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A B S T R A C T

Accurately measuring the Depth of Anaesthesia (DoA) during surgical procedures is crucial for patient safety.
A significant challenge in developing effective machine learning models for DoA assessment is the lack of
data from single organisations and preserving data privacy between institutions. Federated learning offers
a solution by enabling multiple parties to collaboratively train models without exchanging data. However,
traditional federated learning algorithms perform poorly in data heterogeneous, non-identically distributed
data distribution scenarios. To address these challenges, we propose a one-shot federated learning framework,
DoAFedP-NN, which facilitates federated learning with heterogeneous model development. The framework is
tested in a range of model and data heterogeneity environments. This method enables the training of a global
DoA prediction model across different medical facilities without sharing local data.

The DoAFedP-NN model, utilising neural network design with entropy and spectral feature extraction,
is compared to benchmark federated learning architectures, demonstrating its advantage in handling hetero-
geneous medical data. Experimental results show that DoAFedP-NN achieves robust DoA estimation when
compared to the Bispectral (BIS) index, with high correlation coefficients of 0.8472 and 0.8542 across
independent databases. The proposed model outperforms locally developed models, showing significant
improvements when validated against external datasets from different medical facilities. This paper makes
the key contributions: (1) introduces a one-shot pseudo-data method for federated learning; (2) demonstrates
the effectiveness of this approach for EEG-based DoA using real-world databases; (3) showcases the model’s
ability to achieve high correlation with the BIS index while preserving patient privacy in a range of client
distribution scenarios and under cross-validation.
1. Introduction

In contemporary surgical practice, the administration of anaesthesia
is critical to ensure pain-free procedures through controlled, temporary
loss of sensation and consciousness [1,2]. Overdosing on anaesthetics is
associated with several postoperative complications including nausea,
vomiting, hypotension, myocardial depression, and cognitive issues [3,
4]. The evaluation of the depth of anaesthesia (DoA) is paramount
to tailoring anaesthetic dosages to individual patient needs, thereby
enhancing surgical safety and postoperative recovery [5]. Objective
assessment techniques based on electroencephalography (EEG), such as
the Bispectral Index (BIS), have gained prominence due to their ability
to provide quantifiable DoA indices [6–9]. Despite the advancements,
current EEG-based monitoring technologies face challenges including
variability in response due to individual factors like age and health
status. In addition, limitations inherent to commercial devices include
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sensitivity to external factors and data interpretation [10].
The development and application of quality of machine learning al-

gorithms for EEG-based DoA analysis are constrained by the availability
of diverse, high-quality datasets [11]. Regulatory and privacy concerns
complicate data acquisition and sharing, posing a significant barrier
to the development of generalised models. Federated learning (FL) has
emerged as a promising solution by enabling collaborative model train-
ing across multiple institutions while preserving data privacy [12–14].
FL is a distributed computing method that solves data privacy issues
by exchanging model parameters between clients and servers instead
of sharing raw data. However, the data-heterogeneity of medical data,
which is often non-independently and identically distributed (non-IID)
across different institutions, poses substantial challenges for traditional
FL models, which assume independent and identically distributed (IID)
data [15]. These models also require multiple communication rounds,
leading to high operational costs and increased security risks [16,17].
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To address these limitations, this paper introduces the DoAFedP-NN
framework, a novel one-shot FL method that incorporates pseudo-
data aggregation based on feature knowledge distillation. The frame-
work presents two key innovations that distinguish it from traditional
approaches. Firstly, the one-shot learning approach reduces commu-
nication overhead by requiring only a single communication round,
thereby improving scalability and mitigating synchronisation issues
typically faced in multi-round FL models [18]. Secondly, the pseudo-
data aggregation method leverages the statistical distribution of local
data to develop models in non-IID cases without the need for direct
access to individual data, thus ensuring data privacy and enhanc-
ing model robustness in heterogeneous environments. This research
demonstrates the potential of DoAFedP-NN to outperform traditional
FL models, such as FedAvg, FedSGD, FedProx, FedNova and SCAFFOLD,
in real-world, non-IID EEG-based DoA datasets [19]. By applying novel
data aggregation methods and cross-validation, the model demonstrates
superior predictive and estimation capabilities, delivering consistent
and reliable results across diverse patient testing groups. Furthermore,
the pseudo-data aggregation method is shown to have the facility to
accommodate heterogeneous model development between clients and
the global model.

This research focuses on EEG-based DoA assessment, emphasising
the necessity of FL in addressing data isolation while maintaining
patient data privacy and ensuring high analytical accuracy.

Our contributions are as follows:

1. We propose a one-shot pseudo-data FL aggregation method that
can be applied effectively to medical applications to overcome
the data isolation and model heterogeneity problems inherent to
these applications. To the best of our knowledge, DoAFedP-NN is
the first one-shot FL system to employ pseudo-data aggregation.

2. DoAFedP-NN was evaluated using real-world EEG data and com-
pared to benchmark FL methods FedAvg, FedSGD, FedProx, Fed-
Nova and SCAFFOLD. The results demonstrate that DoAFedP-NN
handles complex, non-homogeneous, non-IID medical data more
effectively and achieves comparable outcomes to IID simula-
tions.

3. A 2-client simulation demonstrates how DoAFedP-NN can be
applied in real-world medical environments, overcoming data-
sharing constraints posed by privacy regulations and enabling
collaborative model development across institutions.

4. We employed 5-fold cross-validation and novel cross-database
comparison to ensure the reliability of DoAFedP-NN’s perfor-
mance across diverse datasets with varying levels of data het-
erogeneity.

The rest of the paper will be organised as follows: Section 2 presents
he related works in both EEG-based DoA and federated learning.

Section 3 presents the research methodology. Section 4 presents the ex-
perimental results while Section 5 includes a more detailed discussion
f these results.

2. Related work

This section reviews methodologies in federated learning for health-
care applications followed by techniques employed in EEG-based DoA
assessment.

