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Abstract
The present study investigates the synergistic performance of the three-dimensional electro-
chemical process to decolourise methyl orange (MO) dye pollutant from xenobiotic textile 
wastewater. The textile dye was treated using electrochemical technique with strong oxidizing 
potential, and additional adsorption technology was employed to effectively remove dye pol-
lutants from wastewater. Approximately 98% of MO removal efficiency was achieved using 
15 mA/cm2 of current density, 3.62 kWh/kg of energy consumption and 79.53% of current effi-
ciency. The 50 mg/L MO pollutant was rapidly mineralized with a half-life of 4.66 min at a 
current density of 15 mA/cm2. Additionally, graphite intercalation compound (GIC) was elec-
trically polarized in the three-dimensional electrochemical reactor to enhance the direct elec-
trooxidation  and.OH generation, thereby improving synergistic treatment efficiency. Decolouri-
sation of MO-polluted wastewater was optimized by artificial intelligence (AI) and machine 
learning (ML) techniques such as Artificial Neural Networks (ANN), Support Vector Machine 
(SVM), and random forest (RF) algorithms. Statistical metrics indicated the superiority of the 
model followed this order: ANN > RF > SVM > Multiple regression. The optimization results of 
the process parameters by artificial neural network (ANN) and random forest (RF) approaches 
showed that a current density of 15 mA/cm2, electrolysis time of 30 min and initial MO concen-
tration of 50 mg/L were the best operating parameters to maintain current and energy efficien-
cies of the electrochemical reactor. Finally, Monte Carlo simulations and sensitivity analysis 
showed that ANN yielded the best prediction efficiency with the lowest uncertainty and vari-
ability level, whereas the predictive outcome of random forest was slightly better.

Highlights  
• In-depth analysis of various artificial intelligence optimization techniques.
• Prediction efficiency of artificial intelligence and machine learning algorithms.
• 98% dye removal and 100% regeneration of graphite intercalation compound.
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• Analysis of uncertainties and variability using Monte Carlo simulation.
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1 Introduction

The textile, printing and dyeing industries are some of the largest producers of dye waste-
water, contributing up to about 0.7 million metric tons of chemical dyes produced annually, 
accounting for 17 to 20% of water pollution worldwide (Pavlović et  al. 2014). In Bang-
ladesh, the textile sector currently exports nearly 28 billion USD annually, up to 82% of 
the country’s total export earnings (Hossain et al. 2018). In 2021, the textile industries in 
Bangladesh produced approximately 2.91 million metric tons of fabrics and around 349 
million metric tons of wastewater generated from conventional dyeing practices (Hossain 
et al. 2018). Figure 1 represents the water and chemical consumption of the textile process-
ing industry in Bangladesh.

1.1  Types of Textile Wastewater Treatment

Globally, about 60% of the annual output of synthetic dyes consists of azo compounds (Liu 
et al. 2022). These azo dyes possess stable azo function groups (N = N) and aromatic rings, 
which make it very chemically stable and highly resistant to environmental biodegradation 
and UV photolysis (Cui et al. 2021). These azo dyes have strong chromaticity, ecotoxicity 
and carcinogenicity, which pose a significant health risk and environmental hazard (Kumar 
and Gupta 2022). Residual dyestuffs are characterized by intense colour, high organic con-
tent, and highly stable chemical structure, with strong potential to cause serious environ-
mental pollution (El-Kammah et al. 2022).

Various treatment methods are commonly employed to remove textile dyes from waste-
water using biological degradation (Singh et al. 2022), coagulation-flocculation (Lau et al. 

Fig. 1  Water and chemical consumption of textile processing industry in Bangladesh with a production capacity 
of 1,812 tons to 18,000 tons annually, amounting to 24-h shifts and 25 working days (Uddin et al. 2023)
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2014), membrane filtration (Wu et  al. 2022a), Fenton reagent (Badmus et  al. 2020) and 
photocatalytic degradation (Chairungsri et al. 2022). Still, they are ineffective due to exces-
sive sludge production, secondary pollution and membrane fouling (Nidheesh et al. 2018). 
Excessive sludge production from biological treatment process requires additional post-treat-
ment and waste management processes, resulting in large energy consumption and financial 
expenditure (Shoukat et al. 2019). On the other hand, membrane fouling is a significant issue 
in filtration process, which hampers filtration effectiveness (Wu et al. 2022a). Coagulation-
flocculation process will contribute to secondary pollution due to chemical reagents used to 
remove the pollutants (Januário et al. 2021; Tahraoui et al. 2023). The recovery of chemical 
reagents is challenging, resulting in a loss of energy and resources (Ihaddaden et al. 2022). 
Catalyst poisoning and electron–hole recombination are significant issues in advanced oxida-
tion processes, leading to reduced oxidation potential (Fu et al. 2023; Kanjal et al. 2023). The 
catalysts used in advanced oxidation processes are costly (Saravanan et al. 2022). Fenton’s 
reagent leads to a significant issue with iron sludge generation due to combined floccula-
tion with the reagent and organic compounds (Mechati et al. 2023; Suhan et al. 2021). Addi-
tional pH adjustment is needed for Fenton’s reagent to facilitate oxidation, increasing opera-
tional costs (Can-Güven 2021; Kebir et al. 2023). Furthermore, a fluidized three-dimensional 
electrochemical oxidation process was used to treat MO wastewater and achieved a removal 
efficiency of 99.9% in 30 min, whereas the original adsorption capacity of activated carbon 
was maintained at 64.5% after 8 cycles of adsorption-electrochemical regeneration (Liu et al. 
2022). Therefore, the literature recommended using electrochemical process as an advanced 
wastewater treatment technique to remove dyes from industrial effluent.

The electrochemical treatment is commonly used to eliminate pollutants on the anodic 
surface, via generation  of.OH oxidants and active chlorine species (Hamida et  al. 2022). 
However, few studies have been conducted on AI and machine learning-based optimiza-
tion of three-dimensional electrochemical treatment of textile wastewater involving graph-
ite intercalation compound (GIC) particle electrodes. The current disadvantages of using 
anodic oxidation technology such as boron-doped diamond and mixed metal oxide elec-
trodes are due to poisoning of electrodes and buildup of biofilm or thin-oxide layer, which 
can decrease its electrocatalytic efficiency and service life by 10–90% (El Aggadi et  al. 
2021). These electrodes could not overcome the issues associated with mass transfer resist-
ance and short half-life of oxidizing species with approximately  10–6 ~  10–3 s in wastewater 
media (Chen et al. 2023; Xie et al. 2022). The current disadvantages of adsorbent materi-
als made from agricultural sources and carbon-based substituents are non-regenerative and 
susceptible to heat stress or other physicochemical degradation (Vinayagam et al. 2022). On 
the other hand, granular activated carbon (GAC) has 10–20% lower regeneration efficiency 
than GIC, making it unsuitable for use in electrochemical reactor (Narbaitz and McEwen 
2012; Narbaitz and Karimi-Jashni 2012). Hence, we aimed to improve the electrocatalytic 
efficiency of three-dimensional electrochemical reactor using an electrically regenerative 
particle electrode to achieve high mineralization efficiency of dye pollutants in wastewater.

More critically, there is a potential gap in comparing the prediction efficiency of various 
artificial intelligence and machine learning-based optimization approaches specific to three-
dimensional electrochemical treatment process. Intelligent control of electrochemical nitrate 
removal was based on artificial neural network whereas electrochemical sensors were applied 
to monitor and remove azo dyes and food colorant substances. None of the past research 
explored the artificial intelligence and machine learning-based optimization techniques 
on three-dimensional electrochemical treatment of xenobiotic dye removal (Meng et  al. 
2022; Wu et al. 2022b). On the other hand, past research focused on using electrochemical 
conversion of ammonia into harmless nitrogen gas by utilizing granular activated carbon 
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as three-dimensional particle electrode which was poorly regenerative or of low electrical 
conductivity compared to graphite intercalation compound (Zhang et  al. 2024). Moreover, 
system perturbations, uncertainties and variability of operating parameters and their impact 
on targeted responses specific to three-dimensional electrochemical treatment process are 
never accounted for in the current literature. This involved exploring the uncertainties in 
AI optimization effect of operating parameters such as applied current density, electrolysis 
time and initial dye concentration, to improve the electrooxidation efficiency of the three-
dimensional electrochemical reactor. Most significantly, the novelty of this research lies in 
finding the best artificial intelligence-based models to improve the prediction efficiency of 
complex phenomena by applying them to large physical, chemical and biological processes. 
Secondly, the research aims to develop accurate artificial intelligence-based models which can 
be integrated into the upscaled conventional wastewater treatment systems to enhance value 
engineering, water resources management, energy efficiency, real-time process dynamics, 
data controllability and streamlining distributed network of process control systems. 
Unlike other past research, this research also aims to scrutinize the prediction efficiency of 
different artificial intelligence and machine learning-based models by analysing the level 
of uncertainties or the effect of various operating parameters on system perturbations and 
variability to enhance the accuracy and precision of predictive model platforms.

2  Materials and Methods

2.1  Experimental Equipment and Materials

Methyl orange ( C14H14N3NaO3S ) was a chemical reagent grade obtained from Chem-
Supply, Australia. Commercial GIC was purchased from Sigma-Aldrich, Australia. The 
particle size of GIC was greater than 300 μm (50 mesh). GIC has an electrical conduc-
tivity of approximately 0.8 S/cm. The MO solution was prepared using high purity dis-
tilled water. UV/Visible spectrophotometer (DR6000, Hach) was used to determine the 
MO dye concentrations in solution at different time intervals. The maximum absorp-
tion occurred at a wavelength λ = 463 nm. The coefficient of variation (COV) for the 
UV-absorbance analysis of MO was approximately 3.08%, whereas for the TOC analy-
sis (TOC-V CSH, Shimadzu), it was approximately 0.55%.

The experiment was performed in a 6–7 L electrochemical reactor equipped with 
anode and cathode. A more detailed description can be found in Trzcinski and Harada 
(2023). Graphite plate anode with approximately 70  cm2 of electroactive surface area 
and stainless steel 316 cathode were connected with a 60  V DC power supply unit 
(Model GPR-6030D, GW INSTEK, Taiwan) to form a closed-looped electrical circuit. 
Compressed air at 2 bar was sparged into the anodic compartment of the reactor to mix 
GIC and contaminated water. A solution of 0.3% (w/v) of NaCl adjusted to pH 2 using 
HCl was used as the supporting electrolyte.

2.2  MO Adsorption and Electrochemical Oxidation Process

In 3D electrochemical process, 1-L of MO-contaminated water was first added into the 
reactor, and air pressure was set at 2 bar to start the adsorption process. After the adsorp-
tion process was over at 20  min, GIC particle electrodes were allowed to settle down in 
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the regeneration zone between the cathode and the anode. The regeneration zone is located 
within the anodic compartment where the GIC particle electrodes are electrochemically 
regenerated when subjected to electrolysis. The current supply ranged from 1.05 to 3.16 A, 
corresponding to a current density of 15 to 35 mA/cm2 applied for 10 min. Mathematical 
equations used for characterising three-dimensional process are outlined in subsection 2.2.1.

2.2.1  Mathematical Equations for the Electrochemical Process

In the study of 3D electrochemical process, a pseudo-first-order kinetic model (Eq. 1) was 
used to describe the change of concentration over time, and the pseudo-first-order reac-
tion rate constant represents the electrooxidation kinetics of MO removal by 3D process. 
Alternatively,  t1/2 represents the half-life of mineralization rate for 50% of MO pollutants 
to degrade in an aqueous solution. The combined adsorption and electrochemical oxidation 
process synergistically maximise the dye and TOC removal efficiencies of MO in aque-
ous solutions. The pseudo-first-order kinetic rate constant representing the electrooxidation 
kinetics can be determined from the following equation (Liu et al. 2022):

where k represents the kinetic rate constant in  min−1;  C0 represents the initial dye con-
centration from 50 mg/L to 125 mg/L;  Ct represents the final dye concentration changes 
according to time after a period of adsorption and electrochemical oxidation; and t is the 
time in min.

The regeneration efficiency, RE, can be calculated from the following equation:

where  qi represents the initial loading of MO (mg/g) onto fresh GIC adsorbent; and  qr rep-
resents the final loading (mg/g) on the regenerated GIC adsorbent under identical adsorp-
tion conditions:

where  C0 denotes the initial dye concentration (mg/L),  Ci represents the dye concentration 
(mg/L) after adsorption but before electrochemical regeneration,  Ct represents the dye con-
centration (mg/L) after electrochemical regeneration, and t is the regeneration time.

The charge passed per gram of GIC adsorbent is given by the following relationship:

where I is the applied current (A); t is the electrolysis time (min); and m is the mass of GIC 
adsorbent (g).
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To calculate the applied current density,  JEO, the following equation is used:

where I denotes the current applied (A); and SA denotes the surface area of the anode, 
which was 70  cm2.

To calculate the electrical energy consumption per kg of adsorbed MO, the equation is 
shown below:

where I is the applied current (A);  Ut is the cell potential at time t (V); and V is the MO 
solution volume, which was 1.0 L.

To calculate the electrical energy consumption per kg TOC of adsorbed MO, the follow-
ing equation is used:

where I is the applied current (A);  Ut is cell potential at time t (V); V is MO solution vol-
ume (1.0 L); t is the time (min); and  TOC0,  TOCt are TOC concentrations initial and final 
total organic carbon concentrations in mg/L, respectively at time t (min).

Based on the actual charge passed per gram for the equation above, the theoretical equa-
tion is as follows:

where  Ci and  Cf are the initial and final MO concentrations in solution taken before and 
after the adsorption-electrochemical regeneration for 5 cycles; V is the solution volume 
(L); F is Faraday’s constant (96,487 C  mol−1);  Mw is the molecular weight of MO is 
327.33 g  mol−1; and n represents the number of electrons, which is 90 for complete oxida-
tion and 36 for incomplete oxidation (see Sect. 3.1).

The current efficiency equation is as follows:

After the graphs were generated using the experimental data, various AI and machine 
learning optimisation techniques were applied to compare any deviation between the 
experimental and optimised values. Subsection 2.3. briefly summarises the data analysis 
methods used for AI and machine learning optimisation techniques.

2.3  Data Analysis Methods

Before performing the optimization of experimental data using Artificial Neural Net-
works (ANN), Support Vector Machine (SVM) and random forest (RF), an approximate 
model must be developed in preparation for training and testing. To configure the dataset, 
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designing the network architecture of any AI model is critical to incorporating activation 
functions, transfer functions, nodes or layers, etc. Once the model architecture is created, 
model training and testing procedures must be performed to train and test the network 
architecture to evaluate the model performance. The training and testing procedures are 
critical to improve the generalization of predictive performance. In these procedures, the 
input operating parameters from the experimental data were transferred into the activa-
tion functions of the modelled network architecture to generate output response variables. 
The tested experimental results were compared with the AI or machine learning optimised 
results to derive any error deviation using statistical analysis for data fitting purposes 
involving the use of either ANN, SVM classifier model or random forest decision trees to 
enhance the predictive outcomes.

2.4  Electrochemical Regeneration of GIC

This electrochemical regeneration experiment was subdivided into three phases:

1) Initial adsorption: Air was sparged into the reactor containing 200 g of GIC particle 
electrodes for 20 min. The air pressure was 2 bar to facilitate the mass transfer of dye 
molecules onto the particle electrodes. After 20 min, the air supply was turned off to 
allow the GIC particle electrodes to settle onto the bottom of the anodic compartment.

2) Adsorption-electrochemical regeneration phase: A DC power source supplied a fixed 
current through the cell during electrochemical regeneration. The electric field was 
turned on for 10 min to facilitate the electrochemical regeneration of GIC.

3) Next cycles of adsorption-electrochemical regeneration: The air was turned off, allowing 
the particle electrodes to settle onto the regeneration zone of the electrochemical cell. 
The remaining electrochemically treated solution was drained off. A fresh dye solution 
was added for the next round of adsorption-electrochemical regeneration.

2.5  Analytical Methods

In the following experiment, 1,000 mL of the 50–250 mg/L of MO stock solution was sub-
jected to electrochemical treatment. Experiments were carried out at a temperature of 22 
⁰C, and the dye solutions were filtered using a 5 μm filter funnel. A 5,000 μL "Eppendorf" 
syringe was used to take the liquid samples from the dye solutions at intervals ranging 
from 0 to 30 min. These liquid samples were analysed using a UV/Visible Spectrophotom-
eter (λm = 463 nm, Hach DR6000) and a TOC analyser (Shimadzu TOC-V CSH) to deter-
mine the dye and TOC concentrations throughout the electrochemical treatment. The coef-
ficient of variation (COV) for the UV-absorbance analysis of MO is approximately 3.08%, 
whereas for the TOC analysis, it is approximately 0.55%.

2.6  AI Modelling and Optimization

2.6.1  ANN Procedure

ANN is widely used to solve complex, multivariate and non-linear problems via classifica-
tion and regression modelling (Khan et al. 2022). ANN optimization method was applied 
to model and predict responses influenced by operational variables. ANN is a subset of 
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machine learning algorithms (Oruganti et  al. 2023). It mimics the behaviour of human 
brain and nervous system with outstanding learning ability. ANN is a black-box model that 
employs a gradient descent propagation technique to predict a target output variable (Picos-
Benítez et al. 2020). It is structured into three layers, each node connected by inputs and out-
puts, as shown in Fig. 2. The ANN processes involve one or more hidden layers connected 
by input parameters consisting of current density, electrolysis time and initial MO concen-
tration, and output layers consisting of MO removal efficiency, current efficiency, electrical 
energy consumption of MO and TOC, which is known as the multilayer perceptron (MLP) 
structure (Asgari et al. 2020). The number of neurons in each input and output layer can be 
as many as the number of input and response variables. In this study, a three-layer ANN 
model with a hidden layer was designed, in which the tangential sigmoid function was used 
at the hidden layer, whereas a linear transfer function was used at the output layer. The Lev-
enberg–Marquardt backpropagation algorithm with 1000 epochs was employed for training 
the network. The number of neurons located in the hidden layer was a range of 1–20 to give 
the best optimum values based on minimum mean squared error (MSE). The ANN analysis 
was performed using MATLAB R2023a. The performance of ANN modelling can be sta-
tistically evaluated using the MSE and the correlation coefficient, in accordance with the 
following Eqs. (11) and (12), respectively (Khan et al. 2022; Özdoğan-Sarıkoç et al. 2023):

ypred,i and yexp,i denote predicted and experimental  ith values in scalar unit such as dye or 
TOC removal efficiency, respectively. yexp represents an average experimental value of 
either dye or TOC removal efficiency. MSE and R2 are mean square error and coefficient of 
determination, respectively.

2.6.2  SVM Procedure

The SVM method is built upon the fundamental concept that involves applying either a 
linear or non-linear mapping function to map the experimental or actual data into a higher 
dimensional feature space and search for an optimum hyperplane in the new space to 
achieve classification of samples (Ding et al. 2023). The SVM algorithm and its regres-
sion models have faster training time and are more advantageous than the ANN models in 
finding the universal optimal solutions for a given experimental dataset (Özdoğan-Sarıkoç 
et  al. 2023). The support vector regression (SVR) algorithm can be extracted from the 
SVM algorithm to predict response variables. However, given the limited predictability 
of the ANN algorithm, the radial basis of ANN function was still dominant compared to 
the SVM algorithm (Safeer et al. 2022). Moreover, SVM helps to identify patterns and/or 
classify the specific dataset. It compares the differences between the predicted and experi-
mental values, providing information on the degree of fitness. The primary goal of SVM 
algorithm is to identify the hyperplane in an N-dimensional space that classifies distinct 
datasets (Singh et  al. 2023). There are a number of features that define the hyperplane. 
However, as the number of features increases, the complexity of model also increases, 
making it more challenging to comprehend. When combined with ANN model, the 

(11)MSE =
1

N

∑N

i=1

����ypred,i − yexp,i
���
�2

(12)R2 = 1 −
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yi,cal − yi,exp

�2
�
yexp − yi,exp
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interpretation of complex model becomes more manageable. The predictive performance 
indicator of SVM model is used in AI optimization as follows (Khan et al. 2022):

yi,cal and yexp,i denote calculated and experimental  ith values in scalar unit, such as dye or 
TOC removal efficiency, respectively. Zi and  Yi denote predicted and experimental  ith val-
ues, such as dye or TOC removal efficiency.

SVM is a regression model that requires a decision boundary involving a maximum-
margin hyperplane to solve a learning sample (Wang et al. 2022). To perform curve fitting, 
the conceptual relationship of SVM and Lagrange multiplier method involves regression 
analysis of the data. This relationship can be described using a functional equation of the 
regression as follows (Wang et al. 2022):

where x represents the input vector; ω, b: the parameter vector; ϕ(x): the characteristic 
function. In addition, ϕ ∶ X → ϕ(X) ∈ RH is any non-linear function that maps the input 
experimental data into a high-dimensional feature space (Rodriguez-Galiano et al. 2015).

(13)MSE =
1

n

∑n

i=1

�
yi,cal − yi,exp

�2

(14)RMSE =

�∑n

i=1

�
Zi − Yi

�2

n

(15)f (x) = ω ