife’s actual depth 

inside the sample measured using a stainless steel rule.  
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Figure 25: Representation of the cutting paths 

Table 8: Measurements data 

Data 1 

Pre-adjusted depth = 10 mm 

Length of fat layer = 25 mm. Actual depth in fat = 5 mm 

Length of muscles = 59 mm. Actual depth in muscles = 3 mm. 

Data 2 

Pre-adjusted depth = 10 mm 

Length of fat layer = 19 mm. Actual depth in fat = 9 mm. 

Length of muscles = 67 mm. Actual depth in muscles = 3 mm. 

Data 3 

Pre-adjusted depth = 20 mm 

Length of fat layer = 17 mm. Actual depth in fat = 15 mm 

Length of muscles =  70 mm. Actual depth in muscles = 11 mm. 

Data 4 

Pre-adjusted depth = 20 mm 

Length of fat layer = 25 mm. Actual depth in fat = 16 mm 

Length of muscles = 80 mm. Actual depth in muscles = 12 mm. 

Data 5 

Pre-adjusted depth = 30 mm 

Length of fat layer = 16 mm. Actual depth in fat = 28 mm 

Length of muscles = 70 mm. Actual depth in muscles = 24 mm. 

Data 6 

Pre-adjusted depth = 30 mm 

Length of fat layer = 21 mm. Actual depth in fat = 21 mm 

Length of muscles = 69 mm. Actual depth in muscles = 20 mm. 

Temperature = 8o C 
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Figure 26 shows detectable features within the tissues of the meat test sample. The 

cutting can be divided into five stages:  

1- Penetration of the first interface. 

2- Cutting through the fat layer. 

3- Penetrating the intermediate interface between the muscles and the fat layer. 

4- Cutting through the muscles. 

5- Breaking through the last layer of tissue and leaving the sample.   

 

Figure 26: An example of a cutting line showing the direction of one cut and the 

structural features of the test sample 

The precision in identifying the previously mentioned cutting stages based on the 

unique force transients for each cutting depth was evaluated by correlating the status 

of the cutting task with force data. This was done by synchronising the time recorded 

by the robot with the time stamps from the cutting videos. The correlation involved 

plotting the force-versus-time data (Figure 27) provided by the robot for each cut. 

The time stamps for each of the cutting stages were marked on the plot. These 

stages were represented by black dots on the graph and were observed from the 

video (refer to Table 9). Each cutting stage is colour coded and numbered and is a 

‘Correlating Time Stamp’. 
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Table 9: The timestamps of the different stages of cutting as measured and observed 

from the cutting videos 

Data Fat Penetrating the 

interface between 

the fat and 

muscles (Sec.) 

Muscles 

Penetration of 

first fat tissue 

interface (Sec.) 

Cutting through 

fat layer (Sec.) 

Cutting through 

the muscles 

(Sec.) 

Breaking 

through the 

last layer of 

tissue and 

leaving the 

sample (Sec.) 

1 2.23 2.7 2.7 3.89 3.89 4.26 4.26 6.46 6.46 7.0 

2 1.96 3.04 3.04 3.79 3.79 4.33 4.33 6.43 6.43 7.13 

3 1.93 3.13 3.13 4.23 4.23 4.96 4.96 6.46 6.46 7.2 

4 1.39 3.06 3.06 4.29 4.29 5.29 5.29 6.6 6.6 7.5 

5 1.3 2.76 3.23 4.31 4.31 4.86 4.86 6.7 6.7 7.38 

6 1.46 3.29 3.29 4.43 4.43 5.03 5.03 6.43 6.43 7.7 

 

First stage: The penetration of first tissue begins when the knife contacts the 

sample and ends when the full length of the blade is inside the fat layer. During this 

stage, two phenomena are observed. The first is the deformation of the first layer of 

tissue before the penetration. The second is the layer of fat responding to push and 

deform the muscle tissue beneath. Muscle tissues are more malleable than the fat, 

which is fixed using the holding brackets. This stage is characterised by gradually 

increasing forces until fat tissues reach their limiting mechanical stress and allow the 

blade inside the sample.  

Second stage: Cutting through the fat tissues. The tissues are filled with cracks and 

air gaps, which cause spikes in force while the knife crosses the interfaces 

associated with these gaps.  

Third stage: Cutting through the interface between the fat layer and the muscles. 

The interface is marked by a sinew that extends over the sample, varying in 

thickness in different areas. It is a transitional stage, where the knife moves from one 

cutting medium to another.  

Fourth stage: Cutting through muscle tissue is represented by a lower average of 

the force values and more smooth transients punctuated by the small peaks 
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associated with the knife crossing muscle fibrous tissue, which indicates leaner meat 

with less intramuscular fat between the muscle groups.  

The final stage involves cutting through the last layer of tissue and exiting the 

sample. The force pattern decreases throughout this stage until it reaches the no-

load force values. Intramuscular fat may present at the end of the cut, leading to a 

slight increase in force values just before the knife exits the sample. 

The plotted data capture accurate and distinct variations in the force transients 

corresponding to the different cutting stages observed in the videos, regardless of 

the depth of the cuts. The distinction between the stages and the pattern similarity 

was affirmed and demonstrated statistically through cross-correlation analysis 

between the data sets. The data sets were normalised and the cross-correlation 

analysis was performed between each two data sets using MATLAB. Table 10 

presents the resulting cross-correlation coefficients at 0 lag between each data set in 

the first column and first row. Since the data is normalised,  coefficients are between 

-1 and 1. A coefficient of 1 indicates exact linear similarities between the data sets, -

1 suggests inverse relation, and 0 shows no relation. The cross-correlation 

coefficients reveal high force pattern similarities across all the data sets, regardless 

of the cutting depth. The smallest coefficient is 0.8814, indicating over 88% similarity. 
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Figure 27: The stages of cutting through the red meat tissues starting from the fat 

layer side 
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Table 10: Cross-correlation coefficients between the forces obtained from each data 

set for each cut across the tissue interface from fat to muscle 

Fat to Meat  

 Data 2 Data 3 Data 4 Data 5 Data 6 

Data 1 0.94305 0.9114 0.87707 0.90488 0.91381 

Data 2  0.89288 0.8814 0.88443 0.88459 

Data 3   0.92721 0.95402 0.9262 

Data 4    0.9021 0.92403 

Data 5     0.97608 

 

On the other hand, as anticipated, the change in depth affected the force required to 

perform the cut. The deeper the knife goes into the sample, the higher the average 

force values across the cut are. This is demonstrated in Table 11   

Table 11: Maximum, minimum and average forces at each depth 

 

Data  

Fat Muscles 

Maximum 

Force 

Minimum 

Force 

Average 

Force 

Maximum 

Force 

Minimum 

Force 

Average 

Force 

1 11.0122 3.8086 6.8263 1.8328 0.08387 0.96786 

2 18.8778 5.837 11.5177 4.6788 0.16601 2.6377 

3 42.8863 15.7821 25.3095 14.293 4.9778 8.9352 

4 64.4527 14.3995 33.0239 13.5371 4.9679 8.2061 

5 106.023 21.5763 49.2839 22.9452 8.4549 13.8376 

6 75.8358 24.6712 46.9735 21.071 9.2733 14.3082 

 

4.2.3. Conclusion  

The results have demonstrated that the depth of the knife in red meat tissues 

does not affect the capture of the characteristic force transients associated with the 

key cutting stages, which are defined relative to tissue types and interfaces. Visual 

observation of the data showed a precise and consistent correlation between the 

cutting stages and the unique force transients in the collected force data. Repetitive 

cutting tests at different depths yielded high cross-correlation coefficients, 

underscoring the consistency of the force data profile, provided the features remain 

unchanged. The effect of depth appeared in the magnitude of force values, not in the 
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pattern, as evidenced by the average force values at the different stages of cutting. 

However, our experimental setup, which did not include oscillating movements for 

slicing tissues, revealed that deeper cuts might cause the meat to clamp around the 

knife, leading to increased resistance. This necessitates higher forces for cutting, 

potentially saturating the sensor’s readings. Additionally, deeper cuts could cause 

displacement of the samples, as they are fixed to the cutting table. Therefore, while 

cutting depth does not inherently affect the force transients, which is the focus of the 

research, shallow cuts are recommended in our experimental setup to mitigate these 

issues. The next set of experiments in Chapter 5 extends the approach and applies it 

to the more practical cut of striploin trimming.  
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ABSTRACT 

This study investigates reactive force transients for discriminating meat 

tissues and guiding a robot when cutting beef. Using a 6-axis anthropomorphic robot 

manipulator with static knife and a 6-axis force sensor, cuts were performed relative 

to the principal meat tissue interface of striploin steak. Reactive force transients on 

the knife showed high correlation, mostly over 95%, confirmed by complementary 

analyses. The correlation diminished on approach to interfaces. Lateral force 

component exhibited sensitivity to the contour of the natural cutting path in close 

proximity to the tissue interface, whereas the orthogonal cutting axis force 

component discriminated knife entry onto this path. Applied to automatic trimming of 

striploin steak the results inform a novel real-time approach for tactile sensing in 

machine perception. Further exploration of the approach to automatic application in a 

trimming operation will serve to confirm levels of accuracy and robustness that can 

be achieved. 

KEYWORDS 

Tactile  

Perception 

Force sensor  

Robot 

Beef cutting 

 

 

 

 

1.  INTRODUCTION 

The Australian red meat industry is a production leader of high-quality beef. 

While the industry is a significant contributor to Australian GDP, it is highly 

dependent on overseas labour for manual operations in meat production, as 

nationally the required skills are scarce. Both staff retention and national recruitment 

are exacerbated by the perceived near-freezing conditions and risks of the work 

environment, which do little to compete with working conditions in other industries 
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(Romanov et al., 2022). The resulting production labour costs are the highest 

amongst international competition (SG Heilbron Economic & Policy Consulting, 

2018).  

Automation is anticipated as the industry solution, encouraged by the success 

and benefits reported in other industrial sectors (IFR International Federation of 

Robotics, 2021). However, the machine processing of meat workpieces, with the 

significant variations and the deformation of these natural mediums, requires high 

capability in machine perception, judgement, and adaptation to compete with 

exacting product specifications achieved by skilled human operators. Whether tasks 

involve separating meat tissues, slicing, or trimming to achieve finesse in high-value 

products, automation will need to respond to the presence of meat tissue interfaces, 

deflections and deformation induced by applied cutting forces. Near real-time 

machine perception will be needed to automatically determine corrective cutting 

trajectories and to maintain desired cutting paths relative to the tissue medium. 

Acceptable product presentation and yield are highly dependent on these factors. 

Working toward this requirement, this paper reports research on a novel 

approach to tactile sensing able to discriminate and follow tissue interfaces during 

cutting operations. Tactile sense offers potential to discriminate the nature and 

behaviour of internal meat tissue structures at the point of cutting. This investigation 

on the search for a suitable tactile sensing approach for the task has focused on 

separating fat from lean tissue with defined proximity to the fat/lean tissue interface 

by using striploin steaks. In this form, the presentation of meat tissues is amenable 

to experimental verification of cutting relative to internal meat structures. 

1.1. Description of the striploin trimming operation  

Striploin is a valuable beef cut estimated to be 15% of carcass value. The cut 

extends between the rib cage and rump adjacent to the spine region covering from 0 

to 3 ribs (Figure 1) (Standard, 2015). The dimensions and weight range are stated in 

Table 12 (Khodabandehloo, 2018).  
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Figure 28: The location of the striploin primary cut in the cattle carcass 

(Standard, 2015) 

Table 12: Typical measurements of a striploin cut (Khodabandehloo, 2018)  

 Maximum Minimum 

Length 605 mm. 450 mm. 

Width 245 mm. 200 mm. 

Height 125 mm. 90 mm. 

Weight 13 Kg. 5.4 Kg. 

 

Two primary tissue components of striploin are: muscle and fat. The trimming 

operation occurs within the fat medium (subcutaneous fat) located peripheral to the 

muscle tissue. The primary substance of fat tissues is triglycerides consisting of 

glycerol and fatty acids. Firmness of the fat is influenced by the contents of fatty 

acids and the length of carbon chains (Schumacher et al., 2022; Wood et al., 2008). 

Subcutaneous fat is presented in a layered structure with air gaps randomly 

distributed (Khodabandehloo, 2018; Lonergan et al., 2019). Fat distribution is 

affected by age, breed, gender, environment and weight of the beast (Schumacher 

et al., 2022).  

The thickness range of the fat layer is 5 to 60 mm (Border et al., 2019; 

Khodabandehloo, 2018). Striploin trimming operations remove excess fat and 

connective tissues from the beef striploin along the contour of the underlying muscle 

interface, leaving a residual layer of fat on top of the muscles. In the final form, the 

thickness of the residual fat and the overall shape of the trimmed cut is defined by 

market requirements. Excessive residual fat can lower the value of the product, 

whereas over-trimming can reduce yield and affect the taste of the meat when 

cooked (Khodabandehloo, 2018; Savell & Cross, 1988).  
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In the manual process of trimming, operators use sharp boning knives. The 

product is placed on a flat board with the fat side facing upwards (Figure 29). 

Operators begin from one side of the product and make progressive angled, shallow 

cuts (slicing) to remove the outer layer of fat, guided by the tissue interface between 

fat and muscle tissue. When trimmed, operators may portion it into smaller, market-

ready products such as striploin steaks.  

Skilled operators use a combination of visual and tactile perception to perform 

the trimming task. Visual perception is used to locate the cutting path, monitor the 

external state and behaviour of the workpiece, and determine the position of the 

cutting tool relative to the external features of the carcass. In contrast, tactile 

perception dominates where visual information is not possible. In temporal form, 

tactile sense enables discrimination on approaching tissues and tissue structures 

and to estimate the location of the cutting tool relative to the meat tissue interface 

even though the meat deforms in response. The operator makes informed judgments 

using this information, combined with knowledge and previous experience. Using 

tactile sense, the operator responds with strategy to achieve the required residual fat 

layer and the shape of the product by guiding the knife with anticipation of behaviour, 

the expected encounters with tissue features in the meat tissue and changes in 

response to the medium.  

 

Figure 29: Manual trimming of striploin primary cut (Gordon Food Service, 
2022) 
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1.2.  Automation for striploin trimming   

At present, no known commercially available robotic or other automation 

system is capable of performing the task of beef striploin trimming relative to the 

real-time position of tissue interfaces. Deformation in the meat during cutting 

operations requires real-time perception and corrective strategies to maintain cutting 

paths relative to meat tissue interfaces. Two important goals are to produce a 

product of conforming shape and tissue content, and to maximise yield.  

Innovative approaches to automatically trim fat tissue from the striploin to form 

a consistent residual layer over the top of the product and to meet market 

requirements have been reviewed. Mechanical systems to push the workpiece 

against trimmers is one such example. This approach is without means to measure 

fat depth, which will vary accordingly to the distribution of stiffness of underlying 

tissues. Examples of such systems are described in patents submitted by Leblanc 

and Long et al. (Leblanc, 1992; Long & Thiede, 1995).  

Other approaches revealed in details of patents generally follow the 

automation scheme of Figure 30 (Albert, 1980; Black & Lauritzen, 2015; Bolte & 

McKenna, 2012; Cate & McCloskey, 2000; Chenery, 1981; Johnson & Vandenbroek, 

2005). This structure includes an upstream measurement unit, a processing unit, and 

a downstream trimming unit, all connected by means of transfer (rollers, pulleys and 

conveyors) to progress the product through the processing operation. 

Khodabandehloo et al. (Frontmatec, 2021) illustrated the significance of deformation 

induced errors using a commercial system for pork trimming. This method proved 

successful in pork trimming and not in red meat processing. Although there are 

structural similarities between beef, lamb and pork, the latter has more uniform fat 

distribution containing a greater concentration of unsaturated fatty acids, rendering 

tissues softer and more fluid such that peeling and trimming are readily achieved 

(Kauffman, 2001; Valsta et al., 2005; Wood et al., 2008).  

 

Figure 30: General structure for fat-trimming automatic units 
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The concept demonstrated in the above-mentioned systems relies on pre-

operation data to perform the task of trimming and assumes negligible change in 

behaviour, position of tissues, and tissue interfaces during the operation. The 

approach also assumes near-uniform distribution of fat tissue across the workpiece.  

Non-homogeneous shape is the norm across carcasses with significant 

variation in size. This combined with the deformable nature of meat tissues requires 

adaptive robotic systems to accommodate factors similar to manual skilled 

operators. Machine perception is a key function to discriminate between different 

hidden mediums when cutting and to follow a corrective cutting path by strategically 

adjusting the cutting trajectory in real-time.  

Cutting meat tissues by machine to prescribed specifications will likely 

combine the merits of machine vision and tactile sensory capabilities. How to 

interpret tactile sensory data as real-time perception that will enable a robotic system 

to adapt in the automated task of cutting meat is the focus of this work. Tactile 

sensing provides an opportunity for perception to guide cutting in proximity to meat 

tissue interfaces where tissues and interfaces are hidden visually (Aly, Low, Long, 

Baillie, et al., 2023), however the means to retrieve appropriate information from 

tactile sensory data requires investigation. Previous attempts to use this sensory 

mode for following complex non-uniform cutting profiles, such as the aitch bone of 

the lamb hindquarter in (Steve Maunsell & Scott Technology LTD, 2018) and the 

femur bone of pork leg in (Guire et al., 2010), did not provide the anticipated yield.  

The question to answer is not necessarily related to force values but rather 

the trends and character of persistent presentation in the form of sensory data 

transients. Here relevant information can be found to discriminate working conditions 

and the response of mediums during processing. This experience is typical when 

automatically sensing other natural mediums, such as on farms to detect weeds or 

pick fruits (Koirala et al., 2019; McCarthy et al., 2010) and within human tissue 

mediums in medical procedures to control micro-drilling and needle insertion-based 

procedures (Abolhassani, Patel, & Moallem, 2007; Brett et al., 1995; Brett et al., 

2000; Peter N Brett et al., 1997; Peter N. Brett et al., 1997; Taylor, 2008).  

In this paper, orthogonal (side of knife blade) reactive cutting force transients 

are explored in conjunction with force component transients of the leading tip of the 

knife to discriminate the orientation of the knife and its proximity to interfaces during 

the striploin steak trimming task. The work builds on a previous investigation (Aly, 

Low, Long, Brett, et al., 2023) where the effectiveness of reactive force transients on 



92 
 

a knife to discriminate between tissues and the process of cutting meat tissue 

interfaces was demonstrated.  

During the cutting process, the trajectory of the knife path needs to align with 

the interface between the fat layer and muscle tissue. The experiments described 

here characterise how force transients vary in response to a static knife approaching 

common features encountered within the meat. Additionally, the study proposes a 

cutting strategy to follow through with an automated process informed by the 

experimental results. 

2. Methodology 

Successful trimming of a striploin steak can be broken down into two steps. 

The first step involves recognising when the knife is approaching the interface 

between the fat layer and muscles tissue. The second step is to follow a cutting 

trajectory that encapsulates this interface at a relatively consistent distance from it. 

To achieve this, force transients from two different axes are considered. The force 

acting on the tip of the knife can be used to determine when the knife is approaching 

and penetrating an interface in the direction of cut, similar to the approach used in 

the experimental work of (Aly, Low, Long, Brett, et al., 2023). At the same time, 

orthogonal forces acting on the sides of the knife inform its direction to follow the 

path along the interface. Both these forces are crucial for discriminating irregularities 

or disturbances in the structure adjacent to the interface between the fat layer and 

the muscle. 

For the purpose of exploring the influence of meat structure on the force 

transients, the trimming task has been simplified into shallow straight-line cuts. Each 

cutting path is progressively closer to the fat/lean interface in the striploin chop test 

samples. The advantage of using a straight-line simplification in the investigation is 

to enable observation and the identification of correlation between unique force 

transients and the path of the knife in the meat tissues.   

2.1. Selection of sample for experimental investigation 

Test samples were prepared using a whole striploin. This was sectioned into 

40 mm thick portions to create striploin steaks. The choice of striploin steaks offers 

experimental advantages: (1)There is flexibility in the use of the same loin for 

different cutting investigations and for consistency in comparison; (2)The tissue 

structure of striploin chops closely resembles a two-dimensional model, and 

simplifies the process of correlating force sensor feedback with the position of tissue 
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interfaces during deformation when using machine vision measurements and manual 

observation. Figure 31 illustrates a portion of a striploin steak derived from the 

primary cut.  

 

Figure 31: Portioning striploin primary cut into striploin chops for experimental 
trials 

2.2. Test rig structure 

The experimental configuration was devised to represent conventional cutting 

procedures and used a 6-axis anthropomorphic ABB IRB 1200 manipulator. This 

manipulator was mounted on a support cabinet, and integrated with an adjustable 

table platform for accommodating meat samples. The rig is food-grade and IP67-

rated. This ensures that all components are dustproof and waterproof, allowing for 

regular cleaning. Brackets were employed to secure the meat in place while enabling 

passage of the knife to cut through the fat layer (Figure 32). 

 

Figure 32: The trimming bracket for holding the meat from the sides and 

enabling the knife to trim fat tissue 
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Experimental sessions were recorded using two Sony FDR-X3000 Action 

Cameras. The cameras were strategically positioned at varying angles to capture 

visuals of the knife position and motion response of the test sample. A knife blade 

with its grip removed was mounted on a customised bracket. The bracket, attached 

to a 6-axis ABB 165 force sensor, was attached to the manipulator final axis. The 

sensor is capable of 165 N maximum load in both the X and Y directions. The setup 

is shown in Figure 33. The recorded data from both the sensor and the camera 

enabled the extraction of force-time series data during the cutting process, which can 

be correlated with tissue characteristics and the cutting response. 

  

 

Figure 33: Test rig setup 
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2.3. Experimental preparation 

Prior to conducting cutting experiments, the force sensor was calibrated to 

detect only the contact forces between the knife and meat specimen. The cuts were 

performed using ‘Points programming’, the cutting trajectory was determined and 

programmed 10 mm above the test sample (line 1 in Figure 34), and upon execution 

the manipulator lowered the knife by 30 mm such that cutting was achieved to a 

depth of 20 mm in the fat layer (line 2 Figure 34). Experiments have shown that the 

depth of the cut affects force values from the force sensor, but not the nature of the 

force transients resulting in discrimination of tissue interfaces. The velocity of the 

knife was set to be low, at 20 mm/second, and maintained at this constant rate 

throughout all experimental runs for consistency in controlled response to meat 

behaviour. Parameters such as the knife blade sharpness and surfaces were 

maintained after each series of cuts. The ambient temperature of the meat sample 

was maintained at a constant 9°C, similar to that of an abattoir. The blade cutting 

angle as applied to the meat was maintained on a perpendicular cutting plane 

aligned with the direction of motion of the knife. 

