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Abstract—Visual stimuli have a multifaceted impact on brain 
activity, yet the nuanced differences in how various types of 
stimuli affect electroencephalogram (EEG) signals are still under 
investigation. This study endeavors to classify EEG signals in 
response to a range of visual stimuli by crafting a lightweight 
deep learning model. Utilizing the N170 EEG dataset from the 
ERP core, which encompasses recordings from 40 healthy 
participants exposed to roughly 10-minute sessions of randomly 
presented sets of normal and scrambled photographs. Each set 
consisted of images portraying either normal or scrambled 
representations of faces and cars, encapsulating four unique 
visual stimuli. By harnessing the EEG data from the 40 
participants, our ResNet18-based model attained an impressive 
average classification accuracy of 98.13% for face images and 
97.81% for car images, significantly surpassing the performance 
of traditional machine learning models. Notably, this marks the 
inaugural application of the ResNet18 model to the N170 dataset 
classification experiment within the ERP core. The findings of 
this study enrich our comprehension of the brain's distinct 
cognitive responses to these stimuli and the manifestation of these 
differences in EEG signals. The successful deployment of this 
model paves the way for furthering the exploration and 
development of brain-computer interface technologies.


Keywords—EEG, Deep learning, Classification, Visual 
stimuli. 


I.  INTRODUCTION

Electroencephalogram (EEG), with its origins dating back 

to the 19th century, was initially observed by Richard Caton in 
1875 through the recording of subtle physiological electrical 
activity in exposed brains of animals, particularly dogs and 
monkeys [1]. In the realm of neuroscience, EEG stands as a 
fundamental tool for elucidating brain functions. Its waveform 
patterns, upon analysis, facilitate the establishment of 
correlations between EEG readings and the reception of visual 
information, as well as human behavioral patterns [2]. As 
humans undergo specific training and acquire new skills, their 
brains exhibit corresponding functional or structural 
modifications, a phenomenon termed brain plasticity [3]. 
Within the intricate realm of brain signaling, lies the potential 
to reconstruct stimulus contours.


Contemporary research concerning the impact of external 
stimuli on EEG changes primarily focuses on two key areas. 
First, it delves into studying alterations in EEG patterns 
associated with the onset and progression of neurodegenerative 
conditions like stroke, epilepsy, dementia, among others [4]. 
Second, it involves the application of fixed-pattern training to 
EEG data. This method aims to elicit specific EEG components 
by exposing individuals to particular stimuli, thereby enabling 
the exploration of Event-Related Potentials (ERPs) and 

leveraging these components in tasks involving human-
machine cooperation under Brain-Computer Interface (BCI) 
systems [5].


In the realm of contemporary neuroscience research, 
understanding the intricate relationship between external 
stimuli and EEG responses remains a pivotal yet challenging 
endeavor. Human visual cognition undeniably excels in 
discerning and interpreting visual stimuli, exhibiting 
remarkable prowess in distinguishing between clear, structured 
images and cluttered, ambiguous ones. However, while human 
visual perception serves as an exemplar of efficient processing, 
the translation of this complex cognitive process into 
computational paradigms poses considerable challenges. 
Leveraging computational capabilities to effectively and 
accurately classify EEG signals across diverse stimulus types, 
therefore, emerges as a crucial frontier in contemporary 
neuroscience research. The ability to decode and interpret EEG 
signals corresponding to various visual stimuli represents a 
critical step towards uncovering the underlying mechanisms of 
human cognition, perception, and information processing.


