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A B S T R A C T

Accurate and timely prediction of mango yield is essential for optimizing resource management, market plan
ning, and climate adaptation strategies. However, dealing with spatial variation of uncertainty and error in fine- 
scale (e.g., district) yield forecasts has yet to be fully explored. This study investigates a modelling approach that 
combines statistical methods including bootstrap robust least-angle regression, leave-one-out cross-validation, 
Bayesian-based spatial correlation analysis, and Markov chain Monte Carlo scheme, and machine learning (ML) 
(random forest technique) to enhance predictor selection, capture spatial trends, and generate probabilistic 
mango yield forecasts at the district scale in Tamil Nadu, India. Results showed that pre-flowering drought stress, 
temperature fluctuation and rainfall distribution, during flowering, fruit set, and fruit development, along with 
drought conditions in March and July, were dominant drivers of yield variability. Model evaluation revealed 
acceptable levels of errors in estimating mango yield, with root mean square error ≤ 2.0 t ha− 1, and mean 
absolute percentage error ≤ 30 % in 18 out of 31 districts. However, forecasting errors at three different lead 
times (two and one months prior to, and at start of harvest) varied spatially across districts, with lower errors in 
southern and north-western regions but higher errors in northern and central districts, reflecting the complexity 
of district-level forecasting under diverse environmental conditions. Agroclimatic variables alone might not be 
sufficient for accurate mango yield forecasts across Tamil Nadu. By integrating diverse data for model training 
and refining the ML-based forecast algorithm between fine-scale regions, this study can serve as a foundation for 
developing climate-resilient mango production strategies tailored to regional variability.

1. Introduction

Mangoes (Mangifera indica) are highly valued export commodities for 
many tropical and subtropical countries around the world. The mango 
sector contributes substantially to the overall agricultural economy, 
international trade, and foreign exchange earnings in these countries 
(FAOSTAT, 2023). In 2021, the global production of mangoes, guavas 
and mangosteens was ca. 57 million metric tonnes (Mt) (FAOSTAT, 
2023). Asia was the top mango-producing region, accounting for ca. 42 

Mt, followed by Africa with ca. 8.5 Mt, and the Americas with ca. 6.6 Mt. 
At the national scale, India was the largest producer with ca. 24.9 Mt, 
followed by China (ca. 3.9 Mt), Indonesia (ca. 3.5 Mt), Pakistan (ca. 2.6 
Mt), and Mexico (c.a. 2.4 Mt) (FAOSTAT, 2023).

Recognizing the important contributions of the mango industry to 
regional and national economies, timely and accurate mango yield 
forecasts are crucial for the various stakeholders involved in the in
dustry, as it enables farmers, investors, and financial institutions to 
make informed decisions regarding the optimization of resource 
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allocation and risk management (Stone and Meinke, 2005). In addition, 
reliable mango yield forecasts help in workforce planning on farms, 
ensuring adequate labour and resources during the harvesting season. 
Mango cultivation in most producing countries is rainfed (Rojas-San
doval and Acevedo-Rodríguez, 2022). With the increasing challenges 
linked to variable weather and climate patterns, water scarcity, and soil 
fertility depletion, mango yield forecasts are essential for adapting crop 
management practices to optimize resources while maintaining or 
increasing yield levels. For governmental agencies and other policy 
makers, accurate forecasts aid in formulating appropriate policies and 
interventions related to the mango industry and ensuring its sustain
ability and profitability.

In response to the need in forecasting fruit tree yield, various models 
incorporating multiple factors, such as climate variables, soil fertility, 
phenology, physiological processes, and remote sensing-derived infor
mation, have been developed to predict the yield and/or production of 
fruit trees (e.g., Anderson et al., 2021; He et al., 2022; Gao et al., 2024; 
Santos et al., 2024). These include process-based or crop models, sta
tistical models and machine learning (ML)-based approaches. ML-based 
approaches are often employed to explore the relationships between a 
set of features and crop yield that achieve the highest level of accuracy 
and precision, particularly when the number of potential ‘predictors’ of 
a problem is large and dimensional reduction is required (van Klom
penburg et al., 2020). Several studies have utilized ML-based ap
proaches for mango yield prediction at various spatial scales (e.g., 
Fukuda et al., 2013; Ray et al., 2023; Torgbor et al., 2023). For example, 
random forest (RF) models based on rainfall and irrigation data have 
been developed to estimate mango yields under different water regimes 
(rainfed or irrigated) at the farm scale in northern Thailand (Fukuda 
et al., 2013). The models achieved varying levels of accuracy, with the 
Nash-Sutcliffe efficiency and Pearson’s correlation coefficients ranging 
from 0.369 to 0.910 and 0.330 to 0.964, respectively, depending on the 
water regime (Fukuda et al., 2013). Similarly, Torgbor et al. (2023)
evaluated the capability of six different ML algorithms including RF, 
support vector regression, ridge regression, least absolute shrinkage and 
selection operator regression, partial least square regression, and 
extreme gradient boosting, to predict mango yield at the orchard block 
and farm levels in Australia at 3-month lead time using weather vari
ables and remote sensing-derived vegetation indices. The errors 
(normalized mean absolute error) of the best algorithm (i.e., RF) varied 
between 31 % and 52 % at the block level, and between 0.8 % and 43 % 
at the farm level (Torgbor et al., 2023). In-field machine vision tech
niques, high spatial resolution satellite or unmanned aerial vehicle im
agery and deep learning techniques were used for the estimation of 
mango fruit load and yield at the orchard scale under various environ
mental conditions in Senegal (e.g., Sarron et al., 2018) and Australia (e. 
g., Koirala et al., 2019). For India, various models such as autoregressive 
integrated moving average models, exponential smoothing models, 
autoregressive neural networks-based models, and support vector 
regression-based models have been used to predict mango production at 
the state (Santosha et al., 2022) and country levels (Ray et al., 2016; Ray 
et al., 2023). However, predicting mango yield at a finer scale, e.g., 
district scale or sub-district scale, while dealing with spatial variation of 
uncertainty and error, remains an open research question.