 

 

Figure 34: Programming the cutting line 

An internal timer of the robot system was activated at the start of the cutting 

process. Following each experimental run, the robot saved data including the timer 

readings, and the corresponding force readings in .csv format. MATLAB was used 

for processing the data. The force sensor and video cameras were synchronised 

with the internal timer of the manipulator using a time stamp corresponding with the 

start of motion. 
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3. Results and observations 

This section discusses the findings obtained from the experiments, including 

the observation and correlation of force transients with the location of cutting in meat 

tissues. This tactile interpretation identifies consistent trends and features in the 

force data that can be used by a machine to discriminate cutting events and update 

a cutting strategy in the meat. The forces instrumental to the discrimination of these 

events are illustrated in the schematic of Figure 35.  

The effective force exerted at the knife tip in the cutting direction, the X-axis, 

is Fx and will be referred to as the compressive reactive force component 

(FCompressive). This force comprises two components: one is required to initiate a crack 

and overcome the bonds between the tissues (FCutting), and the other responds to 

elastic tissue deformation (FDeformation). There is a friction force component opposing 

Fx that acts in a shear direction across the surfaces of the knife blade. In the 

orthogonal direction of the Y-axis the force component is Fy and results from side 

pressure within the meat.   

  

Figure 35: Concept schematic representation of the force components 
acting on the knife blade in the direction of cutting 

In this particular cutting application, the approach needs to maintain an 

acceptable proximity of cutting trajectory within the fat and relative to the tissue 

interface. Notably, despite the heterogeneity found within red meat carcasses, 

consistent inherent traits of red meat exist and can be used to guide a cutting tool. A 

gap separating fat tissues envelopes the tissue interface, which is a common feature 

within the fat of a striploin. For this investigation, it serves as a natural pathway 

between the outer and inner fat layers and experimental studies have focused on 
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discriminating entry into the feature and forces that guide following it on a cutting 

path.  

Manual cutting observations have shown that this natural separation feature 

becomes more visible as the knife approaches it, offering a natural guide for 

trimming. The surrounding tissue exerts pressure and the surrounding tissues 

deform, funnelling the knife further into this natural gap. This phenomenon was 

reflected in the force transients as a recognisable pattern acting on the sides of the 

knife. Reactive force transients can be identified to discriminate following as opposed 

to entering or exiting this cavity. Primarily, lateral forces on the sides of the knife can 

be used to follow the space. Figure 36 illustrates some typical features of a striploin 

cut and shows the path between the fat layers. As depicted in the figure, the pathway 

encompasses the interface between the fat layer and the meat. 

 

 

Figure 36: Features of fat layer 

The investigation progressed in multiple stages, as outlined in this section: 

1. Investigate and identify changes in force transients when approaching tissue 

interfaces using visual and analytical observations. 

2. Examine the unique force transients indicating that the knife is approaching 

and cutting through the pathway between the fat layers. Study how 
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interactions between the knife and this pathway are reflected in the force 

transients. 

3.1. Force transients on the approach to tissue interfaces 

The first step is to identify the proximity of the knife to the fat/lean interface as 

it informs a decision of steering the knife towards or away if required. As the knife 

approaches the elastic sinew between the fat layer and the meat, the adjacent 

tissues begin to separate in anticipation of the blade. To investigate how force 

transients can be used to indicate the proximity of the knife from the fat/lean 

interface, three different cutting paths were performed in series with a rotation of five 

degrees between each cutting path towards the interface. Figure 37 shows the 

cutting paths with the corresponding measured reactive force transients on the tip of 

the knife Fx and the side Fy. Both visual inspection and statistical analyses were 

employed to contrast the transient force patterns as the knife moved closer to the 

interface on the sequence of paths 1-3. The experimental observations show that the 

workpiece geometry and some variations in material properties near the interface 

significantly influence the force distribution. This concept was empirically validated 

through a series of cuts that progressively approached the fat/meat interface.   
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Figure 37: Representation of cutting paths approaching the fat/meat interface 

Visual observation of normalised cutting path data in Figure 38 shows that the 

forces on the tip of the knife fluctuate constantly due to the nature of fat as a material 

and randomly distributed air pockets within the fat layer. These forces only begin to 

increase abruptly as a result of local deformation when encountering and actively 

crossing an interface, as shown in cutting path 3. In contrast, the side forces are 

more stable and only begin to change when the knife encounters abnormalities on its 

sides. 
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Figure 38: Normalised Fx and Fy on the knife for each cutting path 

The visual observation of normalised cutting path data was confirmed by 

performing cross-correlation and data time warping (DTW) of Fx and Fy for each 

cutting path between the forces on the knife. The cross-correlation analysis and the 

DTW offer different aspects of comparing signals. Cross-correlation quantifies the 

degree to which two time series correspond to each other at different time lags (Yoo 

& Han, 2009). It is particularly useful for determining the level of similarity between 

two signals at the same time or with slight shifts. A high cross-correlation coefficient 

of normalised signals (close to 1) indicates linear similarities between the data, 

whether they are in-phase or out-of-phase. The signals are highly correlated if the 

cross-correlation plot has the highest peak at or near zero lag.   

Alternatively, DTW is a technique that measures the similarity between two 

time series by optimally aligning them, even if they are out of sync (Müller, 2007). 

DTW allows for "warping" the time axes of the signals to make them more similar. 

The DTW score quantifies the "effort" needed to make the two signals identical. 

Unlike cross-correlation, which assumes a linear relationship between time series at 

various lags, DTW allows for non-linear warping of the time axis to align the series. 

Normalising the data prior to analysis focuses the comparison on the shape of the 

time series rather than their absolute values. 

 Table 13 shows the cross-correlation coefficient between Fx and Fy, and the 

DTW score for each cutting path. All three cutting paths showed positive correlations 

near zero lag in the cross-correlation analysis, with Paths 1 and 2 presenting very 

high coefficients of 0.95 and 0.97, respectively. This suggests an almost 
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instantaneous and highly synchronised interaction between Fx and Fy, an 

observation substantiated by their low DTW distances (1.2 and 2.61). These low 

distances imply a strong similarity between the forces, suggesting a consistent and 

efficient cutting process.  

On the other hand, Path 3 exhibited much lower cross-correlation coefficients 

(0.79) and elevated DTW distances (5.76). The path with fewer similarities and less 

closely matched forces in the DTW-aligned graphs reflects fluctuations in material 

properties supported by observations from the cutting videos near and at the 

interface.  

Table 13: Cross-correlation coefficient and DTW score of cutting paths 1,2 and 3 

 Cross-correlation coefficient DTW Score 

Cutting path 1 0.95 1.2 

Cutting path 2 0.97 2.61 

Cutting path 3 0.79 5.76 

 

It is instrumental to focus discussion on cutting path 3, as it is the most close 

to the fat/meat interface from which to discriminate when the knife is approaching 

and penetrating the natural gap between the fat layers, and how this gap can be 

utilised to guide the knife relative to the interface.  

Analysing the regions where Fx and Fy diverge can provide insights when the 

knife is approaching an interface. One simple approach is to compute the Pearson 

correlation coefficient between Fx and Fy over a predetermined window length of 

data throughout the time series. Although similar to normalised cross-correlation, 

Pearson correlation coefficients are calculated over a predetermined window length. 

The coefficient range is between 1 and -1 and is evaluated similarly to the cross-

correlation coefficient. By selecting appropriate window lengths and step sizes, real-

time calculation of the Pearson correlation coefficient is feasible. Setting a threshold 

for the linear similarity between the signals allows one to identify regions close to the 

interface. 

In the analysis performed, the correlation between Fx and Fy was calculated 

over a window of 1 second to examine similarities between Fx and Fy for cutting 

path 3. In the figure, regions are highlighted green with strong correlation and red 

and orange with an opposite and weaker correlation. Figure 39 illustrates time 

periods when correlation is weak between Fx and Fy, indicating that the knife is 
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approaching an interface and following the pathway between the fat layers. Table 14 

shows the Pearson coefficient for each period.  

 

Figure 39: Visual representation of Pearson coefficient and the correlation 
between Fx and Fy for cutting path 3 (the data are filtered and normalised) 
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Table 14: Pearson coefficient for cutting path 3 

Start time End time Pearson 

Coefficient 

Correlation 

between Fx and 

Fy 

39.2 40 0.997542  

 

Strong 

40.2 41 0.94705 

41.2 42 0.978612 

42.2 43 0.653762 

43.2 44 0.861972 

44.2 45 -0.98575  

 

Weak 

45.2 46 -0.33492 

46.2 47 0.034724 

47.2 48 -0.95013 

 

3.2. Interpretation of force transients 

The force applied to the knife tip axis (Fx) was monitored by observing its rate 

of change (gradient). This approach was chosen based on previous observations 

(Aly, Low, Long, Brett, et al., 2023). The knife approaching or penetrating an 

interface is consistently marked by a spike in force gradient. The gradient of the 

force was computed from transients at 0.2 second intervals, a frequency sufficient to 

detecting significant force fluctuations and at a rate to reinforce persistent and reject 

anomalous readings when approaching an interface or when cutting through. Figure 

40 indicates forces exerted on the knife tip (Fx) and their corresponding rate of 

change. In the rate of change graph, the focus is on two key features: the regions 

above the zero line, that indicate increasing force, and the points where the curve 

intersects the zero line, signifying regions where the force peaks before diminishing. 

Region 1 shows the first interface penetration at the start of the cut, region 2 shows 

the increase of deformation while the knife is approaching and entering the natural 

gap between the fat layer and region 3 shows the knife breaking through the last 

tissue interface, exiting the sample.  
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Figure 40: The force transient on the tip of the knife (Fx) and its rate of change 

Figure 41 shows the correlation between the side forces Fy and the rate of 

change dFy/dt with the features of the cutting path. Figure 41 (a) shows the 

predefined trajectory of cutting path 3 laid out on the actual cutting path, displaying 

how the pathway between the fat layers migrates from the straight-line trajectory. 

The blue lines represent time stamps at which the rate of change of Fy intersected 

with the zero line, representing local maxima or minima and shift of the side forces 

on the sides of the knife. The regions depicted with green arrows represent an 

increasing net force from the interface side and a positive rate of change, whereas 

the regions with red arrows represent the opposite.  

At the start of the trimming trajectory immediately following penetration of the 

first interface, the rate of change force plotted as a function of time in Figure 41 (b) 

shows a positive trend. This indicates an increase in force exerted on the inner side 

of the knife from the interface direction of the sample (green area on the plots). 

Concurrently, an increase in the net force is observed, peaking at 39.37 seconds at 

the end of the first region. This phenomenon can be attributed to the positioning of 
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the holding bracket. The fixed bracket serves as a focal point for maximal stress as it 

immobilises the sample. Subsequently, as the knife approaches and penetrates the 

natural separation between the fat layers, a comparison of the final cutting path to 

the predefined trajectory (indicated by the black dotted line) reveals the knife's 

tendency to deviate from the planned course as the tissues deform elastically 

against the knife and force alignment along the natural split within the fat layers. 
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Figure 41: Side forces rate of changes during the trim 

Another straight-line incision was performed on a different piece of meat, 

targeting a trajectory similar to cutting path 3 above. This incision, executed in close 

proximity to the fat/lean interface, also traversed the natural pathway between the fat 

layers. The purpose was to confirm the unique force transients observed in Fx shown 

in Figure 40 and to confirm the relationship between Fy and the structural 
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characteristics of the cutting trajectory similar to Figure 41. Figure 42 shows the new 

incision, both the planned trajectory and the resulting cut. 

 

Figure 42: The planned cutting trajectory and the result after performing the 
cut 

Figure 43 displays similar patterns in force transients to those described 

earlier in Figure 40. The pattern similarity was confirmed using a further DTW 

analysis between the rate of change of Fx in Figure 40 and the rate of change of Fx in 

Figure 43. This yielded a similarity score of 1.41. Both graphs show unique 

transients represented by force peaks across three regions with smoother force 

transients in between. Region 1 depicts the initial interface penetration at the 

commencement of the cut, region 2 illustrates the increase in deformation as the 

knife approaches and enters the natural gap between the fat layers, and region 3 

indicates the knife cutting through the final tissue interface before exiting the sample. 

At the same time, The side forces (Fy) and their rate of change in Figure 44 show a 

close correlation on how the natural path between the fat layer can guide the knife 

during the cut, similar to Figure 41.  
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Figure 43: The force transient on the tip of the knife (Fx) and its rate of change 

 

 

Figure 44: Side forces rate of changes during the trim 
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3.3. Formulation of a cutting strategy 

The results have shown that the nature of force transients can be used to 

discriminate important conditions in cutting where decisions may be made to adjust 

guidance of the knife during cutting. The next step is to encapsulate this new 

knowledge into a strategy for machine guidance in the cutting operation. A cutting 

strategy based on the results and observations above can be summarised as 

follows:  

1- Based on the external features and shape of the striploin steak, the knife is 

positioned to have a cutting trajectory aligned with the natural pathway between the 

fat layers in close proximity to the interface between the fat layer and muscles.  

2- The knife makes initial contact with the carcass and starts the first tissue 

interface penetration in region 1 (as shown in Figure 40). In this region, the forces 

(Fx) increase and the tissues deform under the applied force until a mechanical 

limitation is reached. 

3- Once the knife is fully inside the carcass, the force readings are maintained 

at a level to slice tissues. Sensor signals are monitored to discriminate the proximity 

of the knife to the fat/lean interface region.  

4- The red region of Figure 39 and region 2 in Figure 40 show spikes in forces 

(Fx) in front of the knife due to deformation of the tissues as the knife approaches the 

natural pathway. This is on the approach to interface surrounding the cavity.   

5- Upon entering the natural pathway, the knife follows the trajectory that 

offers the least resistance. The direction of the path trajectory is determined based 

on the directions of the force on the sides (Fy) by reorienting the knife based on the 

force signal shown in Figure 44.  

6- The knife completes the cutting path by breaking through the last bit of 

tissue (region 3 in Figure 40).  

The experimental evidence on force transients to discriminate the approach to 

tissue interfaces, discussed above in the paper, can be embodied in an automated 

sensory perception system that uses specified forms of tactile force transients to 

discriminate the important cutting conditions for the task at the knife blade. Following 

identification the strategy is to maintain the desired cut path with respect to the 

detected tissue conditions and either maintain the conditions or correct the cut path 

to avoid the incursion. This requires decision functions to select and control the path 

of the manipulator in near real-time. In the trimming operation for striploin steaks, the 

aim is to guide the knife and achieve a specified range of proximity relative to the 



110 
 

fat/lean tissue interface. Using this approach will enable control of the knife to take 

recovery action in response to range of disturbances that are normally encountered 

within the tissue medium to maintain the planned cutting path.  

In the task of trimming a striploin steak, a crucial decision involves identifying 

when the knife is approaching the fat/lean interface and entering the pathway 

between the fat layers. Then, react to the side forces to navigate the turning points 

accurately and follow the path of separation. This decision entails either rotating the 

knife to follow the shape of the path and react to the side forces presented in Figure 

41 and Figure 44. 

4. Conclusion 

This paper introduces an approach to discriminate common tactile force 

features during a beef cutting operation that can be used to guide a knife attached to 

a robotic manipulator. The study focused on analysing tactile sensory data transients 

along two orthogonal axes on the knife, aiming to discriminate key interfaces during 

cutting. The two forces analysed are the side force transients and the orthogonal 

leading edge cutting force at the knife's tip. Coupling of the transients from these 

orthogonal force components showed a robust combination of signalling to 

discriminate the approach to tissue interface, which is a common feature to support 

machine perception when cutting meat.  

Experimental confirmation of the correlation between events and the nature of 

force transients was used. The research derived the evidence by executing three 

straight-line cuts to represent the trimming of striploin steaks. Each path 

progressively approaches the primary interface between the fat layer and muscle 

tissue. Visual observations supported by cross-correlation and dynamic time warping 

analyses revealed stronger similarities in the orthogonal force transient components 

for paths farther from the interface, yielding 95% and 97% cross-correlation 

similarities and DTW scores of 1.2 and 2.6. However, as cutting approached the 

interface, the correlation weakened due to disturbances and tissue breakdown at this 

juncture. The cross-correlation in this case was 79% and the DTW score was 5.76. 

Pearson correlation analysis for the cut near the interface indicated that the decline 

in correlation began as the knife approached and sliced through the interface 

between fat layers near the main fat/lean interface.  

For trimming striploin steaks, the interface between the fat layers serves as a 

pathway the knife can automatically follow, offering the least resistance and thus 
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naturally guiding it in a manner similar to the technique used by skilled operators 

performing beef cuts by following such interfaces. The pressure exerted by the 

surrounding tissue channels the knife further into this natural gap. Moreover, lateral 

forces on the knife's sides demonstrated acute sensitivity to the contour of the 

natural path near the tissue interface, while forces aligned with the cutting direction 

indicated the knife's penetration into this path. 

This paper demonstrates a novel approach to integrate tactile sensing for 

real-time machine perception during cutting that can be used in knife guidance by 

machine relative to tissue position. While the approach has proven robust and 

repeatable in identifying key features, further investigations are needed on a broader 

range of samples and applying these principles to different cuts. 
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5.2. EXTENDED RESULTS   

This Section presents the results of additional experimental runs conducted 

during the study of trimming fat from striploin steaks using robotic technology. The 

aim is to expand on Section 5.1 findings by analysing twelve cutting paths, key 

cutting events, and the unique force transients captured by the force sensor.  
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 Section 5.1 detailed results from five experimental runs, which demonstrated 

clear correlations between the forces detected on the knife and the behaviour of the 

surrounding tissues. The study highlighted two main points. First, cross-correlation 

analysis can determine when the knife is approaching an interface. Second, 

interpreting the combined force transients from the knife's sides and tip can 

discriminate tissues and interfaces during cutting, as well as locate the knife relative 

to them. 

The experiments in this chapter provide additional insights into the nuanced 

interactions between the cutting tool and the tissue under varying conditions. The 

experimental setup is the same as described in Section 5.1.  

The section includes twelve experimental cutting runs, divided among four pieces of 

striploin steaks. The additional cutting runs are divided into 1) two sets of five cuts 

across the fat layer with varying insertion angles (see Figure 45 a) and 2) two 

individual cuts along a fat gap within the fat layer of the striploin (see Figure 45 b), 

totalling four new workpieces added to the experiment. The cutting paths and 

rotation angles were selected deliberately to cover a wide range of insertion angles, 

taking into account the thickness of the fat layer in the samples. Table 15 describes 

the samples. 
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Figure 45: a) Cutting paths with varying rotation angles as they near the fat/lean 

interface, b) An example to show cutting across the fat layer near or through an 

interface 

Table 15: Description of the samples 

Sample number Number of 

cutting paths 

Description 

Striploin sample 

1/2 

5 Cuts Each cut gets progressively 

closer to the lean/meat 

interface by rotating the knife  

Striploin sample 

3/4 

1 Cut A cut across the fat layer 

across interfaces. 

 

The objectives of the analysis performed are as follows: 

1. Reflecting Key Events: In all twelve cuts, test the capability and accuracy of 

the force transients in reflecting key cutting events, material features of the 

sample, and tissue behaviour around the knife. 
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2. Approaching Interfaces: In the ten cutting paths that progressively get 

closer to the interface in striploin samples 1 and 2, test the capability of cross-

correlation analysis in revealing whether the knife is cutting away or 

approaching interfaces. As mentioned in Subsection 3.1, "Force Transients on 

the Approach to Tissue Interfaces," of Section 5.1, when the knife approaches 

the lean/meat interface, the perpendicular force components on the knife (Fx 

and Fy) become increasingly disturbed, reducing the cross-correlation 

coefficient between them. 

3. Exiting Fat Layer: In cutting paths 1, 2, and 3 from striploin samples 1 and 2, 

which cut through the fat tissue away from the fat/lean interface, explore 

whether both Fx and Fy can indicate if the knife is nearing the edge of the fat 

layer, suggesting the need to rotate inward to prevent exiting. 

4. Following Interfaces: In cutting paths 4 and 5 from both striploin samples 1 

and 2, as well as the cutting paths from striploin samples 3 and 4, analyse the 

sensitivity of the lateral forces to the surrounding tissue behaviour and the 

contours of the encountered interfaces. This part should support the 

observations demonstrated in Subsection 3.2 “Interpretation of force 

transients” in Section 5.1. 

5.2.1. Force transients on the approach to tissue interfaces 

This section focuses on identifying the proximity of the cutting trajectory to the 

intermediate interface between the fat layer and the muscles. A cross-correlation 

analysis between the forces Fx and Fy was conducted on each cutting path of 

striploin samples 1 and 2. Table 16 presents the cross-correlation coefficients for 

cutting paths 1 to 5. 

A high similarity between Fx and Fy indicates that the knife encounters no 

disruptions, such as interfaces or air pockets while cutting. For cutting paths 1 to 3, 

the cross-correlation coefficients show high similarity, confirming a smooth cutting 

trajectory. In contrast, for paths 4 and 5, the knife actively cuts through interfaces, 

resulting in significantly lower similarity between the forces. These results align with 

the findings in Subsection 3.1 of Section 5.1. 

 

 

 

Table 16: Cross-correlation coefficients between Fx and Fy for cutting paths 1, 2, 3, 4, 

and 5 across test samples 1 and 2 
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 Striploin 1 Striploin 2 

Cross-correlation coefficient 

Cutting path 1 0.971881 0 0.986034 

Cutting path 2 0.954827 0.981252 

Cutting path 3 0.987867 0.970036 

Cutting path 4 0.836709 0.875335 

Cutting path 5 0.807018 0.761868 

 

5.2.2. Cutting away from interfaces 

This section examines cutting trajectories that diverge from the fat/lean 

interface, represented by cutting paths 1, 2, and 3, which exhibit high correlation 

coefficients between the force components on the knife (Fx and Fy). The stage of the 

cut of interest is when the knife is nearing the outer edge of the fat layer. This 

information helps in identifying the correct timing and location relative to the 

surrounding tissues, where the knife should execute the necessary rotation to trim or 

slice a uniform fat layer relative to the fat/lean interface. 

