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Abstract:

Vibration based methods can be used to detect damage in a structure as its vibration 

characteristics change with physical changes in the structure. Extensive research has been 

carried out on the use of such methods to detect damage in a number of simple and some 

complex structures. Arch bridge is a popular type of bridge with rather complex vibration 

characteristics which pose a challenge for using existing vibration based methods to detect 

damage in them. Further, its complex form of damage detection, even with modified vibration 

based methods makes the quantification process harder and challenging.  This paper develops 

and applies a vibration based method especially suited for arch bridges to detect, locate and 

quantify damages in the structural components. In the proposed method, modified forms of the 

modal flexibility (MMF) and modal strain energy (MMSE) based damage indices coupled with 

the Artificial Neural Network (ANN) technology is used to provide an overall damage 

assessment. The procedure to detect and locate damage was experimentally validated and 

applied to a full scale long span arch bridge under a range of damage scenarios. Damage indices 

obtained from noise polluted vibration data are then used as input data for training and 

validation of the neural networks. Two neural networks were trained separately using MMF 

and MMSE damage indices and a network fusion approach is used to obtain unambiguous and 

accurate results for detecting, locating and quantifying damages. The trained neural network 

system was then successfully applied to identify unknown damages using only vibration data 

of damaged structural elements of arch bridges. The findings of this paper will contribute 

towards the safe and efficient operation of arch type bridges.
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1. Introduction

It is evitable for civil structures to gradually accumulate damage due to various causes such as 

environmental changes, material aging, variation of load characteristics, inadequate 
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maintenance etc. These structures need to be monitored, especially those that are aging, so that 

any damage is detected at the onset and appropriate retrofitting carried out to ensure that they 

are capable of providing safe and reliable service without unexpected failures. With this in 

mind, research in this area has attracted much attention over the years and there has been 

considerable research on damage detection in simple and complex structures. Studies by Rizos 

et al. [1] explain the crack detection in beams using natural frequency and vibration modes. 

The use of wavelet transform of the fundamental mode of vibration was demonstrated by Hong 

et al. [2] in damage detection of beams. Damage identification studies using vibration based 

methods such as modal stain energy, mode shape based methods or multi criteria approaches 

have been carried out to obtain precise damage identification results in plate elements by Shih 

et al. [3] and Cornwell et al. [4]. These methods were also successfully used for detecting and 

locating damage in truss structures [5-7]. Furthermore, it has been shown that damage detection 

methods such as the modal flexibility method, modal strain energy method and derivatives of 

mode shape data can also be advantageously used to predict damage in complex structures such 

as offshore platforms by Wang et al. [8], a range of bridge structures such as truss bridges by 

Shih et al. [9] and Wang et al. [10], slab on girder bridges by Shih et al. [11] and suspension 

bridges by Wickramasinghe et al. [12] and also in full scale buildings by Wang et al. [13].  

Vibration-based damage detection (VBDD) techniques are global methods [14] which examine 

the changes in vibration properties between the healthy and damaged states of the structure to 

evaluate the damage. Natural frequency has been the parameter used in one of the common 

approaches as it can be easily measured from just a few accessible points [15]. But in many 

cases, they are insensitive to some structural damages [16]. The modal flexibility (MF) method, 

first proposed by Pandey and Biswas [17] has been used in many damage detection studies due 

to its accuracy, ease of application and convenient computation [3, 18]. This method has been 

successfully applied in a wide range of Structural Health Monitoring (SHM) and damage 

detection cases [17, 19, 20].

Modal strain energy (MSE) method is found to be another widely applied VBDD method firstly 

proposed by Stubbs et al. [21]. This has been then used by many researchers utilizing different 

measured data for different types of structures [6, 7].  However, the application of these 

methods for damage detection in arch bridges is not prevalent in the literature. Arch bridges 

exhibit their own particular vibration characteristics which are rather complex and involve the 

deck, arch rib and the struts (columns). Traditional VBDD methods such as the original forms  

of MF and MSE methods have been found to perform poorly in detecting damage in arch bridge 
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components [22]. A dual-criteria approach which simultaneously uses damage indices (DIs) 

based on modified forms of the MF and MSE methods was therefore developed to successfully 

detect and locate in arch bridges as presented in [22]. This method is further developed in this 

paper by combining with artificial neural network (ANN) technology and applied to detect, 

locate and quantify damage in arch bridge structures. 

ANN is a machine learning method which is capable of pattern recognition, classification, self-

organizing and nonlinear modelling [23-25]. A well trained neural network is capable of 

extracting and obtaining precise and reliable information from imprecise, unreliable, 

inconsistent, uncertain, and noise-polluted data [26] and train itself to provide accurate outputs 

to given unknown inputs. 

The application of DIs based on vibration data with ANN to quantify damage is limited in the 

literature and hardly applied to full scale structures.  There are some studies on detecting and 

quantifying damage in beams [27], frames [28], multi storey building models [29] and bridge 

models [30-33] using both vibration data and ANN. Most of these studies utilized vibration 

data such as frequency, mode shape based parameters as inputs to train the neural networks. 

Some studies applied the traditional modal flexibility [34] or modal strain energy [32] damage 

indices to create the ANN input for damage detection. But the conclusions highlighted some 

false alarms and restricted the proposed methods in those studies to limited damage cases [32]. 

Further, these approaches are unique to the structure in which the original network was derived 

and the methods may not be applicable to complex full scale structures such as arch bridges. 

This problem is addressed in this research by modifying the traditional DIs and developing the 

ANN architecture accordingly to obtain accurate damage assessment results. The feasibility of 

the proposed method is demonstrated through its application to a range of damage detection 

(DD) scenarios.

2. Modified VBDD methods to detect damage

Arch bridges exhibit 3D and rather complex vibration characteristics. The initial global modes 

of vibration of the whole arch bridge are governed by the mode shapes of the arch rib with 

dominant contributions in the lateral and vertical directions, in which the maximum mass 

participations occur.

Therefore, instead of using the resultant mode shapes as in the traditional DIs, decomposed 

mode shapes using the lateral and vertical components are used to create modified DIs to be 
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used in this study. To facilitate the use of these component-specific features, the DIs are 

modified as follows

2.1 Modified MF method

According to Pandey and Biswas [17], the modal flexibility change (MFC) can be expressed 

in the following form (Equation 1), where d and h denote the damage and healthy conditions, 

respectively
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Modal Flexibility Damage Index (MFDI) is obtained by dividing MFC value of a particular 

location by MF value of that same location in the healthy state. Therefore, the normalized DI 

at location j at ith mode can be written in the following form (Equation 2).
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The modified modal flexibility DI can then be derived by decomposing the mode shapes into 

lateral and vertical components and hence creating two indices component specific DIs denoted 

as MFDIL and MFDIV as given in Equations (3) and (4). Subscripts L and V denote the lateral 

and vertical components.
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2.2 Modified MSE method

According to Stubbs et al. [35] MSE damage index  for jth member at ith mode can be 𝛽𝑖𝑗

expressed as Equation (5) below where  is the bending stiffness of the beam and  is the 𝑘𝑗 𝛷𝑖(𝑥)

mode shape of ith modal vector. All the modal parameters associated with damaged structure 

are denoted by asterisks
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The above equation can also be given in the following form (Equation 6).

𝛽𝑖𝑗 =  
𝑘𝑗

𝑘 ∗
𝑗

=
[(𝜙" ∗

𝑖 )2 + ∑(𝜙" ∗
𝑖 )2][∑(𝜙"

𝑖)2]
[(𝜙"

𝑖)2 + ∑(𝜙"
𝑖)2][∑(𝜙" ∗

𝑖 )2]
(6)

The MSE-based method can be similarly modified to give the two decomposed damage indices  

 and ; which denotes the vertical and lateral component specific DIs using the lateral 𝛽𝑖𝑗𝑉 𝛽𝑖𝑗𝐿

and vertical components of mode shapes respectively.

For both methods, a single indicator is generated by taking several global modes into account 

as follows.
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In the above equation, NM refers to the number of modes, and Numji and Denomji are the 

numerator and denominator of anyone the Equations (3), (4), (5) or (6), depending on the 

particular DI.
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As observed previously [22] one of the component specific DI, based on either MSE or MF 

method, can perform better than the other, depending on the location of the damage, The 

numerical value of this component DI will be higher compared to the other component DI. 

Therefore to obtain the best possible results it is necessary to select (and use) the component 

specific DI which performs better than its counterpart, for both MF and MSE based DIs.  

Towards this end, the above modal flexibility and modal strain energy methods can be further 

modified as shown in Equations 8 and 9 respectively.

For the MSE case, the better performing DI is selected by comparing the results of  and . 𝛽𝑗𝑉 𝛽𝑗𝐻

The same is done with the 2 component specific MFDIs.  That is for damage detection at any 

location the prominent  and   are obtained by selecting the larger of the two component 𝛽𝑗 𝐷𝐼

specific DIs.

𝛽𝑗 = [max (|𝛽𝑗𝑉| , |𝛽𝑗𝐻|) ] (8)

𝐷𝐼 = [max (|𝐷𝐼𝑉| ,|𝐷𝐼𝐻|) ] (9)

The selected are then normalized as shown in Equation (10) below, in which  and 𝛽𝑗 and 𝐷𝐼  𝛽

 are the mean values and  and  are standard deviations of respectively.  𝐷𝐼 𝜎𝛽 𝜎𝐷𝐼  𝛽𝑗 and 𝐷𝐼 

𝑍𝑗 =
𝛽𝑗 ‒ 𝛽

𝜎𝛽
 𝑜𝑟 𝑍𝑗 =

𝐷𝐼 ‒ 𝐷𝐼
𝜎𝐷𝐼

(10)

This method was experimentally validated and details are presented in [22], while a brief 

description of the validation is presented below for completeness of the present paper. 