2.1. Federated learning in medical applications

Federated learning (FL) has emerged as a promising approach to
ddress data isolation and privacy concerns in healthcare by enabling
ollaborative model training across multiple institutions without shar-
ng raw data [18,20,21]. In healthcare, the adoption of FL necessitates
n approach to address the challenges posed by data quality and
ata heterogeneity across clients and independent databases. There
s a need in the space of EEG learning to overcome the problem of
2 
data isolation while maintaining the privacy preservation of trained
odels by limiting direct access to raw data [22]. Most healthcare and

biomedical FL applications apply similarly generic aggregation methods
for client models.

Google’s popular FL algorithm, FedAvg, involves an iterative train-
ing process designed primarily for cross-device settings like mobile
devices, where it manages ongoing user participation through mul-
tiple rounds. The model parameter updates are averaged to produce
the global federated model in each learning iteration [23]. FedSGD
stochastic gradient descent) updates the global model using the aver-
ged gradients from all clients after each local iteration. By employing
radient descent between iterations FedSGD methods can converge
ore quickly than other FL algorithms. Furthermore, these methods
ay reduce potential communication overhead and latency caused by

nfrequent model updates [24].
To overcome the challenges associated with non-IID data more

recent FL methods introduce methods to avoid client drift and im-
prove model convergence. Federated proximal (FedProx) learning is an
extension of FedSGD designed to handle non-IID data by introducing
a proximity term, proving particularly useful when data distributions
vary across different hospitals or devices. The introduction of the prox-
imal term acts to regulate the significance of local updates on the global
model if they deviate too significantly [17]. SCAFFOLD has shown effi-
acy in addressing this issue by introducing control variates at both the
erver and client levels to correct client drift [25]. In contrast, FedNova,

normalises client updates based on their effective gradient step size,
ensuring that updates remain unbiased regardless of variations in local
epochs, learning rates, or data heterogeneity [26]. Alternatively, fed-
erated transfer learning leverages a pre-trained model to assist clients

ith limited data, thereby improving model performance in settings
here data availability is uneven among clients [17,27].

These iterative aggregation methods are effective in certain scenar-
ios, however, they are limited in situations where parties are typically
organisations or medical institutions rather than individual users. These
challenges include the impracticality of requiring multi-round partic-
ipation, vulnerability to inference attacks, and difficulties in main-
taining a fair and trusted central server to coordinate the training
process [18]. Furthermore, the inherent heterogeneity of medical data
presents a significant challenge for traditional FL methods that rely
on averaging techniques for model aggregation [19]. Data collected
across different institutions are often non-independently and identically
distributed (non-IID), meaning the data distributions vary significantly
across clients [28]. This can lead to poor performance of global models
trained using simple averaging techniques, as they may not adequately
apture the nuances of each client’s data. Several approaches have been
eveloped to manage heterogeneous models in FL.

A recently proposed heterogeneous FL (HFL) framework, FedTKD,
mploys adaptive knowledge distillation to enhance knowledge transfer
etween the server and clients. This involves transferring knowledge
rom a larger, pre-trained ‘‘teacher’’ model to a smaller ‘‘student’’
odel. This helps bridge the gap between diverse models, facilitating

nowledge sharing even when their structures differ [29]. This method
aims to improve the accuracy of client models without compromising
data privacy. This method specifically uses a selectivity knowledge
fusion method to ensure high-quality global logit computation and an
adaptive knowledge distillation method to improve knowledge transfer
etween the server and clients [18]. In other works, local clients

contribute pseudo-data, derived from their original datasets, for model
raining on a federated server. This approach demonstrates the effec-
iveness of pseudo-data in improving communication rounds within
L contexts [30,31]. Alternatively, the CFSL model is specifically de-

signed to address the challenges of non-IID data in FL by leveraging
a personalised FL approach. The model is designed to adapt to the
heterogeneity in data by leveraging hypernetworks to generate neural
networks tailored to the unique data characteristics of each client [20].
These HFL models pose challenges related to computational complexity
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and communication efficiency, particularly when implemented on non-
IID data. Training and aggregating HFL models can be computationally
expensive, particularly when dealing with many clients and complex
models [18]. This complexity can hinder the scalability of HFL models
because these models may involve frequent communication between
clients and the server to exchange model parameters or knowledge
epresentations.

One-shot FL presents a promising alternative in constrained data-
haring environments [32]. This approach involves a single round of

communication where parties upload their local models to a centralised
platform once, which then aggregates these models to create a final
global model. This paradigm has demonstrated efficacy when dealing
with image datasets in medical applications [33]. One-shot FL not
only circumvents the issues of multi-round dependency and security
concerns but also aligns with the practicalities of organisational par-
icipation, where entities are not continuously engaged but may still
enefit from shared models. One-shot FL, therefore, offers a robust solu-
ion by reducing reliance on repeated party availability and enhancing
he security and feasibility of FL in sensitive and critical sectors like

healthcare [32].

2.2. EEG-based DoA assessment

Signal decomposition plays a pivotal role in the proficient analysis
of electroencephalography (EEG) signals. The utilisation of the Fast
ourier Transform (FFT) technique stands as a reliable method adopted
or such analyses [6]. Alternative decomposition methods employ-
ng discrete wavelet transform and power spectral density success-
ully demonstrated the capacity to capture real-time transitions from
onsciousness to unconsciousness during anaesthesia induction [34].

A range of feature extractions have shown effectiveness in discern-
ng patterns in EEG signals associated with DoA levels. The second-
rder difference plot (SODP) is an effective graphical method for rep-

resenting data variability in EEG signal analysis for the DoA. This
method plots successive rates of variability against each other and has
shown consistently strong results in classifying epileptic signals and
in DoA EEG analysis [35,36]. SODP’s ability to highlight non-linear
ynamics makes it useful for uncovering patterns and anomalies in EEG
ata. Entropy-based metrics quantify EEG signal unpredictability or
andomness. Permutation and spectral entropy are notably associated
ith the BIS index; observing correlations greater than 0.7 with the BIS

n existing literature [36,37]. Additional entropy measures employed
in recent work include wave entropy, hierarchical dispersion entropy
(HDE), sample entropy, Hurst entropy, singular value decomposition
entropy, and fuzzy entropy [6].

