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A B S T R A C T

The electrocatalytic nitrate reduction reaction (NO3RR) has attracted much attention due to the formation of 
value-added ammonia as well as being an environmentally benign process. However, there is still a lack of high- 
performance electrocatalysts and an in-depth understanding of the electrocatalytic reaction mechanism for 
NO3RR. Based on first-principles calculations, the partially reduced In2O3-x catalysts with different monolayers 
(MLs) of oxygen vacancies were examined for the electrochemical conversion of nitrate to ammonia. The 
thermodynamically favourable pathways were identified for the screened candidates with various MLs of oxygen 
vacancies from 0 to 3, and the Gibbs free energy evolution of the 2 MLs of oxygen vacancies was downhill. The 
catalysts’ performance is highly associated with the oxygen vacancy layers, and In2O3 with 2 ML of oxygen 
vacancies exhibits the highest NO3RR activity. The introduction of oxygen vacancies can enhance the interfacial 
charge density around In active sites. The PDOS comparison between 0 ML and 2 MLs unravelled that the oxygen 
vacancies can downshift the overall orbitals and make the defective In2O3 metallic, thus promoting the electron 
transfer for improved performance of NO3RR. Meanwhile, the competing hydrogen evolution reaction (HER) is 
effectively inhibited. This work not only proposes a high-performance electrocatalyst for ammonia production 
but also reveals the relationship between the layer number of oxygen vacancies and the NO3RR activity, thus 
highlighting vacancy engineering and providing novel insights into the design of NO3RR catalysts.

1. Introduction

Ammonia (NH3) is identified as a promising green hydrogen-rich fuel 
and is widely used in the production of nitrogen-containing fertilizers 
and chemicals such as pharmaceuticals, plastics and textiles [1,2]. The 
production of ammonia is considered one of the greatest inventions of 
the 20th century, which is centred around the energy-intensive Hab-
er-Bosch process [3]. The process takes up around 1 % of the world’s 
energy supply due to the demanding requirement of temperature (500 
◦C) and pressure (>200 atm), leading to 1.4 % of global CO2 emissions 
annually [4]. To reduce the energy consumption and environmental 
impacts, alternative strategies, such as physical and chemical and bio-
logical treatments, are being explored for ammonia production [5]. 

However, many processes are time-consuming and require multiple 
steps under harsh conditions (specific pH, high pressure and H2 feeding). 
In contrast, electrocatalysis is a promising option because of its ambient 
reaction conditions, renewable energy supply and environmental 
friendliness [6]. Previously, N2 was regarded as the most promising 
nitrogen sources due to its abundance in the atmosphere. Although 
many attempts have been made to electrochemically produce ammonia 
from N2, the production process is still plagued by issues such as large 
overpotential and the competing HER. For non-polar N2 molecule, the 
strong N–––N bond possesses a high bond energy of 941 kJ mol− 1, which 
makes it difficult to be captured and activated [7]. Therefore, there is an 
urgent need to search for new nitrogen sources for ammonia production.

Nitrate (NO3
− ) is a common pollutant of water resources and it may 
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arise from fuel combustion, industrial sewage discharge and farming 
[8]. This high-valence-state nitrate, existing in the soil and underground 
water, is a toxic chemical which can harm biodiversity and human 
health [9,10]. Besides, the partial conversion of NO3

− to NO2
− can in-

crease the risk of getting cancer and birth defects (blue baby syndrome 
and methemoglobinemia) [11,12]. Nevertheless, the low bond energy of 
the polar N = O bond (204 KJ mol− 1), high solubility and abundance in 
wastewater make it a promising nitrogen source with more efficient 
ammonia production compared to N2, while concomitantly allowing for 
reducing the impact of nitrate on the environment. The nitrate reduction 
reaction (NO3RR) is complicated with potential formation of multiple 
intermediates via different pathways, which is associated with the 
transfer of eight electrons and nine protons as shown below: 

NO−
3 (aq) + 9H+(aq) + 8e− →NH3(g) + 3H2O (l) (1) 

The complete NO3RR process is therefore environmentally friendly 
without harmful by-product formation. However, the intermediates may 
vary due to complex elementary steps, leading to varied overpotentials 
and final products. Moreover, the HER side reaction could inhibit 
ammonia production since the adsorbed H can block reactive sites, 
reduce the Faradaic Efficiency (FE) as well as contaminate the catalysts. 
Herein, it is reasonable to investigate the possible reaction pathways 
with preferred intermediates as well as evaluate the selectivity of the 
catalysts for efficient ammonia production.

