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Abstract 

During yarn formation by ring spinning, fibres are bent into approximately helical shapes and torque or 

twist-liveliness is created. The yarn torque causes yarn instability, manifested as snarling or 

entanglements, and this instability must be controlled during manufacturing processes. Generally, the 

torque depends on yarn geometric factors such as the yarn twist, linear density and the fibre properties. A 

practical solution to the problem of twist-liveliness is the formation of a two-fold yarn. This twisting or 

plying process produces a yarn structure where the energy of the system is determined by purely 

geometrical constraints of the plied structure and consequently when an energy minimum is reached the 

plied yarn obtained from the process is torsionally balanced and torque-free. In the present paper, the 

stability of plied textile yarns will be evaluated using the Topological Conservation law (Fuller, F. B., 

1971, Proc.Nat. Acad. Sci. USA, 68, 815–819.) developed to study the post-buckling behaviour of twisted 

rods by Van der Heijden et al. (Int. J. Mech. Sci., 45, 161–196, 2003).The present work considers the 

equilibrium configuration of a series of multi-ply twisted yarns (2, 4, and 6 strands) of finite length. 

Several structural and mechanical properties are highlighted: (i) the influence of structural properties (the 

number of strands, the strand linear density and strand twist) and the ratio of the torsional and bending 

stiffnesses of the strands on the balance point in multi-ply yarns. The topological invariant of the twisted 

yarn (link) is used to calculate the ply and strand properties (writhe) and compared with experimental 

results obtained at CSIRO. The inter-strand pressure between strands of a multi-ply yarn, a feature of 
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interest for fibre interactions in yarn structures, is also calculated at the balance situation across a range of 

structural and mechanical conditions. 
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Spinning twist, writhe, twist, link, topological conservation, torsion, bending, multi-ply 
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1. Introduction  

For several decades, there has been a continuing interest in the mechanics of twisted yarns and 

their instability, such as the snarling of yarn and the spirality of knitted fabrics. One of the oldest 

works on the geometry of multi-ply yarns was carried out in 1956 by Treloar where a 

mathematical basis of the geometrical factors was introduced into the structure of multi-filament 

yarns (Treloar, 1956). Valuable studies on the mechanics of twisted yarns and instability caused 

by torque have been published by Gracie (1960), Hearle and his coworkers (Hearle, 1958 and 

Hearle and Yegin, 1971a,b) and Bennett and Postle (1979). By assuming helical shapes for the 

centrelines of the strands, expressions of forces and moments in the multi-ply yarn can be 

obtained using the static equilibrium equations. The theory for twisting and bending of a thin rod 

has been used to consider the multi-ply rods for either the balanced state or applied load cases 

(Fraser and Stump, 1997; Coleman and Swigon, 2000 and Thompson et al., 2002). Recently, 

based on the topological conservation (Fuller, 1971, 1978) for rods undergoing large 

deformations, Van der Heijden and his coworkers have published several papers on the 

mechanical behaviour of twisted rods (Van der Heijden and Thompson, 2000 and Van der 

Heijden et al., 2002), including modelling a single DNA molecule and analysing its supercoiled 

equilibrium ply configurations (Neukirch and Van der Heijden, 2002 and Van der Heijden et al., 

2003).  

In textile engineering, twisted structures are produced from staple fibres or filaments winding 

around one another. Both theoretical and experimental work has been carried out on twisted 

yarns, e.g., the derivation of torsional and bending properties of a yarn from the properties of the 

staple fibres (Platt et al, 1958a,b), an evaluation of the normal forces between twisted filaments 

(Batra, 1973), the stability of torque in plied yarns (Bennett and Postle, 1979) and the twist in 

balanced ply structures (Fraser and Stump, 1998). These models and analyses are described by 
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the theory of continuum mechanics with acceptable assumptions. The literature shows that the 

concept of Love (1944), that an ordinarily straight rod can be bent via end forces and moments 

into the form of a helix (corresponding to precession of a spinning top through Kirchhoff’s 

Kinetic Analogy), has been a basis of many research studies on spun textile yarns.  

