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ABSTRACT: In the DPD simulation of particulate suspensions, the viscosity of the solvent

phase is typically estimated by a non-equilibrium approach, where the fluid is subjected to

a flow process (a shear flow), and the local stress and shear rate tensors are calculated; the

obtained values (shear stress/shear rate) are then used in calculating the particulate fluid

rheology, for example the ratio of the suspension to the matrix viscosity (reduced/relative

viscosity) for a given volume fraction of the suspended phase. However, when suspended

particles are added, an additional length scale is introduced into the solvent system and this

may affect the solvent’s macroscopic properties. In this study, a particulate suspension is

simulated using a spring model, and the solvent’s viscosity is estimated taking into account

the finite-size effect (i.e., in the generalised hydrodynamic regime, as hydrodynamics of

an integrable system) to produce improved results. Furthermore, it is observed that the

simulation results are also affected by the repulsion strength and an appropriate high value

of this coefficient, where the actual solvent viscosity in the hydrodynamic limit is still kept

close to the input viscosity, can lead to a further improvement. New results are presented

and compared with existing data.
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1 Introduction

Particulate suspensions are widely encountered in natural and industrial processes. They

have been intensively investigated, both computationally and experimentally. Particulate

suspensions can be characterised by the dependence of their reduced viscosity on the volume

fraction and the shear rate, their non-zero normal stress differences which are functions of

the Péclet number, and the migration of solid particles from high to low shear rate regions

[1].

Generalised hydrodynamics are developed for simple fluids, as a formulation of integrable

system [2,3]. Their transport coefficients are no longer constant but are functions that can

vary in space and time - they are dependent on the wavelengths and the frequencies of ther-

mal fluctuations occurring at a finite temperature. For fluctuations with long wavelengths

and low frequencies, the fluid behaves like a continuum (original hydrodynamics). For fluc-

tuations with small wavelengths (molecular scale), the fluid is described by a system of

interacting particles (molecular dynamics). From the momenta and coordinates of particles

in the system at equilibrium, the dependence of its viscosity on the wavelength can be found,

and an extrapolation is then carried out to obtain the viscosity in the hydrodynamic limit.

With the generalised hydrodynamics theory, finite-size effects can be taken into account.

Dissipative Particle Dynamics (DPD) and Smoothed Dissipative Particle Dynamics (sDPD)

are popular numerical techniques for probing the behaviour of complex-structure fluids. The

latter can be considered as a direct discretisation of the Navier-Stokes equation with the

inclusion of thermal fluctuations, while the former is a coarse-grained model. Recent reviews

can be found in [4,5,6]. In DPD [7], each DPD particle is supposed to represent a group of

molecules, and forces acting on a DPD particle include conservative, dissipative and random

forces. The last two forces form a thermostat to keep the mean specific kinetic energy of the
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system constant. DPD conserves momentum locally and thus preserves hydrodynamics. In

the simulation of suspensions, a solid particle can be modelled by a set of frozen particles

[8], a single particle [9,10,11] or a few constrained basic DPD particles (spring model) [12].

With the use of single particles, a suspended particle is defined/modelled as (i) a hard

core covered by a soft shell by the inclusion of lubrication and core forces [9,10]; and (ii) a

hard sphere by using an exponential potential for the colloid-colloid conservative interactions

[11]. In computing the reduced viscosity, the viscosities of the solvent and the suspension are

typically calculated by considering a simple shearing flow of the solvent and the suspension

separately, respectively, and the reduced viscosity (defined by the ratio of the suspension

viscosity to the solvent viscosity) is found. However, for the former, when solid particles

are introduced, the solvent’s viscosity can vary according to the generalised hydrodynamics

theory. In this regard (to take into account the size effect due to the presence of solid

particles), we attempt to employ DPD in its generalised hydrodynamic regime [13,14] to

compute the solvent’s viscosity for a given volume fraction of the suspended phase. A

mechanism to approximately estimate the finite size effects (in the context of the spring

model) is proposed. Basically, there are two systems of the same base particles, namely a

free system and a system with spring constraints as a model for suspension, to be considered.

They are all described by the same linear continuum hydrodynamic equations. Due to the

spring constraints, the effective length scale of the solvent phase becomes smaller (less than

the side of the simulation box), and the viscosity of the constrained system is thus expected

to be smaller than that of the free system at a given wavelength/wave number. Based

on the difference in the hydrodynamic limit (defined as the limit when the wave number

approaches zero), a new length scale of the solvent can be estimated. For the viscosity

of the suspension, we are only interested in its values in the hydrodynamic limit, and a

non-equilibrium approach (simple shearing) can thus be applied for an efficient estimation.