Experimental validation of the developed method was carried out using the results from the 

experimental testing of the arch bridge model (Figure 01a). The Bridge model was tested for 

both intact and damage cases (inducing a cut at the base of the 3rd vertical column) (Figure 

01c). Free vibration testing was performed on the bridge model (Figure 01b) to obtain the 

vibration parameters of mode shapes and natural frequencies to validate the proposed damage 

detection method. Four component specific damage indices were calculated using the 

experimental data and then the better performing DIs were selected using the procedure 

outlined through Equations (8), (9) and (10). These preferred DIs are then used to obtain the 

damage detection results and thereby verify the proposed method experimentally.  

(a) (b) (c)
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Figure 01: (a) Bridge model with accelerometer arrangement and (b) dynamic test on the 

bridge (c) damage on the vertical column

Figure 02: (a) Modified MF DI for 3rd column damage (b) Modified MSE DI for 3rd column 

damage

It is evident that the damage at 3rd vertical column of the bridge is correctly detected through 

the method proposed by the peaks of both modified damage indices which clearly indicate the 

location of damage (Figure 02).  

To illustrate the applicability of the proposed damage detection technique to a full scale long 

span arch bridge, a complete finite element model of 200m long Cold Spring Canyon Bridge 

was developed and validated [22]. Then to evaluate the performance of above method, 2 

damage cases involving damage in the rib and vertical column of this arch bridge were tested 

and presented below. The damage was introduced as 10% stiffness reduction at a small part on 

the rib or column.

Table 1: Damage Scenarios of the Cold Canyon arch bridge

Damage Scenario

Rib Damage Case Vertical column damage  Case 

(a) (b)
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 Rib Damage Case: Damage at mid span of the arch rib

Figure 03: Plots of Modified MF and Modified MSE DIs for rib damage case

 Vertical Column Damage Case: Damage at mid span of the first column C1.

Figure 04: Plots of MMF and MMSE DI for damage at the middle of long column C1 

Figure 03 and Figure 04 present the modified Modal Strain Energy and Modified Modal 

Flexibility DI plots of the two damage cases presented in Table 1. All four graphs clearly 

indicate sharp peaks at the damage locations in the arch rib and the column. These results 

confirm that the proposed dual criteria approach gives correct and unambiguous results. This 

method is hence further developed by incorporating ANN to provide complete damage 

assessment (to detect, locate and quantify) in the structural components of arch bridges.

Damaged Element Damage at crown Damage at mid of the long column 

Stiffness Reduction 10% 10%
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3. Damage quantification in arch rib and vertical columns using modified versions of MF 

and MSE 

Quantifying damage is generally very challenging compared detecting and locating damage. 

There are a few references available in the literature on damage quantification for beams [36, 

37]  and  trusses [38]. But these numerical methods are not generic and are specific for a 

particular structure in which it was initially tested. Therefore these methods may not be 

applicable to quantify damage in complex structures or their components. With a view of 

addressing this issue, this study analysed the performance of the modified DIs for assessing 

damage at different locations and at different intensities along the arch rib and vertical columns 

to understand their capability to treat arch ribs and columns of arch bridges. Figure 05 illustrates 

the variation of MMSE DI curves for 22 damage cases along the arch rib of Cold Canyon bridge 

for 10%, 15%, and 20% damage severities. It is evident that higher the damage severity, higher 

the peaks of the DI. Most importantly, these graphs clearly exhibit that the peaks of the DI 

curves for the same damage intensity vary depending on the damage location in the rib and on 

the boundary conditions of the bridge.  A similar pattern emerged when the MMF DI was 

investigated.

 

Figure 05: Plots of MSE damage intensity curves for 10%, 15%, and 20% damage

Using the information from the above investigations, Figures 06 (a) and 06 (b) illustrate the 

variations of peaks of MMF DI and MMSE DI curves respectively for 10%, 15% and 20% 

damage intensities for 22 locations along the rib. These two plots confirm that the damage 

intensity curves seem to exhibit certain patterns: (i) There are higher peaks near the edges for 

the same damage intensity and (ii) Peak values increase with increasing damage intensity. 
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These patterns can cause problems, when the damage location and intensity are not known (as 

in the inverse problem).

(a)

(b)

Figure 06: Plots of (a) MMF (b) MMSE damage intensity peak curves for 10%, 15% and 

20% damage

Variations of MMF DIs for damage along the long and short vertical columns was then studied. 

Figure 07 illustrates 3 damages (at different locations) in one of the longer columns (column 

01) and Figure 08 illustrates the plots of MMF DIs for 3 damage cases in a short column 

(column 04). The damage locations on the columns are denoted by red cross marks on the 
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relevant columns. It is evident that the DIs plots are clear without false alarms for long columns 

but they display some false alarms and disturbances for short columns.

Similar observations were made when the MMSE DI was tested. There is hence a need for a 

dependable and a precise method to understand the behaviour of the DI curves along the arch 

rib and across the columns (or vertical struts) under different damage severities. With this in 

mind, an artificial neural network was trained to learn the behaviour of DI curves along the rib 

and vertical columns and thereby retrieve the damage location and severity of unknown damage 

when the vibration properties (mode shapes and frequencies) are available. 