To explore high-performance electrocatalysts, much attention has 
been devoted to TM-based candidates due to their unique electronic 
structure and earth abundance. Among noble TM-based electrocatalysts, 
Ru seems to be the most promising one for converting N-containing 
compounds to ammonia with high activity and selectivity [13]. By vir-
tue of D-band centre modulation, Ru-doped materials are regarded as 
one of the most effective catalysts [14–16]. Besides Ru, Pd has been 
shown to be highly active, whose (111) facet exhibited a high FE of 
79.91 % [17]. Nanostructured Ag and Ir were also synthesized and 
demonstrated high FEs of 96.4 % and 84.7 %, respectively [18,19]. 
Despite their potential for nitrate reduction, the use of noble metals is 
still hampered by high cost and scarcity. Therefore, nonprecious metals 
have been the centre of focus for the nitrate reduction reaction. Cu was 
widely investigated in terms of facet preference, oxidation state, defect 
engineering and synergy effect with other transition metals [20–23]. 
Through surface engineering, enhanced charge transfer or higher elec-
tronic density around the active site can promote the nitrate reduction 
process [21,24]. Besides, different types of substrates (nickel foam, MOF 
and Cu-PTCDA) can promote the hydrogenation of intermediates 
through the coordination regulation of Cu atoms [23,25,26]. Iron and 
iron-based alloys were also proven effective in catalysing the nitrate 
reduction reaction [27–29]. A high FE of 98 % for NO3RR was also 
achieved on the 2D Fe-MoS2 catalyst due to the influence of newly 
formed bonding/antibonding orbitals on stabilizing the NO intermedi-
ate [30]. Additionally, the performance of other TM-based electro-
catalysts, such as Co, Ni and Ti, was also evaluated [31–33].

Recently, p-block elements, such as boron, indium and phosphorus, 
have aroused enthusiasm due to their promoting effect when doped into 
transition metal-based catalysts [34–38]. Liu et al. doped boron atoms in 
Cu electrodes through a one-step electrodeposition strategy, where a 
high FE of 92.74 % was achieved for the nitrate reduction to ammonia. 
The B doping led to the change in charge distribution and local coor-
dination environment, which enhanced the nitrate adsorption and pro-
moted the intermediate conversion [39]. Deng et al. have prepared Co2B 
nanoparticles for nitrate reduction, where the Co-terminal surface ex-
hibits a high NH4

+ FE of 96.61 % [40]. The eco-friendly indium also plays 
an important role in the catalytic process of NOx reactants. The In was 
deposited on Pd nanoparticles for nitrate reduction under ambient 
conditions, where the sub-monolayer In can act as binding sites for ni-
trate with lowered activation barriers [41]. An optimal In coverage of 40 
% was obtained with the volcano-shape relationship between activity 

and In surface coverage. The single-atom alloy In-Pd bimetallene was 
synthesised, where the isolated single-atom Pd, surrounded by In, can 
boost the NO3RR process with a NH3 FE of 87.2 % [42]. The p-d 
hybridisation of In and Pd around the Fermi level enhanced the nitrate 
adsorption and reduced the energy barrier of the potential-determining 
step (PDS). Wang et al. have examined the catalytic potential of In-Cu 
single-atom alloy (In1Cu) for NO2