II.  RELATED WORKS

The study of electroencephalography (EEG) has a rich 

historical backdrop. In 1897, Adolf Beck conducted pioneering 
experiments involving diverse stimuli on monkeys, 
successfully capturing distinctive forms of electrical activity on 
the cortical surface of the brain corresponding to different 
stimuli [6][7]. Subsequently, in 1914, British scientists utilized 
EEG recordings from animals to document changes during 
epileptic seizures, uncovering the existence of action potentials 
[8]. Similarly, in 1951, neurological experts observed 
analogous responses in human EEG recordings, correlating to 
various rhythmic stimuli, thus unveiling Event-Related 
Potentials (ERPs) [9]. In the domain of visual stimuli, since the 
early 21st century, researchers have utilized EEG signals to 
delve into cognition-based automated methods for 
investigating visual classification tasks [10]. Studies have 
preliminary successfully decoded human visual cognitive 
information from EEG signals [11]. From a time series 
perspective, human brain activity induced by visual stimuli 
unfolds in distinct stages aligning with various cognitive 
processes [12]. Particularly noteworthy is the discovery that at 
different event-related sites, the human brain exhibits a more 
pronounced negative peak in response to faces compared to 
other object categories at the N170 stage [13]. These findings 
serve as foundational pillars for constructing classification 
systems grounded in EEG signals.




In 2006, research from Columbia University's Laboratory 
of Intelligent Imaging and Neural Computing unveiled 
significant differences in EEG signals between facial and 
automobile image stimuli at 170ms and 330ms post-stimulus. 
This discovery led to the proposition of a non-invasive 
neuroscientific method based on EEG signals for perceptual 
decision-making, successfully distinguishing faces and 
automobiles [14]. Subsequent studies from the Biotechnology 
Collaboration Research Institute at the University of 
California, Santa Barbara, reaffirmed EEG's classification 
prowess for object recognition tasks (faces/cars). These studies 
identified distinct N100 and N170 components evoked by the 
face/car paradigm, achieving robust binary classification 
performance [15]. Meanwhile, researchers from the University 
of Trento in Italy utilized spectral features of EEG signals to 
predict three categories—animals, plants, and tools—with an 
average accuracy of 80% [16]. At the 2008 International 
Conference on Computer Vision and Pattern Recognition 
(CVPR), a collaborative study between the University of 
Washington and Microsoft Research showcased a 
groundbreaking integration of brain EEG signal analysis with a 
visual category recognition system based on the Pyramid 
Match Kernel (PMK). Impressively, it achieved over 91% 
accuracy in a three-category classification task encompassing 
animals, non-biological objects, and human faces [17]. 
Moreover, during a conference on human-computer 
interaction, researchers revealed a study combining spatial 
projection algorithms [18] and Regularized Linear 
Discriminant Analysis (RLDA) for EEG signal analysis. By 
leveraging averaged Event-Related Potential (ERP) responses 
to improve the EEG signal-to-noise ratio, this method attained 
over 90% accuracy in classifying four categories (faces, 
vehicles, animals, and buildings), marking a significant leap in 
visual classification using EEG signals [19].


In 2015, Stanford University's Center for Language and 
Information shared an EEG dataset featuring signals from 10 
participants. This dataset encompassed 72 images across six 
categories as stimulus sources. Statistical analysis methods 
achieved an 81.06% accuracy in binary face and object 
classification and a 40.68% accuracy in six-category 
recognition [20]. Additionally, researchers from the University 
of Lebanon conducted preliminary studies utilizing high-
density EEG signals from 256 leads, successfully 
distinguishing animal and non-animal image categories from 
EEG signals with an 82.7% classification accuracy [21]. In 
2017, the Perception, Research, and Cognition Lab at the 
University of Central Florida curated an EEG dataset reflecting 
human brain responses to object recognition information. This 
dataset involved a remarkable 40-class classification task, 
marking a significant stride in the quantity of classification. 
They devised an automated visual classification approach 
employing recurrent neural networks to learn brain activity 
manifold for specific visual object categories. Leveraging the 
learned visual category representations for classifying diverse 
category-specific EEG data, they achieved an average accuracy 
of 83% [22]. In 2018, Zhong et al. [23] leveraged an enhanced 
LSTM (eLSTM) methodology on the ImageNet-EEG dataset, 
aiming to diminish the reliance on high-density EEG arrays, 
thereby achieving a remarkable classification accuracy of 
96.2% across forty categories. To exploit the temporal 
variability in visual features, Jiao et al. [24] compared the 
performance of Linear Discriminant Analysis (LDA), LSTM, 
and CNN on the same dataset, with CNNs achieving the 