The objective of this study was to assess the performance of a 
modelling approach that combines statistical methods including boot
strap robust least-angle regression, leave-one-out cross-validation, 
Bayesian-based spatial correlation analysis and Markov chain Monte 
Carlo scheme, and machine learning technique (i.e., RF) to enhance 
predictor selection, capture spatial trends, and generate probabilistic 
mango yield forecasts at the district scale. The approach used agro
climatic indicators as potential predictors. Mango growing districts in 
the state of Tamil Nadu, India (average district size varying between 
1,300 km2 and 12,000 km2) were chosen as a case study. In this study, 
we utilize the term “yield estimates” to denote the quantification of 
mango yield potential based on logical consequences of model structure. 

This is distinct from “yield forecasting ” which refers to a probabilistic 
projection of future mango yields after data are assimilated into the 
model (Newlands et al., 2014). The results of this study can serve as a 
basis for developing a tool for mango yield forecasting that would pro
vide substantial benefits to the entire mango industry in India and other 
mango-producing countries worldwide.

2. Materials and methods

2.1. Study region

Tamil Nadu is among the top 10 leading states in mango production 
in India (Government of Tamil Nadu, 2022). Between 2017/2018 and 
2021/2022 the total area under mango cultivation in Tamil Nadu was 
ca. 144,000 ha on average, and the total production varied between 
482,000 tonnes and 640,000 tonnes (Government of Tamil Nadu, 2022). 
The major mango growing districts in Tamil Nadu are Krishnagiri, 
Dharmapuri, Vellore, Dindigul, Thiruvallur and Theni. Mango virtually 
can grow in all the districts of Tamil Nadu (Fig. 1) as it tolerates a wide 
range of climatic and soil conditions. Rainfall ranging between 890 mm 
year− 1 and 1015 mm year− 1, along with average air temperatures of 
24–30 ◦C are the optimum growing conditions. Red loamy and well- 
drained soils, with a pH of 5.5 to 7.5 are ideal for mango cultivation 
in Tamil Nadu. However, the state has a diverse topography. For 
example, the major portion of Tiruppur falls within the rain shadow 
region of the Western Ghats, making it prone to water scarcity, which 
can influence adversely mango growth conditions. Likewise, Namakkal 
features varied landscapes, with mountainous areas in the north and 
plains in the south. Mango orchards are typically cultivated under 
rainfed conditions in Tamil Nadu. Alphonso, Totapuri, Banganapalli, and 
Neelum are the main commercial mango varieties grown across the state.

2.2. Data

2.2.1. Yield data
The official total harvested areas and production data for mangoes at 

the district level in Tamil Nadu for the study period of 2008–2019 were 
acquired from publicly available databases maintained by the Govern
ment of Tamil Nadu Department of Economics and Statistics (htt 
ps://des.tn.gov.in/). A description of the data collection methodology 
can be found in Government of India (2022). For each district and for 
each year, mango yield was calculated by dividing the total production 
by the total harvested area. Yield is considered as it allows for the 
assessment of productivity irrespective of orchard size and facilitates 
comparisons across districts. No production data were available for the 
district of Ariyalur in 2008; therefore no yield value was calculated for 
that year for this district. An overview of the mango yield distribution 
for the entire study period for each district, along with the coefficients of 
yield variations, is presented in Fig. 2.

2.2.2. Climate data
Daily climate data from the European Centre for Medium-Range 

Weather Forecasts (ECMWF) Reanalysis v5 (ERA5) for the 1991–2020 
period were obtained from the Copernicus Climate Data Store (https 
://cds.climate.copernicus.eu/). Gridded data for rainfall (mm), mini
mum and maximum temperatures (◦C), and solar radiation (MJ m− 2) at 
a 0.25◦ × 0.25◦ spatial resolution for the 2007–2019 period were used. 
The number of data points per district ranged between 2 (Nagapattinam 
and Perambalur) and 10 (Viluppuram) (Table S1). For a given district 
and for each climate variable, data for all grids in the district were 
averaged to obtain district-scale data. Monthly standardized 
precipitation-evaporation index (SPEI) values for the 2007–2019 period 
for each district were calculated using the 30-year ERA5 climate dataset 
(1991–2020) according to the method described in Vicente-Serrano 
et al. (2010). SPEI calculation were carried out using the package ‘SPEI’ 
(Beguería and Vicente-Serrano, 2023) in R (R Core Team, 2023). The 
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SPEI is a drought index based on climatic data that can be used to 
determine the magnitude of drought conditions with respect to normal 
conditions (Vicente-Serrano et al., 2010). SPEI values ≥ 1.00 indicate 
wet weather conditions, with extreme wet conditions defined by values 
≥ 2.00). Values ranging from − 0.99 to 0.99 are indicative of near- 
normal conditions, whereas values ≤ − 1.00 indicate drought condi
tions, with extreme drought conditions characterized by values ≤ − 2.00 
(Rhee and Im, 2017).

2.3. Data analysis

2.3.1. Agroclimatic variables
The mango season typically overlaps two calendar years in fruiting 

mango orchards in Tamil Nadu (Nithya Devi et al., 2019) (Table 1). In 
this modelling study, we focus on the months of October to December of 
year − 1 (hereafter referred to as Period 1 of the season) which en
compasses vegetative rest (dormancy) and the beginning of flowering 

(bud burst), and the months of January to July of the year (hereafter 
referred to as Period 2 of the season). Period 2 encompasses flowering, 
fruit set and development and maturity (Table 1). For each mango 
season, the cumulative daily growing degree days (GDD; base temper
ature = 10 ◦C) (Hofman, 2011), daily rainfall and daily solar radiation 
were summed over Period 1 and included as potential predictors. 
Climate data were aggregated over Period 1 with the aim of focusing on 
mango yield response to climate variability during the phenological 
stages encompassing flowering to maturity. For each Period 2, daily 
GDD, rainfall, and solar radiation were temporally summed by month 
and included as potential predictors. The standard deviations (SD) of 
daily GDD, rainfall and solar radiation during each month of Period 2 
(January–July) were also included to account for the variability of these 
meteorological factors. Monthly SPEI data for the two periods of the 
mango season were used as potential predictors to account for the effects 
of drought conditions on mango yield. Thus, in this study, 55 potential 
predictors were considered: Period 1 total rainfall, total solar radiation, 

Fig. 1. Map of the study districts in Tamil Nadu, India.

