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Continuous-time random walks on networks with vertex- and time-dependent forcing
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We have investigated the transport of particles moving as random walks on the vertices of a network, subject
to vertex- and time-dependent forcing. We have derived the generalized master equations for this transport using
continuous time random walks, characterized by jump and waiting time densities, as the underlying stochastic
process. The forcing is incorporated through a vertex- and time-dependent bias in the jump densities governing
the random walking particles. As a particular case, we consider particle forcing proportional to the concentration
of particles on adjacent vertices, analogous to self-chemotactic attraction in a spatial continuum. Our algebraic
and numerical studies of this system reveal an interesting pair-aggregation pattern formation in which the steady
state is composed of a high concentration of particles on a small number of isolated pairs of adjacent vertices. The
steady states do not exhibit this pair aggregation if the transport is random on the vertices, i.e., without forcing.
The manifestation of pair aggregation on a transport network may thus be a signature of self-chemotactic-like
forcing.
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I. INTRODUCTION

Stochastic transport on networks is present in diverse fields
including contagion through passenger transport [1,2], CO2

sequestration in porous media [3], and spatial progression of
dementia in the brain [4]. It is natural to consider pattern forma-
tion, characterized by a buildup of concentration on selected
vertices, in such systems since pattern formation signatures
may contain useful information about the functioning of the
network. In a spatial continuum, pattern formation arising
from stochastic transport with reactions or forcing has been
widely studied [5]. However, the study of pattern formation
for stochastic transport on a network with reactions or forcing
is a recent field of study [6–12].

A useful model for studying stochastic transport of particles
on a spatial continuum or a regular lattice is the continuous
time random walk (CTRW) [13,14], in which a particle waits
for a random time before randomly jumping to a new location.
This process is defined by a waiting time density and a jump
density. In a recent paper, we started with this model as the
underlying stochastic process and derived the generalized
master equations for random motion of particles between
vertices on a network, with reaction dynamics localized on
the vertices [12]. This enabled us to study pattern formation
on transport networks with reactions. In this paper, we use
a similar approach to study pattern formation on transport
networks with forcing, but without reactions.

One way of introducing the effect of a force field into a
CTRW is by including a bias in the jump density [15–17]. A
variety of force fields may be modeled with this approach.
Examples include subdiffusion with a constant force field
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[18], subdiffusion with advection [19], and subdiffusion
with chemotaxis [20]. Chemotaxis refers to the directed
migration of particles along a gradient of chemokines [21–26].
Self-chemotaxis corresponds to the case where the particles
are themselves the chemokines. The inclusion of a self-
chemotactic force leads to an aggregation of particles due
to the flux of particles being continually directed towards
regions of higher concentration. A self-chemotactic-like (SCL)
forcing can be introduced in a CTRW model for transport on
a network by biasing the jump density of a randomly walking
particle towards adjacent vertices with higher concentrations
of particles.

Subdiffusion is a form of anomalous diffusion where the
mean squared displacement increases as a fractional power
α < 1 of time, i.e., 〈x2(t)〉 ∼ tα [27]. Both standard diffusion
and subdiffusion [28–31] may be modeled with CTRWs by
including exponential or power law waiting time densities,
respectively [27]. There have been numerous studies of pattern
formation in subdiffusive systems on a spatial continuum
[16,32–34]. Of particular interest to the studies below is
anomalous aggregation, which occurs in systems with spatially
variant power law waiting time densities. The anomalous
aggregation occurs at the spatial location with the lowest power
law exponent [16,35].

Here we derive a set of generalized master equations
governing the CTRW transport of particles on a network,
subject to a vertex- and time-dependent force field. As a
particular case, we consider a transport network with all
particles of the same species and SCL forcing. We have
carried out simulations for both exponential and Mittag-Leffler
waiting time densities on a 50 vertex Watts-Strogatz network
[36].

An observed feature of CTRWs on networks with SCL
forcing is the occurrence of pair aggregation with strongly
correlated high concentrations on pairs of distinct adjacent
vertices. The number of such pairs increases with the strength
of the forcing. The pair aggregation dominates over the steady
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state pattern seen in unforced systems [12] and it occurs in
systems with either exponential or Mittag-Leffler waiting time
densities. The pair aggregation is also very different from the
anomalous aggregation that we observe with a Mittag-Leffler
waiting time density on a single vertex and exponential waiting
time densities on the remaining vertices.