highest classification accuracy of 83.10% in 2019. They further 
refined the classification models and incorporated a CNN-
based visual guidance mechanism, elevating the accuracy to 
85.50%. Mukherjee et al. [25] introduced a sophisticated deep 
recurrent architecture comprising Bi-LSTM units on the 
ImageNet-EEG dataset. They employed knowledge distillation 
techniques for training the deep cognitive model CogniNet, 
achieving an apex accuracy of 89.6%. In 2020, Cudlenco et al. 
[26] meticulously curated a dataset from the publicly 
accessible ImageNet repository, augmented by their personally 
captured photographs, to compile six distinct categories of 
visual stimuli: flora, aircraft, automobiles, parks, beaches, and 
urban environments. The researchers meticulously recorded the 
electroencephalogram (EEG) signals elicited from volunteers 
in response to these varied visual stimuli. Subsequently, they 
embarked on a comprehensive analysis and comparison of the 
efficacy of several rudimentary classifiers traditionally 
employed in such tasks, including Ridge Regression (RR), 
Gabor filters, Convolutional Neural Networks (CNN), and 
Long Short-Term Memory (LSTM) networks. Despite the 
conventional wisdom that CNNs are predominantly suited for 
image data, they demonstrated commendable performance in 
interpreting EEG signals [27]. Zheng et al. [28] proposed an 
end-to-end attention-based Bi-LSTM-AttGW method, 
achieving an unprecedented accuracy of 99.50% on the 
ImageNet-EEG dataset. Despite the plethora of research 
utilizing the ImageNet-EEG dataset for classification purposes, 
with accuracies approaching theoretical limits, the dataset has 
recently been critiqued for its experimental design flaws. 
Stimuli presented in different blocks belonged to varying 
categories, leading to artificially inflated classification 
accuracies [22]. Despite considerable advancements in the 
classification of EEG signals elicited by visual stimuli, notable 
challenges remain. First and foremost, the accuracy of existing 
models leaves ample scope for enhancement. Moreover, the 
complexity of the models developed thus far is significant, 
posing challenges to the efficient utilization of computational 
resources. Additionally, inherent issues within the design of the 
ImageNet-EEG dataset raise concerns regarding the reliability 
of research built upon this foundation. 


In response, this paper introduces a streamlined deep 
learning model tailored to a reputable dataset. This model is 
designed for the swift and precise classification of EEG signals 
across a spectrum of stimuli, promising to significantly 
influence future investigative endeavors.


III.  METHODS


A. Dataset

The data utilized in this study originate from the public 

dataset ERP Core [29], specifically aimed at evoking N170 in 
facial perception tasks. Access to this dataset is freely available 
at the URL: https://doi.org/10.18115/D5JW4R. This 
experiment involved 40 participants from the community of 
the University of California, Davis (25 females, 15 males; 
mean age = 21.5 years, SD = 2.87, range 18-30; 38 right-
handed individuals). Each participant had native English 
proficiency, normal color perception, normal or corrected-to-
normal vision, and no history of neurological injury or illnesses 
(as self-reported). Approval for this study was obtained from 
the Institutional Review Board at the University of California, 
Davis, and all participants provided informed consent.


https://doi.org/10.18115/D5JW4R
http://The%20data%20utilized%20in%20this%20study%20originate%20from%20the%20public%20dataset%20ERP%20Core,%20specifically%20aimed%20at%20evoking%20N170%20in%20facial%20perception%20tasks.%20Access%20to%20this%20dataset%20is%20freely%20available%20at%20the%20URL:%20https://doi.org/10.18115/D5JW4R.
https://www.sciencedirect.com/topics/medicine-and-dentistry/informed-consent


The testing occurred in a dimly lit, sound-attenuated, and 
electrically shielded laboratory. Visual stimuli were presented 
to participants on a Hewlett-Packard ZR2440w liquid crystal 
display monitor with a resolution of 1280 × 1024, a refresh rate 
of 60 Hz, and a viewing distance of 100 centimeters. The 
stimuli were displayed on a medium-gray background (x = 
0.35, y = 0.36, 25.9 cd/m2). The continuous EEG was captured 
utilizing a Biosemi ActiveTwo recording system equipped with 
active electrodes (Biosemi B.V., Amsterdam, the Netherlands). 
Recordings were obtained from 30 scalp electrodes, arranged 
within an elastic cap conforming to the International 10/20 
System (FP1, F3, F7, FC3, C3, C5, P3, P7, P9, PO7, PO3, O1, 
Oz, Pz, CPz, FP2, Fz, F4, F8, FC4, FCz, Cz, C4, C6, P4, P8, 
P10, PO8, PO4, O2, as Figure 1), at a sampling rate of 
1024Hz.