Studies on EEG-based DoA analysis have achieved variable success
with linear regression modelling. The limiting factors often identified
in these studies are the feature extraction method and sample size
examined. This method is shown to have low computational intensity if
appropriate feature extraction is employed [6]. Deep learning models,
uch as artificial neural networks (ANN), can extract complex features

from EEG signals and learn hierarchical representations, which can
be instrumental in accurately determining the DoA [6]. This group
f methods may require substantial data and computational resources
nd may be prone to overfitting [38]. Feed-forward neural networks
FFNNs) and multilayer perceptron (MLP) demonstrate high effective-
ess in estimating the DoA from raw EEG signals as observed with a
orrelation of 0.94 with the BIS [39]. In a 56-patient, single-channel
EG study, long short-term memory (LSTM) modelling was observed to
chieve a correlation of 0.70 and an area under the curve (AUC) of 0.93
ased on the BIS [40]. These methods effectively learn and remember

over long sequences making use of the temporal features present in the
EEG signal.
3 
3. Methodology

3.1. Federated learning methodology

The methodology underpinning this study’s FL approach, termed
DoAFedP-NN, is a process specifically tailored for the DoA index design
using EEG data. This method employs a one-shot FL architecture with
heterogeneous model development to account for the challenges placed
on medical institution data management. The FL aggregation method is
based on a feature knowledge distillation approach and is divided into
six steps, as shown in Fig. 1, where the key processes are described as
follows. The flow of this algorithm is described in Algorithm 1.
Algorithm 1: DoAFedP-NN Algorithm, 𝑘 denotes local client,
(𝑋train, 𝑦train) represents local training data and (𝑆𝑥, 𝑆𝑦) the pseudo
data
Input: Local data (𝑋train, 𝑦train)
utput: Trained global model 𝜃global

1: Local Training: ⊳ Local Client
2: for each client 𝑘 do
3: Initialise 𝑁 𝑁 for (𝑋train, 𝑦train)
4: 𝑓 (𝜃𝑘) ← TrainModel(𝑋train, 𝑦train, 𝐸max, 𝑃goal)
5: Extract mean 𝜇𝑘 and standard deviation 𝜎𝑘 from 𝑋train:

𝜙𝑘 = (𝜇𝑘, 𝜎𝑘)
6: end for
7: Federated Aggregation: ⊳ Central Server
8: for each client 𝑘 do
9: Fetch 𝜃𝑘, 𝜙𝑘 from local client

10: Generate 𝑁 pseudo data points, 𝑆𝑘
𝑥 , for each client

𝑆𝑘
𝑥 = {𝑥1, 𝑥2,… , 𝑥𝑁} ∼  (𝜇𝑘, 𝜎𝑘)

11: Generate 𝑁 pseudo labels, 𝑆𝑘
𝑥 , for each client, 𝑘, based on 𝜙𝑘 at

central server

𝑆𝑘
𝑦 = {𝑦1, 𝑦2,… , 𝑦𝑁} = 𝑓 (𝑆𝑘

𝑥 ; 𝜃𝑘)

12: end for
13: Combine pseudo data, 𝑆 =

⋃𝐾
𝑘=1(𝑆𝑥, 𝑆𝑦)

14: Global Model Training:
15: Train global model 𝜃global using combined pseudo data 𝑆
16: Model Update: ⊳ Local Client
17: for each client 𝑘 do
18: Update local model 𝜃𝑘 using 𝜃global: 𝜃𝑘 ← 𝜃global
19: end for

(1) Local model development: Initially, each participating client,
𝑘, undertakes the extraction of the key features, denoted as 𝑋𝑘 =
(𝑥1, 𝑥2,… , 𝑥5), from single-channel EEG recordings based on the meth-
ods discussed in Section 3.2. The local model, 𝑓 (𝜃𝑘), is trained on the
xtracted features using an MLP FFNN to predict the anaesthesia depth

(as measured by BIS) from these features. The model parameters, 𝜃𝑘,
re updated using the scaled conjugate gradient algorithm, (trainscg),
nd the training process continues until either the performance goal,

𝑃goal, or the maximum number of epochs, 𝐸max, is reached:

𝑓 (𝜃𝑘) ← TrainModel(𝑋train, 𝑦train, 𝐸max, 𝑃goal)

(2) Upload client model information: Following the local training phase,
each client transmits its model’s parameters, 𝜃𝑘, to a Central Server
(CS). In addition, the client sends the summary statistics, 𝜙𝑘 = (𝜇𝑘, 𝜎𝑘),
where 𝜇𝑘 is the univariate mean of each feature and 𝜎𝑘 is the standard
deviation of each feature for each client 𝑘. By having clients share their
model parameters only once and transmit minimal aggregate statistics,
this approach results in a substantial reduction in communication size
compared to traditional FL models.

(3) Pseudo data generation: The CS synthesises the pseudo-feature
data set based on the statistical information received from each client,



T. Schmierer et al. Neurocomputing 634 (2025) 129812 
Fig. 1. Pseudo data federated learning (DoAFedP-NN) architecture. * Model training as specified in Fig. 2.
𝑆𝑘
𝑥 , representative of each client’s original feature distribution. The

pseudo-feature data points are generated from a normal distribution
 (𝜇𝑘, 𝜎𝑘) using the means, 𝜇𝑘, and standard deviations, 𝜎𝑘, contained
in 𝜙𝑘 to capture the local feature distributions without compromising
privacy. For each client 𝑘, pseudo data representing the BIS label 𝑆𝑘

𝑦 =
𝑦1, 𝑦2,… , 𝑦𝑁 are generated by applying the respective client model
𝑓 (𝜃𝑘) to the pseudo-feature data, such that 𝑆𝑘

𝑦 = 𝑓 (𝑆𝑘
𝑥 , 𝜃𝑘).

