
This is an author’s copy of the paper, which has been accepted and published in the European

Conference on Service-Oriented and Cloud Computing–CloudWays 2016

Cloud Migration Methodologies: Preliminary Findings

Mahdi Fahmideh, Farhad Daneshgar, Fethi Rabhi

University of New South Wales, Sydney, Australia

Abstract. Research around cloud computing has largely been dedicated to ad-

dressing technical aspects associated with utilizing cloud services, surveying

critical success factors for the cloud adoption, and opinions about its impact on

IT functions. Nevertheless, the aspect of process models for the cloud migration

has been slow in pace. Several methodologies have been proposed by both aca-

demia and industry for moving legacy applications to the cloud. This paper pre-

sents a criteria-based appraisal of such existing methodologies. The results of

the analysis highlight the strengths and weaknesses of these methodologies and

can be used by cloud service consumers for comparing and selecting the most

appropriate ones that fit specific migration scenarios. The paper also suggests

research opportunities to improve the status quo.

Keywords: Cloud Migration; Legacy Applications; Cloud Migration Method-

ology, Evaluation Framework

1 Introduction

Cloud computing initiatives have received significant attention for addressing
computational requirements of enterprise applications through offering a wide range
of services which are universally accessible, acquirable and releasable on the fly, and
payable based on the service usage. Many IT-based organizations are at the edge of
moving their legacies to the cloud. While there are many valuable technical solutions
to make legacies cloud-enabled, those solutions are not sufficient on their own and
one should not undermine the equal importance of adopting a systematic methodology
to enable legacies to benefits from cloud services. Such a methodology aids develop-
ers to organize the migration process and defines a step-by-step guidance on activities
should be carried out to reengineer and move legacies to the cloud. This paper pre-
sents a review and evaluation of the extant cloud migration methodologies in the liter-
ature with the aim of understanding their features, strengths, weaknesses, and poten-
tial opportunities for future research. More than a dozen of cloud migration method-
ologies have been suggested by both from academia and industry. Some examples are
Chauhan’s Methodology [1], REMICS [2], Tran’s Methodology [3], Cloud-RMM [4],
Strauch’s Methodology [5], Zhang’s Methodology [6], Oracle [7], ARTIST [8], Ama-
zon [9], and Legacy-to-Cloud Migration Horseshoe [10].

2

This paper is organized as follows: Section 2 develops an evaluation framework to
assess the abovementioned methodologies, which is followed by Section 3 that re-
ports evaluation results of the methodologies. Section 4 discusses the implications and
threats of this research. Finally, this paper concludes in Section 5.

2 Criteria-Based Evaluation of Migration Methodologies

In the context of software engineering, an evaluation framework constitutes a check-

list of criteria (or methodological requirements) that an ideal methodology is expected

to appropriately address them when dealing with a particular activity or objective

[11]. A methodology is checked against an evaluation framework in two steps: firstly,

the methodology is scanned for features concerned by a criterion and then an evalua-

tion result (e.g. scale point) is yield signifying the some extent that the methodology

supports the criterion [11]. In order to ensure the quality of criteria set, the meta-

criteria (criteria used to assess other criteria) proposed by Karam et. al. [12] was taken

into account to develop the proposed evaluation framework. Regarding to this source

and context of this study, the criteria should be (i) sufficiently generic to cover a vari-

ety of scenarios for legacy application migration to the cloud regardless of a particular

target cloud platform, (ii) distinct to characterise the similarities and differences of

methodologies, and (iii) adequately comprehensive to cover end-to-end cloud migra-

tion process.