 

Figure 07: Plots of MMF damage index curves for 3 damage cases on long column (Column 

01)

     1st damage        2nd damage                    3rd damage
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Figure 08: Plots of MMF damage index curves for 3 damage cases on short column (column 

04) 

4. Artificial Neural Network

     1st damage        2nd damage                    3rd damage
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The artificial neural network (ANN) is an advanced machine learning technique that operates 

in a manner analogous to that of biological nerve systems. It is capable of learning and 

developing its own algorithm using given input and output data. ANN consists of weighted 

interconnected neurons which connect the input, hidden and output layers. The neuron weights 

are modifiable and are offset by a constant and learning is achieved by adjusting the 

connections (weights) in the network to minimize a specific performance index (e.g., the mean 

square error at its output). The layers are linked by transfer functions. Multi‐layer feed forward 

neural network with back‐propagation algorithm is the most common type of network used in 

most civil engineering applications. A schematic model of a four‐layer neural network is shown 

in Figure 09. When the input samples are fed to the network, the outputs are compared with 

the targets using generalized learning algorithms while minimizing the error function. Once the 

mean square error becomes a minimum, the training stops. The trained network is then used to 

test a set of new input parameters.

Figure 09: A schematic model of a four‐layer neural network

5. Methodology

As mentioned earlier the aim of this paper is to develop and present a vibration‐based method 

to locate and quantify damage in arch bridge structural components using DIs based on 

modified versions of (traditional) MSE and MF methods and ANN.  ANNs are utilized to map 

pattern changes of DIs to damage characteristics. 

Validated full scale numerical arch bridge finite element (FE) model is used as the baseline 

structure to build the ANN. The arch rib and vertical columns being the subjects of interest to 

develop the ANN. Firstly the vibration data (i.e mode shapes and frequencies) are obtained for 
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intact and damaged structure for a range of damage scenarios. To simulate field‐testing 

conditions, white Gaussian noise is added to the numerical data. The MMF and MMSE DIs are 

calculated separately using the equations presented earlier. Then two neural networks were 

trained by inserting DIs of known damages as inputs and damage location and severity as 

outputs. Finally, two individual networks are fused together and an overall damage prediction 

model is obtained.  

5.1 Numerical model of full scale arch bridge

To illustrate the applicability of the proposed damage detection technique to a full-scale long-

span arch bridge, a complete FE model of 213m Cold Spring Canyon Bridge is developed using 

ANSYS FE modelling software (Figure 10(b)). Cold Spring Canyon Bridge is a long-span, 

deck type steel arch bridge with a span of 213 m and a rise of 36.27 m. The main ribs are 

restrained except for the rotational degrees-of-freedom about the transverse axis at the 

abutments, thus creating a two hinged arched mechanism (Figure 10(a)). The bridge was 

modelled as a 3D FE model with several parts (deck, arch ribs, cross bracings, columns etc.) 

which were ultimately connected via relevant connectivity (joint feature) in the Mechanical 

module. The model and applicability of the modified damage indices have been validated and 

presented in [22].

(a)
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(b)

Figure 10: (a) Real cold canyon bridge (b) Finite element model of the bridge

5.2 Data extraction and pre-processing

Input data for the neural network should contain compressed information on the damage 

features, should be highly sensitive to damage and should be capable of expressing the identical 

pattern of damage variations at different locations. Since the above sections explained the 

versatility of the proposed DIs to predict the exact damage location, MMSE DIs and MMF DIs 

were selected to create input parameters to neural network.

The Bridge model was tested for a series of damaged and non-damaged cases and the data was 

converted to DIs to create input data to neural network. Rib damage was inflicted at 45 different 

locations along the arch rib creating 45 damage location cases. Column damages were inflicted 

at 15 different locations per column and for all 10 columns at one side of the bridge. For both 

rib and column damage cases 5 damage intensity levels were created by inducing different 

stiffness reductions. This was done by reducing Young’s modulus by 5%, 10%, 15%, 20% and 

25%. All the extracted data were polluted with 1%, 2%, and 5% white Gaussian noise to 

simulate environmental influence on data and another single set was used without noise 

pollution. Noise contaminated mode shapes prepared using Equation (11)  presented in  [6] 

was used to create the noise polluted data for neural networks. This will create 900 rib DI 

curves and 3750 column DI curves for each method to be used as input data for ANNs.

∅𝑥𝑖 = ∅𝑥𝑖(1 + 𝛾𝜑
𝑥𝜌𝜑

𝑥|∅𝑚𝑎𝑥,𝑖|) (11)

The terms   and are mode shape components of the ith mode of vibration at location x ∅𝑥𝑖 ∅𝑥𝑖  

with and without noise respectively.  denotes the random noise level and  refers to a 𝜌𝜑
𝑥 𝛾𝜑

𝑥

random number with mean equal to zero and variance equal to 1 and   is the absolute |∅𝑚𝑎𝑥,𝑖|

value of the largest component in the ith mode shape. 

5.3 ANN architecture

To identify the damage locations and severities, supervised feed‐forward multi‐layer neural 

networks are designed. The DIs are used as input patterns to the networks while the output is 

the corresponding damage severity and the location. For each element type (Rib and column) 

two separate networks are designed for MMF and MMSE input data. 

The number of input nodes and output nodes of each network are chosen to match with the 

number of variables in the input and output data sets. The number of hidden layers was decided 
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through a trial and error process to obtain minimum mean square error. Once the network 

configuration is decided, few trials need to be done even with the finalised network 

configuration, to obtain the best convergence and minimum error. The reason behind this 

practice is that each training on neural network assigns different weights on neurones and initial 

conditions, which will ultimately result in different trained networks with different mean square 

errors. Following sections describe the selected network configurations to obtain the best 

outcome.

5.3.1 Rib neural network

Each rib neural network consists of an input layer of 45 nodes, representing the number of the 

data points on the rib. Three hidden layers of 45, 15, and 5 nodes as well as 5 node output layer 

is selected to estimate the location or the severity of the damage. The design and operation of 

all neural networks were performed with Matlab. 

The outcome of the trained neural network depends on the effectiveness as well as the number 

of input data. Higher the number of input data, higher the accuracy of the outcome. As 

illustrated in Section 6.3, the input data itself follows an intricate pattern along the rib to capture 

damage severity. Therefore the number of variables the network has to handle is comparatively 

higher. This will automatically demand more input data, which means a huge amount of 

damage trials (cases). Since this study uses a limited number of damage cases, a sub-structured 

network system was introduced so that the number of variables each substructure has to handle 

is limited and hence the outcome of the final network will be more accurate.

Substructuring was done by splitting the total sample space into 5 segments. This segment 

division was decided by analysing the input data patterns. After examining the graphs given in 

Figure 05 and 06 it was evident that all the DI curves follow a certain pattern. Therefore 

according to that pattern, the total length of the rib was divided into five segments as shown in 

Figure 11. 

Figure 11: Segments along the length of the arch rib
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The neural network was then modified by introducing 5 sub-networks, trained separately on 

input-output data sets related to each segment. And then all the subcodes were called at the 

main method (main neural network) so that the program will automatically select the relevant 

substructure and proceed until the final output.

The sub-networks designed for each substructure has 8 or 10 input nodes; two hidden layers 

and output node predicting the damage location or severity. Hyperbolic tangent sigmoid 

functions were the transfer function for all networks. Training is performed using the 

back‐propagation conjugate gradient descent algorithm. The input data is initially divided into 

three sets; training, validation, and testing. Total sample space is divided into the above 3 sets 

as 70% (training), 15% (validation) and 15% (testing ).The network is designed in a way that 

while it is training with the training samples, the performance is supervised by the validation 

set to avoid overfitting. The network training stops when the error of the validation set increases 

while the error of the training set still decreases, which is the point when the generalisation 

ability of the network is lost and overfitting occurs. The design and operation of all neural 

networks are performed with Matlab. Once the network is trained, it is used to detect the 

damage location and severity of unknown damage cases. When the calculated DI value of 

unknown damage is fed into the network, it firstly recognises the damage substructure or the 

area where the damage should be. Then the relevant subnetwork is called upon to predict the 

exact damage location and its severity, which will retrieve as the output.

5.3.2 Column neural network

A single neural network system can be designed for the columns in the Cold Canyon Bridge as 

it is symmetrical about its longitudinal axis and hence columns on one side of the bridge are 

considered for neural network design. As before, the design and operation of all neural 

networks were performed with Matlab. The main network is trained with around 3750 input 

data and it is designed to first identify the damaged column. Then it calls the relevant 

subnetwork, trained for each column separately to further identify the damage location on the 

column and its severity.

Column network substructuring was done by splitting the total sample space into 10 parts. 

Thereby each subnetwork represents one column. As discussed in the rib neural network 

design, all the subcodes were called at the main method so that the program will automatically 

select the relevant substructure and proceed till the network converges.
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As presented earlier, each column was divided into 15, 8 or 5 parts (depending on the height 

of the column) to induce damage as well as to collect mode shape data at each node location. 

The neural network (sub network) for one long column therefore comprises an input layer of 

15 nodes, representing the number of the data points on a single column; two hidden layers of 

15, and an output layer of 15 nodes to estimate the location or the severity of the damage. 

Training algorithm and the percentage division of input cases are similar to rib networks. 

Once the networks are trained, they can be used to detect the damage location and severity in 

unknown damage cases. When the calculated DI value of unknown damage is fed into the 

network, it firstly recognises the damaged column and then the relevant subnetwork of that 

column will predict the exact damage location and its severity as the outputs.

6. Results and Discussion

Two separate networks as MF network and MSE network were trained (for both rib and 

columns separately). Then the accuracy of the results obtained by each network is discussed. 

Further, the advantage of using both methods so as to complement and supplement the required 

results is explained. Finally, results of both methods are fused into a single system so that only 

one precise result will be obtained.

6.1 MMF Network

The first neural network (main method), which decides the damage substructure has 3 hidden 

layers, each containing 45, 15 and 5 nodes, respectively for the rib neural network (Figure 12). 

This is followed by sub-networks which decide the exact damage location and the severity. The 

network was trained using Levenberg-Marquardt (trainlm) training function. The training 

process was ceased when the mean square error becomes a minimum. Once the network has 

been trained with available data, the trained network can be used to obtain damage location 

and the severity of unknown damage cases. Figure 13 presents the regression plots of trained 

MMF main method for training, validation and testing sets. Since all coefficients of correlations 

(R) are more than 0.99, the network is confirmed as appropriately trained.
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Figure 12: Neural network layout

Figure 13: Training, validation and test regression plots of MMF main method

6.1.1 Rib damage test

In order to test the ability of the trained network to precisely detect the damage location and 

the severity of unknown damage, 8 damage cases were created on the FE model and the 

corresponding vibration properties were extracted. These vibration properties are then used to 

calculate the modified MF damage indices. Theses indices are then fed into the trained network 

and the network prediction was obtained. The following table shows the damage cases tested 

on a trained network with its expected and received outcomes. It can be seen that the percentage 

errors of the test cases on MMF neural network are less than 1% and this confirms the 

compelling performances of MMF neural network to detect, locate and quantify damage. 

Furthermore, it confirms that the network is capable of interpolating and identify new damage 

severities which are not experienced during the initial training process
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Table 01: MF neural network outcomes for random rib damage cases

Damage 
case

Absolute damage severity 
and location Neural Network outcome Percentage error in 

severity prediction

01 7.5% X= 190m 7.74% X= 190 m -0.26%

02 7.5% X= 238.5m 7.68% X= 238 m -0.19%

03 12% X= 151.5m 11.85% X= 152 m 0.17%

04 12% X= 277.5m 11.52% X= 277 m 0.88%

05 18% X=113 m 17.9% X=113 m 0.12%

06 18% X=203 m 18.15% X=203 m -0.18%

07 22.5% X= 122 m 22.41% X= 122 m 0.12%

08 22.5% X= 233 m 22.61% X= 233 m -0.14%

6.1.2 Column damage test

In order to test the ability of the trained network to precisely detect the damage location and 

the severity of an unknown damage, 5 damage cases were created on the vertical columns of 

the arch bridge FE model and the corresponding vibration properties were extracted. These 5 

test cases are completely random and none of these damage severities was used to train, validate 

or test the neural network at the network training stage. The vibration properties are then used 

to calculate the MMF based damage indices. These indices are then fed into the trained network 

and the network predictions were obtained. Each of these test cases was first assigned to the 

subnetwork of the relevant column and then the subnetwork predicted the precise location and 

severity. The following table (Table 02) shows the damage cases tested on a trained network 

with it's expected and received outcomes. It can be seen that the percentage errors of the test 

cases on MMF neural network are less than 1% and this confirms the effective performances 

of MMF neural network to detect, locate and quantify damage. Furthermore, it confirms that 

the network is capable of interpolating and identifying new damage severities which are not 

experienced during the initial training process. 

Table 02: MMF neural network outcomes for random column damage cases

Damage 
case Absolute damage severity and location Neural Network outcome

Percentage 
error in 
severity 

prediction

01 7.5% Column 1 at Y=27.2m 9.0% Column 1 at Y=27 m -1.6%
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02 7.5% Column 2_Y= 40.2m 7.0% Column 2_Y= 40 m 0.54%

03 12% Column 3_Y= 46.5m 12.0% Column 3_Y= 46m 0.0%

04 12% Column 4_Y= 44.8m 11.5% Column 4_Y= 44m 0.57%

05 18% Column 5_Y= 45.2m 16.2% Column 5_Y= 45m 2.19%

6.2 MMSE Network

MMSE main network was trained using Bayesian regularisation (trainbr) training function. 

There are 2 hidden layers containing 15 and 5 nodes respectively for ribs and 2 hidden layers 

of 15 nodes for column case. Similar to MMF network, the number of input nodes is 45 and 

output nodes is 5. Figure 14 presents the network configuration for rib damage. Training was 

performed to obtain best the fitting algorithm to map the given inputs and output. The training 

process ceased when the mean square error becomes a minimum. Figure 15 presents the 

regression plots of trained MMSE main method for training, validation and testing sets. Since 

all coefficients of correlations (R) are more than 0.99, the network is assumed as trained 

properly.

Figure 14: MMSE main method network configuration
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Figure 15: Training, validation and test regression plots of MMSE main network

6.2.1 Rib damage test

Same 08 damage cases tested on MMF network were fed into the MMSE network and the same 

testing procedure as discussed at MMF rib network testing was followed. Each of the test cases 

was first sorted to the subnetwork of relevant substructure and then the subnetwork decided the 

precise location and severity. Table 03 shows the damage cases tested on a trained network 

with the expected and received outcomes. It can be seen that the percentage errors of the test 

cases on the MMSE neural network are less than 0.4% and confirms the compelling 

performances of MMSE neural network to detect, locate and quantify damage. Further, it 

confirms that the MMSE network too is capable of interpolating and identifying new damage 

severities which are not experienced during the initial training process. 

Table 03: MMSE neural network outcomes for random rib damage cases
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Damage 
case

Absolute damage severity 
and location Neural Network outcome Percentage error in 

severity prediction

01 7.5% X= 190m 7.15% X= 190 m 0.38%

02 7.5% X= 238.5m 7.58% X= 238 m -0.08%

03 12% X= 151.5m 12.14% X= 152 m -0.16%

04 12% X= 277.5m 11.55% X= 277 m 0.5%

05 18% X=113 m 18.07% X=113 m -0.08%

06 18% X=203 m 17.99% X=203 m -0.009%

07 22.5% X= 122 m 22.57% X= 122 m 0.09%

08 22.5% X= 233 m 22.57% X= 233 m 0.09%

6.2.2 Column damage test

The same 5 column damage cases were fed into the MSE network trained for columns. The 

following results were obtained.

Table 04: MSE neural network outcomes for random column damage cases

Damage 
case

Absolute damage severity and 
location Neural Network outcome

Percentage 
error in 
severity 

prediction

01 7.5% Column 1 at Y=27.2m 10% Column 1 at Y=27 m -2.7%

02 7.5% Column 2_Y= 40.2m 8.2% Column 2_Y= 40 m -0.75%

03 12% Column 3_Y= 46.5m 12.8% Column 3_Y= 46m -0.91%

04 12% Column 4_Y= 44.8m 10.8% Column 4_Y= 44m 1.3%

05 18% Column 5_Y= 45.2m 15.8% Column 5_Y= 45m 2.68%

It is clear from the above results that the proposed neural network system along with modified 

DIs is capable of locating and quantifying damage in the arch rib with more than 99% accuracy 

and column damages with more than 97% accuracy even with noise polluted data. This paper 

recommends the simultaneous use of both DIs to cross-check and obtain unambiguous results.

6.3 Dual criteria approach and Fusion method  

This study recommends two separate methods trained through two separate networks to 

determine damage severity and location when the damage is unknown. DIs do not always 
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clearly predict the damage location. False alarms can be expected due to various external 

factors. In such situations, the proposed dual critical approach provides the benefit of 

complementing and supplementing the results of each other to provide more accurate 

predictions of damage location.

To achieve more reliable and conclusive outcomes for unknown damages, a network fusion is 

proposed by combining the outcomes of the two individual neural networks (Figure 16). This 

is achieved by training a new neural network by combining both pre-trained neural network 

outcomes to obtain precise final results for unknown inputs. The inputs for the final network 

are the outputs from trained MMF and MMSE neural networks.  Once the fusion network is 

trained, it is tested for unknown damage cases.

Figure 16: Combined Neural network layout

Fusion network is a regression neural network with two inputs and two outputs (Figure 17). 

Figure 18 presents the regression plot for fusion network created for arch rib. It is clear that the 

R values of all training, testing and validation networks are more than 0.99 and hence create a 

better convergence and trained network.
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Figure 17: Fusion network configuration

Figure 18: Training, validation and test regression plots of fusion network

Finally, the above mentioned damage test cases of arch rib and columns are tested in the fusion 

network and the following outputs were obtained.  Table 05 and Table 06 presents the results 

obtained using a combined network for rib and column damage cases, respectively.

It is clear that the results are promising in determining damage location and severity. However, 

for some damage cases, either the MMSE or MMF neural networks can show the best 

prediction than the fusion network. It is natural that some networks tend to provide precise 

damage identification than the other. On the other hand, there can be some damage cases where 

one network is failed to identify correctly. In such cases, the fusion network is beneficial to 

identify the precise damage location and severity with close proximity to the actual damage.

Table 05: Combined neural network outcomes for random rib damage cases
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Damage 
case

Absolute damage severity 
and location Neural Network outcome Percentage error in 

severity prediction

01 7.5% X= 190m 7.36% X= 190 m 0.15%

02 7.5% X= 238.5m 7.65% X= 238 m -0.16%

03 12% X= 151.5m 12.07% X= 152 m -0.08%

04 12% X= 277.5m 11.48% X= 277 m 0.59%

05 18% X=113 m 18.02% X=113 m -0.02%

06 18% X=203 m 18.01% X=203 m -0.01%

07 22.5% X= 122 m 22.55% X= 122 m 0.06%

08 22.5% X= 233 m 22.58% X= 233 m 0.11%

Table 06: Combined neural network outcomes for random column damage cases

Damage 
case

Absolute damage severity and 
location Neural Network outcome

Percentage 
error in 
severity 

prediction

01 7.5% Column 1 at Y=27.2m 9.2% Column 1 at Y=27 m -1.8%

02 7.5% Column 2_Y= 40.2m 7.6% Column 2_Y= 40 m -0.11%

03 12% Column 3_Y= 46.5m 12.4% Column 3_Y= 46m 0.68%

04 12% Column 4_Y= 44.8m 11.2% Column 4_Y= 44m 0.9%

05 18% Column 5_Y= 45.2m 16.0% Column 5_Y= 45m 2.43%

6.4 Multiple damage scenarios

It is possible to have multiple damages simultaneously during the service life of a 

structure. It is, therefore, necessary to check whether the neural network models developed for 

that particular structure is able to detect, locate and quantify multiple damage cases accurately. 

This study hence develops a procedure is to enhance the capabilities of a single damage neural 

network to detect multiple damages.

In a previous work, the modified MF and modified MSE methods have clearly shown their 

capacity to treat multiple damage scenarios on the rib and vertical columns of arch bridges 

[22]. These indices are therefore utilised to create the base parameters (which are DIs) to feed 

into neural networks. Firstly, few random multiple damage cases were simulated and the 

relevant MMF and MMSE DIs were calculated. These DIs were then tested through the 
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developed neural network for single damages. The results indicated that the network could not 

clearly distinguish the two damages simultaneously, and it picks only the higher damage case 

out of the two damages and expresses the output.

It is understood that the neural networks need to be modified to understand both single and 

multiple damage scenarios. Therefore few multiple damage cases were simulated and MMF 

and MMSE DI data were collected and used as ANN inputs and fed into the network trained 

for single damages. The amended network with new data was trained again and tested for 

multiple damage scenarios. 

Firstly, 100 random multiple damage cases were simulated and the relevant mode shape and 

frequency data were obtained. These data were then used to calculate the MMF and MMSE 

DIs. For 5 different damage severities on 45 locations can accommodate a large number of 

multiple damage combinations. Therefore for the testing purposes, this study processed a 

limited number of random damage cases. Thus, 100 dual damages (two severities at two 

locations) were simulated to create data for neural network training with 4 noise levels (0%, 

1%, 2% and 5%).

Once the DIs are created, those were used as the input data while the output is the damage 

severity and damage location. Since this part of the study used only 400 observations to train 

the networks, it is insufficient train the network to obtain the exact damage location (1 out of 

45). Therefore, the rib was partitioned into 8 segments, instead of 45, and the output was created 

as to retrieve the severity and the damage segment. 

The network training is performed on multi-layer feedforward network backpropagation 

conjugate gradient descent algorithm. The design and operation of neural networks are 

performed with MATLAB. Once the network is trained, it is used to detect the damage location 

and severity of unknown damage cases. Figure 19 presents the network configuration for MMF 

networks. As presented in the previous section, initially 2 networks were generated for MMF 

and MMSE separately. Figure 20 presents the regression plots of trained network. The results 

obtained from each network is fused to obtain the final damage location and severity.

Once the whole network is well trained, it is capable of testing the unknown damages and 

retrieve damage severity and location. Therefore, 5 multiple damage cases were randomly 

selected and tested through the trained neural network to obtain the damage severity and 

location. The final results obtained from trained neural network for damage severities and 

locations for 05 test damage cases are presented in Table 07 below. It was shown that the new 
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network is now capable of detecting and distinguishing single as well as multiple damages with 

their intensities (Table 07)

Figure 19: Regression network configuration

Figure20: Regression plots of training, validation and test sets for trained MMF network 

Table 07: Damage severity prediction for multiple rib damages using combined network 

model

Damage 
case

Absolute damage severity and 
location noise Neural Network outcome Percentage 

error 

01 5% at X = 118 & 15% at X = 170 1% 4.23 % at X = 118 & 15.12% 
at X = 170

4.6% & 0.8%

02 20% at X=142 & 20% at X=282 2% 20.45% at X=142 & 20.7% at 
X=282 2.2% & 3.5% 
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03 7.5% at X=103 & 12% at X=248 5% 7.65% at X=103 & 11.57% at 
X=248 2% & 0.25%

04 12% at X =203 & 15% at X =218 5%
12.08% at X =203 & 14.8% at 

X =218
0.66% & 

1.3%

05 22.5% at X=166 & 7.5% at 
X=228

2%
22.54% at X=166 & 7.87% at 

X=228 0.17% & 4%

7 Conclusion

Arch bridge structures have complex vibration characteristics which pose a challenge for using 

available vibration based methods to detect damage in them. Further, its complex form of 

damage detection, even with modified vibration based methods makes the quantification 

process harder and challenging. This research proposed a method designed and tested for arch 

bridges to detect, locate and quantify the damages in its structural components with significant 

accuracy.  It uses the advantages of the damage index method in combination with neural 

network techniques to treat damages in the structural components of arch bridge. In this 

approach, the modified modal flexibility and modified modal strain energy based damage 

indices are used as base indicators to predict the damage location and to train the neural network 

model to locate and quantify the unknown damages.

The feasibility of the proposed procedure was illustrated via its application to assess damage 

in the major structural components of an arch bridge. A range of damage scenarios was 

considered in a (full scale) long span arch bridge involving damage in the arch rib and vertical 

columns. Results demonstrate the capability of the proposed method to detect, locate and 

quantify single and multiple damages, with reasonable accuracy, even in the presence of noise 

polluted data. 

The dual-criteria approach was very effective in those cases where the results obtained from 

either DI can complement and supplement the results from the other DI and lead to a more 

reliable prediction of the damage location and the intensity. Reliable prediction of the damage 

location through the use of the proposed dual criteria approach will prevent unsafe decisions 

or unnecessary examinations of false alarms. Further, to achieve a more reliable and conclusive 

outcome for unknown damages a network fusion was proposed by combining the outcomes of 

two individual neural networks. The outcomes of this paper will contribute towards the safe 

and efficient operation of arch bridges. 
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