We also discuss the effect of repulsive forces on the suspension results. In DPD, a repulsive

force is introduced partly to prevent particle overlap, and partly to provide a means to

control the compressibility of the model fluid independently of the number density, the cut-

off radius and the equilibrium temperature (mean specific kinetic energy). It will be shown

that an appropriate high value of the repulsion strength can lead to an improvement in the
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simulation results compared to the usual case of when water compressibility is enforced.

The remainder of the paper is organised as follows. Brief reviews of the classical and extended

forms of DPD are given in Section 2. Section 3 is concerned with generalised hydrodynamics

for simple fluids, where the relation between transverse current autocorrelation functions

(TCAFs) and the fluid viscosity is briefly summarised. Section 4 is concerned with partic-

ulate suspensions with the focus on the estimate of the solvent’s viscosity and the effect of

the repulsion strength. Section 5 gives some concluding remarks.

2 Dissipative particle dynamics

2.1 Classical form

In the dissipative particle dynamics (DPD) [7], the fluid is modelled by a system of particles

undergoing their Newton 2nd law motions:

mir̈i = miv̇i =

N
∑

j=1,j 6=i

(Fij,C + Fij,D + Fij,R) , (1)

where mi, ri and vi represent the mass, position and velocity vectors of a particle i =

1, . . . , N , respectively; N is the total number of DPD particles; the superposed dot denotes

a time derivative; and the three forces on the right side of (1) represent a conservative force

(subscript C) used to model the local thermodynamics, a dissipative force (subscript D)

to model the fluid viscosity and a random force (subscript R) that accounts for Brownian

motion,

Fij,C = aijwCeij , (2)

Fij,D = −γwDeij · vijeij , (3)

Fij,R = σwRθijeij. (4)
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Here, aij , γ and σ are the amplitudes, and wC , wD and wR the weighting functions, with

eij = rij/rij the unit vector from particle j to particle i (rij = ri − rj, rij = |rij|), vij =

vi−vj the relative velocity vector and θij a Gaussian white noise. In practice, the weighting

functions are usually of the form

wC =

(

1− r

rc

)

, (5)

wD =

(

1− r

rc

)s

, (6)

where s is a positive value (s = 2: standard value and s = 1/2: modified value) and rc

the force cut-off radius beyond which the weighting function vanishes. All these interaction

forces are pairwise, center-to-center, and zero outside a cutoff radius. The random force

cannot be chosen independently to the dissipative force if the specified energy of the system

(Boltzmann temperature kBT ) is to be maintained, which is the essence of the fluctuation-

dissipation theorem. This requires

wR =
√
wD, σ =

√

2γkBT . (7)

After tracking the state of the system (positions and velocities), we can define the density

and linear momentum of the fluid as

ρ (r, t) =
∑

i

〈miδ (r− ri)〉 , ρ (r, t)u (r, t) =
∑

i

〈miṙiδ (r− ri)〉 , (8)

and it can be shown that

∂

∂t
ρ+∇ · (ρu) = 0, ∇ = ∂/∂r, (9)

∂

∂t
(ρu) +∇ · (ρuu) = ∇ ·T, (10)

where T is the stress tensor given by

T = − 1

V

[

∑

i

mViVi +
1

2

∑

i

∑

j 6=i

rijFij

]

= −n

(

〈mVV〉+ 1

2
〈rF〉

)

, (11)
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in which n is the number density of particles, V is the volume of the bin and Vi is the

fluctuation velocity of particle i with respect to the mean field velocity (peculiar velocity),

and the angular brackets denote an ensemble average. The first term on the right side of

(11) denotes the contribution to the stress from the momentum (kinetic) transfer of DPD

particles and the second term from the interparticle forces. Equations (9) and (10) are

recognised as the usual conservation laws - the consequence of the mechanics (1). Two

important points should be noted: (a) the method is a truly particle-based method in the

sense that it guarantees the satisfaction of conservation laws of mass and momentum in the

mean; and (b) the stress, as a result of the microstructure specification, can be a posteriori

determined from the system state.