In developing of the criteria, we reviewed and synthesized various existing frame-

works that define criteria attuned to evaluate software development methodologies in

traditional software (re-engineering) engineering and software process improvement

literatures. A set of criteria were identified in the studies by [13], [14], [15], [16], and

[17]. We also reviewed studies suggesting criteria pertinent to cloud migration meth-

odologies. Studies by [5], [3], [18], and [19] proposed essential criteria that an ideal

cloud migration methodology should satisfy. This includes interoperabil-

ity/portability, incompatibility resolution, cloud provider selection, and re-

architecting, and tailorability. Once the criteria in the above sources were analyzed

and redundancy and overlapping among them were removed, nineteen distinct criteria

were shortlisted for the purpose of the current study. The criteria help to contrast and

compare existing methodologies. They are listed in Table 1 and described in Section

3. We do not claim that the proposed evaluation framework is comprehensive, how-

ever, such a framework has not been proposed yet in literature and our study provides

a good starting point in assessing and comparing extant cloud migration methodolo-

gies to highlight their strengths and weaknesses.

Table 1. Criteria expected to be supported by cloud migration methodologies

Criterion and Definition (letter C is the unique identifier of each criterion) Type

Tailorability (C1): Providing mechanisms to configure and modify process or modelling

language for a given project at hand. Scale

Development Roles (C2): Defining roles who are responsible for performing migration
activities or any stakeholder who are involved in a migration process. Scale

Requirement Analysis (C3): Eliciting and specifying functionalities required to be fulfilled Scale

3

by cloud-enabled application such as computational, security, elasticity, and storage space

requirements.

Legacy Understanding (C4): Recapturing an abstract As-Is representation of application

architecture in terms of terms of functionality, different types of dependencies to other appli-
cations, interaction points and message follows between application components, as well as

quality of code blocks for reuse and adaptation.

Scale

Cloud Service Selection (C5): Identifying, evaluating, and selecting a set of cloud providers
that might suit organization and application requirements.

Scale

R
e
-A

r
c
h

it
ec

ti
n

g
 Cloud Architecture Model Definition (C6: Identifying components of legacy that are

suitable for migration and defining their deployment in the cloud environments.
Scale

Refactoring and Incompatibility Resolution (C7): Identifying and resolving incom-

patibilities between legacy components and cloud services.
Scale

Enabling Application Elasticity (C8): Providing support for dynamic acquisition and
release of cloud resources.

Scale

Enabling Multi-Tenancy (C9): Providing support for enabling multi-tenancy in the

application in terms of security, performance, customizability, and fault isolation,
which might incur by running application in the cloud.

Scale

Deployment (C10): Adjusting the application and network configuration for the target cloud

environment.
Scale

Monitoring (C11): Continuous monitoring of application and cloud resources to assure

SLAs.
Scale

Test (C12): Defining activities for test and continuous delivery. Scale

Work-Products and Notations (C13): Specifying work-products to be produced as out-

comes of migration activities.
Scale

Modelling Language (C14): Specifying a modelling or notational component Boolean

Unit of Migration (C15): Applicability of the methodology for the migrating different tier of

a legacy application.

Multiple

Answer

Migration Type (C16): Migration types are concerned with methodology.
Multiple

Answer

Tool Support (C17): Availability of tools to support the methodology’s activities and tech-

niques.
Scale

Maturity (C18): Available account on successful adoption the methodology in real-world

migration scenarios.

Multiple

Answer

3 Analysis of Results

Table 2 summarizes the evaluation results of the methodologies according to the
framework. The review of the methodologies reveals that many criteria; specifically
Tailorability (C1), Development Roles (C2), Cloud Architecture Definition (C6),
Refactoring (C7), and Multi-tenancy (C9) are not adequately supported. The method-
ologies do not comprehensively elaborate on activities related to these criteria, as a
part of their mainstream process, which should be carried out to make a legacy appli-
cation cloud-enabled. The following, delineates the results of our analysis and sug-
gests areas that indicate future research directions to improve existing methodologies.