(4) Global model development: The CS aggregates the pseudo datasets
from all clients 𝑘, expressed as 𝑆 =

⋃𝐾
𝑘=1(𝑆𝑥, 𝑆𝑦), to form a combined

dataset. Using this aggregated pseudo data, the CS trains the global
model, 𝜃global, over the combined dataset 𝑆.

(5) Send global model to clients: The parameters of the global model
𝜃global are transmitted back to each client for model evaluation. The
global model is a product of a one-shot FL process, avoiding the need
for iterative communication typical in traditional FL frameworks.

(6) Model evaluation: The global model 𝜃global is evaluated by com-
paring the DoAFedP-NN index against the BIS index of the testing
group. The evaluation includes 5-fold cross-validation, where perfor-
mance metrics such as correlation and root mean square error (RMSE)
between the predicted BIS values and the actual values are computed.

3.2. Model building and feature extraction

The performance of the DoAFedP-NN algorithm in modelling DoA
is evaluated by comparing performance to the BIS index, given its
established role as a benchmark in clinical practice [6]. However, while
BIS provides a useful reference point, it has limitations that can be
addressed by integrating a broader range of patient data through FL.
By aligning the DoAFedP-NN index with BIS while leveraging diverse
patient datasets, this approach aims to develop a more robust and
accurate model for DoA assessment. To capture and represent the rela-
tionship between the EEG signal and the BIS index a process of feature
extraction and model building is undertaken as outlined in Fig. 2.
This is because the non-stationary nature of EEG signals necessitates
advanced feature extraction techniques to extract meaningful informa-
tion [6]. A multilayer perceptron (MLP) neural network is utilised with
a network architecture comprising three hidden layers, each containing
ten neurons. The scaled conjugate gradient (SCG) algorithm, known
for its efficiency, low memory requirements, and speed with large
datasets, is used for training [39]. Identical model structure and feature
extraction methods are used in the global model and client models
in the DoAFedP-NN algorithm. Application of heterogeneous models
between clients and central server is discussed in Section 5.3.
4 
Fig. 2. Model building and feature extraction flowchart.

Before feature extraction, the signal is denoised with a high and low
pass Butterworth filter to remove line interference from the signal. The
signal is then decomposed into 56-second windows with 55 s of overlap
with the previous segment. These windows are selected to allow for a
suitable quantity of historical signal to produce a stable, yet responsive
signal [36]. Each of these windows is then segmented further into 15
frequency bands and an additional corresponding 15 power functions
using the fast Fourier transform method (FFT). Four key feature ex-
traction methods are applied to these decomposed signal windows to
identify features that effectively represent the BIS index. These features,
second order difference plot (SODP), Lempel–Ziv complexity (LZC),
sample entropy (SampEn), and spectral entropy, are shown in Fig. 2.
In addition, the median frequency band amplitude for the 30–47 Hz
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frequency band is also selected. The independence of these methods
enables the capture of distinct information, which has been recognised
in existing literature as a strong indicator of depth of anaesthesia,
allowing for a comprehensive assimilation of the data [6].

The SODP is calculated separately for each second within the in-
put window, following the established methods in EEG-based DoA
research [35,36,41,42]. The SODP for the signal, 𝑥(𝑛), is found by
plotting 𝑋(𝑛) = 𝑥(𝑛+ 1) − 𝑥(𝑛) against 𝑌 (𝑛) = 𝑥 (𝑛 + 2) − 𝑥(𝑛+ 1), where:

𝑆 𝑂 𝐷 𝑃 = | log(3𝜋
√

(𝑆 𝑋2 + 𝑆 𝑌 2 +𝐷)(𝑆 𝑋2 + 𝑆 𝑌 2 −𝐷))| (1)

where 𝑆 𝑋 and 𝑆 𝑌 are defined as:

𝑆 𝑋 =

√

√

√

√

𝑛−1
∑

𝑁=0

𝑋(𝑛)2
𝑁

, 𝑆 𝑌 =

√

√

√

√

𝑛−1
∑

𝑁=0

𝑌 (𝑛)2
𝑁

. (2)

𝑆 𝑋 𝑌 is defined as:

𝑆 𝑋 𝑌 = 1
𝑁

∑

(𝑋 (𝑛) ∗ 𝑌 (𝑁)) (3)

The distance, 𝐷, is hence calculated as:

𝐷 =
√

(

𝑆 𝑋2 + 𝑆 𝑌 2
)

− 4(𝑆 𝑋2𝑆 𝑌 2 − 𝑆 𝑋 𝑌 2) (4)

Spectral entropy and SampEn are used to quantify a time series’s
complexity or regularity. SampEn is calculated by measuring the prob-
ability that sequences of length 𝑚 match, within a tolerance 𝑟, and
how that probability changes when the sequences are extended by one
point. For a signal of length 𝑁 , 𝐵𝑚(𝑟) is the average probability that
two sequences of length 𝑚 match within 𝑟, and 𝐴𝑚(𝑟) is the average
probability that two sequences of length 𝑚 + 1 match within the same
tolerance. SampEn is defined as

SampEn(𝑚, 𝑟, 𝑁) = − ln
(

𝐴𝑚(𝑟)
𝐵𝑚(𝑟)

)

(5)

The lower SampEn value indicates greater regularity and predictability,
while a higher value signifies more complexity [43]. The parameters
𝑚 and 𝑟 are typically set based on the application, with 𝑚 = 1 and
𝑟 = 0.2 × 𝜎 (where 𝜎 is the standard deviation of the signal) being
common choices for physiological signals [44].

The spectral entropy takes the signal’s normalised power spectrum
distribution in the frequency domain as a probability distribution and
calculates its Shannon entropy [37]. For a given signal 𝑥(𝑛), 𝑋(𝑛) is the
discrete Fourier transform. The probability distribution, 𝑃 (𝑛), is:
𝑃 (𝑛) =

𝑋(𝑛)
∑

𝑖 𝑋(𝑖)
(6)

Where ∑𝑀
𝑚=1 𝑃 (𝑛) = 1. Hence, the spectral entropy at time t, can be

expressed in terms of the time-variant probability distribution 𝑃 (𝑡, 𝑛) at
time 𝑡:

𝑆 𝐸𝑛(𝑡) = −
𝑁
∑

𝑛=1
𝑃 (𝑡, 𝑛) log2 𝑃 (𝑡, 𝑛) (7)

The median values of the spectral entropy over the 56-second window
is used as the extracted feature in alignment with [36,45].

The LZC is a non-parametric measure that quantifies the complexity
of data sequences by identifying new pattern generation rates. A pattern
is defined as a sub-sequence that has not been seen before in the
sequence. The LZC of a sequence is then defined as the total number
of distinct patterns in the sequence. LZC has been used successfully in
DoA applications with EEG in the past to quantify the complexity or
irregularity of the EEG signal [46].

The features selected are pivotal in capturing the diverse character-
istics of brain activity during anaesthesia. The specific features selected
for modelling with the frequency bands they are extracted through are
detailed in Fig. 2. This selection includes both frequency and time-
domain characteristics as well as linear and non-linear properties [6].
5 
Fig. 3. Client Allocation for non-IID experiment.

4. Results

The following section explores the efficacy of the DoAFedP-NN in
performing FL across non-IID distributed clients. This model employs
homogeneous model building between clients and the central server
as described in Section 3. The model is evaluated against the industry
benchmark DoA index, the BIS index, by assessing regression metrics
including mean squared error (MSE) and correlation coefficient. These
metrics are compared to state-of-the-art FL benchmark methods.

4.1. Experiment environment

This FL simulation utilised two real-world EEG and BIS databases.
The VitalDB dataset is an open-access resource from Seoul National
University Hospital, Republic of Korea [47], comprised of 6388 cases.
The VitalDB dataset offers high-resolution intraoperative signals and
clinical information from surgical patients, with anaesthesia durations
ranging from 90 to 245 min. It includes a balanced sample of male and
female patients aged 48 to 68 years, weighing between 53 and 69 kg.
The dataset provides EEG signals recorded at 500 Hz and an extensive
collection of additional clinical parameters, such as drug dosages and
administration times. Similarly, the UniSQ dataset contains EEG data
from adult patients aged 22 to 83 years, weighing between 60 and
130 kg. EEG signals were recorded using a two-channel setup at 128 Hz,
with bispectral index (BIS) values documented at one-second intervals
during surgery. Anaesthetist notes detailing drug dosages and admin-
istration times were available for these patients, providing additional
context for the EEG data. For our analysis, we selected 20 patients from
each database. This selection ensured patients had similar surgery dura-
tions and that each patient exhibited a comprehensive representation
of all anaesthesia stages. In addition, high signal quality index (SQI)
throughout the procedure was a critical factor in patient inclusion to
ensure minimal periods of high noise or disruption, thereby ensuring
the reliability and comparability of the analysis. The FL simulation was
implemented in MATLAB. The experiments were conducted on a system
equipped with an Intel i5-10500 CPU and 32 GB of memory, running
MATLAB R2021a version 9 with the Deep Learning toolbox.

4.2. Client allocation

Patients from UniSQ and VitalDB databases are distributed among
6 clients (Clients 1 to 3 for UniSQ and Clients 4 to 6 for VitalDB) as
shown in Fig. 3. Within each client patients were randomly divided
into training and testing sets, with at least two patients in each testing
set and the remaining data designated for training. This allocation was
cycled through 5-fold cross-validation to ensure comprehensive model
evaluation. The client allocation described here is used in Sections 4.3
and 4.4

The non-IID nature of the data is central to this analysis. As shown
in Fig. 4, the BIS distributions vary distinctly across the 6 clients, a
finding further supported by Table 1, which presents client-specific
BIS statistics. A Kolmogorov–Smirnov test confirmed the non-identical
nature of these distributions, reinforcing the non-IID assumption.
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Fig. 4. BIS distribution across clients.

Table 1
Client statistics: target mean, target variance, data length and number
of patients per client.

Client Mean Var Length Patient count

Client 1 39.09 234.2 19 774 6
Client 2 44.84 332.3 20 586 7
Client 3 38.13 265.2 17 155 7
Client 4 46.59 353.5 28 457 6
Client 5 51.81 318.2 25 357 7
Client 6 51.49 279.5 28 026 7

Fig. 5. DoAFedP-NN cross-validation correlation results.

4.3. Experimental results — DoAFedP-NN

The performance of the DoAFedP-NN algorithm in modelling DoA
is evaluated using the BIS as the benchmark. As BIS is the standard
for DoA analysis, closer alignment with BIS values indicates a more
accurate representation of DoA by the model. The correlation and
RMSE between the DoAFedP-NN index and the BIS index serves as a
measure of the model’s effectiveness in capturing patients’ DoA.

The experimental results for the DoAFedP-NN model demonstrate its
effectiveness when applied to EEG data from UniSQ and VitalDB clients.
These results evaluate the effectiveness of the proposed model to cap-
ture the true state of DoA as measured by the BIS index. All results were
obtained using a 5-fold cross-validation procedure to ensure robustness.
The average cross-validation results for each client are presented in
Table 2 and detailed in Figs. 5 and 6. The local training iterations to
achieve convergence for each local model varied between client and
database. The number of iterations required ranged from 37 iterations
6 
Fig. 6. DoAFedP-NN cross-validation RMSE results.

Fig. 7. DoAFedP-NN model prediction against actual BIS for a single test case in the
UniSQ database.

Fig. 8. DoAFedP-NN model prediction against actual BIS for a single test case in the
VitalDB database.

for Client 3 to 133 iterations for Client 4. This variation illustrates the
differences in data characteristics and complexities across clients. To
illustrate the quality of the DoAFedP-NN model in representing the
DoA, Figs. 7 and 8 show the DoAFedP-NN alongside the BIS index
for a single patient for each database. These figures highlight the
close relationship between these indexes over the course of a single
anaesthetic procedure.



T. Schmierer et al. Neurocomputing 634 (2025) 129812 
Table 2
Comparison of Local and Global, DoAFedP-NN, model performance for UniSQ and VitalDB clients.
Information presented is based on the average of 5 fold cross-validation result for each client.
Client Local corr Local RMSE DoAFedP-NN Corr DoAFedP-NN RMSE

Client 1 0.7518 11.7010 0.8309 9.7082
Client 2 0.8030 10.8044 0.8360 10.0385
Client 3 0.7956 10.1749 0.8746 9.0388

UniSQ Overall 0.7835 10.8934 0.8472 9.5952

Client 4 0.8476 11.2848 0.8730 9.8876
Client 5 0.8534 11.4683 0.8711 10.3693
Client 6 0.7958 10.5973 0.8184 10.3707

VitalDB Overall 0.8322 11.1168 0.8542 10.2092
Fig. 9. Accuracy against communication round for leading federated learning benchmarks (a) FedAvg, (b) FedProx, (c) FedNova, and (d) SCAFFOLD for each client.
The average performance of the DoAFedP-NN model across all folds
shows a correlation of 0.8475 and an RMSE of 10.1551 with the BIS
index, indicating its strong predictive capability. This result reflects the
ability of the FL approach to integrate data from multiple clients and
build a comprehensive model that generalises well across diverse data
distributions.

For the UniSQ clients, the DoAFedP-NN model consistently out-
performed the locally trained models. Specifically, the global model
achieved an average correlation of 0.8472 with an RMSE of 9.5952,
compared to the local models, which had an average correlation of
0.7835 and an RMSE of 10.8934. This improvement for the DoAFedP-
NN relative to the local models was mirrored in the VitalDB clients.
The average correlation for the DoAFedP-NN was 0.8542 with an RMSE
of 10.2092, compared to the local models, which had a correlation
of 0.8322 and an RMSE of 11.1168. These results underscore the
performance of the proposed FL model, which benefits from the col-
lective data of all clients and mitigates the limitations of training on
individual, non-IID datasets. Furthermore, the DoAFedP-NN model is
required to transmit an additional amount of additional information
because of the statistical information sent to the central server. In
these experiments, each client transmitted a total of only 2.51 KB of
information, consisting of 2.27 KB (90.65%) for model parameters and
240 bytes (9.35%) for aggregate statistical information.

4.4. Benchmark analysis

In this section, we compare the DoAFedP-NN model with several
widely recognised FL aggregation methods: FedAvg, FedSGD, FedProx,
FedNova and SCAFFOLD. These benchmarks were chosen due to their
established efficacy in handling distributed data. In particular, FedNova
and SCAFFOLD have been shown in recent work to have high-efficacy
FL scenarios that exhibit non-IID data structures and in medical appli-
cations [25,26]. The performance is evaluated based on the correlation
with the BIS index across communication rounds. The benchmarks were
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conducted under identical conditions to ensure comparability. Patients
from UniSQ and VitalDB databases are allocated to each client in the
same way as in the DoAFedP-NN results as described in Section 4.2 and
Table 1. Similarly, training patients are allocated within each client
ensuring that at least two patients are reserved for testing in each
cross-validation round. Initially, a global model was calibrated using
100 data points randomly selected from each client to form a public
dataset. This model was then distributed to the clients as the starting
condition. For each benchmark method, a single local training epoch
was used, with 100 communication rounds between the central server
and each client in alignment with existing literature [18]. For each
training epoch, all training patients are utilised in each client. The
FedProx, FedSGD, FedNova and SCAFFOLD methods use a learning
rate of 0.1, with FedProx also incorporating a proximal term of 0.1
to mitigate local model drift. SCAFFOLD mitigates client drift through
active gradient correction, FedNova enhances fairness and stability by
addressing imbalances in client updates. In contrast, the DoAFedP-NN
method utilised the one-shot method with 2000 pseudo data points
during the central server update, as detailed in Section 3.

The results from the 5-fold cross-validation show that DoAFedP-NN
consistently outperforms benchmark and state-of-the-art FL methods.
Compared to the highest benchmark, FedNova, DoAFedP-NN achieved
a 7.8% improvement in correlation for the UniSQ database (clients
1 to 3) and a 9.2% improvement for the VitalDB database (clients
4 to 6) when compared to BIS. These results underscore the abil-
ity of DoAFedP-NN to model accurate estimations of DoA based on
distributed, non-IID data. The progression of accuracy across these com-
munication rounds for the leading benchmark methods is illustrated in
Fig. 9, showing the correlation of the FL model with each client’s testing
data after each round. Table 3 indicates each model’s percentage
improvement relative to the base FL benchmark, FedAvg. It can be seen
that all methods, except FedSGD outperform this benchmark method
with the DoAFedP-NN outperforming this base method 10.3% and
16.1% for UniSQ and VitalDB clients respectively. Furthermore, the
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Table 3
Comparison of Model Performance Across UniSQ and VitalDB Data
Centres. Results show the average correlation (Corr) and RMSE across
all clients following 5-fold cross-validation. Percentage improvement
calculated relative to FedAvg.

Model UniSQ VitalDB
Corr RMSE Corr RMSE

FedAvg 0.768 11.78 0.736 12.29
(Base) (Base) (Base) (Base)

FedSGD 0.659 14.03 0.720 13.65
(

−14.2%
) (

+19.0%
) (

−2.17%
) (

+11.1%
)

FedProx 0.773 13.52 0.730 14.90
(

+0.65%
) (

+14.8%
) (

−0.82%
) (

+21.2%
)

SCAFFOLD 0.761 11.27 0.727 12.10
(

−0.91%
) (

−4.33%
) (

−1.22%
) (

−1.55%
)

FedNova 0.786 9.939 0.782 11.435
(

+2.34%
) (

−15.6%
) (

+6.25%
) (

−7.00%
)

DoAFedP-NN 0.847 9.60 0.854 10.21
(

+𝟏𝟎.𝟑%
) (

−𝟏𝟖.𝟓%
) (

+𝟏𝟔.𝟏%
) (

−𝟏𝟔.𝟗%
)

one-shot approach of the DoAFedP-NN model drastically reduces the
communication overhead and computational cost for FL in non-IID
scenarios. Compared to each of the communication rounds for the tradi-
tional methods, the DoAFedP-NN model’s single communication round
requires an additional 10% size to communicate model parameters.
This cost is offset by the reduced number of communication rounds
required in the one-shot FL approach. Consequently, the DoAFedP-NN
method achieved a communication reduction of approximately 98.9%
per client across the entire training process. Despite this significantly
lower communication burden, DoAFedP-NN outperforms these tradi-
tional methods in both correlation and RMSE, making it a more efficient
and effective solution for handling non-IID data in FL scenarios.