The analysis of force data and tissue behaviour during cutting, in relation to 

the knife's position within the sample, reveals that the knife is nearing the outer edge 

of the fat layer when the force on the knife tip (Fx) starts to decrease gradually 

(indicated by a negative dFx/dt) and the net lateral forces on the sides of the knife 

(Fy) reach their maximum on the inner side of the knife. These instances are 

depicted in Figure 46 for cutting paths 1, 2, and 3 of striploin 1, and in Figure 47 for 

cutting paths 1, 2, and 3 of striploin 2.  
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Figure 46: The time window that indicates the knife is approaching exiting the fat layer 

for cutting paths 1,2 and 3 of striploin 1 
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Figure 47: The time window that indicates the knife is approaching exiting the fat layer 

for cutting paths 1,2 and 3 of striploin 2 
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When slicing through a fat layer, the force on the tip of the knife increases 

upon penetrating the initial tissue interface until it reaches the necessary force 

required to slit the bonds between the fat tissues (Aly, Low, Long, Brett, et al., 2023). 

Subsequently, the force values stabilise as the knife progresses through the fat 

layer, depending on the length of the path. As the knife gets closer to the final tissue 

interface, the force on the tip of the knife (Fx) starts to gradually decrease (dFx/dt is 

negative) as the knife gets closer to exiting the fat layer.  

At the same time, the thickness of the tissue on the outer side of the knife 

diminishes causing the net lateral forces on the sides of the knife (Fy) to reach their 

maximum. The effective direction of the force component Fy is towards the inner side 

of the knife from the direction of the fat/lean tissue interface. The figures above 

illustrate the knife's location when these force conditions are met. It is noticeable that 

the knife is consistently positioned close to the outer edge of the fat layer, which is 

an ideal location for rotation if an automatic control strategy is implemented to guide 

the knife. 

A MATLAB script was created to simulate the receipt of data in real-time and 

detect the cutting conditions mentioned above. The way the script works is that it 

loads the data from the Excel files and then processes each data point as if it were 

being received in real-time. A simple moving average noise filtering technique with a 

window size of 10 is applied to both Fx and Fy to smooth out short-term fluctuations 

and noise in the data. The derivative of Fx with respect to time is computed and also 

filtered from noise to identify the rate of change of force on the tip of the knife. 

The script detects peaks in Fy data using the findpeaks function. It then 

iterates through the data points, updating a buffer that tracks the most recent data 

points. During each iteration, the script checks if dFx/dt is negative and checks when 

a peak in Fy occurs during the period. When both conditions are met—dFx/dt being 

negative for at least 0.5 seconds and a peak in Fy—the script records the time and 

relevant values of Fx, Fy and highlights them on a plot of  Figure 48 and Figure 49. 

The table shows the times of the exiting conditions determined manually by 

correlating the force transients from the graphs with the cutting videos, and by using 

MATLAB. The MATLAB code is provided in Appendix B. 
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Figure 48: MATLAB simulation to detect the time window that indicates the 
knife is approaching exiting the fat layer for cutting paths 1,2 and 3 of striploin 1  
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Figure 49:MATLAB simulation to detect the time window that indicates the 
knife is approaching exiting the fat layer for cutting paths 1,2 and 3 of striploin 2 
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Table 17: The time window of the knife close to exiting the fat layer detected manually 
and using MATLAB code 

 Manual Method MATLAB 

 

Piece 1 

Path 1 8 8.3 

Path 2 23.3 23.5 

Path 3 41.3 41.3 

 

Piece 2 

Path 1 6.6 6.5 

Path 2 19.6 19.5 

Path 3 35.6 34.8 

 

5.2.3. Cutting through interfaces 

The focus of this section is the cutting paths that encounter interfaces and 

natural air gaps in the cutting trajectory. The experimental trials detailed here aim to 

demonstrate the ability to identify instances where the knife cuts through interfaces 

or natural gaps and to show that the lateral forces observed reflect the behaviour of 

the surrounding tissues. Since cutting path 4 in striploin 2 only engages with a small 

part of the interface, the examples that will be presented are cutting paths 4 and 5 of 

striploins 1, cutting path 5 of striploin 2, and the cutting paths in striploins 3 and 4. 

The assessment of tissue behaviour in response to knife movement is derived from 

analysing cutting videos captured from various angles and correlating the timing from 

the videos with the force-time data provided by the force sensor integrated into the 

robot. 

In cutting path 4 for striploin 1, Figure 50 illustrates the force transients on the 

tip of the knife (Fx) and the areas where the knife penetrates interfaces and moves 

between tissues. In the first region between 56 and 58.5 seconds, the tissue deforms 

while the knife penetrates a thin fat layer and the fat/lean interface, causing resistive 

force to accumulate before the penetration of the interface. Subsequently, there is a 

brief drop in forces between 58.5 and 59.7 seconds as the knife follows part of the 

interface within the cutting trajectory. Fx then increases as the knife returns to the fat 

layer until it begins to decrease steadily again as it approaches the final interface 

before exiting the fat layer. 
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Figure 50: Force transients in the X-direction showing the instances of interface 

penetration for cutting path 4 in Striploin 1 

On the other hand, the side forces (Fy) and their rate of change demonstrate 

the effect of the tissues on the sides of the knife. The behaviour of the force 

transients relative to the surrounding tissues showed similar patterns observed in 

Subsection 3 of Section 5.1. The direction of the changes in the lateral forces reflects 

the position of the fat/lean interface relative to the knife. Regions indicated by green 

arrows signify an increasing net force from the interface side, accompanied by a 

positive rate of change, whereas those marked with red arrows indicate the opposite. 

Figure 51 displays the correlation between the lateral forces (Fy) and the rate 

of change (dFy/dt) with features of the cutting path. It presents the predefined 

trajectory of cutting path 4 overlaid on the actual cut, demonstrating how the pathway 

among fat layers deviates from a straight-line trajectory due to tissue deformation. 

At the onset of the trimming trajectory, following penetration of the first 

interface, the plot of the rate of change of force over time shows a positive trend. 

This signifies an increase in the force exerted on the inner side of the knife from the 

interface direction of the sample, as evidenced by the green region 1 on the plot 

between 56.2 and 58.1 seconds, where the net force on the knife's side reaches its 

peak. This can be attributed to the curved shape of the striploin steak and the 

positioning of the holding bracket, both acting as focal points for maximal stress as 

they immobilise the sample. Consequently, as the knife advances and penetrates the 
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natural separation between the fat layer and the muscles, the rate of change of the 

lateral forces becomes negative. This occurs because, as the knife follows the 

fat/lean interface, the more malleable muscles end up on one side of the knife, while 

the stiffer fat layer is on the other side, causing a shift in the lateral forces. 

 As the knife re-enters the fat layer (green region 3 and red region 4), the 

pattern of lateral forces and their rate of change closely resembles that observed for 

cutting paths 1, 2, and 3. The force exerted on the inner side of the knife from the 

direction of the fat/lean interface increases until it nears the exit of the fat layer, 

where it begins to gradually decrease again (at 62.7 seconds). 

 

 

Figure 51: Force transients in the Y-direction showing the effect of the tissue 

behaviour and distribution on the lateral forces for cutting path 4 of striploin 1 

In cutting path 5 of striploin 1, we observe a notable encounter unique to this 

path, a piece of fat located across the striploin. The penetration of this area is 

reflected in the spike of Fx due to tissue deformation at 80.2 seconds (Figure 52 (a)). 

For cutting path 5 of striploin 2, the first highlighted region that ends at time 

74.3 shows the penetration of both the first interface followed by the fat/lean 
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interface due to the short cutting distance between them (Figure 52 (b)). The lateral 

force profile of cutting paths 5 of striploins 1 and 2 is shown in Figure 53. 

 

 

Figure 52: Force transients in the X-direction showing the instances of interface 

penetration for cutting path 5 of striploins 1 and 2 
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Figure 53: Force transients in the Y-direction showing the effect of the tissue 

behaviour and distribution on the lateral forces for cutting path 5 in Striploins 1 and 2 
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The experimental trial performed on Striploin 3 had a similar issue as the 

cutting of Striploin 1, a slight misalignment between the knife and the test sample 

caused the experiment to commence from a position different from the intended one. 

Moreover, excessive tissue deformation resulted in the knife not only trimming the fat 

but also cutting through the muscles. However, the results still revealed a robust and 

precise correlation between the forces applied to the knife and the tissue behaviour.  

Two instances of deformation were observed and demonstrated in Figure 54: 

the first instance, occurring approximately between 2 seconds and 4.6 seconds, 

depicts the knife penetrating interface number 1 from the fat layer to the muscles, 

while the second instance, between 5.9 seconds and 7.05 seconds, illustrates the 

knife's movement back from the muscles to the fat layer. Additionally, it was noted 

that the average force level decreased when cutting through the muscles, aligning 

with the findings reported by Aly et al. (2023) (Aly, Low, Long, Brett, et al., 2023). 

The muscle-cutting region lies between the two peaks of the interface crossing.  

 

Figure 54: Force transients in the X-direction showing the instances of interface 

penetration for cutting path in Striploin 3 

The side forces accurately represented the lateral forces resulting from tissue 

deformation around the knife and the structural layers within the sample that affected 

the knife's trajectory. As the cutting commenced, with the knife crossing interfaces 

from the fat layer towards the muscles, the side forces acting on the knife depicted 

tissue deformation. In region 1, where the knife crosses the interface from the fat 
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layer towards the muscles, the tissues rotated, exerting pressure on the inner side of 

the knife. This rotation led to a positive increase in the rate of change of the lateral 

force derivative, indicating that the net lateral forces were higher on the inner side of 

the knife (region 1 in Figure 55). Region 1 ended at 4.6 seconds when the knife 

successfully crossed the interface and began cutting through the muscles. 

In Region 2, from 4.6 to 7.05 seconds, the knife cut through the muscles in 

close proximity to the intermediate interface between the fat and the muscles. This 

positioning caused the interface to exert pressure on the outer side of the knife, as 

illustrated in region 2 in Figure 55. In the latter part of region 2, from 7.05 to 7.7 

seconds, although the knife crossed back to the fat layer, it encountered a natural 

gap between the fat layers. This prolonged the force on the outer side of the knife, 

resulting in a slight deviation from its straight trajectory. In Region 3, the knife 

continued cutting through solid fat, with the net side forces from the side of the 

interface, the inner side of the knife. 

 

Figure 55: Force transients in the Y-direction showing the effect of the tissue 

behaviour and distribution on the lateral forces for the cutting path in Striploins 3 

The cutting path in striploin 4 exhibits a trajectory that traverses across the fat 

layer, gradually converging towards the natural path between the layers within the 

sample. Consistent with the observed trends in other cuts, the lateral force transients 

follow a similar pattern along the trajectory. Initially, there is a force exerted on the 

inner side of the knife where the sample is held. Subsequently, there is a discernible 
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gradient shift in the lateral force, indicating a change in the direction of the effective 

force towards the outer side of the knife as it approaches the interface. This shift is 

facilitated by the increasing compressibility of the meat as the knife moves closer to 

the interface and cuts towards it. Upon penetration of the natural gap between the fat 

layer, the cutting direction is dictated by the contour of the gap. The dynamics of the 

force transients are illustrated in Figure 56. 

 

 

Figure 56: Force transients of Fx and Fy for the cutting path in striploin sample 4 

5.2.4. Conclusion  

Section 5.2 presented the results of additional experimental runs conducted 

during the study of trimming fat from striploin steaks. The results were based on the 

interpretation of the unique force transients of the force components on the tip of the 

knife (Fx) and the forces on the sides of the knife (Fy) and their rate of change 

(dF/dt). The correct interpretation of these force components, both individually and 

combined, provides invaluable information about the behaviour of the tissues 

surrounding the knife and the location of the knife at key cutting moments. This 
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understanding allows for real-time adjustments to optimise cutting efficiency by 

adapting to varying tissue resistances. 