In this paper, an initial analysis of 2-ply yarn assemblies (Tran et al, 2006a) is further developed 

for several cases of multi-ply yarns based on the combination of topological conservation and 

yarn kinetics. These yarn equations include a term for the pressure between the strands and allow 

an analysis of the inter-strand and total pressure of the strands in a multi-ply structure.  

The organization of the paper is as follows. In Section 2 the mathematical background for 

simulating a multi-ply yarn is discussed. The model of a multi-ply yarn is developed from the 

kinetic balance equations together with geometrical constraints based on topological 

conservation using three concepts of link, twist and writhe. The relationship between the 

structural parameters of the individual strands and the multi-ply yarn is also described in this 

section. Section 3 focuses on the special case of torque balance of a multi-ply yarn in the absence 

of any external forces. The analysis and predictions based on the present model are compared 

with some experimental results in section 4 and the final conclusions are given in section 5.  

2. Governing equations of a multi-ply yarn 

2.1 Geometrical model of multi-ply yarns  

Consider a yarn made from n strands of radius r and length L whose centerlines are wound on a 

cylinder of radius R in a right handed helix (Fig.1a,b). Each strand is considered as an elastic 

inextensible unshearable circular single yarn. The configuration of a strand (i) is specified by the 

position of a curve in space ri(s), where s is the arc length along the central axis of the yarn.   

Let {X1, X2, X3} be a fixed rectangular Cartesian coordinate system and {x1, x2, x3}, a moving 

coordinate system (Fig.1(a)) whose first two axes coincide with the principal axes of the strand 

cross section, while the third axis coincides with the tangent to the strand axis, i.e. 

                                     i
3

d
ds

=
r

x  .                                                  (1) 
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                                                 (a)                                                                        (b) 

Figure 1 (a) Schematic diagram of a strand wound on a cylinder, showing fixed Cartesian and 

moving coordinate frames; (b) the image of a multi-ply yarn obtained at CSIRO.       

   

Let ψ, θ, φ  (three Eulerian angles) be the angular rotation of the single yarn around the X3 axis, 

the helical ply angle of the strand and the twist angle of a strand, respectively. The centreline of 

strand (i) can be expressed in the fixed frame as follows (Neukirch and van der Heijden, 2002) 

             ( ) ( )i
i ns s−=r K r1

1 ,                                   (2a)  

with     
n

cos sin
n n

sin cos
n n

π π − 
 

π π =  
 
  
 

K

2 2 0

2 2 0

0 0 1

  and   ( ) ( )T s R sin , R cos , s cos ,= ψ − ψ θr1  (2b,c) 

where          ( )d sin ;
ds R
ψ θ

= ψ =0 0  (3a,b)  

and n is the number of strands.  
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The moving and fixed coordinates are related by an orthogonal transformation that can be written 

as follows  

 

sin sin cos cos cos cos sin sin cos cos cos sin
sin cos cos sin cos cos cos sin sin cos sin sin

cos sin sin sin cos

− ψ φ + ψ φ θ ψ φ + ψ φ θ − φ θ     
     = − ψ φ − ψ φ θ ψ φ − ψ φ θ φ θ     
     ψ θ ψ θ θ     

1 1

2 2

3 3

x X
x X
x X

 (4) 

We then have 

 ( )
3

T sin cos ,sin sin ,cos= θ ψ θ ψ θx .  (5) 

Since the centreline of each strand lies on a cylinder of radius R, a cylindrical coordinate frame 

{ }3R X, ,ψe e e is introduced as follows 

 
3

R 1

2

X 3

sin cos 0
cos sin 0

0 0 1
ψ

  ψ − ψ   
     = ψ + ψ     
         

e X
e X
e X

. (6) 