5. Discussion

5.1. IID data simulation with Dirichlet data partitioning

A series of simulations with varying levels of heterogeneity was
conducted using real EEG signals to approximate the closest possible IID
scenario for EEG analysis. IID simulations of EEG signals are inherently
constrained by their time-dependent nature, the presence of short-
and long-term correlations, and temporal dependencies introduced by
overlapping windows. To address these challenges, datasets from the
UniSQ and VitalDB databases were pooled, shuffled, and redistributed
across six clients using a Dirichlet distribution (Fig. 10) [18]. This
method ensured the controlled allocation of data to each client and
facilitates the simulation of varying levels of data heterogeneity.

To manage the continuous nature of the target variable (BIS),
the pooled data were first divided into 10 bins based on the corre-
sponding ranges of BIS index values. The Dirichlet distribution was
then used to allocate data proportionally between clients within each
bin. The degree of heterogeneity was governed by the Dirichlet pa-
rameter (𝛼), where smaller values of 𝛼 resulted in skewed, hetero-
geneous distributions favouring a few clients, and larger values of 𝛼
produced more balanced, homogeneous distributions approaching IID
distributions [18].

This approach effectively simulated varying levels of data hetero-
geneity, enabling the evaluation of FL models under both non-IID
and IID conditions. For this study, 𝛼 values of 0.1, 0.5, 1, 5, and 10
were selected to represent a comprehensive range of heterogeneity
levels. In addition, a full IID simulation was conducted using a uniform
allocation without the Dirichlet distribution. The data distribution of
the simulations for each client is shown in Fig. 11. Furthermore,
the authentic case (discussed in Section 4) was compared with these
simulated heterogeneity distributions. All results were derived from the
average of 5-fold cross-validation for each 𝛼 level.

The results demonstrate that the DoAFedP-NN model performs ex-

ceptionally well across the tested range of 𝛼 values, underscoring its
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Fig. 10. Client allocation with Dirichlet Data Partitioning for heterogeneous data
distribution simulations.

Table 4
Comparative performance of database cross-validation, local, and global model evalu-
ations for the neural network model with the BIS index.

Train

UniSQ VitalDB DoAFedP-NN Global model

Corr 0.8546 0.8331 0.8657 0.8776UniSQ RMSE 7.1473 8.1431 7.1304 6.8921

Corr 0.7884 0.8395 0.8469 0.8459Test
VitalDB RMSE 11.2275 8.9384 8.956 9.0406

capability to facilitate FL under varying degrees of data heterogeneity
(Fig. 12). At high levels of heterogeneity (𝛼 = 0.25), a correlation
of 0.813 was observed between the DoAFedP-NN index and the BIS
index. Conversely, at high levels of homogeneity (𝛼 = 10), a cor-
relation of 0.8539 was recorded. Despite the non-IID nature of the
original allocation in the authentic case, the DoAFedP-NN achieved
performance comparable to that of the homogeneous data distribution,
with a correlation reduction of less than 0.4%. The robustness of this
method is further supported by the minor difference observed in the
IID simulation, which had an average correlation of 0.8588 with the
BIS observed in all clients.

The highest-performing FL benchmark, FedNova, was evaluated
under these heterogeneity scenarios and shown in Fig. 12. Unlike the
DoAFedP, FedNova’s modelling efficacy is substantially reduced as data
heterogeneity increases. The DoAFedP-NN can be seen to outperform
traditional and state-of-the-art FL methods in both IID and non-IID
conditions.

5.2. Application of DoAFedP-NN in overcoming data isolation

In developing robust machine learning models for medical appli-
cations, collaboration across data stores is essential to ensure gener-
alisation to diverse patient populations [48]. To assess the efficacy of
the DoAFedP-NN model, we performed a two-client simulation, using
distributed data across the UniSQ and VitalDB databases. This scenario
mirrors real-world medical data isolation issues and highlights how
DoAFedP-NN can facilitate database cohesion without violating patient
privacy. The DoAFedP-NN model was implemented with this client
allocation according to Section 3. Further validation was provided by
cross-database testing, where each database’s locally trained model was
applied to the testing data of the other database.

In this case, localised models showed better performance on their
native data but struggled when applied to external datasets, reflecting
the lack of generalisation that arises from isolated training. As shown in
Table 4, the average correlation for locally trained models was 0.848,
while cross-trained models exhibited a lower correlation of 0.811.

In contrast, the DoAFedP-NN model achieved an average correla-
tion of 0.857 across both databases, outperforming even the globally

trained model, which was constructed by combining all data from both
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Fig. 11. BIS distribution for each client: (a) 𝛼 = 0.25, (b) 𝛼 = 0.50, (c) 𝛼 = 1.00, (d) 𝛼 = 5.00, (e) 𝛼 = 10.00, (f) IID distribution.
Fig. 12. Correlation of DoAFedP-NN and FedNova with the BIS index for varying
levels of data heterogeneity. Includes comparison to the original allocation outlined
in Section 4.2.

Fig. 13. Scatterplots with 95% confidence interval for estimate and actual DoA values
for UniSQ database.
9 
Fig. 14. Scatterplots with 95% confidence interval for estimate and actual DoA values
for VitalDB database.

databases. The FL pseudo-aggregation method used in DoAFedP-NN
effectively normalises and stratifies training data, reducing bias and
ensuring that the model generalises well to unseen data ( Table 4). The
DoAFedP-NN index against the BIS index for each database is shown in
Figs. 13 and 14, with 95% confidence intervals.