L. Kouadio et al.                                                                                                                                                                                                                                Computers and Electronics in Agriculture 236 (2025) 110450 

3 



Fig. 2. The distributions of mango yields (a) and coefficients of variation (CV) of reported district-scale yields (b) in Tamil Nadu during 2008–2019. In a boxplot, the 
top and bottom of the box represent the 75th and 25th percentiles, respectively; the solid line indicates the median. The whiskers on the top and bottom represent the 
largest and smallest values within 1.5 times the interquartile range above the 3rd and 1st quartiles, respectively. Black circles are the outliers. NA: Chennai district 
where data was not available.
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cumulative GDD, and monthly SPEI, and Period 2 monthly total rainfall, 
monthly cumulative GDD, monthly total solar radiation, monthly SPEI, 
and SDs of daily GDD, rainfall and solar radiation.

Prior to the modelling, correlation analysis was performed for each 
district to explore the relationship between mango yield and individual 
agroclimatic variables. Normality tests were performed using the 
Shapiro-Wilk test. For variables with normally distributed data the 
Pearson correlation coefficient was used to quantify the degree of as
sociation; for non-normally distributed data, the Kendall’s τ statistic was 
employed as the measure of association.

2.3.2. Mango yield models at the district scale
A comprehensive evaluation was conducted to identify the most 

significant predictors of mango yield at the district scale in Tamil Nadu. 
For each district, a multivariate regression equation (Eq. (1)) was used to 
model mango yield. 

Ŷ i,j = γi,0 + γi,1 × j+
∑n

l=1
α(l)

i,j x
(l)
i,j + εi,j (1) 

where Ŷ i,j denotes the estimated or forecasted mango yield for district i 
in year j; ϒ i,0 and ϒ i,1 are the regression intercept and the technology 
trend coefficient, respectively; x(l)

i,j denotes the l predictor variables for i 
in year j; l could be any of the potential agroclimatic predictors; and n is 
the number of predictors (i.e., n = 55). α(l)

i,j are the regression co
efficients.; they are spatially and temporally varying (Newlands et al., 
2014). In this study Year was included as predictor to incorporate the 
effect on yield of technology over time (i.e., increase in yield from 
improved management practices such as water conservation measures, 
soil fertility management, pruning technique), and the age of the or
chards. The technology trend was assumed to be linear. The model un
certainty εi,j is independent and normally distributed with mean zero 
and variance σ2

i . ϒ i,0 and ϒ i,1 were used to detrend the yield data.
In the study there were 20 districts out of 31 with CV > 30 %, 

indicating very high variability in the reported mango yields (Fig. 2). 
Consequently, the log-transformed yield values were considered in the 
modelling approach.

For each district, the modelling approach involved two main stages 
(Fig. 3). Stage 1 involved an automatic ranking and selection of the best 
predictors, coupled to robust cross-validation to build each model. The 
automatic ranking and selection of leading potential predictors was 
achieved using a bootstrap robust least-angle regression scheme (B- 
RLARS) (Khan et al., 2007; Newlands et al., 2014). The B-RLARS is an 
enhancement of the least-angle regression algorithm that incorporates 
robustness and the bootstrap technique to improve reliability, particu
larly in cases where data may contain outliers or exhibit high variance 
(Khan et al., 2007; Newlands et al., 2014). It is suitable for high- 
dimensional datasets where the number of predictors is much larger 
than the number of observations, as it is in this study (12 years of ob
servations, 55 potential predictors). Highly correlated predictors with 
correlation coefficient ≥ 0.70 were determined prior to the automatic 
ranking process; one variable of each pair of highly correlated variables 

was kept to avoid the risk of multicollinearity. Moreover, all predictors 
were assumed to follow a truncated normal distribution and were 
standardized as follows (Newlands et al., 2014): 
{

ifMAD(x) = 0, xʹ = x − mean(x)/SD(x)
else, x́ = x − median(x)/MAD(x) , where MAD is the median 

absolute deviation, and SD is the standard deviation. To finalize the 
training of each yield model and remove any false (poor-performing) 
predictors, a robust cross-validation (i.e. k-fold cross-validation) was 
used. A maximum of four predictors was selected for each model to 
avoid model overfitting. The ability of the model to estimate mango 
yield was evaluated during this stage.

Stage 2 of the modelling approach focused on the forecasting of 
mango yield at different lead times (forecast dates) (Fig. 3). First, for 
each district, statistically neighbouring districts were identified through 
a Bayesian-based spatial correlation analysis (Bornn and Zidek, 2012) 
and the prior distributions of the best predictors (selected during Stage 
1) were generated. The calibrated yield regression equation (that was 
built during Stage 1) was fitted jointly to the given district and its 
identified neighbours. The models fitted using these neighbouring dis
tricts were then cross-validated with the data from the given district. The 
top districts (a maximum of three districts in this study) were selected 
based on obtaining the lowest cross-validation error. Then, the prior 
distributions of the best predictors were generated using only informa
tion from the statistically selected neighbouring districts and that of the 
forecasting district. This approach proved effective in generating a more 
informative prior distribution for the model predictors by incorporating 
additional spatial covariance support, accounting for the residual spatial 
covariance among districts (Bornn and Zidek, 2012; Newlands et al., 
2014).

Secondly, the prior distributions were used in a Markov chain Monte 
Carlo (MCMC) scheme (i.e., the Metropolis-Hastings algorithm) to esti
mate the posterior distributions of the predictors, along with data at the 
forecast time. The unobserved values of the selected predictors that are 
required to make the forecast were estimated using a RF technique 
(Breiman, 2001), coupled with a bootstrapping process. At each forecast 
time, the observed data after the forecast time were substituted with the 
model-generated data to simulate a real-time forecasting scenario. In 
initial analyses, multi-variate adaptive regression splines and RF algo
rithms were evaluated for their ability to predict these unobserved 
values. The random forest algorithm was chosen due to its superior 
computational efficiency and accuracy.