Fig. 1 (left). The position of the electrodes on the EEG recording instrument 
worn by the participants.


Fig. 2 (right). Sample pictures of each of the four categories.


Fig. 3. Sub-001 raw EEG signal.      


During each trial, participant completed viewing of 320 
images presented in a random order across the four categories. 
Each category comprised 40 samples, each of which was 
presented twice. Example pictures of each category can be seen 
in Figure 2.


B. Signal preprocessing

The raw data consists of approximately 600-second EEG 

signals, interspersed with 320 nodes representing stimulus 
events occurring as images. The initial step involves 
segmenting the signals based on these events, aimed at 
obtaining segmented signals corresponding to the events. 
Figure 3 depicts the raw signal prior to segmentation, and 
Figure 4 displays the segmented signal corresponding to the 
first event (triggered by stimuli-79). The pronounced 
discrepancy between the two images is attributable to the 
presence of substantial noise in the signal.


Fig. 4 (left). The EEG signal triggered by visual stimuli during the viewing of 
image number 79 by participant sub-001.


Fig. 5 (right). The signal in Figure 4 becomes purified after filtering and ICA 
analysis.


The original EEG data is often affected by various sources 
of noise, including muscle movements, electrode artifacts, and 
environmental interferences, which can disrupt the accurate 
analysis of brain signals. Filters play a crucial role in EEG 
preprocessing. The 0.5 to 70 Hz filter range corresponds to the 
common frequency range for most brain signal activities. Low-
frequency signals (below 0.5 Hz) typically contain information 
related to basic physiological rhythms and subconscious 
processes, whereas high-frequency signals (above 70 Hz) are 
usually associated with muscle activity or electrode noise. 
Consequently, limiting the signal within the 0.5 to 70 Hz range 
aids in removing extraneous noise, preserving information 
relevant to the brain activity of interest. In addition to filters, 
Independent Component Analysis(ICA) [30] is a commonly 
employed technique in EEG preprocessing. ICA can 
decompose mixed signals into multiple independent 
components statistically. In EEG signal processing, ICA 
effectively distinguishes differences between brain signals and 
noise components. By identifying and removing these noise 
components, ICA assists in extracting pure brain signals, 
thereby enhancing the accuracy and reliability of subsequent 
analyses. Figure 5 shows the signals after filtering and ICA 
analysis. This approach efficiently eliminates noise, providing 
a reliable foundation for subsequent studies in neuroscience.


C. Deep learning model

The fundamental model utilized in this study is the 

ResNet-18 architecture, a relatively shallow network within the 
Residual Neural Network (ResNet) series [31], comprising 18 
layers primarily constituted by fundamental residual blocks. 
This model utilized a pre-trained ResNet neural network to 
process segmented and denoised data into class categories 

Face
 Scrambled Face

Car
 Scrambled Car



within a customized dataset class called 'CustomDataset'. The 
training dataset was organized into a DataLoader with a batch 
size of 32, indicating the model simultaneously processed 32 
images per training iteration. Similarly, the validation dataset 
was configured as a DataLoader with a batch size of 32, 
facilitating model evaluation after each training epoch. For the 
testing dataset, a DataLoader with a batch size of 1 was 
employed, allowing the model to make predictions on 
individual images sequentially, enabling the computation of 
overall test accuracy and specific class predictions for each 
image. The PyTorch DataLoader class was employed in this 
code segment to handle data batch processing during training, 
validation, and testing phases. The significance of these varied 
batch sizes during training, validation, and testing procedures 
cannot be overstated. Larger training batches (32) generally 
contribute to faster training speeds as the model can 
concurrently process more images. Conversely, smaller testing 
batches (1) permit evaluations on individual samples, 
providing more accurate predictions for the entire test dataset. 
This batch size selection balances computational efficiency 
with the accuracy of model performance evaluation throughout 
training, validation, and testing phases.