Tailorability (C1). It has been well-acknowledged that in every methodology there
are good features to adopt as well as deficiencies to avoid [15]. These features cir-
cumscribe the applicability of a methodology in a given project situation at hand. The
fact that methodologies should be tailored or designed to suit the characteristics of a
given cloud migration scenario is pinpointed in the cloud migration literature [19, 20].
As shown in Table 2, except for REMICS and ARTIST methodologies which provide
a partial support for the tailorability, none of the existing methodologies offers mech-
anisms to fine-tune their processes or to check if the methodology is properly applica-

4

ble for a migration scenario at hand. REMICS is structured in the form of a set of
reusable method fragments which eases its tailoring through selecting suitable method
fragments and assembling them with respect to a migration scenario. ARTIST offers a
tool which facilitates configuration and instantiation of the methodology for a given
migration scenario. However, none of them provides explicit guidance on how to
tailor or create a situational methodology out of the base methodology.

Development Roles (C2). While methodologies describe what activities are to carry
out, the roles and required expertise that take these activities become a concern for its
users. The definition of roles assists developers who have limited experience and are
not sure about roles involving in a migration process. In spite of necessity of defining
roles in any software development lifecycle, the majority of cloud migration method-
ologies do not specify roles involving during the migration process. As shown in Ta-
ble 2, except for Chauhan’s methodology and ARTIST, the definition of roles and
their responsibilities have been neglected in the existing methodologies. In these
methodologies, the definition of roles is borrowed from traditional software develop-
ment and they do not define roles that might be cloud-specific.

Requirement Analysis (C3). Requirements specify the desired features that should
be fulfilled by moving legacies to the cloud. Conventional requirement analysis tech-
niques such as interview, prototyping, and workshop are widely used by REMICS,
ARTIST, and Chauhan’s methodology. Additionally, Oracle and Amazon extend the
requirement analysis to focusing on computing requirements and application scalabil-
ity. Furthermore, Legacy-to-Cloud Migration Horseshoe is concerned with inter-
operability requirements of the target application between cloud platforms. Trans and
Zhang’s methodologies do not define any activities related to the requirement analy-
sis.

Legacy Application Understanding (C4). This is common that the knowledge about
legacy applications is undocumented and incomplete. An in-depth understanding of
the current state of legacies helps to identify any characteristic that might influence
the cloud migration process. Activities related to the legacy understanding are cov-
ered by most of the methodologies, except for Tran’s and Oracle’s methodologies. A
few of reviewed methodologies such as Chauhan’s methodology, Cloud-RMM,
Strauch’s methodology define activities related to recover of legacy architecture mod-
el but do not narrow to provide adequate mechanisms or guidelines to conduct them.

Cloud Platform/Service Selection (C5). Developer should not neglect the influences
of selecting cloud platforms on the development effort and cost required for the mi-
gration process. A better compatibility between the legacy and cloud services can
make the migration process very easy and shorter. For example, Tran’s methodology
reports a breakdown of activities for moving a .NET 3-tier application to run in Win-
dows Azure. She highlights required development efforts for modifying data tier,
code refactoring, and installation is major if the underlying technology of the legacy
and cloud platform are not compatible with each other. Table 2 shows that all of the
reviewed methodologies incorporate activities related to cloud service selection.
However, REMICS and Oracle are at the other end of the spectrum: they do not pro-
vide any guidelines as to how cloud service can be evaluated and selected.

Re-Architecting (C6,C7,C8,C9). Several important aspects should be incorporated
into the migration process when re-engineering a legacy to a cloud platform. The first
(C6) is to select suitable legacy components and define their new deployment model
in the cloud on basis of concerns such as network latency, data transfer, data privacy,

5

legal restrictions while satisfying the expected QoS of the whole application. Cloud
migration methodologies can be examined with respect to their support for activities
and guidelines to define a cloud architecture model of an application and move com-
ponents to the different cloud servers. Only Chauhan’s methodology defines this ac-
tivity in its process model. The second architectural aspect (C7) is the resolving of
incompatibilities that might occur between the legacy application and selected cloud
platform/services. The incompatibilities might be sourced from mismatch between
legacy codes and cloud service APIs, interface signatures, data types, and query calls.
A methodology is expected to provide activities to identify possible incompatibility
issues and accordingly proper guidelines to resolve them. Otherwise legacy will not
be able to utilize cloud services. Back to Table 2, the criteria refactoring and incom-
patibility resolution is only supported by Strauch’s methodology and Oracle method-
ology, though they focus on activities to resolve incompatibilities between the legacy
database tier and a target cloud database service. Other methodologies suggested by