Let k be the curvature vector whose components (k1, k2, k3) relative to the moving frame are the 

curvatures in the principal directions x1 and x2 and the local twist  of the strand, respectively. The 

governing equations of the evolution of the frame {x1,x2,x3} along a strand centerline are 

expressed as follows (Love, 1944), 

 i
i

d
ds

= ×
x

k x , (7) 

where, from (4),            

 1
d dk sin sin cos
ds ds
θ ψ

= φ − θ φ , (8a) 

                    2
d dk cos sin sin
ds ds
θ ψ

= φ + θ φ , (8b) 
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 3
d dk cos
ds ds
φ ψ

= + θ .                                                              (8c) 

 

By noting that the distance between the centerlines of two adjacent strands ri(s) and ri+1(s) is 2r 

and the tangents at a contact point of two adjacent strands are orthogonal to the line connecting 

the centreline points at the contact point, the following geometrical conditions can be obtained 

(Neukirch and van der Heijden, 2002) 

 
m cos cos m sin ,

n

m cos sin sin m sin ,
n

π + θ − θ − =  ρ 
π θ + θ θ − = 

 

2 2
2

2

2 42 2

2 0
 (9a,b) 

                   where    i 1 is s Rm ,
R r

+ −
= ρ = .  

Here si+1 and si are the arclength parameters of the two sections in contact. 

2.2 Geometrical constraints imposed by topological conservation conditions 

Topological studies on the behaviour of closed rods undergoing arbitrary deformations have 

defined the concepts of link, twist and writhe (Fuller, 1971), where the link can be thought of as 

the number of turns put into a bent rod before gluing the ends together to form the closed rod. 

According to the topological conservation law developed by Fuller (1971, 1978), during the 

deformation of the closed rod the link, Lk, is invariant and is expressed as follows  

       k w rL = T + W , (10) 

where Tw is the total internal twist in the rod after the closed rod is allowed to deform under the 

action of the torque in the rod, and Wr, called the writhe, is a measure for the out-of-plane 

deformation (Fuller, 1971). Mathematically these quantities are expressed as follows 
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                                  ( )( )

w 3

' '
i j i j

r i j3

i j

1T = k ds,
2π

r (s )×r (s ) r(s )-r(s )1W = ds ds ,
4π r(s )-r(s )

ζ

ζ ζ   

∫

∫ ∫
                    (11a,b) 

where the integrations are performed over the entire length of the rod and the primes denote 

differentiation with respect to the argument.  The above assumes a closed rod but extensions of 

the topological conservation law apply to open rod configurations.  Neukirch and van der 

Heijden, (2002), developed the theory for a multi-ply structure consisting of multiple 

rods(strands) and we shall apply these results to multi-ply yarns. 

In the yarn spinning process the spinning twist, or total end rotation, of a single yarn can be 

considered as link. This link is fixed when the ends of the yarn are tied together after forming a 

hank from a number of loops consisting of n strands of length L, i.e., the loop number and length 

is n/2 and 2L, respectively. Since the yarn’s cross-section is assumed circular, the twist is 

regularly distributed along the yarn (i.e., k3 is constant), and hence (11a) gives (noting that the 

total length of yarn is nL, where n in the present case is even) 

                                
3

w
nLk

T =
2π  .                                                                                              (12) 

Furthermore, it was shown by Neukirch and van der Heijden, (2002) that for a multi-ply 

structure of constant angle θ the writhe is given by 

         ( )r
LW sin n cos .

2 R
= θ σ − θ

π
 (13) 

where σ is equal to either 1 or 0 corresponding to an odd or even number of strands, respectively.  