II. DERIVATION OF A CTRW NETWORK GENERALIZED
MASTER EQUATION

A network is defined as a set of vertices connected by a set
of edges. The network topology is completely defined by its
adjacency matrix,

Ai,j =
{

1 if there is an edge between vertex i and vertex j

0 otherwise .

(1)

Particles moving at random between connected vertices of
a network may be modeled as CTRWs. Here we consider
a general case where the waiting time density may be
different on different vertices and the effects of a force field
are incorporated by biasing the probability of jumping to
different connected vertices. This bias may be vertex and time
dependent. To derive the generalized master equations for this
process, we follow the derivation of the master equation for
CTRWs on a spatial continuum carried out in [15,17].

We now consider the behavior of a single particle traversing
across a network with J vertices. The probability flux density
for the particle to arrive at a vertex vi , at time t , after taking
n jumps, given the particle began at vertex v0, at time t = t0,
is [14]

qn+1(vi,t |v0,t0) =
J∑

j=1

∫ t

t0

�(vi,t |vj ,t
′)qn(vj ,t

′|v0,t0)dt ′.

(2)

Here, �(vi,t |vj ,t
′) is the probability density for jumping to

vi at t , conditional on arrival at vj at the earlier time t ′. The
assumed initial condition for the particle is

q0(vi,t |v0,t0) = δvi ,v0δ(t − t+0 ). (3)

To find the total probability flux density for arrivals at vi at t ,
we sum over the number of jumps,

q(vi,t |v0,t0) =
∞∑

n=0

qn(vi,t |v0,t0). (4)

This then yields

q(vi,t |v0,t0) =
J∑

j=1

∫ t

t0

�(vi,t |vj ,t
′)q(vj ,t

′|v0,t0)dt ′

+ δvi ,v0δ(t − t+0 ). (5)

We assume that the transition density, �(vi,t |vj ,t
′), may

be expressed as

�(vi,t |vj ,t
′) = λ(vi |t,vj )ψ(t − t ′|vj ), (6)

where λ and ψ are the independent jump and waiting
time densities, respectively. The network jump density, from
vj to vi , incorporates the topology of the network, i.e.,

λ(vi |t,vj ) = 0 if Aj,i = 0. The densities satisfy the nor-
malizations

∑J
i=1 λ(vi |t,vj ) = 1 for given vj and t and∫ ∞

0 ψ(τ |vj ) dτ = 1 for given vj .
The probability density of a particle being at vi at time t ,

conditional on the particle starting at v0 at time t = t0, is

ρ(vi,t |v0,t0) =
∫ t

t0

	(t − t ′|vi)q(vi,t
′|v0,t0) dt ′. (7)

Here, 	(t − t ′|vi) = 1 − ∫ t−t ′

0 ψ(τ |vi) dτ is the survival prob-
ability function of a particle not jumping from vi before time
t , given it arrived at vi at the earlier time t ′.

Taking care of the singularity due to the initial conditions,
we first define [17,37]

q(vi,t |v0,t0) = δvi ,v0δ(t − t+0 ) + q+(vi,t |v0,t0), (8)

where

q+(vi,t |v0,t0) =
J∑

j=1

∫ t

t0

�(vi,t |vj ,t
′) q(vj ,t

′|v0,t0) dt ′ (9)

is right side continuous at t = t0. Substituting Eq. (8) into
Eq. (7) and differentiating yields

dρ(vi,t |v0,t0)

dt
= q+(vi,t |v0,t0) − δvi ,v0ψ(t − t0|vi)

−
∫ t

t0

q+(vi,t
′|v0,t0)ψ(t − t ′|vi) dt ′. (10)

Further substituting Eq. (9), with Eq. (8), into Eq. (10) yields

dρ(vi,t |v0,t0)

dt

=
J∑

j=1

λ(vi |t,vj )
∫ t

t0

ψ(t − t ′|vj )q(vj ,t
′|v0,t0) dt ′

−
∫ t

t0

ψ(t − t ′|vi)q(vi,t
′|v0,t0) dt ′. (11)

We can express the right-hand side of the above in terms of ρ

by introducing a memory kernel, K(t |vi), defined by∫ t

t0

ψ(t − t ′|vi)q(vi,t
′|v0,t0) dt ′

=
∫ t

t0

K(t − t ′|vi)

[ ∫ t ′

t0

	(t ′ − t ′′|vi)q(vi,t
′′|v0,t0) dt ′′

]
dt ′

=
∫ t

t0

K(t − t ′|vi)ρ(vi,t
′|v0,t0) dt ′. (12)

This equivalently defines the memory kernel as L{K(t |vi)} =
L{ψ(t |vi)}/L{	(t |vi)}, where L denotes the Laplace trans-
form with respect to time.