2.2 Imposition of fluid properties

One main drawback of the classical DPD formulation is that there is no direct link between

the DPD input parameters and the macroscopic properties of the fluid. As shown in [15,16],

it is possible to directly impose the viscosity and dynamic response of the fluid in the

hydrodynamic limit on the DPD system with the dissipative weighting function taken in its

generalised form wD = (1− r/rc)
s.

One can use two parameters s and γ to match the viscosity and dynamic response

ηD = η, (12)

η

ρD
= Sc, D =

2ηK
ρ

, η ≃ ηD, (13)

where Sc is the Schmidt number, η the input/specified viscosity, ηD and ηK the dissipative

and kinetic viscosities predicted by the kinetic theory, and η = ηK + ηD. In 3D space, the

parameters s and γ take the form

s =
−9 +

√
1 + 4C

2
, C =

6ScmkBTn
2r2c

5η2
, (14)

γ =
5η(s+ 1)(s+ 2)(s+ 3)(s+ 4)(s+ 5)

16πn2r5c
. (15)
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Since s > 0, it requires

η <

√

3ScmkBTn2r2c
50

for a given Sc, (16)

Sc >
50η2

3mkBTn2r2c
for a given η. (17)

In 2D, the two parameters are

s =
−7 +

√
1 + 4C

2
, C =

3ScmkBTn
2r2c

4η2
, (18)

γ =
4η(s+ 1)(s+ 2)(s+ 3)(s+ 4)

3πn2r4c
. (19)

Since s > 0, it requires

η <

√

ScmkBTn2r2c
16

for a given Sc, (20)

Sc >
16η2

mkBTn2r2c
for a given η. (21)

3 Transverse current autocorrelation functions (TCAFs)

In generalised hydrodynamics, the transport coefficients are allowed to be functions that can

vary in space or in space and time [2,3]. The current density is given by

j(r, t) =

N
∑

j=1

vjδ(r− rj(t)), (22)

where N is the number of particles and subscripts j denote particle number. Since there is

no overall motion, 〈j(r, t)〉 = 0 (< · > denoted the average operation). Note that the average

of j(r, t) is the macroscopic (hydrodynamic) variable and v the microscopic variable. The

Fourier transformation of (22) is

J(k, t) =

∫

dr exp(ik · r)j(r, t) =
∑

j

vj(t) exp(ik · rj(t)). (23)
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The spatial correlation function is defined as

Cαβ(k, t) =
k2

N
〈Jα(−k, 0)Jβ(k, t)〉, (24)

where α and β denote Cartesian indices.

For an isotropic fluid, the correlation function (24) depends only on the magnitude of k and

one can decompose it into the longitudinal (‖) and transverse (⊥) components relative to k

as

Cαβ(k, t) =
kαkβ
k2

C‖(k, t) +

(

δαβ −
kαkβ
k2

)

C⊥(k, t), (25)

where δαβ is the Kronecker delta, and

C⊥(k, t) =
k2

N
〈J⊥(−k, 0)J⊥(k, t)〉, (26)

C‖(k, t) =
k2

N
〈J‖(−k, 0)J‖(k, t)〉. (27)

In the case of Newtonian fluids, one has the following relation

C⊥(k, t)

C⊥(k, 0)
= exp

[

−ηkk
2t

ρ

]

, (28)

from which the viscosity in the Fourier-transformed space can be estimated from equilibrium

correlation function data.

4 Particulate suspensions

The solvent phase is modelled with η = 30 and Sc = 500 which correspond to the following

DPD parameters:

aij = 3.53, m = 1,

s = 0.42, kBT = 1,

γ = 6.97, rc = 1.5,

(29)
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and the number density n = 4. Here, rc is chosen to be greater than 1 in order to produce

a large size ratio of the colloidal to the solvent particle [17].

Here, the units of mass, length and energy are respectively chosen as the mass of a single

DPD particle (m), the force cut-off radius divided by 1.5 (rc/1.5), and the kinetic energy

(kBT ), where the superposed bar is used to denote a dimensional quantity. The repulsion

aij in (29) is obtained for a liquid with a water-like compressibility [18]. Figure 1 shows the

dependence of the solvent’s viscosity on the wave number k (k = 2π/λ, λ: the wavelength).

Components of k are chosen as the product of an integer and 2π/L for periodic boundaries

over a cubic region L×L×L. The present simulation periodic domain is taken as 15×15×15

(in DPD units).