If we denote by τ the spinning twist per unit length of yarn (in units of radians per metre), then 

we have 

                                 k
nLL =
2

τ
π

 (14)  
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and on combining (10), (12), (13) and (14) we find the following relation  

     

                                  3
sin 2k =

2R
θ

τ +  . (15) 

We shall also be interested in the number of helical turns formed in the yarn for a given link 

parameter τ, as measured by the so-called ply twist. To derive a formula for this ply twist note 

that the number of turns of a helical thread of length L, helix radius R and angle θ is given by 

Lsin(θ)cos(θ)/(2πR). We thus define 

 
sin cos WrPly twist

2 R nL
θ θ

= = −
π , (16) 

where Equation (13) has been used and n is even. While writhe is a mathematical concept, we 

see that in the practical case of a plied yarn structure, writhe is essentially equivalent to the ply 

twist. The minus sign merely reflects the fact that a positive τ  produces a left-handed helix with 

negative θ. From Equation (14), we also define 

                
kL

Spinning twist
2 nL
τ

= =
π  .          (17) 

Both twist measures have units of turns per metre and will be used in Section 4 in the 

comparison against experimental results. 

2.3. Kinetic Governing Equations  

In this section we derive an expression for the inter-strand pressure of a multi-ply subject to the 

constant-link constraint discussed in the previous section. The force and moment balance 

equations for a single strand in the multi ply structure are (Fraser and Stump (1998), Thompson 

et al. (2002), Neukirch and van der Heijden (2002)) 

 
d ,
ds

+ =
F p 0  (18a) 
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d d + = ,
ds ds

×
M r F 0  (18b) 

where F and M are the internal force and moment, respectively, and p is the pressure (contact 

force per unit length) on the strand exerted by the neighbouring strands. We shall assume linear 

constitutive relations between the generalized stresses (the moments M) and the generalised 

strains (the curvatures and twist k1, k2, k3) so that we can write 

 3
3 3 3

d
B Ck ,

ds
= × +

x
M x x  (19) 

where B and C are the bending and torsional stiffness of the strand, respectively. Taking into 

account the geometry of the strands in the multi-ply (see Figure 2) we can write for the pressure 

 j 1, j j 1, j ,+ −= +p p p  (20) 

where (j-1) and (j +1) label adjacent strands of the strand under consideration (j).  pj+1,j and pj-1,j  

are the pressures exerted on strand (j) by strands (j+1) and (j-1), respectively. We shall call them 

inter-strand pressures and if we denote their magnitudes by pj+1,j and pj-1,j then we can write 

 

 ( ) ( )
( ) ( )
( ) ( )

( ) ( )
( ) ( )
( ) ( )

j j 1 j 1 j j 1 j 1
j 1, j j 1, j j 1, j j 1, j

j j 1 j 1 j j 1 j 1

s s s s
s p s ; s p s .

s s s s
+ + − −

+ + − −

+ + − −

− −
= =

− −

r r r r
p p

r r r r
 (21a,b) 

Here we have assumed frictionless contact so that the pressures act normal to the contacting 

surface. By symmetry of the uniform multi-ply yarn we have |pj-1,j| = |pj+1,j| = pj and hence the 

total pressure on strand (j) is given by    

 

 j j 1, j j 1, j j R R
2p 1 cos msin e pe ,
n+ −

 π  = + = ρ − θ − =  
  

p p p            (22)  

where m, ρ and the radial unit vector eR were introduced in Section 2.1, and p is the magnitude of 

total pressure on a single strand, directed normal to the ply axis of the multi-ply yarn.   
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Figure 2  The inter-strand pressures on strand (j) from strand (j+1) and strand (j+1) of a multi-

ply yarn. The cross-section of the yarn is only schematic. 

 

Since we have assumed a helical shape for the strand the moment M can be computed from 

Equations (2) and (19). It was shown in Neukirch and van der Heijden, (2002) that the balance 

equations (18) can then be solved explicitly. In addition to the components of the force F, one 

finds the multi-ply equilibrium equation for the angle θ, 

                        
2 2

3 o o
3

r F rM
2n sin cos k r n cos 2 sin cos 0

B B
ρ ρ

θ θ + ρ γ θ + θ − θ =  (23) 

and an expression for the pressure, which, after eliminating k3, reads 

 ( )
2

2 2 2
0 03 3

sinp nBsin r F cos rM sin
n r cos 2

θ
= θ + ρ θ − ρ θ

ρ θ
                         (24) 

Here we have allowed for an end force F0 and an end moment M0, both applied axially to the 

overall yarn (they enter as boundary conditions to Equation (18)). 
C
B

γ =  is the ratio of the 

strand torsional to bending stiffness. In Equation (23) the strand local twist k3 is a constant that is 

still to be determined. 

2.4. Combining the Kinetic Governing Equations with the Topological Constraint 

In order to fix k3 we need to formulate a final boundary condition specifying how the multi-ply 

yarn is controlled torsionally under loading. There are several possibilities. One could specify k3 

if one controlled the moment in the individual strands directly. However, in the present (more 

natural) case we control the overall multi-ply yarn, with the individual strands prevented from 
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rotation within it. In this case what one controls is the link or spinning twist as discussed in 

Section 2.1. Thus, treating τ as a given parameter, a combination of (15) and (23) yields  

 
2 2

3 0 0r F rM
2nsin cos nsin 4 r n cos 2 sin cos 0

4 B B
ρ ργ

θ θ + θ + τρ γ θ + θ − θ = .  (25) 

3  Self-balance of a multi-ply yarn   

When no loads are applied (Fo = Mo = 0), the multi-ply yarn is said to be in its self-balanced 

state. The equilibrium equation (25) and the expression for the pressure (24) then reduce to 

 

3

4

3 3

2sin cos sin 4 r cos 2 0,
4

Bsinp .
r cos 2

γ
θ θ + θ + τρ γ θ =

θ
=

ρ θ

 (26a,b) 

In these expressions ρ is to be considered a function of n, r and θ through Equation (9). For given 

initial yarn parameters (count, number of strands and bending and torsional stiffnesses) and the 

link parameter τ,  Equation (26a) can be solved in conjunction with Equation (9a,b) to give the 

ply angle θ and the ratio ρ, upon which the Equation (26b) can be used to obtain the pressure in 

the zero-torque state. 

4. Numerical examples and discussion 

In this section the balance of multi-ply yarns consisting of different numbers of strands will be 

analyzed and compared with experimental data. The inter-strand pressure and the total pressure 

on strands for the case of balanced multi-ply yarns are also calculated. The analysis is carried out 

with a range of yarn counts and spinning twists.   

4.1. Experimental method used to measure the ply in zero-torque multi-ply yarns 

The torque in spun single wool yarns depends significantly on the yarn structural parameters and 

the environmental conditions (Tran and Phillips, 2006b; Mitchell et al., 2006).  In particular for 

wool yarns that are investigated in normal conditions (65% r.h., 20°C) the viscoelastic nature of 
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wool causes several time-dependent effects. For this reason the balance in multi-ply yarns has 

been measured wet to ensure that the wool polymer is at conditions above the glass transition and 

the storage history of the material is eliminated. 

To measure the ply at the zero torque balance point a single wool yarn was wound onto a one 

metre drum to form a series of yarn loops, either 1, 2 or 3 loops. The two ends of the yarn were 

tied together thus forming a topologically closed system. On removal from the drum one paper 

clip was attached to the loops of yarn and the loops were allowed to rotate to form a plied 

structure due to the inherent torque in the single yarns. The initial 1, 2 or 3 loops formed either a 

2-ply, 4-ply or 6-ply arrangement respectively, nominally 0.5 m long. The plied yarn was 

immersed in a column of water at ~20°C and allowed to relax for 15 mins before the ply twist 

was measured wet. The method was repeated 10 times and the results averaged.  Yarns of 19.1, 

40 and 80 Tex with a range of twist factors, usually 60 to140, were measured. 

4.2. Analysis of the balanced yarn structure  

In this section multi-ply yarns comprising 2, 4, 6 strands will be analyzed by determining the 

relationships between the spinning twist (link) and the ply twist (writhe) or the helical ply angle. 

For isotropic materials, the ratio of torsional to bending stiffness (γ) of a circular rod is related to 

Poisson’s ratio (ν) by the equation, γ = 1 /(1+ ν) (Thompson et al., 2002). The mechanical 

properties of wool fibres are highly anistropic, and for fibres, γf is around 2/3 (dry) and 0.1 (wet) 

(Postle et al., p.20, 1988). The value of γy for spun yarns is more complex and is influenced by 

the yarn structure as well as the material properties of the fibres.  

For the purposes of modelling in this paper, theoretical estimates of yarn torsional stiffness C and 

bending stiffness B have been used to obtain typical values applying to yarn (γy). A detailed 

model of B (Ly and Denby, 1984) has shown a range of effects on B due to the nature of natural 

staple fibre properties. A geometric model of the contribution of fibre bending and torsion to the 

yarn torque (Platt et al., 1958) highlights the effect of γf. This allows an estimate of γy using 

typical yarn parameters and shows that γy covers the range 0.5-3.0 in dry conditions and 0.3-1.2 

in wet conditions. In the present study, which is directed at wet properties of plied yarn, a value 
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of 0.7 is used and, where appropriate, a range of γy from 0.5 to 1.0. Furthermore, in this analysis, 

the radius of the strand is calculated as a function of the yarn count, packing fraction and fibre 

density. For example, the packing fraction used for wool worsted yarns is 0.63, the fibre density 

is 1.31 g/cm3 and the single yarn radius is determined using Grosberg’s formulae (Booth, 1975). 

Plied yarns consisting of two strands (n = 2, so that R = r, or ρ=1) form an important practical 

case of multi-ply yarns. The effect of spinning twist initially applied to a single yarn or strand on 

the conditions for the balance of a 2-ply yarn is described in Figures 3, 4 and 5. 

 

 

Figure 3 The calculated relationship between the helical ply angle (θ) and the spinning twist 
(link) at the balance point of 2-ply yarns for varying γ and yarn count. 
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 Figure 3 shows the relationship between the spinning twist and the ply angles for a range of 

strand counts and various ratios of torsional stiffness to bending stiffness. Figures 4 and 5 

express the ply twist and the ratio of ply twist to spinning twist respectively against the spinning 

twist. 

Comparison of Figures 3 and 4 shows that for a given yarn count (linear density), the (negative) 

ply helical angle and the ply twist both increase with spinning twist.  Figure 3 shows that for a 

given spinning twist, the ply helical angle increases with the strand count but the ply twist 

decreases as shown in Figure 4, simply due to the geometry, i.e., the increased radius of the 

higher count yarn. Although the effect of the strand count on the ply twist is high, the effect of 

the ratio of torsional stiffness to bending stiffness of strands γ on the ply twist at the point of 

balance is low. Similar behaviour is seen in Figure 5 where the familiar textile ratio of ply twist 

to spinning twist decreases with increasing strand count and spinning twist but is not strongly 

dependent on γ. 

 

Figure 4  The calculated relationship between ply twist and spinning twist at the balance point 
of 2-ply yarns for varying γ and yarn count. 
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The predictions for the zero-torque balance point are compared with preliminary experimental 

results for a series of two-ply yarns using single yarns of 19.1 Tex, 40 Tex, 80 Tex and γ = 0.7 in 

Figure 6. The results obtained from the present work are in good agreement with the 

experimental ones for a large range of yarn counts and their differences are approximately 10% 

for two-ply yarns. 

Figure 5   The ratio of the ply twist and the spinning twist (link) of the 2-ply yarns at the 
balance point for varying γ and yarn count. 
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The helical ply angle and the ratio of ply twist to spinning twist are plotted against spinning twist 

in Figures 7 and 8 for 4-ply and 6-ply yarn using strand counts of 19.1, 40 and 80 Tex. 

Interestingly, the ply angle for a particular strand count shows a relatively small change as the 

number of plies increases whereas the ratio of ply twist to spinning twist decreases significantly 

as the number of plies increases. For example, at a spinning twist of 950, the ply angle is 

approximately 22° for the 80 Tex 2-ply yarn (Figure 3) and about 18° and 17° for the 4-ply and 

6-ply 80 Tex yarns (Figure 7), whereas the ply twist to spinning twist ratio is about 33%, 19% 

and 9.5% respectively(Figures 5 and 8). Again this large change in the ratio is due to the 

increased yarn radius as the ply number increases. 

 

 

 

Figure  6 The ratio (%) of  ply twist to the spinning twist of a balanced 2-ply yarns plotted against 
the spinning twist showing theoretical (solid line)and experimental results(o) for strands of 19.1 
Tex, 40 Tex and 80 Tex strands, using γ = 0.7. 
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Figure 7 The helical ply angle plotted against the spinning twist of a balanced 4-ply yarn and a 
6-ply yarn, and the influence of the strand count (19.1, 40 and 80 Tex), using γ = 0.7.                     
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Although the effect of the stiffness ratio γ on the balance is not large, see both Figures 5 and 9, 

the results show that when the γ ratio increases the ratio of ply twist to link increases, reflecting a 

small increase in the helical ply angle. 

 

 

 

 

 

 

 

 

Figure 9 The ratio of ply twist to spinning twist plotted against the spinning twist for balanced 
4-ply and 6-ply yarns with different γ ratios using single yarns of 80 Tex.                                       

Figure 8 The ratio of ply twist to spinning twist plotted against the spinning twist of balanced 4-
ply and 6-ply yarns.  
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Figure 10 combines a number of features to show the balanced ply condition against strand 

count, spinning twist and number of strands in the multi-ply structures.  

 

 

 

 

 

 

 

The predictions for the balance point based on topological conservation are also compared with 

several preliminary experimental results for multi-ply yarns (n = 4 and n = 6). The theory shows 

that the ratio of ply twist to spinning twist decreases rapidly as the number of plies increases. The 

experimental data show a similar trend and the ratio decreases significantly as the number of 

plies increases, see Figure 11. While the agreement between theory and experiment is good for 

the 2-ply case in Figure 6, the error between theory and experiment increases as the number of 

plies increases, see Figure 11. This may relate to the simple geometric model used in Section 2.1 

Figure 10 The ply twist plotted against the spinning twist of a balanced multi-ply yarn and the 
strand count for 2, 4 and 6 strands, using  γ = 0.7. 
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that locates the position of the strands on a cylinder. This approximation is true for 2-ply yarns 

but becomes less accurate as the number of plies increases.  

 

 

 

4.3.  Pressure on strands of a multi-ply yarn  

In this section, three single yarns of 40, 20 and 13.3 Tex were modelled to investigate the inter-

strand and total pressures at the balanced point of multi-ply yarns comprising 2, 4 and 6 strands. 

The bending stiffness B (mN.mm2) of a strand is determined as follows (Ly and Denby, 1984, 

Postle et al., 1988)  

 

Figure 11 The ratio of ply twist to the spinning twist of balanced 4-ply and 6-ply yarns plotted 
against the spinning twist showing a theoretical (solid line) and experimental results (o), using γ = 
0.7. 
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f

2
12 2

1 2

Ed T
B 62.5 10 C C 0.97−= × ×

ς  (27)   

 

where C1, C2 are the correction factors from the influence of the fibre diameter distribution and 

the yarn twist respectively; E (mN/mm2) is Young’s modulus of wool material; df (µm) is the 

fibre diameter; ς (g/cm3) is the fibre density and T (Tex) is the yarn count of strands. In the 

present work, these quantities are chosen as follows:  C1 = 1.28 (Postle et al., 1988) associated 

with df = 19 µm; E = 4 x 106 mN.mm-2 (Ly and Denby, 1984); ς = 1.31 g.cm-3 (Owen, 1964) and 

C2 is given by (Postle et al., 1988)  

 

                                              (28) 

 

where γf is the ratio of the fibre torsional stiffness to its bending stiffness and γf = 0.5 in the 

standard laboratory conditions (Ly, 1983 and Postle et al., 1988)) and ψ is the strand twist angle 

defined in Section 2.1. 