We now move from considering the behavior of a single
particle to that of an ensemble of particles. We define the
density of an ensemble of particles at vertex vi at time t to be

u(vi,t) =
∑
v0∈V

∫ t

t0

ρ(vi,t |v0,t0)dt0, (13)

where V is the set of all vertices. Then, by substituting Eq. (12)
into Eq. (11), and rewriting in terms of Eq. (13), we get the
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ensemble generalized master equations for stochastic transport
on a network with vertex- and time-dependent forcing:

du(vi,t)

dt
=

J∑
j=1

λ(vi |t,vj )
∫ t

t0

K(t − t ′|vj )u(vj ,t
′)dt ′

−
∫ t

t0

K(t − t ′|vi)u(vi,t
′)dt ′, i = 1, . . . ,J.

(14)

The forcing is incorporated through the vertex- and time-
dependent bias in the jump densities. In the simplest case,
stochastic transport on a network can be modeled by having
the probability of jumping between connected vertices equal
(equal edge weights). Equation (14) provides a model for
stochastic transport on a network with time-dependent edge
weightings.

A. Self-chemotactic-like forcing

Self-chemotactic-like (SCL) forcing can be included in
Eq. (14) through a bias in the jump density dependent on
the concentration of particles on neighboring vertices. By
analogy with the standard form for chemotactic attraction in
the continuum [38], we consider jump densities of the form

λ(vi |t,vj ) = Aj,ie
βu(vi ,t)∑J

k=1 Aj,keβu(vk,t)
. (15)

The factor eβu(vi ,t) is a sensitivity function that depends on the
concentration of the attractant u(vi,t) and the strength of the
chemotaxis, β [38].

The generalized master equations with SCL forcing are thus
given by

du(vi,t)

dt
=

J∑
j=1

Aj,ie
βu(vi ,t)∑J

k=1 Aj,keβu(vk,t)

∫ t

t0

K(t − t ′|vj )u(vj ,t
′)dt ′

−
∫ t

t0

K(t − t ′|vi)u(vi,t
′)dt ′, i = 1, . . . ,J.

(16)

III. NUMERICAL SIMULATIONS

In the simulations below, we consider a Watts-Strogatz
(WS) network with 50 vertices and rewiring probability of
p = 0.05 [36]. This class of random network is a widely used
model, in part due to the property of low graph diameter, which
is a feature seen in metabolic [39], functional brain [40], and

FIG. 1. (Color online) (a) Concentration of particles at t = 10 000
on network and (b) distribution of concentration, for a 50 vertex Watts-
Strogatz network with rewiring probability p = 0.05 and exponential
waiting time densities.

FIG. 2. (Color online) (a) Concentration of particles at t = 10 000
on network and (b) distribution of concentration, for a 50 vertex
Watts-Strogatz network with rewiring probability p = 0.05 and with
vertex-dependent exponential waiting time densities.

genomic [41] networks. For consistency in evaluating changes
in parameters, the same random initial condition is used for all
numerical simulations. We have explored WS networks with
different numbers of vertices, different rewiring probabilities,
and different initial conditions, and the qualitative behavior
of pair aggregation, reported below, is consistent across these
changes.