The third step in Stage 2 consisted in generating the probability 
distribution of mango yield forecasts using the model-generated data, 
combined with the available data at the forecast time generate. The 
main outputs of the forecasted yield probability distributions were the 
10th percentile (representing the worst 10 % of the outcomes), the 50th 
percentile (representing the median of the outcomes) and the 90th 
percentile (representing the best 10 % of the outcomes). In this study, 
the median value of the forecasted yields was used. The forecast times 
selected in this study are described in section 2.3.3.

2.3.3. Lead times for mango yield forecasting
Three lead times were considered to forecast mango yield based on 

the start of harvest (SoH). Yield forecasts were generated on the first 
days of April, May, and June, which corresponded to two to one month 
(s) before SoH and at SoH, respectively. These months were selected 
based on the release schedule of official agricultural statistics in India. 
Crop area and production estimates are released at five points in time 
during a given cropping year: the first release is approximately at the 
end of the southwest monsoon season in September; the second is in 
February, the third in April-May, and the fourth in July-August, and the 
final estimates are released in February of the following agricultural 
crop year (Government of India, 2022). In this study, for each fore
casting time, mango yields were forecasted using values from selected 
predictors corresponding to the months leading up to the forecast 
month, in conjunction with RF-based bootstrap estimates for the 

Table 1 
The periods of different phenological stages for fruiting mango trees in Tamil 
Nadu.

Crop stage Months Period of mango season

Vegetative growth August – September (Year − 1) Period 0
Dormancy October – November (Year − 1) Period 1
Bud bursting November – December (Year − 1) Period 1
Flowering January – February Period 2
Fruit set March Period 2
Fruit development April – May Period 2
Maturity/Harvest June – August Period 2

Source: Nithya Devi et al. (2019).
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remainder of the season (section 2.3.2). For example, if the selected 
predictors for a model pertain to January, February, March and June, 
the inputs for April forecasts would include the predictor values from 
January, February and March, along with the bootstrap estimates for 

June-related predictors. Note that for Period 1-related variables, no es
timate would be generated if selected as it fell before the forecast months 
of April, May, and June.

Fig. 3. A flowchart describing the modelling approach of mango yield at the district level in Tamil Nadu, India. Processes involving statistical methods are shaded in 
green and those involving a machine learning technique are shaded in orange.
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2.3.4. Model performance evaluation
Leave-one-year-out-cross-validation (LOOCV) was used to evaluate 

the robustness of each model for estimating mango yield. In this process, 
for each district, a single year from the original 12-year dataset (11-year 
for Ariyalur) was selected as validation data, whereas the remaining 
observations were used as training data. This process was repeated 
iteratively until each year in the sample was used once as validation 
data. To assess the performance of the yield models after LOOCV, the 
Pearson coefficient of determination (R2), the root mean square error 
(RMSE) and the mean absolute percentage error (MAPE) were used as 
statistical indicators. RMSE and the MAPE were also employed to assess 
the models’ accuracy in forecasting mango yield.

All statistical analyses were performed using R version 4.3.1 (R Core 
Team, 2023) within the RStudio development environment (Posit Team, 
2023). Geospatial analyses and mapping were performed using R and 
the Quantum Geographic Information System (QGIS; version 3.22.14) 
(https://qgis.org).

3. Results

3.1. Variability in climate data during the study period

Variations in climate conditions during the 2008–2019 across each 
mango-producing district in Tamil Nadu are presented in Figs. 4-6 and 
Supplementary Figs. S1-S4. Overall, there was a consistent trend in GDD 
between January and July across all districts. Indeed, monthly cumu
lative GDD decreased from January to February, followed by an increase 
from February to May, with a peak during this latter month in most 
cases; this was then followed by a decrease in June and July (Fig. 4). 
During 2008–2019 February had the lowest average GDD values, with 
values ranging from 700 ◦C.d to 800 ◦C.d (Fig. 4). Exception included 
The Nilgiris district where over the 2008–2019 period the average 
monthly cumulative GDD was below 800 ◦C.d. Daily GDD variability, 
expressed through the SDs for each month, appeared minimal (≤ 2◦C⋅d) 
across all the districts, indicating relatively stable monthly thermal 
conditions between January and July (Fig. S1). The solar radiation 
(SRad) patterns, characterized by an increasing trend from January to 
March and a decreasing trend afterwards, remained similar across dis
tricts in Tamil Nadu during 2008–2019 (Fig. S2). Median monthly SRad 
values ranged from 19 MJ m− 2 to 26 MJ m− 2, with March recording the 

Fig. 4. Variations in the monthly cumulative growing degree days from January to July across mango-producing districts in Tamil Nadu during 2008–2019.
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highest irradiance and July recording the lowest irradiance across most 
districts (Fig. S2). Variability in SRad during the 12-year period was low 
and did not exceed 0.3 MJ m− 2 (Fig. S3).

Regarding rainfall, over the 2008–2019 period, the monthly total 
rainfall amount barely exceeded 200 mm in the majority of the mango- 
producing districts in Tamil Nadu (26 out of 31) (Fig. 5), January and 
February were the driest months (monthly rainfall < 50 mm in most 
cases. In districts such as Kancheepuram, Karur, Namakkal, Salem, 
Thiruvallur, Thoothukudi, Tiruvannamalai, and Viluppuram, this 
pattern persisted through March and April (Fig. 5). However, in Coim
batore and The Nilgiris, a marked increase in total rainfall between 
January and July was observed during the study period, compared to the 
pattern in other districts. For instance in The Nilgiris, the median 
monthly rainfall rose from < 5 mm in January to close to 400 mm in July 
(Fig. 5). In terms of variability, all the districts virtually exhibited low to 
moderate variability (SD ≤ 5 mm) between January and July each year 
of the study period (Fig. S4). Exceptions included The Nilgiris, and 
Coimbatore where the median rainfall standard deviations (SdRain) 
varied between 6 and 11 mm for the months of June and July, likely due 
to localized climatic events (e.g., heavy rainfall) (Fig. S4).