 

Equation (26b) shows that after removing external forces and reaching the balance point, each 

strand of a multi-ply yarn experiences inter-strand pressures from the adjacent strands and the 

total pressure (from the inter-strand pressures) is radial. Figures 12, 13 and 14 describe the inter-

strand pressure and radial total pressure on strands plotted against the spinning twist of the 2, 4 

and 6-ply yarns at the balance point for different strand counts of 40, 20 and 13.3 Tex, 

respectively. 
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Figure 13 The calculated inter-strand and total pressure for 2, 4 and 6-ply yarns at the 
balance point using 20 Tex strands.

Figure 12 The calculated inter-strand and total pressure for 2, 4 and 6-ply yarns at the 
balance point using 40 Tex strands.  
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These results identify some interesting behaviour for the multi-ply yarns. While the differences 

in the total pressure are negligible at low spinning twist (for example, less than 300tpm for 40 

Tex, 400tpm for 20 Tex and 500tpm for 13.3 Tex), a clear difference is observed for the inter-

strand pressure. Generally, the effect of the number of strands on these two kinds of pressure 

shows two contrasting effects. As the number of strands increases, the total pressure decreases 

but the inter-strand pressure increases. Furthermore, the total pressure tends to reach a stable 

value with increasing spinning twist. This stable total pressure is particularly evident for the 6-

ply yarns from 40 Tex yarns. The effect of inter-strand pressures may have very practical 

consequences in relation to fabric performance. The inter-strand pressures may influence the 

lateral compression of strands and influence the bulk in the strand and multi-ply yarn as well as 

the movement of fibres in the yarn structure.  The latter effect has potential to affect the shedding 

Figure 14 The calculated inter-strand and total pressure for 2, 4 and 6-ply yarns at the 
balance point using 13.3 Tex strands. 
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of fibres and the formation of pills in textile products and further studies will address this 

behaviour.  

 

In order to further evaluate the influence of structural properties of a multi-ply yarn on the inter-

strand and total pressures, three multi-ply yarns of the same resultant count (80 Tex) prepared 

from 2x40tex, 4x20tex and 6x13.3tex were considered. Figure 15 depicts the total pressures and 

inter-strand pressure with respect to spinning twist for the three multi-ply yarns. The results in 

Figure 15 confirm the influences of the number of strands on the total pressure and inter-strand 

pressure on strands. 

         

 
 

 

 

 

5. Conclusion           

The equilibrium configuration of a balanced multi-ply yarn has been analysed and predicted 

using the yarn kinetic governing equations and geometrical constraints based on the principle of 

Figure 15 The calculated inter-strand and total pressure for 80 Tex yarns at the 
balance point prepared from 2, 4 and 6-ply yarns. 
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topological conservation. The effects of the initial single yarn parameters (spinning twist, 

diameter (count), yarn torsional and bending stiffness) on the balance point in 2-ply, 4-ply and 6-

ply yarns has been established. The model results show good agreement at low numbers of 

strands with preliminary experimental results on wool worsted multi-ply yarns obtained at 

CSIRO. The theoretical analysis shows how the structural parameters of multi-ply yarns, such as 

spinning twist, initial single yarn count, number of strands and the fibre material properties 

affects the geometry of a multi-ply yarn. The interstrand pressure in multi-ply yarns has been 

calculated and provides a basis for studying related yarn and fabric structural properties, e.g., 

yarn bulk, fibre migration and pilling. 
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