Chauhan, REMICS, Tran, Cloud-RMM, ARTIST, and Amazon suffer from cursory
definitions of code refactoring. The third architectural design aspect (C8) is to enable
the legacy in a support of dynamic resource acquisition and release when it is running
in the cloud. According to Table 2, activities related to the enabling elasticity in the
legacies are only supported by Amazon methodology. The fourth aspect (C9) is the
multi-tenancy support. A key concern in the re-architecting of legacy to address mul-
ti-tenancy is to provide a support in the application for isolating the security, perfor-
mance, customizability, and fault of tenants. Without such a support, a migrated ap-
plication may face the risk of tenant interference. As shown in Table 2, the majority
of methodologies are silent regarding the multi-tenancy requirement. Cloud-RMM
includes the multitenancy, however, it does not elaborate on how conducing it.

Deploying and monitoring (C10, C11). It is likely that the connection between the
migrated legacy to the cloud and local network to be required. A methodology should
properly define activities related to the network configuration such as the setting open
ports, firewall policies, and connection strings to data and application (C10). The
deployment is covered by all the methodologies except for Chauhan’s methodology
and Legacy-to-Cloud Migration Horseshoe. Besides, once migrated to the cloud, the
continuous monitoring of the application and cloud resources to assure SLAs is nec-
essary (C11). Only three methodologies Oracle, ARTIST, and, Amazon support this
criterion.

Test (C12). Test is to ensure that the cloud-enabled application meets the goals of
cloud migration. All the methodologies except for Strauch’s methodology, Zhang’s
methodology, and Legacy-to-Cloud Migration Horseshoe define activities in coher-
ence with the methodology to ensure that application conforms to the expectation of
the cloud migration such as performance or resource utilization.

Work-products and modelling language (C13 and C14). An integral part of every
methodology is to specify necessary work-products as the outcome of each activity
throughout the process model. Defining work-product becomes important if automatic
code generation is required for a specific cloud platform or users of methodology aim
to trace or keep the list of work-products that have been produced throughout the
migration process. With respect to this, among the reviewed methodologies, Chau-
han’s methodology and ARTIST explicitly define work-products as a result of per-
forming each migration activity. However, REMICS, Zhang’s methodology, and Leg-
acy-to-Cloud Migration Horseshoe only defines representing the legacy architecture.

6

Methodologies may specify modelling techniques along with a particular notation to
represent the outcome of each development activity. Modelling techniques, however,
is hardly supported in the existing methodologies. ARTIST and REMICS use UML
for their whole lifecycles along with Zhang’s methodology and Legacy-to-Cloud
Migration Horseshoe that, respectively, use SoaML and Graph-based modelling to
represent legacy architecture.

Unit of Migration (C15). Some organizations may not move the whole legacy stack
to the cloud because of security concerns, rather they may migrate some legacy com-
ponents to the cloud whilst other components are kept in local organization network
and cloud services are offered to them. In this regard, it is important to investigate if a
methodology is appropriate for moving a particular tier or whole legacy stack to the
cloud. Given that, eight reviewed methodologies have been designed for full migra-
tion to the cloud. Strauch’s methodology is particularly designed for moving legacy
data tier to a cloud database solution.

Migration Type (C16). Regarding the common service delivery models IaaS, SaaS,
and PaaS, one can view that there are several variants that a legacy can utilize cloud
services. We defined the followings migration variants and assess if the methodolo-
gies support them. In Type I the business logic tier of a legacy (e.g. WS-BPEL),
which offers discrete and reusable functionality, is deployed in the cloud infrastruc-
ture. In this migration type, the data tier is kept in local organization network. Deploy-
ing an image processing component of a legacy in E2C is an example of this migra-
tion type. In Type II some components or whole application stack is replaced with an
available and fully tested cloud service. The Salesforce CRM application is a typical
example of this type of cloud migration. In this review, Chauhan’s methodology,
REMICS, Zhang’s methodology, and ARTIST support this type of migration. In Type
III legacy database is deployed in a cloud data store provider. The components related
to business logic tier are kept in local organization network and the database is de-
ployed in public cloud data store such as Amazon Simple Storage Service, Amazon
Elastic Block Store, Dropbox, or Zip Cloud. There is not methodology to support this
migration type. In Type IV the data tier of a legacy is modified and converted to a
cloud database solution such as Amazon SimpleDB, Google App Engine data store,
or Google Cloud SQL. Tran’s, Strauch’s methodology, and Oracle support this migra-
tion type. Finally, in Type V the whole legacy stack is deployed in the cloud infra-
structure where the legacy is encapsulated in a single virtual machine and then run in
the cloud infrastructure. From the reviewed methodologies, Amazon defines activities
to carry out this migration type. Obviously, on the basis of a chosen migration type,
different activities might be required to be carried out and accordingly a methodology
should properly address them.

Tool support (C17). The adoption of a methodology is facilitated if it offers its own

supportive tool or alternatively refers developers to existing third-party tools available

in the cloud marketplace. Only ARTIST and REMICS provide tool for whole migra-

tion process model. More specifically, ARTIST proposes Eclipse-based suites which

are integrated with its activities. Since produced work-products are stored in a shared

repository, they can be accessed and modified by other tools. REMICS includes a set

of tools that can be classified in the areas such as requirement management,

knowledge recovery from legacies, re-transformation of legacy components to cloud

architecture, and model-based testing. On the other hand, Strauch’s and Amazon’s

7

methodologies offer tool for legacy architecture recovering, data migration, and re-

source elasticity management. Other methodologies do not offer any tools.

Maturity (C18). Validating a methodology in real-world migration scenarios and

subsequently refining it through feedback from experts improves its applicability and

maturity. In this review, the majority of methodologies, except for Cloud-RMM and

Legacy-to-Cloud Migration Horseshoe, have reported the applying the methodology

in a real-world example. An observed issue during the assessment was the lack of

sufficient contextual information on the environment in which the methodology had

been applied, description of techniques used to data collection and analysis, and ad-

dressing threats to validity.

Table 2. Results of evaluating cloud migration methodologies

Criterion

C
h
au

h
an

’s

M
et

h
o
d

o
lo

g
y

R
E

M
IC

S

T
ra

n
’s

 M
et

h
-

o
d
o

lo
g

y

C
lo

u
d

-R
M

M

S
tr

au
ch

’s

M
et

h
o
d

o
lo

g
y

Z
h

an
g

’s

M
et

h
o
d

o
lo

g
y

O
ra

cl
e

A
R

T
IS

T

A
m

az
o
n

L
eg

ac
y

-t
o

-

C
lo

u
d

M

ig
ra

ti
o
n

H
o

rs
es

h
o
e

C1

C2

C3

C4

C5

C6

C7

C8

C9

C10

C11

C12

C13

C14 N Y N N N Y N Y N Y

C15 AS AS AS NS DL AS AS AS AS AS

C16 II II IV NS IV II IV II V NS

C17

C18 RE CS RE NV CS CS RE CS CS NV

Fully Supported explicitly supported by the method, Partially Supported by the method, Not

Supported by the method (neither a partial definition nor explanation for a requirement), N:No,
Y:Yes, NV: Not Validated, CS: Case Study, RE: Reported Experience, AS: Application Stack, DL:

Data Tier, NS: Not Specified, I, II, III, IV, and V: See definitions for the requirement Migration Type

in Section 4.

8

4 Discussion

This section discusses research implications and possible threats to validity of the

evaluation results.

Research implications. This research has two major contributions to the cloud mi-

gration literature. Firstly, the proposed evaluation framework serves as a valuable tool

for project managers to assess and compare the capabilities of cloud migration meth-

odologies and select ones which satisfies their migration scenario characteristics

through reusing the strengths. They can also priorities the proposed requirements on

the basis of their goals and evaluate methodologies with respect to these priorities.

Secondly, the evaluation results can be used as a basis for the purpose of situational

cloud migration methodology construction meaning that useful method fragments

from the existing methodologies can be selected and assembled to create bespoke

methodology that fits the characteristics of a migration scenario at hand.

Threats to evaluation validity. In spite of our effort to provide a comprehensive and
objective comparison, some threats still exist as mentioned in the followings:

Conclusion validity. The evaluation results in this research are mainly theoretical and

based on the available and published documents of the methodologies. However, a

real evaluation of the methodologies through applying them in the same real-world

migration scenario could yield to other results. However, such empirical assessment is

planned as our future work. Furthermore, as the methodologies may have been yet

improved by their designers, the evaluation may need to be updated.

Construct validity. The validity of the evaluation results may be concerned in terms of
measures that have been applied to assess the satisfaction of the methodological re-
quirements. To minimize inconsistency in measuring, the definitions of criteria were
used during assessment process (Table 1). These definitions checked the existence of
activities, work-products, or roles that are related to the criteria.

Internal validity. A threat to the validity of this research is that the evaluation process
was conducted by a single researcher. Hence, the evaluation results might be to some
extent subjective in nature or undergone by misinterpretation. This threat can be fur-
ther minimized if a Delphi technique [21] is applied where the evaluation process is
performed by authors of the framework and subject matter experts. The difference
between ratings can be resolved through a post-hoc evaluation discussion to reach a
consensus.

External validity. We acknowledge that to assure generalizability of evaluation re-
sults, more evaluation with a higher number of domain experts is necessary. Further-
more, we selected a representative number of cloud migration methodologies that
have been proposed in the literature. Nevertheless, more research on the evaluation of
cloud migration methodologies and criteria which may have not been investigated in
this research is required.

9

5 Future Work and Conclusion

This paper argued that the current state of legacies to the cloud needs to adopt meth-

odological/process model perspective. Following an overview of existing methodolo-

gies related to legacy application to cloud migration, an evaluation of them regarding

a set of important criteria was presented. The evaluation results were presented in a

structured format and revealed that the methodologies suffer from the lack of tailora-

bility, defining roles and work-products involved in the migration process, and incor-

porating a modelling language to model the output of activities. Additionally, there is

no methodology which focuses on the migration types I and III. The cloud migration

methodologies seem quite nascent and are yet to reach a high level of maturity. The

current situation of the cloud migration methodologies definitely calls for further

research aimed at ameliorating the status quo. With respect to the evaluation results in

this paper, a further research opportunity is to develop a new cloud migration meth-

odology through reusing the strengths of existing methodologies while addressing

their deficiencies. This can be based on identifying method fragments from the meth-

odologies and storing them in a method library. Such a harness can be effectively

addressed by adopting the idea of situational method engineering approach [22]

where cloud migration solutions in the literature can be abstracted away and struc-

tured as a complementary source for developing method fragments. Once such reusa-

ble method fragments identified, they can be further assembled to construct custom-

ized migration methodology which fits a given migration scenario.

References

[1] M. A. Chauhan and M. A. Babar, "Towards Process Support for Migrating

Applications to Cloud Computing," in Cloud and Service Computing (CSC),

2012 International Conference on, 2012, pp. 80-87.

[2] P. Mohagheghi, "Software Engineering Challenges for Migration to the

Service Cloud Paradigm: Ongoing Work in the REMICS Project," in

Services (SERVICES), 2011 IEEE World Congress on, 2011, pp. 507-514.