A. Exponential waiting time densities

We first consider CTRWs on the network with exponential
waiting time densities,

ψ(t |vi) = γ (vi)e
−γ (vi )t . (17)

In this case, it can be shown that K(t |vi) = γ (vi) δ(t) [17], and
Eq. (16) is now

du(vi,t)

dt
=

J∑
j=1

Aj,ie
βu(vi ,t)∑J

k=1 Aj,keβu(vk,t)
γ (vj )u(vj ,t)

− γ (vi)u(vi,t), i = 1, . . . ,J. (18)

If there is no SCL forcing, β = 0, and if γ (vi) = γ for all vi ,
then we recover the unforced Case A Laplacian, previously
introduced in [12]. The steady state concentration for this
system is proportional to vertex degree, i.e., u(vi,t) ∝ κi where
κi = ∑J

j=1 Ai,j is the number of edges connecting to vi .
If there is SCL forcing in this system, β > 0, then the

steady state concentration is characterized by pair aggregation
in which distinct pairs of adjacent vertices have high concen-
tration and other vertices having essentially no concentration.
Figure 1 shows the case when β = 1 and γ (vi) = 1 for all i.

In the Appendix, we formally show that pair aggregation is
a linearly stable steady state solution of Eq. (18).
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FIG. 3. (Color online) Number of pairs of vertices with high
concentration on a 50 vertex Watts-Strogatz network with rewiring
probability p = 0.05 and exponential waiting time densities.
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FIG. 4. (Color online) (a) Concentration of particles at t = 400 on network and (b) distribution of concentration, for a 50 vertex Watts-
Strogatz network with rewiring probability p = 0.05 and Mittag-Leffler waiting time densities. (c) The concentration as a function of time on
vertices 4 (continuous line) and 6 (dashed line). These concentrations are normalized to the concentration at t = 10.

When there is SCL forcing and the rate parameter in the
waiting time density is chosen differently for each vertex, the
steady state concentration is characterized by distinct pairs of
adjacent vertices having high, but unequal, concentration and
other vertices having essentially no concentration. An example
of this is shown in Fig. 2. The steady state in this case is char-
acterized by unequal concentrations within each pair through
the relation u(vi,t)γ (vi) = u(vj ,t)γ (vj ). In the Appendix, this
is algebraically shown to be a stable, steady state solution of
the generalized master equations, given by Eq. (18).

To investigate the effects of the strength of the chemoattrac-
tive sensitivity function given in Eq. (18), we have carried out
numerical simulations for a range of β ∈ [0,1000]; see Fig. 3.

For β = 0, the steady state concentration on each vertex is
linearly dependent on vertex degree [12]. For sufficiently small
β > 0, the steady state changes but there is no aggregation
onto pairs of connected vertices. As β is increased, the
number of pairs of vertices with high concentration increases
monotonically. The critical values of β, below which there
are no pairs, and above which the number of pairs no
longer increases with increasing β, are dependent on both
the initial conditions and the network topology. However,
between the critical values, the number of pairs still increases
monotonically with β.

B. Mittag-Leffler waiting time densities

We now consider CTRWs on the network with Mittag-
Leffler waiting time densities [42],

ψ(t |vi) = tμ(vi )−1

τμ(vi )
Eμ(vi ),μ(vi )

[
−

(
t

τ

)μ(vi )]
, (19)

for 0 < μ(vi) < 1. In this equation, τ is a constant scale
parameter, μ(vi) is a vertex-dependent scaling exponent, and

Eζ,ξ (t) =
∞∑

n=0

tn

�(ζn + ξ )

is the generalized Mittag-Leffler function. The waiting time
density defined by Eq. (19) is a heavy tailed function with
power law decay of the form t−1+μ(vi ). The generalized master
equations, Eq. (16) in this case, can be written as

du(vi,t)

dt
=

J∑
j=1

Aj,ie
βu(vi ,t)∑J

k=1 Aj,keβu(vk,t)

1

τμ(vj ) 0
D

1−μ(vj )
t u(vj ,t)

− 1

τμ(vi ) 0
D

1−μ(vi )
t u(vi,t), i = 1, . . . ,J, (20)

where the memory kernel is given by the relation in Laplace
space s; L{K(vi,s)} ∼ 1

τ
μ(vj ) s

1−μ(vi ) and 0D
1−μ
t is a Riemann-

Liouville fractional derivative [43].
Figure 4 shows the simulation of Eq. (20) with β = 1.

The pair aggregation is very similar but not identical to the
pair aggregation with exponential waiting time densities; see
Fig. 1.

In the Appendix, we have carried out linear stability analysis
of paired steady states and we have shown that these classes
of steady states are linearly stable. The approach to the steady
state is shown in Fig. 4(c).