The analysis of drought conditions based on the SPEI indicated that 
most districts exhibited near normal conditions (SPEI values close to 0), 

with slight dryness observed in October-December and July (Fig. 6). A 
wider range of SPEI during the pre-flowering period, namely in 
November (relatively larger boxes or more outliers in Fig. 6) was also 
observed across the districts, suggesting higher variability in water 
availability during this month. In districts such as Coimbatore, Theni, 
Thiruvallur and Tiruppur, this pattern was also found in January/ 
February and April/May (Fig. 6).

3.2. Correlations between agroclimatic variables and mango yield

Varying degrees of association between agroclimatic variables and 
mango yield were observed across districts (Fig. 7). The most frequently 
significant predictors (p < 0.05) included SdGDD_4 (GDD variability in 
April), SdGDD_6 (June), SdGDD_1 (January), SdGDD_7 (July), SRad_P1 
(solar radiation for Period 1), SumGDD_2 (cumulative GDD for 
February), SumRain_5 (rainfall in May), SumRain_3 (March), SumS
Rad_4 (solar radiation in April), and SdRain_4 (rainfall variability in 
April). The effects of SPEI varied by month: SPEI_4 and SPEI_1 were 
generally positively correlated with mango yield in several districts, 
while SPEI_7, and to a lesser extent SPEI_6, negatively impacted yield 
(Fig. 7). Variability in heat accumulation (expressed as the standard 
deviation of daily GDD – SdGDD) generally had positive effects on 

Fig. 5. Variations in the total monthly rainfall from January to July across mango-producing districts in Tamil Nadu during 2008–2019.

L. Kouadio et al.                                                                                                                                                                                                                                Computers and Electronics in Agriculture 236 (2025) 110450 

8 



mango yield in April, May and June, while high monthly values in GDD, 
rainfall, and solar radiation were often linked to yield reductions. For 
instance, higher cumulative GDD in April and July (SumGDD_4 and 
SumGDD_7), total rainfall in July (SumRain_7), and solar radiation in 
January and April (SumSRad_1 and SumSRad_4) often had detrimental 
effects on yield. The associations with variables such as SumGDD_2, 
SdGDD_4, and SdGDD_1 highlight that both absolute temperature sums 
and their variability during some months were critical factors influ
encing mango yield across the study regions.

3.3. Predictors explaining mango yield interannual variability

The selection of the best agroclimatic predictors of mango yield 
through a B-RLARS varied according to the district (Table 2, Fig. S5). 
The most frequently selected predictors included July, December, and 
March SPEI (SPEI_7, SPEI_12, SPEI_3, respectively), total solar radiation 
for January and June (SumSRad_1 and SumSRad_6), standard deviations 
of daily GDD in May, July, April, June, and February, (SdGDD_5, 
SdGDD_7, SdGDD_4, SdGDD_6, and SdGDD_2), total monthly rainfall for 
July and April (SumRain_7 and SumRain_4), and cumulative monthly 
GDD for May and January (SumGDD_5 and SumGDD_1) (Table 2). 

Variability in mango yield at the district scale was primarily driven by 
temperature fluctuations (expressed as standard deviations) and 
drought conditions (captured by the SPEI), particularly before and 
during bud burst (SPEI_12), and during the subsequent phenological 
stages (flowering, fruit set, and fruit development). The least frequently 
selected predictors influencing mango yield across districts included 
GDD_P1 and SumRain_6 (each selected only once), followed by Sum
Rain_1 and SPEI_2 (twice), and SumRain_3, SdSRad_1, and SdRain_1 
(thrice). These predictors had minimal impact compared to others, 
indicating limited relevance in explaining yield variations. Factors like 
SdRain_5, SdSRad_3, SumRain_5, and Rain_P1, with slightly higher fre
quencies, also contributed less consistently to mango yield across dis
tricts in Tamil Nadu (Fig. S5).

The frequency with which the most influential agroclimatic pre
dictors were associated with either positive or negative effects on mango 
yield across models and districts is presented in Fig. 8. Overall, rainfall- 
related variables (monthly totals and variability in daily values) were 
predominantly linked to negative impacts on mango yield in the districts 
where they were identified as key predictors (Fig. 8a and e). In contrast, 
temperature-related predictors (cumulative GDD and variability in daily 
GDD) exhibited both positive and negative associations depending on 

Fig. 6. Variations in the monthly standardized precipitation-evaporation index (SPEI) from October to July across mango-producing districts in Tamil Nadu during 
2008–2019. SPEI values for October, November and December correspond to values for Period 1 of each mango season (year − 1).
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the month considered (Fig. 8b and f). The SPEI predictors were generally 
associated with negative effects across districts (Fig. 8d). Solar radiation 
and its variability played a more nuanced role in mango yield (Fig. 8c 
and g). Among the top best predictors (Table 2), SdGDD_5, SumGDD_5, 
SumRain_4, SdGDD_6, and SumGDD_1 most often impacted positively 
on mango yield across the districts where they were selected. For the 
remaining top best predictors, a negative effect on mango yield was 
generally found (Fig. 8).

3.4. Performance of yield models at the district level

The yield models performances were evaluated using LOOCV over 
the 12-year study period. The spatial distribution of average LOOCV R2, 
RMSE and MAPE values is presented in Fig. 9. In 18 out of 31 districts, 
the models explained between 20 % and 70 % of the variability in 
district-level mango yields (Fig. 9a). Average RMSE values reached up to 
2.0 t ha− 1 in 19 districts (Fig. 9b). In terms of MAPE, these districts 
achieved good to acceptable accuracy, with MAPE ≤ 30 % (Fig. 9c). 
Theni (south-west) was the only district among the 19 to have a MAPE 

Fig. 7. Correlation coefficient analysis of all agroclimatic predictors and mango yields for the period of 2008–2019. Positive correlations are represented by red 
shades, while blue shades indicate negative correlations, with the intensity of colour reflecting the strength of the relationship. Statistically significant correlations (p 
< 0.05) are marked by an asterisk (*).
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above 30 %. Conversely, in districts such as Kanniyakumari (south), 
Tiruppur (west), and Namakkal (central-west), Ariyalur (central-east), 
and Kancheepuram (north-east), notable RMSE values exceeding 3.0 t 
ha− 1 were found (Fig. 9b). These districts, along with others with lower 
R2, often exhibited higher MAPE (> 30 %), indicating poor model per
formance. Poor-performing districts were primarily located in the 
western, central-eastern and north-eastern parts of the state (Fig. 9c), 
highlighting regions where model refinement and additional data 
collection could enhance accuracy.