4.1 Spring model for suspended particles

The multiphase nature of the suspensions may be modelled by using more than one DPD

species. In the spring model [12], a suspended particle is represented by a set of p basic

DPD particles (p is small) that are connected, through stiff springs, to some reference sites

collectively moving as a rigid body. For example, a spherical particle can be modelled using

6 or 8 basic DPD particles with their reference sites at the vertices of either an octahedron

or a cube, respectively. The shape and size of a suspended particle are actually defined by

the repulsive force field generated by the constituent particles of a suspended particle (not

by their locations).

The forces on constituent particles of the kth suspended particle are

Fk
i (t) =

N
∑

j=1,j 6=i

[

Fk
ij,C(t) + Fk

ij,D(t) + Fk
ij,R(t)

]

+ Fk
i,S(t), i = (1, 2, · · · , p), (30)

where Fk
i,S(t) = −H

[

rki (t)− rki (t)
]

is the spring force with H being the stiffness of the spring

and rki (t) the position of the reference site.

It should be pointed out that the sum of the spring forces on the constituent particles of
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the suspended particle has a zero mean. The reference sites are calculated through their

Newton-Euler equations, using data from the previous time step, while the velocities of their

associated DPD particles are found by solving the DPD equations at the current time step.

4.2 Finding a length scale introduced into the solvent system due

to the presence of suspended particles

Three approaches are presented. In the first two, the mean distance between the suspended

particles is taken as a new length scale to the solvent system. In the third approach,

transverse-current autocorrelation functions (TCAFs) are used to estimate a new length

scale.

4.2.1 Approach 1

A length scale that is introduced into the solvent system can be regarded as the mean

distance between the suspended particles; a convenient distance is an estimate of a side of

the cube of a particle,

λ =
1

n
1/3
c

, (31)

where nc is the number density of the colloidal (particulate) phase.

4.2.2 Approach 2

The mean inter-colloid distance is estimated as the radius of the sphere of the volume per

particle (the Wigner-Seitz radius [19])

λ =

(

3

4πnc

)1/3

. (32)
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4.2.3 Approach 3: TCAF

Here, we propose a scheme, based on TCAFs, to estimate a length scale introduced into the

solvent system from the spring constraints. For a given volume fraction of the suspended

phase, two corresponding systems, containing all the solvent particles and the constituent

particles of the suspended phase, are considered. Note that the solvent and the constituent

particles are all subjected to the same DPD parameters, i.e. those defined in (29). In the first

system, all the particles are acted on by DPD forces and are not under any other constraints.

In the second system, some of the particles (constituent particles) are constrained by the

springs to form suspended particles. The two systems are assumed to represent some simple

fluids. Results concerning the dependence of the viscosity on the wave number (wavelength)

by the TCAF approach for the two systems are shown Figure 2. Extrapolations are then

conducted to obtain the viscosities in the hydrodynamic limit (k → 0). Due to the pres-

ence of springs, an effective length scale of the constrained system is less than the side of the

simulation box, and its viscosity is seen to be lower. The constrained system in the hydrody-

namic limit can thus be considered as the free system at the wave number (wavelength) that

corresponds to the hydrodynamic-limit viscosity of the constrained system. This wavelength

is taken as a new length scale in the solvent phase.

Table 1 displays the effective wavelength of the solvent phase against the volume fraction

of the suspended phase by the three approaches, while Table 2 details the corresponding

effective wave numbers and effective viscosities in the TCAF case. Note that compressibility

of the solvent is matched to that of water, i.e. aij = 3.53, and the simulation box is taken

as 15× 15× 15 (in DPD units).

4.3 Effect of the repulsion coefficient

It will be shown that the input repulsion strength can affect the system viscosity. In

the present study, the input viscosity of the solvent phase is specified as 30. Water-

compressibility matching leads to aij = 3.53. By simulating Couette flow (a non-equilibrium

approach), the solvent’s viscosity is estimated as 29.08, close to the input value. Increasing
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aij , the solvent’s viscosity is observed to have a larger value, e.g. (29.66, 30.22, 30.66) for

aij = (6.50, 9.50, 18.50), which correspond to a positive change of 1.99%, 3.92% and 5.45%,

respectively. Increasing aij produces a less compressible fluid and is more effective in pre-

venting particle overlap. However, at large values, the conservative force can be dominant

and the DPD system has a solid-like behaviour (particles do not move, just oscillate about

their positions). Here, we limit our attention to the change within about 2 %, where the

diffusion coefficient is observed to stay constant at large times as shown in Figure 3.

4.4 Numerical results

Two solvent fluids with aij = 3.53 (water compressibility) and aij = 6.50 (a fluid less

compressible than water) are considered. Their viscosities are estimated taking into account

the finite-size effect due to the presence of the suspended particles. For the viscosity of the

suspension, we are only interested in the value in the hydrodynamic limit (k → 0). A simple

shearing at a small Péclet number of 0.18 (non-equilibrium approach) is thus considered here

as an efficient estimation. Note that the Péclet number (dimensionless shear rate) is defined

as Pe = γ̇a2/D0, where γ̇ is the shear rate, a is the sphere radius and D0 is the single-sphere

diffusion coefficient. The viscosity is calculated from the xy component of the stress tensor

(11), i.e. η = 〈Txy〉/γ̇.

Results concerning the dependence of reduced viscosity (ηr) on volume fraction (φ) are shown

in Figure 4 for aij = 3.53 and in Figure 5 for aij = 6.50. The variation of the reduced viscosity

can be divided into 3 regimes: dilute (φ . 0.02), semi-dilute (φ . 0.25) and concentrated

(φ & 0.25). They are compared with the theoretical result in the dilute limit [20]

ηr = 1 + 2.5φ, (33)

and the well-known empirical result deduced from the optimisation of viscous energy dissi-

pation [21]

ηr =

(

1− φ

φm

)−2

, (34)
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where φm is the random close-packing of monodisperse spheres. Here we take φm = 0.65.

It can be seen that the original hydrodynamic DPD produces improved results with increas-

ing repulsion strength aij . Viscosities with aij = 6.50 are noticeably larger than those with

aij = 3.53 in the semi-dilute and concentrated regimes. However, their values are still much

lower than those by the empirical relationship. At φ = 0.19 (semi-dilute), the reduced vis-

cosity is 1.59 for aij = 3.53, 1.78 for aij = 6.50 and 1.95 by the empirical result. At φ = 0.49

(concentrated), the reduced viscosity is 5.17 for aij = 3.53, 6.69 for aij = 6.50 and 17.37 by

the empirical result.

It can also be seen that the generalised hydrodynamic DPD in which a new length scale

is estimated by means of TCAF yields a better behaviour than the original hydrodynamic

DPD in all three regimes for both fluids considered. In the dilute limit, improved agreements

with Einstein’s relation are achieved. In the semi-dilute regime, visible higher-order effects

are observed. In the concentrated regime, faster growths are obtained. At φ = 0.49, the

reduced viscosity is significantly increased from 5.17 to 9.69 in the case of aij = 3.53 and

from 6.69 to 12.46 in the case of aij = 6.50. Furthermore, with aij increased from 3.53 to

6.50, a better agreement with the empirical relationship is also achieved with the proposed

TCAF-DPD approach.

For the generalised hydrodynamic DPD approaches based on sphere/cube mean distance,

it is observed that the reduced viscosity is overestimated in every case studied. The reason

for this could be that their estimations of a new length scale do not take into account of

the actual distribution of suspended particles (they are functions of the box volume and the

number of suspended particles only as shown in (31) and (32)). In contrast, the proposed

TCAF estimation of a new length scale relies not only on the number density of the colloidal

phase but also on the locations and velocities of particles in the system at equilibrium. As

a result, for systems having the same particle number density, the proposed estimation can

lead to different results for the new length scale.
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5 Concluding remarks

In this work, particulate suspensions are simulated with the dissipative particle dynamics

(DPD) method, in which the spring model is used to model suspended particles. In es-

timating the solvent’s viscosity, DPD is employed in its generalised hydrodynamic regime

to take into account the finite size effect due to the presence of suspended particles. The

effective sizes (wavelengths) are predicted by several approaches, and the transverse current

autocorrelation functions (TCAFs) approach is shown to yield the most reasonable results.

Improved reduced viscosities of the suspension are clearly observed in the dilute (φ . 0.02,

linear dependence), semi-dilute (φ . 0.25, visible higher-order effects) and concentrated

(φ & 0.25, rapid growth) regimes, compared to the theoretical dilute limit, and the best

know empirical results at non-dilute regime. Further improvement can also be acquired by

increasing the repulsion to an appropriate value, where the actual solvent viscosity in the

hydrodynamic limit is still kept close to the input viscosity and the diffusion coefficient of

the solvent still stays constant at large times.
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Table 1: Effective wavelength of the solvent phase against volume fraction of the suspended
phase by the three approaches. Compressibility of the solvent is matched to that of water,
i.e. aij = 3.53, and the simulation box is taken as 15× 15× 15 (in DPD units).

Effective wavelengths
φ Sphere-based mean distance Cube-based mean distance TCAF

0.0119 3.1018 5.0000 12.8671
0.0277 2.3263 3.7500 9.4465
0.0526 1.8611 3.0000 5.3996
0.0876 1.5509 2.5000 4.7463
0.1323 1.3293 2.1429 3.8475
0.1854 1.1632 1.8750 3.2045
0.2447 1.0339 1.6667 2.7583
0.3077 0.9305 1.5000 2.4303
0.3717 0.8459 1.3636 2.1586
0.4344 0.7754 1.2500 1.9544
0.4940 0.7158 1.1538 1.7431
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Table 2: Effective wave number, wavelength and viscosity of the solvent phase against volume
fraction of the suspended phase by the TCAF approach. Compressibility of the solvent is
matched to that of water, i.e. aij = 3.53, and the simulation box is taken as 15 × 15 × 15
(in DPD units).

φ Effective k Effective λ Effective η
0.0119 0.4883 12.8671 28.9109
0.0277 0.6651 9.4465 28.7144
0.0526 1.1636 5.3996 27.2179
0.0876 1.3238 4.7463 26.5560
0.1323 1.6331 3.8475 25.2043
0.1854 1.9608 3.2045 23.8032
0.2447 2.2779 2.7583 22.3348
0.3077 2.5853 2.4303 20.7466
0.3717 2.9108 2.1586 18.9952
0.4344 3.2149 1.9544 17.4017
0.4940 3.6047 1.7431 15.5091
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Figure 1: Solvent phase (aij = 3.53 (water compressibility), n = 4, m = 1, kBT = 1, rc =
1.5, η = 30, Sc = 500): the viscosity is a decreasing function of the wave number k (or an
increasing function of the wavelength λ = 2π/k).
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Figure 2: Process of finding a new length scale that is introduced into the solvent system
due to the presence of suspended particles. For a given volume fraction, two corresponding
systems (one without any spring constraints and the other with some spring constraints as a
model for suspension) are considered; they have the same total numbers of the base particles
and employ the same associated DPD parameters. The two systems are assumed to represent
simple fluids; through the TCAF approach, their viscosities are shown to depend on the wave
numbers (wavelengths). Extrapolations are then conducted to obtain the viscosities in the
hydrodynamic limit (k → 0). With springs, the effective length scale of the constrained
system is less than the system size L, and its viscosity is seen to be lower. The constrained
system in the hydrodynamic limit can be considered as the free system at the wave number
(wavelength) that corresponds to the hydrodynamic-limit viscosity of the constrained system.
This wavelength is taken as a new length scale in the solvent phase.
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Figure 3: Diffusion coefficient against time for several values of the repulsion. For aij =
(3.53, 6.50), the diffusion coefficients are observed to stay constant at large times. For larger
aij , there is some reduction in the coefficient and no significant diffusion at aij = 500.
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Figure 4: Reduced viscosity by original and generalised hydrodynamic DPD using the same
repulsion aij = 3.53 (water compressibility). The latter (TCAF) is seen to have a bet-
ter performance than the former in the dilute (φ . 0.02, linear dependence), semi-dilute
(φ . 0.25, visible higher-order effects) and concentrated (φ & 0.25, rapid growth) regimes.
It appears that the generalised hydrodynamic DPD based on sphere/cube mean distance
overestimates the reduced viscosity in every regime. Theoretical results in the dilute regime
[20] and empirical results [21], which have found widespread application, are also included
for comparison purposes.
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Figure 5: Reduced viscosity by original and generalised hydrodynamic DPD using the same
repulsion aij = 6.50 (a fluid is less compressible than water). The latter (TCAF) is seen
to have a better performance than the former in the dilute (φ . 0.02, linear dependence),
semi-dilute (φ . 0.25, visible higher-order effects) and concentrated (φ & 0.25, rapid growth)
regimes. It appears that the generalised hydrodynamic DPD based on sphere/cube mean
distance overestimates the reduced viscosity in every regime. Theoretical results in the
dilute regime [20] and empirical results [21], which have found widespread application, are
also included for comparison purposes.
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