The force on the tip of the knife showed the resistance accumulated on the 

cutting edge of the knife in the direction of motion. The main observation consistently 

realised across all cuts was that the rate of change of Fx typically increases when the 

knife approaches an interface or an air gap due to tissue deformation, necessitating 

extra force to overcome the resistance and manage to cut through the interface or air 

gap. On the other hand, the side forces Fy, representing the net lateral forces on the 

knife, provided insights into the tissue behaviour surrounding the knife. Fy and its 

rate of change, dFy/dt, indicated how the lateral forces change over time, with shifts 

in dFy/dt suggesting changes in tissue resistance and the effective direction of 

forces. 

This chapter successfully confirmed the capability and accuracy of force 

transients in reflecting key cutting events, material features, and tissue behaviour 

around the knife across all twelve cuts, despite their differences. The force transients 

consistently provided insightful data, validating their effectiveness in various cutting 

scenarios. 

In the ten cutting paths that progressively approached the interface in striploin 

samples 1 and 2, cross-correlation analysis effectively revealed whether the knife 

was cutting away or approaching interfaces. The results showed a decrease in the 

cross-correlation coefficient as the knife approached the interface area due to the 

increasing disturbance between the perpendicular force components (Fx and Fy) 

near the lean/meat interface. This aligns with the observations and results in 

Subsection 3.1, "Force Transients on the Approach to Tissue Interfaces," of Section 

5.1. 

In cutting paths 1, 2, and 3 from striploin samples 1 and 2, which traversed 

the fat tissue away from the fat/lean interface, both Fx and Fy reliably indicated when 

the knife was nearing the edge of the fat layer. The results showed that the point of 

maximum net force on the inner side of the knife from the lean/fat interface direction, 

coupled with a decreasing trend of the force on the tip of the knife, indicates that the 

knife is exiting the fat layer. At this point, the knife should rotate inward to prevent 

exiting, demonstrating the practical application of these force components in guiding 

precise cutting. Figure 57 shows an example of the position of the knife when these 

conditions are met. 
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Figure 57: The location of the knife at fat exit conditions from the fat layer of 
striploins 1 & 2 

In cutting paths 4 and 5 from both striploin samples 1 and 2, as well as in the 

cutting paths from striploin samples 3 and 4, the lateral forces accurately reflected 

the tissue behaviour on the sides of the knife. One observation was that the direction 

of the effective forces shifted towards the fat tissue when the knife encountered more 

deformable meat tissues on one side and stiffer fat tissues on the other. Another 

observation was that when the knife entered a natural path between the fat layers, 

the shifts in the forces on the sides of the knife accurately represented the contour of 

this path. This indicates the potential to follow the path if an appropriate automatic 
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control strategy is applied. These observations support the findings presented in 

Subsection 3.2, "Interpretation of Force Transients," in Section 5.1, confirming the 

lateral forces' responsiveness to tissue variations and their utility in maintaining 

cutting accuracy along interfaces. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



135 
 

CHAPTER 6: IMPLICATIONS OF THE RESULTS AND 

FUTURE WORK 

This thesis has explored machine tactile perception techniques for integration 

in automated beef processing. The techniques aim to discriminate tissue features in 

the carcass and cutting events related to the performed task. Unlike automated 

processing of workpieces in many other industrial sectors, there are substantial 

spatial and mechanical property variations and deformations in response to cutting 

forces encountered between workpieces in beef processing. The developed 

technique aims to discriminate meat tissue interfaces. This is crucial for tissue 

separations and deboning processes that involve producing products, where a 

machine must follow tissue interfaces or anticipate their approach. Using the 

approach described in Chapters 3, 4 and 5 for machine tactile sensing and the 

suggested cutting strategy of slicing fat layer from striploin steak product in Chapter 

5, an automated system can be set up to discriminate a tissue interface encountered 

on a starting cutting path and then guide the knife along the interface. In this sense, 

the research has established a generic approach for cutting meat relative to the real-

time position of meat tissue along the tissue interface. This approach accounts for 

expected natural variations and the significant deformations that occur in response to 

cutting forces. 

Tactile sensing has been shown to be appropriate for cutting meat tissue 

interfaces. This is particularly relevant when the interfaces and the tissue response 

are externally invisible. However, the literature review of Chapter 2 showed that the 

previous work relied on tactile sensing for detection by force measurement value 

alone was not a robust approach. Instead, Chapters 3 and 5 have shown that the 

interpretation of force transients with an understanding of how these are related to 

meat tissue interface presentation is a reliable scheme to aid perception of the 

cutting dynamics.  

There is a similarity with skilled human operators who guide cutting. They rely 

on detecting changes in knife reactive forces, which are interpreted based on their 

expectations of the tissue to be encountered. This understanding informs their 

cutting path. The expectation is based on previous experience in physical skill 

development and the knowledge of tissue configuration with respect to the anatomy 

of the animal. Just as an operator will need to develop new perceptions and skills for 
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new cuts, we can expect adjustments in machine perception to be needed to 

process new operations.  

In this chapter, the findings from the experimental work will be contextualised 

within the wider field of automated red meat processing. We will discuss the benefits 

this technology offers to the industry and how the work fits and aligns with future 

work in the field to develop control systems and technology implementation 

readiness. 

6.1. Tactile perception for tissue-guided robotics in beef processing  

A red meat carcass comprises three primary mediums for cutting: bones, fats, 

and muscles interspersed with connective tissues. The butchery process generates 

various cuts, categorised based on their relation to these mediums by following 

tissue interfaces when cutting (Figure 58): 

o Muscle from muscle cut: Involving the separation of muscle from adjacent 

muscle along natural connective tissue seams and tissue interfaces, these 

cuts focus on isolating individual muscles or muscle groups for steaks or 

roasts.  

o Muscle from bone cut (deboning): This essential butchery technique 

separates muscle from bone at the tissue interface, aiming to produce 

boneless cuts ideal for specific cooking styles. Skilful deboning maximises 

muscle retention while minimising waste. 

o Fat from muscle (that includes the trimming processes): This process 

involves removing excess fat from muscle tissue. Trimming varies in extent, 

influenced by desired fat content in the final product. Often achieved through 

a slicing operation to identify and follow with given proximity to the tissue 

interface, it is a key final stage in product preparation.  

o Bone from bone (joints): This refers to separating bones at the joints. This 

process is used for preparing cuts where the joints themselves, or the meat 

around them, are the focus. It is commonly seen in cuts such as oxtail, where 

the joints are part of the culinary appeal, or in preparing certain roasts, where 

the joint is removed for easier carving. 

These cutting categories highlight a consistent principle in beef butchery: the 

importance of the capability to follow interfaces, or natural seams, between tissues. 

The definition of the seam between tissues from observations, conversations with 

skilled operators and personal experience can be identified as the natural line 
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between groups of tissues within a carcass. It is a crucial landmark used to guide the 

cutting process. Following these less resistant pathways enables the efficient 

dissection of carcasses into various cuts with minimal waste. When cutting meat, the 

force required at the cutting edge of the knife is reduced along these less resistant 

pathways, as the cutting edge can more easily navigate through the softer 

connective tissue and fat that make up these seams. The same is true for the sides 

of the knife, which encounter friction as they slide through the meat. The value of 

frictional resistance experienced during cutting is a function of the density and 

texture of the meat. In areas where the meat is more dense or tough (such as within 

the fat tissues or muscles), the value of frictional resistance is greater. Conversely, 

along seams (the pathway of least resistance), where muscle tissue is less dense 

and with greater occurrence of connective tissue or fat, the frictional force 

component is lower, easing the progress of the knife along the cut path.  

 

Figure 58: Types of interfaces between different tissues 

The technique can be used to significantly enhance automation capability in 

abattoir cutting operations. Chapter 4 showed the ability of the tactile perception 

technique to trim individual pieces of striploin steaks precisely by following interfaces 

in the product. This advanced capability for automation presents a unique 

opportunity for abattoirs: the production of intricate added-value cuts, such as 

striploin steaks, traditionally associated with butcher shops. The introduction of a 

specialised machine capable of processing the loin primary cut into individual steaks 

and performing precise trimming is not normally considered in abattoir operations. 

This innovation diversifies the abattoirs’ product range by offering substantial labour 

savings.  
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The tactile perception approach has potential application to a wide range of 

cuts. For example, this method could be used to separate the round muscle into 

three major muscle groups: inside, thick flank, and silverside. The beef round has a 

visually detectable seam between the muscle groups (Figure 59). As outlined in 

Chapter 2, previous research has targeted this specific cut, attempting to follow the 

muscle seams primarily using vision and simulation (Long et al., 2014a). A force 

sensor was deployed on a pulling robot to stretch the interface ahead of the cutting 

knife. However, this approach was unsuccessful due to the absence of a real-time 

adaptive sensing technique capable of reacting to unexpected resistive forces, which 

prevented the robot from completing the cut. 

The sensing technique proposed in this thesis can rectify these issues by 

replacing the vision and simulation components previously used to guide the cutting 

knife. As substantiated in Chapters 2 and 3, one of the critical advantages of the 

tactile perception technique is its precision in detecting increases in resistive force 

and responding accordingly, either by oscillating the knife or reorienting it to maintain 

the correct cutting trajectory. This method is more simple and computationally 

efficient without requiring simulation for trajectory tracking. The approach does not 

eliminate the use of vision and simulation techniques. Instead, that can be more 

usefully applied as supportive tools to enhance accuracy rather than as the primary 

method for guiding the knife. 

 

Figure 59: Separation of the round cut muscle groups 

In deboning, where muscles are separated from bones, although the tissue 

types differ, the underlying concept remains the same, and is potentially easier due 

to the distinct properties between bone and muscle. The focus here is to maintain 
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side contact with the bone without cutting into it and simultaneously avoiding 

penetration into the muscle seam. 

It is critical to recognise the role of cutting tools and handling techniques, 

particularly when employing tactile perception in meat processing. The manipulation 

technique in the study was simple: the meat was secured against the knife, 

executing a slow, straight-line motion along a predefined trajectory. This was 

specifically applied to striploin steaks in the experimental setup. In practical settings, 

carcass handling and manipulation techniques become more significant. Carcasses 

are often hung in front of the operator during splitting and primary cuts, leveraging 

gravity for tissue separation. Smaller cuts are performed on benches, with manual 

manipulation by operators using techniques such as stretching and fixing the product 

in place for precise cuts. 

Regarding cutting tools, static knives of various sizes and shapes are chosen 

for their suitability to the specific cut. Operators employ mixed movements, such as 

oscillating motions, to ease cutting, especially against increased resistance from 

meat deformation at interfaces. Sometimes, cuts are made at multiple depths, 

progressively deepening until complete. All these techniques are reactive responses 

to unique transient forces encountered during cutting. 

Furthermore, the type and working mechanism of the cutting tool is crucial, 

especially when considering unique force transients and using non-static blades 

such as rotary, jet, or oscillating blades. Each tool type introduces different dynamics 

requiring analysis and adaptation for optimal performance.  

6.2. Research outcome as part of future work 

Chapter 2, the review chapter, revealed that varying characteristics and 

deformable nature of red meat require real-time perception to guide cutting tools 

relative to meat tissue position during processing. An approach for tactile sensing to 

discriminate tissue interfaces and anticipate deflection within the medium has not 

been established before. Tactile perception represents a largely untapped sensing 

method to aid machine perception in red meat processing, holding promise for real-

time tool guidance during cutting operations. In this thesis, tactile data is examined 

from a novel perspective, drawing inspiration from the perceptual skills of human 

operators. Human operators interpret tactile data not as mere numerical values but 

recognise shifts and patterns, utilising this understanding to discriminate tissues and 
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identify specific cutting events within a product, informed by their accumulated 

knowledge and experience.  