These findings highlight the robustness of the DoAFedP-NN algo-
rithm, especially in real-world scenarios where data isolation between
institutions is a significant obstacle. By providing more accurate and
generalised predictions compared to locally or cross-trained models,
DoAFedP-NN proves to be an effective solution for distributed medical
data.

5.3. Ablation experiments

An ablation study was conducted on both databases to assess the
relative contributions of model features and parameter configurations
to the performance of the DoAFedP-NN model. The results presented
in Table 5 are the average correlation and RMSE across all clients,
obtained via 5-fold cross-validation. In each case, the global model
employed a 3-layer MPL FFNN with 10 neurons each, as described in
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Table 5
Performance metrics for ablation experiments of the DoAFedP-NN model. Results are average across 6 clients and 5-fold
cross-validation.
Variation Description Correlation RMSE

Without LZC feature Baseline model without LZC 0.8374 10.0480
Without SODP feature Baseline model without SODP 0.7702 11.9450
NN model variation All clients use 2 layer NN 0.8400 10.2239
Linear regression model LR modelling used in all clients 0.8166 10.4312
Support vector machine model SVM modelling used in all clients 0.7968 10.9689
Heterogeneous model development LR for UniSQ and NN for VDB clients 0.8283 10.4415
Heterogeneous model development LR for VDB and NN for UniSQ clients 0.8410 9.7914
Baseline model DoAFedP-NN model 0.8475 10.1551
Section 3. The analysis demonstrated that feature reduction negatively
impacted model performance. Specifically, removing LZC and SODP led
to a decline in model quality, with the correlation dropping to 0.8374
and 0.7702, respectively.

In addition, variations in model-building approaches were shown
to affect performance. Reducing the number of hidden layers in the
NN model design resulted in a small reduction correlation and increase
in the RMSE observed. The experiments investigated the efficacy of
fitting linear regression and SVM models which observed correlations
of 0.8166 and 0.7968 respectively.

In this case, the NN model consistently outperforms all other mod-
elling experiments. However, practical scenarios may benefit from a
heterogeneous modelling approach. The capacity of this FL architecture
with pseudo data generation to facilitate heterogeneous model develop-
ment was illustrated by combining linear regression and NN modelling
across different clients. In particular, applying linear regression to
the VitalDB dataset and NN modelling to the UniSQ dataset resulted
in only a marginal reduction in model quality—less than one per
cent—compared to the uniform modelling approach of the standard
DoAFedP-NN implementation.

5.4. Data optimisation

The quantity of pseudo data generated by client information is
crucial for effective FL, as it captures the nuances of local models in
developing a global model. Fig. 15 illustrate that increasing pseudo data
points enhances the correlation and reduces the RMSE between local
and global models up to a certain point. This occurs at 2000 pseudo
data points per client. Beyond this threshold, additional pseudo data
yields minimal improvement, indicating diminishing returns for com-
putational expense. Identifying the optimal volume of pseudo data is
essential for computational efficiency, achieving desired accuracy levels
without incurring excessive computational costs. Balancing resource
optimisation with model accuracy is key for the effective deployment
of the DoAFedP-NN model, enhancing the practical viability of FL
applications in diverse real-world settings.

5.5. Privacy protection measures

This FL approach preserves patient privacy by only sharing model
parameters and aggregated statistics outside the local client [21]. This
ensures that raw patient data remains on local clients. Sharing only the
mean and standard deviation of feature distributions does not threaten
privacy because these summary statistics are aggregated over multiple
patients and do not reveal individual data. This minimal information
is too general to reconstruct personal details, ensuring that patient
confidentiality is maintained while still enhancing the collaborative
model [49]. Patient privacy is strengthened through a one-shot FL
approach, which restricts client communication to a single round.
This approach significantly reduces the encryption overhead, improv-
ing both efficiency and security. Additionally, this method minimises
opportunities for data attacks or manipulation during data exchanges,
further enhancing the overall security of the FL process [32,50]. Fur-
ther supporting privacy, real-world applications would incorporate ad-
vanced encryption methods, such as transport layer security (TLS), to
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Fig. 15. Association of client and global models with variation in the number of pseudo
data points generated.

secure data transmissions [51]. Additionally, techniques like differen-
tial privacy can be employed to further protect individual data points
during model updates.

6. Conclusion

This study introduced the DoAFedP-NN framework, which leverages
FL to develop robust EEG-based depth of anaesthesia (DoA) models
while addressing data isolation issues common in medical applications.
By employing a novel pseudo-data aggregation method, the framework
enables one-shot FL, preserving data privacy while maintaining strong
performance across diverse datasets. The results, based on a 5-fold
cross-validation with a 6-client model, demonstrated that DoAFedP-NN
consistently outperforms benchmark and state-of-the-art FL methods
such as FedProx, FedNova and SCAFFOLD. The model achieved average
correlations with the BIS index of 0.8472 for UniSQ and 0.8542 for
VitalDB clients, significantly outperforming the traditional benchmarks.
This performance underscores the framework’s capacity to handle het-
erogeneous data and model situations, ensuring generalisation across
clients. The ability of DoAFedP-NN to function effectively in non-IID
cases marks it as a practical and scalable solution for real-world medical
applications, where direct data sharing is often not feasible due to
privacy regulations. By drastically reducing communication efficiency
by approximately 98.9% compared to traditional FL, the DoAFedP-NN
method effectively maintains privacy and model performance.

The proposed FL approach overcomes data-isolation issues in ma-
chine learning development for medical applications to facilitate the
development of more robust analytical models. Future work should ex-
plore more advanced pseudo-data generation methods, test the frame-
work on larger and more diverse datasets, and further investigate the
impact of heterogeneous data and model architectures across clients.
Further research to demonstrate the privacy and security benefits of
the one-shot FL model in medical data analysis may be needed. The
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findings of this study advocate for a paradigm shift in medical data
analysis towards more collaborative and privacy-preserving methods to
improve model quality and, in turn, patient outcomes.

The code used in this study has been released at https://github.com/
ThomasSchmierer/DoAFedP.
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