− reduction, where the dinuclear sites 
can enhance the adsorption of nitrite and optimize the reaction ener-
getics [43]. Herein, most of the research work on NOx reduction focuses 
on the synergistic effects of p-block elements, while the major active 
sites are still TMs. Recently, the exceptional catalytic potential of the 
pure p-block compounds was also highlighted, some of which were 
predicted to exhibit extraordinary performance with electrochemical 
steps being energetically downhill [44,45]. Motivated by the promoting 
effects of indium atoms, the pure p-block In-based catalysts were chosen 
for the study of nitrate reduction to ammonia. As an n-type semi-
conductor, indium oxide (In2O3) has attracted much attention as a 
photocatalyst due to its chemical stability and suitable band structure. 
However, the electrocatalytic activity of pure In2O3 is far from satis-
factory for widespread applications. Additionally, the stable phase of 
In2O3-x with a high degree of surface reduction has been reported [46,
47], where the metallic indium were also reported under certain con-
ditions. However, the NO3RR catalytic performance of In2O3 and its 
relationship with the oxygen vacancies are rarely reported and still 
under debate.

In this work, the catalytic performance of pure p-block catalyst In2O3 
with varied oxygen vacancies was systematically clarified using DFT 
calculations, which demonstrates that In2O3 with 2 ML of oxygen va-
cancies exhibits the highest activity for nitrate reduction. The electronic 
structure analysis has been conducted to explore the relationship be-
tween the catalytic activities and varied MLs of oxygen vacancies. Be-
sides, the proton adsorption energies were also obtained to evaluate the 
competing side reaction (HER), where the positive values indicate the 
high selectivity of the In2O3-x catalyst towards NO3RR. Finally, the In2O3 
catalyst with an optimum of 2 ML oxygen vacancies is proposed to be an 
attractive candidate with superior NO3RR performance, thus not only 
expanding the application range of p-block elements for ammonia pro-
duction but also providing insights into the rational design of efficient 
catalysts through vacancy engineering.

2. Computational details

First-principles calculations based on density functional theory 
(DFT) were conducted using the Vienna ab initio simulation package 
(VASP) [48,49]. The electron and ion interaction were described by the 
projector augmented wave (PAW) method [50]. The 
exchange-correlation approximation was estimated by a Per-
dew–Burke–Ernzerhof (PBE) functional [51,52]. The plane wave basis 
with a cut off energy of 450 eV was used. The energy and force threshold 
were 1 × 10− 5 eV and 0.01 eV Å− 1, respectively. The Brillouin zone was 
sampled by employing the Monkhorst− Pack k-point mesh for the total 
energy calculation. The bulk structure of In2O3 was obtained from the 
Materials Project database [53]. The (111) surface was constructed with 
a 3 × 3 × 1 supercell and five layers were built to mimic the reactive 
slab. The bottom two layers were fixed, and the top three layers were 
relaxed without any constraint throughout the calculations. To avoid the 
influence of adjacent images, the vacuum thickness was set to at least 16 
Å. To implement the van der Waals correction, Grimme’s DFT-D3 
method was adopted [54]. The solvent effect was considered by the 
implicit solvent model with the electric constant set to be 80 [55]. The 
charge density difference was evaluated and so was Bader charge 
analysis [56,57]. The free energies of H+ are corrected by previous re-
ports [58,59]. The projected density of states (PDOS) was analysed 
through VASPKIT which is an efficient pre- and post-processing program 
[60].
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3. Results and discussion

Since the pristine In2O3 possess limited catalytic performance [41,
61], the surface electronic regulation through vacancy engineering 
seems practical for the NO3RR process. From the perspective of avail-
ability, the partially reduced surface of In2O3 has already been reported 
experimentally [47,62,63], and also quantified by theoretical works 
[64,65]. Among the studied facets, the In2O3(111) surface is the most 
stable one which is already fabricated in the lab [66–68]. The structure 
of In2O3-x with negative formation energies of oxygen vacancies is 
demonstrated in Fig. 1(a), where the top five monolayers of oxygen 
atoms were sequentially removed as previously reported [69]. The 
number of oxygen atom removal layers, ranging from 0 to 3, was chosen 
for study, where 0 layer acts as a reference and 3 layers expose the 
metallic In on the surface. The other 4 and 5 layers were excluded since 
the 3-layer model already exhibits high instability based on electro-
chemical stability analysis [70,71]. The adsorption of nitrate on the 
surface is the first step for nitrate reduction. Due to the complex surface 
atomic structure, the initial adsorption configurations of nitrate onto the 
slabs were checked on different sites (top, bridge and hollow sites, etc.) 
as well as nitrate ion orientations. The possible adsorption configura-
tions and free energies were shown in Figure S1, where the most ther-
modynamically favourable ones were selected as shown in Fig. 1(b).