The application of machine learning and pattern recognition techniques aims 

for automation machines imbued with human-like perceptual skills. By identifying 

distinct patterns in force data, such models can discriminate between tissues and 

tissue interfaces, thereby enhancing the precision and efficacy of automated cutting 

systems. Having correlated the nature of cutting force transients to the guiding tissue 

features of the cut path opens the possibility of developing machine learning and 

pattern recognition to guide a knife in red meat cutting. Additionally, exploring 

stochastic time series models like ARIMA could potentially model the temporal 

characteristics of cutting forces, providing another layer of predictive capability to 

enhance real-time tool guidance. These models can capture the underlying patterns 

and trends over time, which may further improve the understanding and prediction of 

cutting events. 

The research conducted in this thesis represents the initial steps to 

developing machine learning and pattern recognition to guide a knife in red meat 

cutting. It involves data collection and labelling by recording the force exerted on the 

knife under controlled cutting conditions and correlating the unique force transients 

with crucial cutting events. For example, the experimental results show that cutting 

through different tissue types leads to noticeable force changes. Cutting across 

muscle requires less force compared to cutting through fat, and following along 

tissue interfaces requires minimal force due to weaker bonds between the tissues, a 

technique commonly used in manual cutting for blade guidance. Additionally, the 

lateral forces on the sides of the knife reflect the contours of tissue interfaces, 

suggesting their potential as a navigational aid. 

The second step focuses on analysing and extracting features from this data 

that characterise the cutting scenarios. These features include the shape of the 

unique transients in the data indicative of certain cutting events. Features include the 

detection of peaks during interface penetration by monitoring the force rate change 

on the tip of the knife and the higher mean force required to cut through fat 

compared to muscle. Also, the direction of the meat pressure on the sides of the 

knife is represented by the direction of the rate of change of the lateral force 

component. These features are crucial for discrimination and enhanced precision in 

automated systems. 
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Subsequent steps involve pre-processing. In this research, simple noise 

filtering techniques, such as the moving average method and Savitzky-Golay filter, 

were applied. Other frequency-based filter methods remain to be explored, as 

distinct frequency patterns were observed while cutting different tissues. 

Normalisation was also critical to standardise data for consistent analysis, focusing 

on patterns over magnitude. 

Further pre-processing is expected to be the next step to progress the work 

performed in this research. Time-domain analysis identifies peak forces, while 

frequency-domain analysis, using methods such as Fast Fourier Transforms (FFT), 

discerns the force pattern’s frequency components. For non-stationary signals typical 

in meat cutting, time-frequency methods such as the Short-Time Fourier Transform 

(STFT) or Wavelet Transforms are effective (Sejdić et al., 2009). 

Machine learning algorithms, such as support vector machines (SVM) and 

neural networks, are then employed to efficiently classify different types of cuts or 

textures. The accuracy and reliability of force measurements in automated meat 

cutting can be significantly enhanced by combining force sensing technology with 

intelligent data processing, such as neural networks. These algorithms are designed 

to draw on detailed pattern observations from previous studies, allowing for the 

discrimination of various tissue types and cutting events. For example, Maithani et al. 

(2021) illustrated a force amplification strategy and an intent prediction strategy 

using an unrolled Recurrent Neural Network (RNN), which enabled a KUKA LWR 

robot to provide assistive forces to a professional butcher (Maithani et al., 2021). 

The applications of these signal processing techniques extend beyond just 

enhancing automated cutting systems. They contribute significantly to culinary 

training, food texture research, and even the design of more ergonomic and efficient 

cutting tools. This exploration into real-time signal processing of force transient data 

in meat cutting offers insights into the mechanics of cutting and potential 

improvements in automation and efficiency. Future research could delve into more 

advanced machine-learning techniques and improved sensor technologies for more 

precise analysis. 

 

CHAPTER 7: Conclusion 

A real-time machine tactile perception technique for automatically guiding a 

cutting tool attached to a robotic system for cutting red meat has been achieved in 
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this work. The approach has utilised information in the temporal (time-series) 

sensory data to discriminate conditions and tissues in real-time through 

characteristic behaviours of the medium to enable guidance on the trajectory of the 

cutting path in the deforming meat tissues. The research findings have been applied 

to develop a simplified cutting strategy to guide a knife to slice a fat layer from the 

top of a striploin steak by cutting relative to the interfaces in the product.  

The current state of robotics and automation in red meat and pork cutting and 

deboning and the applicability of existing sensing technologies for guiding robotic 

systems in real-time were reviewed and evaluated. The review identified the 

shortcomings and challenges of current robotics implementations, and the suitability 

of existing sensing technologies to guide robotic systems in real-time have been 

identified. Tactile sensing has not been used significantly, as using force values to 

discriminate working conditions in meat is unreliable. Yet, this sensing mode enables 

exact positioning between the cutter and the tissue, provided the tissue can be 

discriminated. The technique established here has accomplished this requirement.  

A versatile industrially appropriate testing rig to identify tissue cutting force 

characteristics correlated with tissue presentation and the deformation taking place 

has been developed for the experiments. The rig included a 6-axis robotic 

manipulator, a 6-axis force sensor, a static knife mounted on a cabinet, and an 

integrated adjustable table for meat specimen. The food-grade and IP67-rated rig 

material enabled machine maintenance, and the setup was easily cleaned following 

experiments. 

The robotic manipulator, selected for its suitable workspace and payload, 

proved to be well-suited for the experimental tasks. Adjustability and versatility in the 

table design enabled a wide variety of cutting trajectories and meat specimens to be 

attached to the cabinet, allowing enhancements by adding extra brackets, which 

were instrumental in securing and precisely positioning the test samples in front of 

the knife. The force sensor exhibited high sensitivity to all types of force components 

on the knife and its direction, which was critical for understanding the cutting 

dynamics. The precision was presented through the accurate real-time correlation 

between the force data from the sensor and the cutting events performed by the 

knife, ensuring accuracy in the observations and analysis. The implementation of 

high-resolution cameras enabled capturing of clear footage from various angles.  

The test samples were chosen to allow observations and correlation of cutting 

action, tissue response and force transients in a frame approaching two dimensions. 
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The sample used was striploin steaks, where the tissues are almost constant 

through the thickness of the medium.  

An approach to identify and discriminate key tactile characteristics of tissues 

and important structures to guide trajectories relative to meat tissue and tissue 

interfaces was achieved. The tactile sensing technique explored interprets 

characteristic transients in the tactile feedback data to discriminate between different 

tissues and tissue interfaces encountered during cutting and anticipate the approach 

to key structures during the cutting operation. When cuts were made across various 

tissues, there was significant precision when comparing the positions of the knife in 

the tissues, as observed in recorded cutting videos, to the force transients provided 

by the force sensor through the robot. Cutting through lean muscles exhibited lower 

average force requirements and smoother characteristic transients compared to the 

fat tissue layer, where additional interfaces surrounding air gaps are encountered 

within the tissue. The interface between these two primary tissues – muscle and fat – 

represents a critical transition zone, where the knife encounters the interface 

between them. The characteristic force transients here show a distinct shift between 

two levels of force values and a prominent peak attributed to deformation of the 

tissues responding in the presence of the elastic nature of the interface. An analysis 

of these force characteristics, when cutting across tissues with similar arrangements, 

revealed a high degree of consistency through cross-correlation analysis. Correlation 

coefficients ranged from 80% to 97% when similar cuts were performed on 

comparable tissue arrangements. 

Controlling the depth of the knife in the tissues is a challenging aspect of 

cutting, both in manual and automated operations. This difficulty arises due to 

several factors: tissue interfaces inside are invisible from the outside of the meat 

sample, the non-uniformity of tissues, and varying relaxation rates of tissues 

influenced by temperature and gravity. Experimental work revealed that the depth of 

cutting using the knife impacts only amplitude values of force transients, not the 

observed characteristics of the different stages of cutting. Force pattern analysis 

showed substantial similarity across different cutting depths (10, 20, and 30 mm from 

the sample surface), with cross-correlation coefficients ranging from 88% to 97%. 

Formalisation of techniques for discriminating tissues, tissue interfaces, and 

the meat's response have been achieved, along with a cutting strategy proposed to 

perform a simplified version of cutting a typical marketable product (Striploin 

trimming). The approach was tested on striploin steak trimming task by following 
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interfaces. Two orthogonal forces transients were used, leading knife edge cutting 

force and side force. The methodology effectively indicated when the knife was 

approaching and cutting through an interface. The leading edge force transient was 

employed to identify when the knife is approaching an interface, while the side force 

transient was used to delineate the contour of the interface being followed, as 

evidenced by the meat pressure on the sides of the knife. 

Visual observations, supported by formal cross-correlation and dynamic time 

warping (DTW) analyses, showed stronger similarities in the orthogonal force 

transient components for paths in uniform parts in the fat layer further from any 

interfaces, yielding cross-correlation similarities of 95% and 97%, and DTW scores 

of 1.2 and 2.6. However, as ascutting approached the interface, the correlation 

weakened due to disturbances and tissue breakdown at this critical juncture. In these 

instances, the cross-correlation dropped to 79%, and the DTW score increased to 

5.76. Pearson correlation analysis for cuts near the interface indicated a decline in 

correlation as the knife neared and sliced through the interface, particularly between 

fat layers near the main fat/lean interface. Concurrently, the side forces 

demonstrated high sensitivity and precision in response to pressure exerted by 

tissues against the sides of the knife. 

The research contribution lays down a practical framework for the real-time 

application of tactile sensing in meat processing. The findings indicate that when 

enhanced by tactile sensing, machine perception can successfully navigate the 

complexities of meat cutting, a task characterised by variations in carcass 

presentation and mechanical properties. 
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APPENDIX A: GRAPHS OF ALL RAW DATA 

This section presents the graphs of all the raw data for all the experiments. The cuts 

are divided by chapters. 

A.1. Chapter 4 data (Sections 4.1 and 4.2) 

A total of 24 cutting paths were conducted. Of these, 18 were part of the 

investigation presented in Chapter 4.1, and 6 were part of Chapter 4.2. Eight cuts 

were performed as straight-line cuts across the tissues from the fat layer towards the 

muscles, and another 8 were performed in the opposite direction. Six cuts were 

performed at different cutting depths: 10, 20, and 30 mm. 
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A.1.1. Cutting paths directed from the fat layer towards the muscles 
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A.1.2. Cutting paths directed from the muscles towards the fat layer
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A.1.3. Cutting at different depths 
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A.2. Chapter 5 data (Sections 5.1 and 5.2) 

 The first three pieces have cuts progressively moving away from the fat/lean 

interface. The last three pieces have cuts made across the fat layer from one side to 

the other, near the fat/lean interface. 