3.5. Evaluation of the model performance in forecasting mango yields at 
different lead times

The spatial and temporal variability in the skills of yield models used 
to forecast mango yield at the district scale was evaluated for three lead 
times: April (two months before the start of harvest, SoH), May (one 
month before SoH), and June (SoH). Analysis of the mean yield de
viations at these lead times (Fig. 10) revealed relatively small deviations 
from observed mango yields for most districts, as indicated by narrow 
interquartile ranges (IQRs) tightly clustered around 0 % (Fig. 10). 

Tiruppur consistently exhibited the highest deviations across all three 
months. Other districts with higher yield deviations, evidenced by wider 
IQRs and/or more outliers, included Erode, Kancheepuram, Namakkal, 
Pudukkottai, and Thiruvallur, suggesting poor model performance in 
these areas (Fig. 10).

In April and May, southern and coastal districts had the lowest RMSE 
(≤ 2.0 t ha− 1) (Fig. 11a and b). This trend persisted in June for most 
coastal and southern regions, whereas northern districts experienced 
higher errors (RMSE > 4.0 t ha− 1). Regarding MAPE, most districts 
showed moderate to high errors (> 20 %) across the three forecasting 
months. Similar to RMSE, southern and coastal districts demonstrated 
superior performance in predicting mango yield two months prior to and 
up to the SoH (Fig. 11). In Tirunelveli (south) mango yield was predicted 
with a RMSE of 0.53 t ha− 1 (< 1.0 t ha− 1) and a MAPE of 7 % during this 
period (Fig. 11). Other districts with consistently low RMSE (≤ 2.0 t 
ha− 1) and acceptable MAPE (≤ 30 %) across months included Dhar
mapuri and Krishnagiri (north-west) (Fig. 11).

4. Discussion

Multivariate regression models based on agroclimatic indicators, 
including monthly cumulative GDD, rainfall, and solar radiation, and 
SPEI, were developed to forecast mango yields at the district scale in 
Tamil Nadu, India. Our modelling approach combined statistical 
methods (B-RLARS, LOOCV, Bayesian-based spatial correlation analysis, 
and MCMC scheme) and ML-based modelling (i.e., RF), offering a robust 
and complementary framework for yield forecasting. The statistical 
methods used in the approach ensured thorough variable selection, 
identification of spatial correlations and regional patterns in yield re
sponses, and uncertainty quantification. Meanwhile, RF modelling 
facilitated a stable prediction of the unobserved values of selected pre
dictors required for the forecasts.

4.1. The need for comprehensive understanding of the climate drivers 
affecting mango yield

The most influential variables influencing mango yield at the district 
level in Tamil Nadu included SPEI for July, December, and March, total 

Table 2 
Top agroclimatic variables selected as best predictors for mango yield models at 
the district scale.

Rank Predictors Definition

1 SPEI_7 July standardized precipitation-evaporation index (SPEI)
2 SumSRad_1 Total solar radiation for January
2 SdGDD_5 Standard deviation of daily GDD in May
2 SPEI_12 December SPEI
3 SumRain_7 Total rainfall for July
4 SumGDD_5 Cumulative GDD for May
4 SdGDD_7 Standard deviation of daily GDD in July
5 SumRain_4 Total rainfall for April
5 SdGDD_4 Standard deviation of daily GDD in April
5 SdGDD_6 Standard deviation of daily GDD in June
5 SumGDD_1 Cumulative GDD for January
6 SdGDD_2 Standard deviation of daily GDD in February
6 SumSRad_6 Total solar radiation for June
6 SPEI_3 March SPEI

Fig. 8. Frequency distribution of the effects of most influential agroclimatic predictors on mango yield across models and districts in Tamil Nadu. Positive (orange) 
and negative (blue) effect as indicated by the sign of the coefficient estimate are depicted for (a), (b), (c): Period 1 total and Period 2 monthly totals for rainfall, 
growing degree days (GDD), and solar radiation, respectively; (d) monthly SPEI; (e), (f), (g): Period 2 standard deviations of daily rainfall, GDD, and solar radiation, 
respectively.
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solar radiation for January and June, standard deviations of daily GDD 
for May, July, April, June, and February, total monthly rainfall for July 
and April, and cumulative monthly GDD for May and January. The 
period from January to June typically encompasses the flowering, fruit 
set and fruit development stages of mangoes across the study area 
(Nithya Devi et al., 2019). Our results suggest that weather conditions 
during these periods remain critical in determining mango yield. The 

selection of SPEI variables for December (SPEI_12) and March (SPEI_3) 
underscores the importance of water availability during bud burst and 
fruit set. These two variables mostly had negative effect on mango yield 
across districts, indicating that drought stress during flowering and fruit 
set could be detrimental to mango yield. This aligns with findings by 
Carr (2014) and Zuazo et al. (2021), where water stress during bud 
burst, flowering and fruit growth stages impacted mango yields as it can 

Fig. 9. Performance of mango yield models at the district scale in Tamil Nadu, India. Leave-one-year-out-cross-validation average (a) Pearson coefficient of 
determination (R2), (b) root mean square error (RMSE), and (c) mean absolute percentage error (MAPE).

Fig. 10. Variability in mango yield deviations across districts for the three lead months April, May, and June. Yield deviations were calculated as the differences 
between the predicted and observed yield, expressed as a percentage of the observed yield, for each lead month over the 12-year study period.
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delay the development of vegetative buds and can affect fruit retention 
and size. However, the response degree varies depending on the envi
ronmental conditions, i.e., tropical or sub-tropical regions (Zuazo et al., 
2021). Indeed, in tropical regions, a short period of water stress helps 
trigger flowering, whereas in subtropical areas, it plays a minor role, as 
low winter temperatures naturally limit growth and floral induction 
(Zuazo et al., 2021). A negative effect of drought conditions during July 
(SPEI_7) on mango yield was found through the modelling. Water stress 
during maturity can lead to smaller fruit due to limited translocation of 
photosynthates to the fruit, or increase fruit drops (Liu et al., 2023). 
Over the study period 2008–2019 most districts did not experience se
vere drought conditions in July (Fig. 6). Thus, the negative effect on 
mango yield of drought conditions in that month suggests that this in
fluence was exacerbated in association with other factors.

Total solar radiation in January and June (SumSRad_1 and SumS
Rad_6) and the cumulative GDD for May and January (SumGDD_5 and 
SumGDD_1) reflect the critical role of energy inputs during flowering 
and fruit development, corroborating observations from previous 
research (e.g., Geetha et al., 2016; Clonan et al., 2021). Indeed, it has 
been shown that temperature plays a major role in flowering in 
mangoes: from triggering flowering under cool temperatures (low 
nighttime temperatures in the 15–20 ◦C range), inhibiting it under high 
daytime temperatures (range of 32–35 ◦C), or through its impact on the 
production of hermaphrodite flowers under temperatures varying be
tween 15 ◦C and 17 ◦C, depending on the varieties (Clonan et al., 2021). 
Temperature variability, represented by the standard deviations of GDD 

(e.g., SdGDD_1, SdGDD_2, SdGDD_4, SdGDD_5), emerged as an impor
tant factor for managing temperature-related risks in mango in Tamil 
Nadu. While previous research has focused primarily on temperature 
impacts on mango yield (e.g., Clonan et al., 2021; Rojas-Sandoval and 
Acevedo-Rodríguez, 2022), the variability in heat accumulation may 
have a notable influence as well, as shown in this study. Indeed, while 
adequate heat accumulation is essential for fruit development and 
maturation, excess heat or erratic temperature fluctuations—especially 
during flowering and fruit set— can be detrimental to yield at harvest. 
Strategies such as adjusting pruning and flowering induction schedules, 
growing heat-tolerant varieties can be adopted to cope with the adverse 
impact of temperature variability on mango yield.

Rainfall predictors, such as SumRain_7 and SumRain_4, exhibited a 
negative and positive effect on mango yield, respectively (Fig. 8a), 
consistent with e.g., Rojas-Sandoval and Acevedo-Rodríguez (2022), 
who reported variable influence of rainfall on mango yield depending on 
timing and intensity. Erratic rainfall patterns during fruit set or late in 
the season tended to have a predominantly negative influence across 
districts, suggesting that they may have disrupted water balance and 
impair fruit development. This is particularly important in Tamil Nadu, 
where mango orchards are predominantly rainfed. The use of deficit 
irrigation during periods of inadequate rainfall – when economically 
feasible – may help sustain yield levels (Zuazo et al., 2021). Charac
terizing the main climate drivers of mango yield is crucial for developing 
adaptive measures to maintain or increase yield levels and ensure the 
sustainability and profitability of farming activities. The identification 

Fig. 11. The spatial distribution of forecasts errors, root mean square error (RMSE; upper row) and mean absolute percentage error (MAPE; lower row), at different 
lead times. (a) 1st of April (2 months before start of harvest (SoH)), (b) 1st of May (1 month before SoH), and (c) 1st of June (SoH). For a given month, the models’ 
performances were calculated based on the predicted mango yields for that month over the 12-year period (11 years for Ariyalur).
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of the best predictors of mango yield in this study can serve as a foun
dation for future research to develop on-farm adaptation strategies to 
manage climate risks and improve mango yield.

4.2. Performance of yield models and challenges

The spatial variability in model performance revealed distinct pat
terns (Figs. 8 and 9). Poor-performing districts, predominantly located 
in the western, central-eastern, and north-eastern regions, had lower R2 

and higher MAPE values. These areas likely faced more complex in
teractions between climatic factors, topography and management 
practices. In forecasting yield, acceptable model errors (RMSE ≤ 2.0 t 
ha− 1 and MAPE ≤ 20 %) were observed in four districts (Fig. 11). For 15 
out of 31 districts, the forecasting errors (MAPE) consistently ranged 
from 30 % to 40 % across the lead months. Studies on mango yield 
prediction using ML-based techniques have shown a range of prediction 
errors. For instance, the normalized mean absolute error for the best- 
performing model for mango yield estimation at the farm scale 
reached up to 43 % (with a minimum of 0.8 %), and up to 52 % (with a 
minimum of 31 %) at the orchard block scale (Torgbor et al., 2023). Our 
results exhibited comparable model performance. However, the subpar 
performance of yield models in most districts may stem from several 
factors, including high interannual yield variability, a limited pool of 
potential predictors, or the ML algorithm utilized.

The spatial patterns of model errors closely followed the coefficient 
of variation (CV) of reported yields (Fig. 2b). Good model performance 
was found in district with low yield CVs. Conversely, models generally 
performed poorly in districts with high yield CVs (> 30 %), even after 
utilizing log-transformed yields to reduce variability. The limited his
torical data on mango orchards (only 12 years in this study), coupled 
with data collection limitations, may have impeded the development of 
accurate predictive models. Mango yield variability across districts is 
influenced by numerous factors such as climate, soil composition and 
fertility, geographic location, local agricultural practices, the mango 
variety, tree growth disparities, fruit production, nutrient requirements, 
and resistance to pests and diseases (Rojas-Sandoval and Acevedo- 
Rodríguez, 2022). These factors can cause notable fluctuations in 
growth patterns and fruiting across orchards and districts, leading to 
substantial year-to-year yield variability.