It should be noted that the nitrate adsorption on pure In2O3 without 
oxygen vacancy is thermodynamically unfavourable, which was thus 
excluded for the electrochemical reduction of nitrate to ammonia. In 
comparison, the nitrate adsorptions on the other defective surfaces were 
favoured. The adsorption energy increases with MLs and the adsorption 
configuration changes from the 3-O pattern to the 2-O pattern accord-
ingly. Besides, the bond length of N–O also increased above 1.23 Å, 
indicating that the adsorbed nitrate is captured and activated for further 
reduction.

The reaction pathway is a complicated process which involves the 
deoxygenation and hydrogenation stages of various intermediates. Be-
sides, the adsorption of key intermediates can lead to different reaction 
pathways as shown in Table S1. As shown in Fig. 2, the commonly re-
ported reaction pathways for NO3RR are demonstrated according to 
different adsorption configurations of NO. Initially, the adsorbed nitrate 
ions would be attacked by a proton-electron pair, leading to the for-
mation of NO2 with one water molecule released. Afterwards, NO2 
would also be reduced to NO. The direct deoxygenation of NO has been 
widely reported [72,73], which can be described as NO3

− (l) 
→*NO3→*NO2→*NO→*N →*NH →*NH2→*NH3→NH3(g). In addition, 
the formation of NxHyOz, such as NHO, NOH and NH2OH, was also 
observed experimentally during the NO3RR process [74,75], which was 
predicted by theoretical calculations and the key intermediate 
*NOH/*NHO was thought to be critical to the catalysts’ performance 

[76–78]. Thus, the O-end or NO-side pathway was also considered, 
which can be NO3

− (l) →*NO3→*NO2→*NO→*NOH/*NHO→ 
*NH2O→*NH2OH →*NH2→*NH3→NH3(g). Apart from the mentioned 
reaction pathways, other complicated ones can be obtained partially due 
to the change of intermediate configuration during the hydrogenation 
process. One such complicated pathway was confirmed in this work as 
indicated by the green arrows.

To explore the catalytic performance of In2O3 with various MLs of 
oxygen vacancies, the thermodynamically favourable reaction pathway, 
based on the Gibbs free energy change (ΔG), is identified. The criterion 
for intermediate preference at every bifurcation point is the Gibbs free 
energy difference. The Gibbs free energy evolution of nitrate reduction 
on the three reduced slabs is displayed in Fig. 3. After the adsorption of 
nitrate ions on reduced In2O3 with 1 ML of oxygen vacancies, the gen-
eration of NO2

− is a spontaneous process with a ΔG of − 1.42 eV, followed 
by *NO formation in an exothermic manner. For the first two deoxy-
genation steps, byproduct formation is also evaluated, where the 
desorption of NO2 and NO is found to be difficult with energy demands 
of 1.58 eV and 0.72 eV, respectively. The hydrogenation of the *NO 
intermediate may lead to the preferred formation of *NHO with a free 
energy change of − 0.86 eV, as compared to the formation of *NOH with 
an increased ΔG of 0.27 eV. Similarly, the further hydrogenation of 
*NHO leads to the formation of *NH2O instead of *NHOH with ΔG of 
− 0.33 eV and 0.23 eV, respectively. For the conversion of *NH2O to 
*NH2OH, an energy demand of 0.47 eV is required, which is also the PDS 
for the whole pathway. The desorption of possible byproduct NH2OH is 
easy due to the free energy change of only 0.02 eV. After the conversion 
of *NH2 to *NH3 (ΔG = 0.13 eV), the desorption of ammonia only re-
quires 0.02 eV, indicating the easy desorption of the final product. A 
similar pathway can also be found for the In2O3 with 3 MLs of oxygen 
vacancies, while the PDS changes to the conversion of *NH2OH to *NH2 
with a limiting potential of 0.41 V. For the 2-ML case, the reduction of 
nitrate, in contrast, follows the NOH pathway, resulting in different 
intermediates (*NOH and *NHOH) with a downhill evolution of Gibbs 
free energy change. The final desorption of ammonia requires an energy 
demand of 0.12 eV. The high activity of In2O3 with 2 MLs of oxygen 
vacancies was also confirmed in consideration of solvation as shown in 
Figure S2. The solvation effect plays a minor role in the catalytic per-
formance of the candidate. Among the three candidates, the reduced 
In2O3 with 2 ML of oxygen vacancies exhibits amazing NO3RR activity 
with a limiting potential of 0 V. It can be concluded that the number of 
oxygen vacancies is closely related to the NO3RR activity, and the 
different MLs of oxygen vacancies not only affect the nitrate adsorption 
but also lead to different intermediates and reaction pathways. The pH 
effect on three candidates was also evaluated in Fig. S3, where the 
catalytic performance of 2 ML model is still the highest among the three 
models. The corresponding PDS changes from *NH2OH → *NH2 to *NO2 