The training process incorporated the use of a cross-
entropy loss function and the Adam optimizer [32]. During 
training, the model iteratively optimized parameters by 
traversing the training dataset to minimize the loss function. 
Subsequently, in the validation phase, model performance was 
assessed on the validation set, computing accuracy metrics. 
Finally, in the testing phase, model performance was evaluated 
on the testing set, yielding the overall test accuracy and 
predicted classes for each image. This ResNet18-based model 
was designed for the classification of facial images into two 
categories, based on image clarity. Following training and 
validation, the model demonstrated its ability to categorize 
facial images with notable accuracy on the testing set. Figure 6 
shows the structure of the model.


The convolutional neural network (CNN) architecture 
presented in Figure 6 encompasses various layers, including 
Conv2d, BatchNorm2d, ReLU activation, MaxPool2d, 
BasicBlock, and Linear layers. The model initiates with a 
Conv2d layer (kernel size of 7×7 and stride of 2), yielding an 
output shape of [-1, 64, 400, 400] with 9,408 parameters. 
Following the convolutional layer, BatchNorm2d and ReLU 
activation are applied.


Subsequently, a MaxPool2d layer downsamples the feature 
maps to an output shape of [-1, 64, 200, 200]. The network 
comprises multiple blocks, each consisting of two Conv2d 
layers (kernel size of 3×3), followed by BatchNorm2d and 
ReLU activation. These blocks, termed BasicBlock, contribute 
significantly to enhancing the model's depth and feature 
extraction capabilities. As the architecture progresses, it 
incorporates Conv2d layers with diverse output channels (64, 
128, 256, 512) along with their respective BatchNorm2d and 
ReLU activation functions. The final layers include 
AdaptiveAvgPool2d, reshaping the tensor to [-1, 512, 1, 1], and 
a Linear layer with 2 output units, facilitating the ultimate 
classification into 2 categories. The Linear layer comprises 
1,026 parameters. In summary, this model follows the 
architecture of a deep residual network (ResNet), utilizing skip 
connections via the BasicBlock modules, enabling effective 
learning and extraction of hierarchical features from input 
images. The network culminates in a linear classification layer 
utilized for final predictions. This architecture demonstrates 

robust feature extraction mechanisms tailored for image 
classification tasks. Its complex arrangement of convolutional 
and residual layers enhances the learning and representation of 
visual information.


Fig.6. The structure of the model. 


Fig.7. The schematic representation of the partitioning of the dataset into 
training, validation, and testing sets. Maintaining a balance between positive 
and negative examples in a dataset is crucial for ensuring robust model 
performance, enhancing generalization to new data, and upholding fairness in 
decision-making processes. Balanced datasets prevent model bias towards the 
majority class, enabling more accurate and reliable predictions across all 
categories. This balance also simplifies the evaluation of model performance 
using common metrics and facilitates the use of a wider range of machine 
learning algorithms.




D. Training set, validation set and test set

The dataset employed comprises 320 pre-categorized 

electroencephalogram (EEG) images, categorized based on 
clarity into two groups: 'normal' and 'scrambled', as well as 
based on objects into two groups: 'faces' and 'cars'. Each 
participant engages in two category classification tests: one 
involving distinguishing between faces and scrambled faces, 
and the other involving distinguishing between cars and 
scrambled cars. From the 80 images per category, a random 
selection of 8 images is allocated for validation, another 8 for 
testing purposes, while the remaining 64 images constitute the 
training set for each classification group. Despite the relatively 
modest volume of the dataset employed in each individual trial, 
the study significantly enhances its reliability by replicating the 
experiment 40 times, utilizing a unique dataset for each 
iteration. Figure 7 illustrates the schematic representation of 
the partitioning of the dataset into training, validation, and 
testing sets.


V.  RESULT AND DISCUSSION

Based on the EEG of the first participant (sub-001), figure 

8 shows the iterative graphs of accuracy and loss values of 
faces classification and figure 9 shows the iterative graphs of 
accuracy and loss values of cars classification.


Overall, the model proposed in this study exhibited 
commendable performance across the 40 subjects evaluated. In 
the task of recognizing facial photographs, the average 
accuracy attained was 98.13%, with an average precision of 
99.72%, average recall of 96.56% and an average F1-score of 
97.50%. In comparison to facial recognition, the model 
achieved an average accuracy of 97.81%, an average precision 
of 99.44%, an average recall of 96.25%, and an average F1-
score of 97.18% in the task of identifying cars. An accuracy 
rate approaching 100% indicates that the model exhibits near-
perfect performance in the classification task on this dataset.


Fig.8. Accuracy and loss curves of faces classification in sub-001.


Fig.9. Accuracy and loss curves of cars classification in sub-001.


TABLE I 
THE PERFORMANCE OF EEG IN SUB-001


Based on the EEG of the first participant (sub-001), table I 
shows the results of the experiment. All predictions are correct.


To highlight the advantages of the proposed model, this 
study conducted a comparative analysis employing two 
conventional machine learning methodologies. Initially, the 
Support Vector Machine (SVM) approach yielded an average 
accuracy of 81.25%, an average precision of 82.97%, an 
average F1-score of 81.02%, and an average recall of 85.63%. 
While the performance of this model surpasses that achievable 
through direct human observation, it is indispensable for 
advancing our understanding of the variations in human eye 
electroencephalogram responses under diverse stimuli. Given 
its accuracy approaching 100%, this model is exceptionally 
well-suited for in-depth exploration in this domain.


The model demonstrated exceptionally high average 
accuracy rates in two classification tasks, facial recognition 
and vehicle identification, achieving 98.13% and 97.81% 
respectively, along with notably high average precision, recall, 
and F1 scores. This indicates the model's high reliability and 
accuracy for classification tasks within this dataset. Compared 
to traditional machine learning models such as Support Vector 
Machines (SVM), the superior accuracy in EEG signal 
classification suggests potential practical applications of this 
model in fields such as neuroscience research and Brain-
Computer Interface (BCI) technologies, particularly in 
understanding how the brain processes different types of visual 
information.


IV.  CONCLUSION

The advent of deep neural network technologies has 

significantly alleviated the necessity for manual feature 
extraction, demonstrating notable advantages in analyzing 
unstructured data. Remarkable performance achievements have 
been observed, particularly in domains such as computer vision 
and speech recognition [33]. Specifically, the escalating 
utilization of deep convolutional networks has effectively 
addressed numerous challenging image classification tasks [34, 
35, 36], surpassing traditional machine learning methods that 
relied on manually curated feature selection for classification 
and identification [37]. The deep learning approach proposed 
in this study significantly contributes to the exploration of 
neural activity associated with visual stimuli by achieving high 
accuracy in classifying EEG data with the powerful ResNet18 
architecture. Its capability to differentiate between EEG 
patterns triggered by clear and scrambled images within a 
concise training duration opens avenues for comprehensive 
investigations into how the brain responds to different visual 
stimuli. Consequently, this lightweight model serves as a 
valuable tool for further studies aiming to unravel the complex 
interplay between visual perception and neural processes.


Objective Accuracy Precision Recall F1-score

Faces/ 
Scrambled faces 100.00% 100.00% 100.00% 100.00%

Cars/Scrambled 
cars 100.00% 100.00% 100.00% 100.00%



REFERENCES

[1]   R. Caton, ‘The Electric Currents of the Brain’, American Journal of EEG 

Technology, vol. 10, no. 1, pp. 12–14, Mar. 1970.

[2]  W. Klimesch, ‘EEG alpha and theta oscillations reflect cognitive and 

memory performance: a review and analysis’, Brain Research Reviews, 
vol. 29, no. 2, pp. 169–195, Apr. 1999.


[3]  J. D. Schaechter, ‘Motor rehabilitation and brain plasticity after 
hemiparetic stroke’, Prog Neurobiol, vol. 73, no. 1, pp. 61–72, May 
2004.


[4]   A. Horvath, A. Szucs, G. Csukly, A. Sakovics, G. Stefanics, and A. 
Kamondi, ‘EEG and ERP biomarkers of Alzheimer’s disease: a critical 
review’, Front Biosci (Landmark Ed), vol. 23, no. 2, pp. 183–220, Jan. 
2018.


[5]   A. Halpern, J. Martin, and T. Davis, ‘An ERP Study of Major-Minor 
Classification in Melodies’, Music Perception, vol. 25, pp. 181–191, 
Feb. 2008.


[6]   A. Coenen, E. Fine, and O. Zayachkivska, ‘Adolf Beck: a forgotten 
pioneer in electroencephalography’, J Hist Neurosci, vol. 23, no. 3, pp. 
276–286, 2014.


[7]  W. Feichtinger, S. Szalay, A. Beck, P. Kemeter, and H. Janisch, ‘Results 
of Laparoscopic Recovery of Preovulatory Human Oocytes From 
Nonstimulated Ovaries in an Ongoing in Vitro Fertilization Program’, 
Fertility and Sterility, vol. 36, no. 6, pp. 707–711, Dec. 1981.


[8]  E. Magiorkinis, A. Diamantis, K. Sidiropoulou, and C. Panteliadis, 
‘Highights in the history of epilepsy: the last 200 years’, Epilepsy Res 
Treat, vol. 2014, p. 582039, 2014.


[9]   J. M. Clark, ‘Modularity, abstractness and the interactive brain’, Behav 
Brain Sci, vol. 17, no. 1, pp. 67–68, Mar. 1994.


[10] M. G. Philiastides, R. Ratcliff, and P. Sajda, ‘Neural Representation of 
Task Difficulty and Decision Making during Perceptual Categorization: 
A Timing Diagram’, J. Neurosci., vol. 26, no. 35, pp. 8965–8975, Aug. 
2006.


[11] R. VanRullen and S. J. Thorpe, ‘The time course of visual processing: 
from early perception to decision-making’, J Cogn Neurosci, vol. 13, no. 
4, pp. 454–461, May 2001.


[12] J. Liu, A. Harris, and N. Kanwisher, ‘Stages of processing in face 
perception: an MEG study’, Nat Neurosci, vol. 5, no. 9, Art. no. 9, Sep. 
2002.


[13] G. Thierry, C. D. Martin, P. Downing, and A. J. Pegna, ‘Controlling for 
interstimulus perceptual variance abolishes N170 face selectivity’, Nat 
Neurosci, vol. 10, no. 4, pp. 505–511, Apr. 2007.


[14] M. G. Philiastides and P. Sajda, ‘Temporal characterization of the neural 
correlates of perceptual decision making in the human brain’, Cereb 
Cortex, vol. 16, no. 4, pp. 509–518, Apr. 2006.


[15] K. Das, B. Giesbrecht, and M. P. Eckstein, ‘Predicting variations of 
perceptual performance across individuals from neural activity using 
pattern classifiers’, NeuroImage, vol. 51, no. 4, pp. 1425–1437, Jul. 
2010.


[16] B. Murphy, ‘Distinguishing Concept Categories from Single-Trial 
Electrophysiological Activity’, Jan. 2008.


[17] A. Kapoor, P. Shenoy, and D. Tan, ‘Combining brain computer interfaces 
with vision for object categorization’, in 2008 IEEE Conference on 
Computer Vision and Pattern Recognition, Jun. 2008, pp. 1–8.


[18] U. Hoffmann, J.-M. Vesin, and T. Ebrahimi, ‘Spatial filters for the 
classification of event-related potentials’, presented at the European 
Symposium on Artificial Neural Networks (ESANN 2006), Jan. 2006, 
pp. 47–52.


[19] P. Shenoy and D. S. Tan, ‘Human-aided computing: utilizing implicit 
human processing to classify images’, in Proceedings of the SIGCHI 
Conference on Human Factors in Computing Systems, in CHI ’08. New 
York, NY, USA: Association for Computing Machinery, Apr. 2008, pp. 
845–854.


[20] B. Kaneshiro, M. Perreau Guimaraes, H.-S. Kim, A. M. Norcia, and P. 
Suppes, ‘A Representational Similarity Analysis of the Dynamics of 
Object Processing Using Single-Trial EEG Classification’, PLoS One, 
vol. 10, no. 8, p. e0135697, 2015


[21] R. El-Lone, M. Hassan, A. Kabbara, and R. Hleiss, ‘Visual objects 
categorization using dense EEG: A preliminary study’, in 2015 
International Conference on Advances in Biomedical Engineering 
(ICABME), Sep. 2015, pp. 115–118.


[22] C. Spampinato, S. Palazzo, I. Kavasidis, D. Giordano, M. Shah, and N. 
Souly, ‘Deep Learning Human Mind for Automated Visual 
Classification’. arXiv, Oct. 22, 2019.


[23]S. Zhong, Y. Liu, Z. Zhou, and D. Hu, ‘ELSTM-Based Visual Decoding 
from Singal-Trial EEG Recording’, in 2018 IEEE 9th International 
Conference on Software Engineering and Service Science (ICSESS), 
Nov. 2018, pp. 1139–1142.


[24] Z. Jiao, H. You, F. Yang, X. Li, and H. Zhang, Decoding EEG by Visual-
guided Deep Neural Networks. 2019, p. 1393.


[25] P. Mukherjee, A. Das, A. K. Bhunia, and P. P. Roy, ‘Cogni-Net: Cognitive 
Feature Learning Through Deep Visual Perception’, in 2019 IEEE 
International Conference on Image Processing (ICIP), Sep. 2019, pp. 
4539–4543.


[26]  N. Cudlenco, N. Popescu, and M. Leordeanu, ‘Reading into the mind’s 
eye: Boosting automatic visual recognition with EEG signals’, 
Neurocomputing, vol. 386, pp. 281–292, Apr. 2020.


[27]  M. Nour, Ş. Öztürk, and K. Polat, ‘A novel classification framework 
using multiple bandwidth method with optimized CNN for brain–
computer interfaces with EEG-fNIRS signals’, Neural Comput & 
Applic, vol. 33, no. 22, pp. 15815–15829, Nov. 2021.


[28] X. Zheng and W. Chen, ‘An Attention-based Bi-LSTM Method for 
Visual Object Classification via EEG’, Biomedical Signal Processing 
and Control, vol. 63, p. 102174, Jan. 2021.


[29] E. S. Kappenman, J. L. Farrens, W. Zhang, A. X. Stewart, and S. J. Luck, 
‘ERP CORE: An open resource for human event-related potential 
research’, NeuroImage, vol. 225, p. 117465, Jan. 2021.


[30] A. Hyvärinen and E. Oja, ‘A Fast Fixed-Point Algorithm for Independent 
Component Analysis’, Neural Computation, vol. 9, no. 7, pp. 1483–
1492, Jul. 1997.


[31]  K. He, X. Zhang, S. Ren, and J. Sun, ‘Deep Residual Learning for Image 
Recognition’. arXiv, Dec. 10, 2015.


[32] D. P. Kingma and J. Ba, ‘Adam: A Method for Stochastic Optimization’. 
arXiv, Jan. 29, 2017.


[33] G. Hinton et al., ‘Deep Neural Networks for Acoustic Modeling in 
Speech Recognition: The Shared Views of Four Research Groups’, 
IEEE Signal Processing Magazine, vol. 29, no. 6, pp. 82–97, Nov. 2012.


[34] A. Krizhevsky, I. Sutskever, and G. E. Hinton, ‘ImageNet classification 
with deep convolutional neural networks’, Commun. ACM, vol. 60, no. 
6, pp. 84–90, May 2017.


[35]  G. Huang, Z. Liu, L. van der Maaten, and K. Q. Weinberger, ‘Densely 
Connected Convolutional Networks’. arXiv, Jan. 28, 2018.


[36]  K. Simonyan and A. Zisserman, ‘Very Deep Convolutional Networks for 
Large-Scale Image Recognition’. arXiv, Apr. 10, 2015.


[37] J. Schmidhuber, ‘Deep learning in neural networks: An overview’, 
Neural Networks, vol. 61, pp. 85–117, Jan. 2015.


	I.  Introduction
	II.  Related Works
	III.  Methods
	Dataset
	Signal preprocessing
	C. Deep learning model
	Training set, validation set and test set

	V.  Result and Discussion
	IV.  Conclusion
	References