We have also carried out a range of simulations with a
Mittag-Leffler waiting time density on a selected vertex and
exponential waiting time densities on the remainder. When
β = 0, the concentration is highly localized on the vertex with
the Mittag-Leffler waiting time density; see Fig. 5.

FIG. 5. (Color online) (a) Concentration of particles at t = 40 on network and (b) distribution of concentration, for a 50 vertex Watts-Strogatz
network with rewiring probability p = 0.05 with β = 0. (c) The concentration as a function of time on vertices 4 (continuous line), 10
(small-dashed line), and 13 (large-dashed line). These concentrations are normalized to the concentration at t = 1. Vertex 4 has an Mittag-Leffler
waiting density, while the rest of the vertices have identical exponential waiting time densities.
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FIG. 6. (Color online) (a) Concentration of particles at t = 400 on network and (b) distribution of concentration, for a 50 vertex Watts-
Strogatz network with rewiring probability p = 0.05 with β = 1. (c) The concentration as a function of time on vertices 4 (continuous line)
and 5 (dashed line). These concentrations are normalized to the concentration at t = 10. Vertex 4 has an Mittag-Leffler waiting density, while
the rest of the vertices have identical exponential waiting time densities.

This is similar to the anomalous aggregation observed in
the continuum [16,35]. The increase in concentration at the
site with the Mittag-Leffler waiting time density and the decay
in concentration at other vertices is shown in Fig. 5(c). If the
SCL forcing is included, then pair aggregation occurs, except
in the neighborhood of the vertex with the Mittag-Leffler
waiting time density. The anomalous aggregation can be seen
at vertex 4 of Fig. 6(b), with pair aggregates or essentially
zero concentrations on the rest of the vertices. The approach
to the steady state is shown in Fig. 6(c) for the vertex with the
Mittag-Leffler waiting time density and a neighboring vertex
with exponential waiting time densities.

IV. CONCLUSION

We have considered the problem of particles moving
randomly from vertex to vertex on a network, with a bias due
to a force field that varies across the vertices and in time. The
problem is formulated using a continuous time random walk as
the underlying stochastic process, and the generalized master
equations for the concentration of particles on vertices have
been derived. The generalized master equations also allow
for the modeling of networks with weighted edges, where the
edge weights may be a function of time. From this general
model, we consider the particular case of stochastic transport
on a network with a self-chemotactic-like force. With this
force, the jump densities of the particles are biased so that
they are more likely to jump to neighboring vertices that
have higher concentrations of particles. We have carried out
an algebraic linear stability analysis of steady state solutions
and we have performed numerical simulations over a range
of strengths of the chemotactic attraction. The stochastic
transport with self-chemotactic-like forcing results in pair-
aggregate pattern formation in which particles aggregate
onto distinct pairs of connected vertices. We considered two
different waiting time densities in our analysis: an exponential
waiting time density and a Mittag-Leffler waiting time density.
On a spatial continuum, these waiting time densities result
in standard diffusion and subdiffusion, respectively. The
aggregation from self-chemotactic-like forcing persists for
systems with either of these waiting time densities. The pair
aggregation can also coexist with anomalous aggregation,
caused by having a power law waiting time density on a single
vertex and having exponential waiting time densities on the
remainder.
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APPENDIX: LINEAR STABILITY ANALYSIS

In this Appendix, we show that pair aggregation is a linearly
stable steady state solution of the generalized master equations
for both exponential and Mittag-Leffler waiting time densities,
given by Eqs. (18) and (20). A pair-aggregate steady state is
defined as two connected vertices, u(vm,t) and u(vn,t), with a
high concentration and the remaining u(vi,t) = 0. This steady
state is exact in the limit u(vm,t) → ∞ and u(vn,t) → ∞; and
u(vi,t) ≈ 0 for large, but finite u(vm,t) and u(vn,t).

1. Exponential waiting time densities

The generalized master equations with SCL forcing and
exponential waiting time densities are given by

du(vi,t)

dt
=

J∑
j=1

Aj,ie
βu(vi ,t)∑J

k=1 Aj,keβu(vk,t)
γ (vj )u(vj ,t)

− γ (vi)u(vi,t), i = 1, . . . ,J. (A1)

Here we consider a single pair aggregation, defined as
γ (vm)u(vm,t) = γ (vn)u(vn,t) with the remaining u(vi,t) = 0,
and show that it is an approximate linearly stable steady
state solution of the generalized master equations, given by
Eq. (A1) for sufficiently large, constant u(vm,t) and u(vn,t).
For notational simplicity, we write u(vi,t) as ui and γ (vi) = γi .
Note also that

J∑
k=1

Am,ke
βuk =

J∑
k=1,k �=n

Am,ke
β0 + eβun

= κm − 1 + eβun , (A2)

J∑
k=1

An,ke
βuk =

J∑
k=1,k �=m

An,ke
β0 + eβum

= κn − 1 + eβum, (A3)

where κi is the degree of vi . For constant ui , the left-hand side
of the generalized master equations is identically zero and it
remains to be shown that the right-hand side is zero.
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For vertices i �= m,n, the right-hand side of Eq. (A1)
simplifies to

Am,iγmum∑J
k=1 Am,keβuk

+ An,iγnun∑J
k=1 An,keβuk

= Am,iγmum

κm − 1 + eβun
+ An,iγnun

κn − 1 + eβum
. (A4)

Given that κm,κn � 1, the right-hand side of Eq. (A4)
is bounded above by γmume−βun + γnune

−βum and this is
approximately zero for sufficiently large um and un.

For i = m,n and sufficiently large um and un, the right-hand
side of Eq. (A1) simplifies to

1

1 + (κn − 1)e−βum
γnun − γmum ≈ γnun − γmum, (A5)

1

1 + (κm − 1)e−βun
γmum − γnun ≈ γmum − γnun, (A6)

which defines steady state concentrations at vertices m and n

if γnun = γmum.
Thus the solution where γnun = γmum is a constant, and

with the remaining ui = 0, is an approximate steady state
solution of the generalized master equations with exponential
waiting time densities.

To consider the linear stability of this solution, we substitute
the perturbed solution, ui = u∗

i + �ui(t) where u∗
i is the

steady state solution found above, into the generalized master
equations given by Eq. (A1). This yields

du∗
i

dt
+ d�ui(t)

dt
=

J∑
j=1

Aj,ie
βu∗

i eβ�ui (t)∑J
k=1 Aj,ke

βu∗
k eβ�uk (t)

× γj [u∗
j + �uj (t)] − γiu

∗
i − γi�ui(t).

(A7)

For i �= m,n, the linear stability equation becomes

d�ui(t)

dt
=

J∑
j=1,j �=m,n

Aj,ie
β�ui (t)γj�uj (t)∑J

k=1,k �=m,n Aj,keβ�uk (t) + Aj,meβu∗
meβ�um(t)∗ + Aj,ne

βu∗
neβ�un(t)∗

+ Am,ie
β�ui (t)γm[u∗

m + �um(t)]∑
k=1,k �=n Am,keβ�uk (t) + Am,ne

βu∗
neβ�un(t)

+ An,ie
β�ui (t)γn[u∗

n + �un(t)]∑
k=1,k �=m An,keβ�uk (t) + An,meβu∗

meβ�um(t)
− γi�ui(t). (A8)

For small �ui , we take the leading order terms of the Taylor series expansion of the exponentials. Then we have

d�ui(t)

dt
=

J∑
j=1,j �=m,n

Aj,i[1 + β�ui(t)]γj�uj (t)∑J
k=1,k �=m,n Aj,k[1 + β�uk(t)] + Aj,meβu∗

m [1 + β�um(t)] + Aj,ne
βu∗

n [1 + β�un(t)]

+ Am,i[1 + β�ui(t)]γm[u∗
m + �um(t)]∑

k=1,k �=n Am,k[1 + β�uk(t)] + Am,ne
βu∗

n [1 + β�un(t)]

+ An,i[1 + β�ui(t)]γn[u∗
n + �un(t)]∑

k=1,k �=m An,k[1 + β�uk(t)] + An,meβu∗
m [1 + β�um(t)]

− γ (vi)�ui(t). (A9)

A further reduction to leading order in �ui results in

d�ui(t)

dt
=

J∑
j=1,j �=m,n

Aj,iγj�uj (t)

Aj,meβu∗
m + Aj,ne

βu∗
n

+ Am,iγmu∗
m

Am,ne
βu∗

n

+ An,iγnu
∗
n

An,meβu∗
m

− γi�ui(t). (A10)

For sufficiently large u∗
n and u∗

m, we have the approximate result

d�ui(t)

dt
= −γi�ui(t). (A11)

We now consider the linear stability equation, given by Eq. (A8), for i = m:

d�um(t)

dt
=

J∑
j=1,j �=n

Aj,meβu∗
meβ�um(t)γj�uj (t)

Aj,ne
βu∗

neβ�un(t) + Aj,meβu∗
meβ�um(t) + ∑J

k=1,k �=m,n Aj,keβ�uk (t)

+ eβu∗
meβ�um(t)γn[u∗

n + �un(t)]

eβu∗
meβ�um(t) + ∑J

k=1,k �=m An,keβ�uk (t)
− γm[u∗

m + �um(t)]. (A12)
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Again, retaining leading order terms of the Taylor series
expansion of the exponential, we arrive at

d�um(t)

dt
=

J∑
j=1,j �=n

Aj,meβu∗
mγ (vj )�uj (t)

Aj,n(eβu∗
n − 1) + Aj,m(eβu∗

m − 1) + κj

+ eβu∗
mγn[u∗

n + �un(t)]

eβu∗
m + κn − 1

− γm[u∗
m + �um(t)].

(A13)

For sufficiently large u∗
m and u∗

n, the above reduces to

d�um(t)

dt
=

J∑
j=1,j �=n

Aj,mγj�uj (t)

Aj,ne
β(u∗

n−u∗
m) + Aj,m

+ γn[u∗
n + �un(t)]

− γm[u∗
m + �um(t)]. (A14)

Given that the perturbations �ui decay to zero if i �= m,n, the
above further simplifies to

d�um(t)

dt
= γn�un(t) − γm�um(t). (A15)

Finally, we note that from conservation of mass, �un(t) =
−�um(t) and then

d�um(t)

dt
= −(γn + γm)�um(t). (A16)

A similar equation governs the behavior of perturbations
�un(t) so that, from Eqs. (A11) and (A16), all perturbations
decay exponentially to zero and the pair-aggregate steady state
is asymptotically stable.

It is straightforward to generalize this to steady state
solutions consisting of multiple distinct pairs with high con-
centration and the remaining vertices with zero concentration.

2. Mittag-Leffler waiting time densities

The generalized master equations with SCL forc-
ing and Mittag-Leffler waiting time densities are

given by

du(vi,t)

dt
=

J∑
j=1

Aj,ie
βu(vi ,t)∑J

k=1 Aj,keβu(vk,t)

1

τμ(vj ) 0D
1−μ(vj )
t u(vj ,t)

− 1

τμ(vi ) 0D
1−μ(vi )
t u(vi,t), di = 1, . . . ,J.

(A17)

We first show that the single pair aggregate with large and
constant um = un and the remaining ui = 0 is a steady state
solution of Eq. (A17).

For i �= m,n, the left-hand side of Eq. (A17) is identically
zero and the right-hand side may be written as

1

τμ

[
Am,i 0D

1−μ
t um∑J

k=1 Am,keβuk

+ An,i 0D
1−μ
t un∑J

k=1 An,keβuk

]

= 1

τμ

[
Am,i 0D

1−μ
t um

κm − 1 + eβun
+ An,i 0D

1−μ
t un

κn − 1 + eβum

]
. (A18)

Clearly this is bounded above by 1
τμ [Am,i 0D

1−μ
t um

eβun
+ An,i 0D

1−μ
t un

eβum
],

which is approximately equal to zero for sufficiently large
um = un.

For i = m,n and sufficiently large um = un, the right-hand
side of Eq. (A17) may be simplified to

1

τμ

[
eβum

κm − 1 + eβum
0D

1−μ
t u∗

n − 0D
1−μ
t um

]

≈ 1

τμ

[
0D

1−μ
t un − 0D

1−μ
t um

]
, (A19)

1

τμ

[
eβun

κn − 1 + eβun
0D

1−μ
t um − 0D

1−μ
t un

]

≈ 1

τμ

[
0D

1−μ
t um − 0D

1−μ
t un

]
. (A20)