Fig. 1. (a) The configuration of In2O3-x (111) surface with different layers of oxygen vacancies (VO), while the bottom two layers were fixed to mimic the slab. (b) 
The thermodynamically favourable configurations of NO3

− species adsorbed on the In2O3 catalysts with varied monolayers of oxygen vacancies.
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→ *NO, while the other two remain unchanged for different pH values.
To further elucidate the underlying mechanism for the NO3RR pro-

cess, the electronic density distribution, PDOS and charge density 
analysis were conducted. As shown in Fig. 4, the electron localization 
function (ELF) analysis for slabs with varied MLs was conducted and 
visualized. The higher ELF value (marked in red) indicates the higher 
electron localization, while a lower value (marked in blue) suggests 
there may be no electrons. With the introduction of various MLs of ox-
ygen vacancies, notable electron redistribution was observed, and the 
increased charge density may contribute to the catalytic performance. 

Besides, the electronic structure comparisons between 0 ML and 2 ML 
were also conducted. An energy gap was observed between the valence 
band maximum (VBM) and conduction band minimum (CBM) for In2O3 
with 0 ML of oxygen vacancies.

In contrast, the introduction of oxygen vacancies (2 ML) downshifted 
the overall orbitals and made the reduced In2O3-x metallic, which can 
reduce the energy barrier for electron transfer and aid in the process of 
NO3RR. The charge transfer was visualized for nitrate adsorption on 
In2O3 with 2 ML of oxygen vacancies, where ample electrons (around 
0.99 e− ) were transferred to the adsorbed nitrate.

The competitive HER was also evaluated due to the close thermo-
dynamic potentials of the NO3RR and HER [79]. For one thing, the 
proton may adsorb onto the surface and block the reactive sites for ni-
trate reduction. On the other hand, protons can form H2 and desorb from 
the slab easily, reducing the FE significantly. As shown in Fig. 5, the 
adsorption sites and energy of the proton were thus plotted to assess the 
HER performance, and the free energy of proton adsorption (− 0.09 eV) 
on Pt|C was included for comparison. It can be concluded that for all the 
In2O3 with 1 ML, 2 MLs and 3 MLs of oxygen vacancies, the adsorption of 
the proton on top, hollow and bridge sites is difficult since the values of 
the related adsorption energy are positive. Besides, other N–N coupling 
processes were also examined considering high NOx coverage. As shown 
in Figure S4, the higher limiting potentials denote the preferred 
ammonia synthesis on the catalyst. Thus, the catalyst might be inactive 
towards byproduct formation, demonstrating excellent NO3RR selec-
tivity on reduced In2O3 surfaces.

4. Conclusions

In summary, the electrocatalytic performance of partially reduced 
In2O3 catalysts for the NO3RR process was investigated based on the 
first-principles calculations. The catalyst with an optimum of 2 MLs of 
oxygen vacancies exhibited the highest activity with a thermodynami-
cally downhill pathway identified through the free energy comparison of 
intermediates. ELF, PDOS and charge density analysis offer insights into 
the relationship between oxygen vacancies and catalytic activities. 
Furthermore, the excellent selectivity towards ammonia was demon-
strated. By-product formation, such as NO2, NO and NH2OH, was eval-
uated, all of which are hard to desorb from the slab and the HER 
performance is very poor with adsorption free energies being very 
positive. Our theoretical work shows the relationship between the 
monolayer number of oxygen vacancies and NO3RR activity, and the 
partially reduced In2O3 with 2 ML of oxygen vacancies can be an 
exceptional electrocatalyst for ammonia reduction, thus providing in-
sights into the novel design of the NO3RR electrocatalysts.

Fig. 2. Schematic illustration of three typical nitrate reduction pathways (O-end, N-end and NO-side) with this work involved. The pink, green and blue arrows are 
classified by different adsorption configurations of the *NO intermediate.

Fig. 3. The Gibbs free-energy diagram for NO3RR on partially reduced 
In2O3(111) surface with (a)1 ML, (b)2 MLs and (c)3 MLs of oxygen vacancies at 
298.15 K, where the NOH and NHO pathways are also considered. The corre-
sponding intermediates are included in the most thermodynamically favourable 
pathway (colour scheme: pink, In; red, O; white, H).
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[50] P.E. Blöchl, Projector augmented-wave method, Phys. Rev. B 50 (1994) 17953.
[51] J.P. Perdew, J.A. Chevary, S.H. Vosko, K.A. Jackson, M.R. Pederson, D.J. Singh, 

C. Fiolhais, atoms, molecules, solids, and surfaces: applications of the generalized 
gradient approximation for exchange and correlation, Phys. Rev. B 46 (1992) 
6671.

[52] J.P. Perdew, Y. Wang, Accurate and simple analytic representation of the electron- 
gas correlation energy, Phys. Rev. B 45 (1992) 13244.

[53] A. Jain, S.P. Ong, G. Hautier, W. Chen, W.D. Richards, S. Dacek, S. Cholia, 
D. Gunter, D. Skinner, G. Ceder, Commentary: the materials project: a materials 
genome approach to accelerating materials innovation, APL. Mater. (2013) 1.

[54] S. Grimme, Semiempirical gga-type density functional constructed with a long- 
range dispersion correction, J. Comput. Chem. 27 (2006) 1787–1799.

[55] K. Mathew, R. Sundararaman, K. Letchworth-Weaver, T. Arias, R.G. Hennig, 
Implicit solvation model for density-functional study of nanocrystal surfaces and 
reaction pathways, J. Chem. Phys. (2014) 140.

[56] W. Tang, E. Sanville, G. Henkelman, A grid-based bader analysis algorithm without 
lattice bias, J.f Phys. Condensed Matter 21 (2009) 084204.

[57] E. Sanville, S.D. Kenny, R. Smith, G. Henkelman, Improved grid-based algorithm 
for bader charge allocation, J. Comput. Chem. 28 (2007) 899–908.

[58] T. Hu, C. Wang, M. Wang, C.M. Li, C. Guo, Theoretical insights into superior nitrate 
reduction to ammonia performance of copper catalysts, ACS. Catal. 11 (2021) 
14417–14427.

[59] J.K. Nørskov, J. Rossmeisl, A. Logadottir, L. Lindqvist, J.R. Kitchin, T. Bligaard, 
H. Jonsson, Origin of the overpotential for oxygen reduction at a fuel-cell cathode, 
J. Phys. Chem. B 108 (2004) 17886–17892.

[60] V. Wang, N. Xu, J.-C. Liu, G. Tang, W.-T. Geng, Vaspkit: a user-friendly interface 
facilitating high-throughput computing and analysis using vasp code, Comput. 
Phys. Commun. 267 (2021) 108033.

[61] B. Zhang, N.N. Zhang, J.F. Chen, Y. Hou, S. Yang, J.W. Guo, X.H. Yang, J.H. Zhong, 
H.F. Wang, P. Hu, Turning indium oxide into a superior electrocatalyst: 
deterministic heteroatoms, Sci. Rep. 3 (2013) 3109.

[62] M.S. Frei, M. Capdevila-Cortada, R. García-Muelas, C. Mondelli, N. López, J. 
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