A.2.1. Piece 1 

Path 1
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Path 3 
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Path 5 

 

A.2.2. Piece 2 
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A.2.3. Piece 3 
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Path 5 

 

A.2.4. Piece 4 
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A.2.5. Piece 5 

  

A.2.6. Piece 6 
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APPENDIX B: MATLAB CODE TO DETECT THE FAT 

EXISTING CONDITIONS (Section 5.2) 

 

% Set formatting variables 
lineWidth = 3; 
markerSize = 20;   
fontSize = 20; 
axisLineWidth = 3; 
axisFontSize = 20; 
 
% Load the data 
data_fx = readtable('Trim1X.xlsx');         % Excel sheets name 
data_fy = readtable('Trim1Y.xlsx'); 
 
% Apply simple moving average for filtering the data from noise 
window_size = 10;    %The window size of the filter 
data_fx.Fx_smooth = movmean(data_fx.Fx, window_size); 
data_fy.Fy_smooth = movmean(data_fy.Fy, window_size); 
 
% Compute the derivative of Fx with respect to time 
data_fx.dFx_dt = [NaN; diff(data_fx.Fx_smooth) ./ diff(data_fx.Timer)]; 
data_fx.dFx_dt_smooth = movmean(data_fx.dFx_dt, window_size); 
 
% Initialize buffers for live data simulation 
buffer_size = 50;  % Size of the buffer to hold recent data 
 
% Initialize buffers 
buffer_fx = NaN(buffer_size, 1); 
buffer_fy = NaN(buffer_size, 1); 
buffer_time = NaN(buffer_size, 1); 
 
% Variable to store the index where the condition is met 
condition_met_index = NaN; 
 
% Simulate live data input, This loop receives the data points one by one, adds 
them to the buffer, and starts looking for the predetermined cutting conditions. 
for t = 1:height(data_fx) 
    % Simulate new data point 
    new_time = data_fx.Timer(t); 
    new_fx = data_fx.Fx(t); 
    new_fy = data_fy.Fy(t); 
     
    % Process the new data point 
    condition_met = process_new_data(new_time, new_fx, new_fy, window_size, 
data_fx, t);     %This function looks for the cutting conditons 
     
    % Pause to simulate real-time data acquisition 
    pause(0.01);  % Adjust based on your data acquisition rate 
     
    % Exit loop if the condition is met 
    if condition_met 
        condition_met_index = t; 
        break; 
    end 
end 
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% If a condition is met, plot the results 
if ~isnan(condition_met_index) 
    % Extract relevant information 
    relevant_indices = max(1, condition_met_index-
buffer_size+1):condition_met_index; 
    relevant_fx = data_fx.Fx(relevant_indices); 
    relevant_fy = data_fy.Fy(relevant_indices); 
    relevant_time = data_fx.Timer(relevant_indices); 
    relevant_dFx_dt_smooth = data_fx.dFx_dt_smooth(relevant_indices); 
     
    % Plot the smoothed data 
    figure; 
    subplot(3, 1, 1); 
    plot(data_fx.Timer, data_fx.Fx, '-b', 'LineWidth', lineWidth); 
    hold on; 
    plot(data_fx.Timer, data_fx.Fx_smooth, '--r', 'LineWidth', lineWidth); 
    xlabel('Time (Sec)', 'FontSize', fontSize); 
    ylabel('Force (N)', 'FontSize', fontSize); 
    title('Force (Fx) vs. Time', 'FontSize', fontSize); 
    legend('Original Fx', 'Smoothed Fx'); 
    set(gca, 'LineWidth', axisLineWidth, 'FontSize', axisFontSize); 
    grid on; 
     
    subplot(3, 1, 2); 
    plot(data_fy.Timer, data_fy.Fy, '-b', 'LineWidth', lineWidth); 
    hold on; 
    plot(data_fy.Timer, data_fy.Fy_smooth, '--r', 'LineWidth', lineWidth); 
    xlabel('Time (Sec)', 'FontSize', fontSize); 
    ylabel('Force (N)', 'FontSize', fontSize); 
    title('Force (Fy) vs. Time', 'FontSize', fontSize); 
    legend('Original Fy', 'Smoothed Fy'); 
    set(gca, 'LineWidth', axisLineWidth, 'FontSize', axisFontSize); 
    grid on; 
     
    subplot(3, 1, 3); 
    plot(data_fx.Timer, data_fx.dFx_dt_smooth, 'LineWidth', lineWidth); 
    hold on; 
    plot(data_fx.Timer(condition_met_index), 
data_fx.dFx_dt_smooth(condition_met_index), 'ro', 'MarkerSize', markerSize); 
    xlabel('Time (Sec)', 'FontSize', fontSize); 
    ylabel('dFx/dt (N/s)', 'FontSize', fontSize); 
    title('Smoothed Derivative of Force (Fx) vs. Time', 'FontSize', fontSize); 
    legend('Smoothed dFx/dt', 'Point of Interest'); 
    set(gca, 'LineWidth', axisLineWidth, 'FontSize', axisFontSize); 
    grid on; 
     
    % Plot the peaks in Fy and points of interest in dFx/dt 
    figure; 
    subplot(2, 1, 1); 
    plot(data_fy.Timer, data_fy.Fy_smooth, 'LineWidth', lineWidth); 
    hold on; 
    plot(data_fy.Timer(condition_met_index), 
data_fy.Fy_smooth(condition_met_index), 'ro', 'MarkerSize', markerSize); 
    xlabel('Time (Sec)', 'FontSize', fontSize); 
    ylabel('Force (N)', 'FontSize', fontSize); 
    title('Forces on the side of the knife (Fy)', 'FontSize', fontSize); 
    legend('Smoothed Fy', 'Point of Interest'); 
    set(gca, 'LineWidth', axisLineWidth, 'FontSize', axisFontSize); 
    grid on; 
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    subplot(2, 1, 2); 
    plot(data_fx.Timer, data_fx.dFx_dt_smooth, 'LineWidth', lineWidth); 
    hold on; 
    plot(data_fx.Timer(condition_met_index), 
data_fx.dFx_dt_smooth(condition_met_index), 'ro', 'MarkerSize', markerSize); 
    xlabel('Time (Sec)', 'FontSize', fontSize); 
    ylabel('Rate of change of force (N/s)', 'FontSize', fontSize); 
    title('First derivative of Fx', 'FontSize', fontSize); 
    legend('Smoothed dFx/dt', 'Point of Interest'); 
    set(gca, 'LineWidth', axisLineWidth, 'FontSize', axisFontSize); 
    grid on; 
end 
 
% Function to process new data point 
function condition_met = process_new_data(new_time, new_fx, new_fy, window_size, 
data_fx, current_index) 
    persistent buffer_fx buffer_fy buffer_time buffer_size negative_duration 
start_time peak_detected 
     
    if isempty(buffer_fx) 
        buffer_size = 50; 
        buffer_fx = NaN(buffer_size, 1); 
        buffer_fy = NaN(buffer_size, 1); 
        buffer_time = NaN(buffer_size, 1); 
        negative_duration = 0; 
        start_time = NaN; 
        peak_detected = false; 
    end 
     
    % Update buffers with new data 
    buffer_time = [buffer_time(2:end); new_time]; 
    buffer_fx = [buffer_fx(2:end); new_fx]; 
    buffer_fy = [buffer_fy(2:end); new_fy]; 
     
    % Apply moving average for smoothing 
    smoothed_fx = movmean(buffer_fx, window_size); 
    smoothed_fy = movmean(buffer_fy, window_size); 
     
    % Compute the derivative of Fx 
    dFx_dt = [NaN; diff(smoothed_fx) ./ diff(buffer_time)]; 
     
    % Apply smoothing to the derivative 
    smoothed_dFx_dt = movmean(dFx_dt, window_size); 
     
    % Store the smoothed derivative in the original data table 
    data_fx.dFx_dt_smooth(current_index) = smoothed_dFx_dt(end); 
     
    % Detect peaks in Fy 
    [~, peak_indices] = findpeaks(smoothed_fy); 
     
    % Track duration where dFx/dt is negative 
    if smoothed_dFx_dt(end) < 0 
        if isnan(start_time) 
            start_time = buffer_time(end); 
        end 
        negative_duration = buffer_time(end) - start_time; 
    else 
        start_time = NaN; 
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        negative_duration = 0; 
    end 
     
    % Check if there is a peak in Fy during the negative duration 
    if negative_duration >= 0.5 
        % Check if any peak is detected during this period 
        for i = 1:length(peak_indices) 
            if buffer_time(peak_indices(i)) >= start_time && 
buffer_time(peak_indices(i)) <= buffer_time(end) 
                peak_detected = true; 
                peak_time = buffer_time(peak_indices(i)); 
                break; 
            end 
        end 
    else 
        peak_detected = false; 
    end 
     
    % If both conditions are met, display the result and return true 
    if peak_detected 
        disp(['Conditions met at time: ', num2str(peak_time)]); 
        disp(['Fx: ', num2str(buffer_fx(peak_indices(i))), ... 
              ', Fy: ', num2str(buffer_fy(peak_indices(i))), ... 
              ', dFx/dt: ', num2str(smoothed_dFx_dt(peak_indices(i)))]); 
        condition_met = true; 
    else 
        condition_met = false; 
    end 
end 
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APPENDIX C: FORCE SENSOR SETUP AND CALIBRATION 

The section explores one specific force sensor, ABB 165. The way it is set up 

and appropriately calibrated to provide accurate force readings. Then, it views the 

general basic theory of work and the different configurations behind strain gauge-

based force sensors.  

C.2 Sensor set up 

C.2.1 Hardware connection 

The ABB force sensor comes with the following components (ABB, 2015):  

i. Force sensor plate 

ii. Voltage measurement box 

iii. Control cable 

iv. Sensor cable  

v. Adapter plate  

 

Figure 60: ABB force sensor 165 hardware components (ABB, 2015) 

The sensor is connected to the manipulator using the adapter plate after 

correctly orienting the sensor’s coordinates relative to the manipulator coordinates by 

lining up the axes marks on both sides. The correct orientation of the sensor to be 

connected to the robot arm can be shown in Figure 61. 
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Figure 61: ABB force sensor 165 alignment lines (ABB, 2015) 

After that, the sensor is interfaced with the IRC5 controller using the voltage 

measurement board. The final setup is illustrated in Figure 62. 

 

Figure 62: ABB force control connections (ABB, 2015) 

 

C.2.2 Software calibration  

For accurate readings, the zero offsets of the sensor will need to be calibrated 

to remove the noises that could interfere with the data. The attached software allows 

the user to calibrate the sensor readings by applying the following instructions:  

o Set up gravity compensation. 

o Set up sensor offset calibration. 

o Define the weights attached to the sensor, such as the weight of the cutting 

tool. 
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After calibration, the sensor will be tested by applying forces in each direction 

on the attached cutting tool and examining the sensor's values. The expected zero 

offset readings of the sensor are shown in                        Figure 63. 

 

                       Figure 63: ABB force sensor calibration values 
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APPENDIX D: CUTTING KNIFE DESCRIPTION 

This high-end carbon stainless steel boning knife is designed and crafted for 

the specialized task of boning meats, catering to both professionals and home 

cooks. The knife features a stiff, curved blade that provides leverage and precision 

cutting Figure 64.  

 

Figure 64: The cutting used in the experiments 

D.1 Key Features: 

• High carbon stainless steel 

• Ergonomic nylon handle 

• Rockwell Hardness: 56-58 

• Made in Switzerland 

• Lifetime Warranty 

• Product code: #138300 

D.2 Specifications: 

• Construction: High carbon stainless steel, Nylon handle 

• Hardness: Rockwell 56-58 

• Dimensions: 16 cm 

• Features: Stiff curved blade 

• Cleaning/Care: Dishwasher safe, can be sterilised 

• Made in: Switzerland 

• Warranty: Lifetime 
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