Additionally, the complex interplay of endogenous factors, including 
tree age, health, and variety, adds another layer of challenge in devel
oping accurate yield models. An alternative approach could involve 
conducting analyses at a finer spatial administrative scale (e.g., sub- 
district level) and then aggregating the results at the district level. 
This would involve using weight-averaging of all block-level predicted 
or forecasted yields based on harvested areas and selecting the median 
or average as the district-level yield (Chipanshi et al., 2015). Incorpo
rating weekly or fortnightly climatic data instead of monthly data can 
help to better capture rapid fluctuations in weather conditions.

As data become available, the data period would get longer, which 
will ensure accurate yield predictions without risking overfitting the 
models. Data collection could be improved using scalable and cost- 
effective tools for monitoring mango production. These include freely 
available satellite imagery (e.g., Sentinel-2, Landsat), low-cost un
manned aerial systems, coupled with photogrammetry tools to obtain 
high-resolution orchard level data, partnering with local initiatives or 
agribusinesses that already have data applications for farmer outreach.

4.3. The challenges in forecasting mango yield at the district scale

In this study, we employed a modelling approach similar to that 
described in previous research, e.g., Newlands et al. (2014), Chipanshi 
et al. (2015), and Kouadio et al. (2021), which has demonstrated strong 
performance across various contexts, including different crops and 
countries. For example, Kouadio et al. (2021) assessed this approach for 
estimating and forecasting robusta coffee yield at the farm scale in 

Vietnam. The MAPE of the models varied between 8 % and 13 % for the 
estimates and between 13 % and 19 % for the forecasts (Kouadio et al., 
2021). Although the models’ performances in this study performed 
weaker than those for robusta coffee, the findings provide valuable in
sights into the replicability of this approach for perennial crops like 
mango.

The analysis of forecast results revealed an increase in the proportion 
of districts with poor model performance in June (Fig. 11), suggesting 
that late-season climatic variability likely play a crucial role. Incorpo
rating predictors such as flowering-to-harvest temperature or rainfall 
variability, and/or using weekly or fortnightly climatic data instead of 
monthly data to better capture rapid weather fluctuations could enhance 
model accuracy. Fine-tuning region-specific models to account for 
unique agroclimatic conditions and phenological stages may reduce 
errors and improve prediction reliability. However, relying solely on 
agroclimatic variables may not suffice for forecasting mango yield at the 
district level in Tamil Nadu. In this study, only a limited number of 
districts produced acceptable model performance. This limitation could 
hinder the adoption of these models by industries and other stakeholders 
for mango yield forecasting in the region. Therefore, there is a need for 
further research to improve the performance of the models. Potential 
directions for future research may include: (i) incorporating additional 
data such as management practices (e.g., pruning and canopy manage
ment, fertilizer application, pests and diseases control), socioeconomic 
factors (e.g., farmer demographics, labour availability), soil data (e.g., 
soil types, water retention capacity, pH, salinity) to capture the effects of 
soil conditions on mango yield, and remote sensing derived information 
and/or vegetation indices to track mango orchard health dynamically; 
(ii) implementing ensemble ML or deep learning models to capture non- 
linear relationships and interactions among variables; (iii) engaging 
with mango processing industries and exporters to access additional 
datasets to improve the model building process and validate model 
outputs with their historical records.

Another avenue for model improvement might be developing 
process-based models capable of representing mango growth and 
development processes under varying environmental conditions and 
agricultural set-ups which can be used at such larger spatial scales 
(Léchaudel et al., 2005; Shahhosseini et al., 2021), and integrating them 
with ML-based models (e.g., von Bloh et al., 2024). Process-based 
models generally account for the interactions between crop, environ
ment and management practices and are typically applied at the tree or 
plot or farm levels. For example, Léchaudel et al. (2005) developed a 
process-based model that accounted for the main processes of fruit 
growth such as photosynthesis, fruit demand, fruit respiration, and 
storage and mobilization of leaf and stem reserves, to simulate the 
response of mango fruit growth to weather at the plot scale. The model 
was subsequently extended to an architectural development model that 
characterized mango growth and developmental processes of inflores
cence and fruiting at the tree scale across successive growth cycles 
(Boudon et al., 2020). Such models could be tested and integrated with 
ML models to leverage the strength of each.

5. Conclusions

We developed a district-scale mango yield forecasting approach 
combining statistical methods—including bootstrap robust least-angle 
regression, leave-one-year-out cross-validation, Bayesian-based spatial 
correlation analysis, and Markov Chain Monte Carlo scheme, and—a 
random forest technique, using Tamil Nadu, India as a case study. Unlike 
previous studies that primarily focused on farm-level assessments or 
models at the state/national scale, our research bridges this gap by 
providing district-level predictions, a critical yet underexplored scale for 
regional agricultural planning and market decision-making. The results 
showed that temperature fluctuations, rainfall distribution, pre- 
flowering drought stress, and drought conditions (expressed through 
the SPEI) in March and July were among the strongest determinants of 
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mango yield variation. The study also revealed notable spatial dispar
ities in model performance, with southern and north-western districts 
exhibiting lower forecasting errors compared to northern and central 
regions. Despite the models’ ability to capture key drivers of yield, 
forecasting errors remained above 30 % in the majority of districts, 
underscoring the challenges of district-scale yield prediction due to 
environmental heterogeneity and data limitations. These findings 
emphasize the need to integrate additional explanatory variables, such 
as orchard management practices, soil properties, and remote sensing- 
derived indicators, to improve model accuracy and robustness. While 
our investigation demonstrates the potential of agroclimatic indicators 
for mango yield forecasting, it also highlights key limitations, particu
larly data availability. A more comprehensive understanding of the 
climate − mango yield relationships, as identified in this study, is 
essential for refining the modelling approach through adjustment in the 
ML-based forecast algorithm between districts. By addressing these 
gaps, our research lays the foundation for more sophisticated, data- 
driven forecasting approaches at finer spatial scales. Future advance
ments in machine learning, combined with improved data accessibility 
and training, will be crucial in enhancing forecast reliability and sup
porting climate-resilient mango production strategies.
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