Given that um = un, this defines a steady state for Eqs. (A17).
To consider the linear stability of the steady state, which

we represent by u∗
i , we substitute u(vi,t) = u∗

i + �ui(t) into
Eq. (A17) and retain terms linear in �ui . The substitution
yields

du∗
i

dt
+ d�ui(t)

dt
= 1

τμ

{
J∑

j=1

Aj,ie
βu∗

i eβ�ui (t)∑J
k=1 Aj,ke

βu∗
k eβ�uk (t)

0D
1−μ
t [u∗

j + �uj (t)] − 0D
1−μ
t u∗

i − 0D
1−μ
t �ui(t)

}
. (A21)

For i �= m,n, we may rewrite the right-hand side of the above as

1

τμ

J∑
j=1,j �=m,n

Aj,ie
β�ui (t)

0D
1−μ
t �uj (t)∑J

k=1,k �=m,n Aj,keβ�uk(t) + Aj,meβu∗
meβ�um(t)∗ + Aj,ne

βu∗
neβ�un(t)∗

+ 1

τμ

Am,ie
β�ui (t)

0D
1−μ
t [u∗

m + �um(t)]∑
k=1,k �=n Am,keβ�uk (t) + Am,ne

βu∗
neβ�un(t)

+ 1

τμ

An,ie
β�ui (t)

0D
1−μ
t [u∗

n + �un(t)]∑
k=1,k �=m An,keβ�uk (t) + An,meβu∗

meβ�um(t)
− 1

τμ 0D
1−μ
t �ui(t). (A22)

By taking Taylor expansions up to leading order terms of the exponentials, this reduces to

1

τμ

[
J∑

j=1,j �=m,n

Aj,i 0D
1−μ
t �uj (t)

Aj,meβu∗
m + Aj,ne

βu∗
n

+ Am,i 0D
1−μ
t u∗

m

Am,ne
βu∗

n

+ An,i 0D
1−μ
t u∗

n

An,meβu∗
m

− 0D
1−μ
t �ui(t)

]
. (A23)

022811-7



ANGSTMANN, DONNELLY, HENRY, AND LANGLANDS PHYSICAL REVIEW E 88, 022811 (2013)

For sufficiently large u∗
n and u∗

m, this can be further simplified to the approximate result

d�ui(t)

dt
= − 0D

1−μ
t

τμ
�ui(t), (A24)

and the perturbations �ui decay to zero with time.
We now consider the linear stability of the steady state solution u∗

i for i = m. In this case, the governing evolution equation
for the perturbation �um is given by

d�um(t)

dt
= 1

τμ

J∑
j=1,j �=n

Aj,meβu∗
meβ�um(t)

0D
1−μ
t �uj (t)

Aj,ne
βu∗

neβ�un(t) + Aj,meβu∗
meβ�um(t) + ∑J

k=1,k �=m,n Aj,keβ�uk(t)

+ 1

τμ

eβu∗
meβ�um(t)

0D
1−μ
t [u∗

n + �un(t)]

eβu∗
meβ�um(t) + ∑J

k=1,k �=m An,keβ�uk (t)
− 1

τμ 0D
1−μ
t [u∗

m + �um(t)]. (A25)

In a similar manner to above, we take leading order terms in the Taylor series expansion of the exponential. This yields

1

τμ

{
J∑

j=1,j �=n

Aj,meβu∗
m 0D

1−μ
t �uj (t)

Aj,ne
βu∗

n + Aj,meβu∗
m + κj

+ eβu∗
m 0D

1−μ
t [u∗

n + �un(t)]

eβu∗
m + κn

− 0D
1−μ
t [u∗

m + �um(t)]

}
. (A26)

For sufficiently large u∗
m and u∗

n, this reduces to

1

τμ

J∑
j=1,j �=n

Aj,m 0D
1−μ
t �uj (t)

Aj,n + Aj,m

+ 0D
1−μ
t

τμ
[u∗

n + �un(t)] − 0D
1−μ
t

τμ
[u∗

m + �um(t)]. (A27)

Previously we showed that in the long time limit, �ui(t) = 0 for i �= m,n. In the long time limit, we also have �un(t) = −�um(t),
from conservation of mass, so that the expression in Eq. (A27) further reduces to

− 0D
1−μ
t

τμ
[�um(t) − �un(t)] = −2 0D

1−μ
t

τμ
[�um(t)]. (A28)

It follows that both �um(t) and �un(t) decay to zero. Thus, u∗
i is an asymptotically stable solution.
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