[3] V. Tran, J. Keung, A. Liu, and A. Fekete, "Application migration to cloud: a

taxonomy of critical factors," in Proceedings of the 2nd International

Workshop on Software Engineering for Cloud Computing, 2011, pp. 22-28.

[4] P. Jamshidi, A. Ahmad, and C. Pahl, "Cloud Migration Research: A

Systematic Review," Cloud Computing, IEEE Transactions on, vol. PP, pp.

1-1, 2013.

[5] V. A. S. Strauch, D. Karastoyanova, F. Leymann, "Migrating Enterprise

Applications to the Cloud: Methodology and Evaluation," International

Journal of Big Data Intelligence, 2014.

[6] W. Zhang, A. J. Berre, D. Roman, and H. A. Huru, "Migrating legacy

applications to the service Cloud," in 14th Conference companion on Object

Oriented Programming Systems Languages and Applications (OOPSLA

2009), 2009, pp. 59-68.

10

[7] T. Laszewski and P. Nauduri, Migrating to the Cloud: Oracle Client/Server

Modernization: Elsevier, 2011.

[8] A. Menychtas, C. Santzaridou, G. Kousiouris, T. Varvarigou, L. Orue-

Echevarria, J. Alonso, et al., "ARTIST Methodology and Framework: A

novel approach for the migration of legacy software on the Cloud," in

Symbolic and Numeric Algorithms for Scientific Computing (SYNASC), 2013

15th International Symposium on, 2013, pp. 424-431.

[9] J. Varia, "Migrating your existing applications to the aws cloud: A Phase-

driven Approach to Cloud Migration," 2010.

[10] A. Ahmad and M. A. Babar, "A framework for architecture-driven migration

of legacy systems to cloud-enabled software," presented at the Proceedings

of the WICSA 2014 Companion Volume, Sydney, Australia, 2014.

[11] B. Kitchenham, S. Linkman, and D. Law, "DESMET: a methodology for

evaluating software engineering methods and tools," Computing & Control

Engineering Journal, vol. 8, pp. 120-126, 1997.

[12] G. M. Karam and R. S. Casselman, "A cataloging framework for software

development methods," Computer, vol. 26, pp. 34-44, 1993.

[13] G. M. Karam and R. S. Casselman, "A Cataloging Framework for Software

Development Methods," Computer, vol. 26, pp. 34-45, 1993.

[14] B. Wood, R. Pethia, L. R. Gold, and R. Firth, "A guide to the assessment of

software development methods," DTIC Document1988.

[15] R. Ramsin and R. F. Paige, "Process-centered review of object oriented

software development methodologies," ACM Computing Surveys (CSUR),

vol. 40, p. 3, 2008.

[16] A. Sturm and O. Shehory, "A framework for evaluating agent-oriented

methodologies," in Agent-Oriented Information Systems, 2004, pp. 94-109.

[17] Q.-N. N. Tran and G. C. Low, "Comparison of ten agent-oriented

methodologies," Agent-oriented methodologies, pp. 341-367, 2005.

[18] V. Quang Hieu and R. Asal, "Legacy Application Migration to the Cloud:

Practicability and Methodology," in Services (SERVICES), 2012 IEEE

Eighth World Congress on, 2012, pp. 270-277.

[19] V. Andrikopoulos, T. Binz, F. Leymann, and S. Strauch, "How to adapt

applications for the Cloud environment," Computing, vol. 95, pp. 493-535,

2013/06/01 2013.

[20] Z.Mahmood, in Cloud Computing Methods and Practical Approaches, ed:

Springer-Verlag London 2013, p. 64.

[21] C. Okoli and S. D. Pawlowski, "The Delphi method as a research tool: an

example, design considerations and applications," Information &

Management, vol. 42, pp. 15-29, 2004.

[22] A. F. Harmsen, J. Brinkkemper, and J. H. Oei, Situational method

engineering for information system project approaches: University of

Twente, Department of Computer Science, 1994.

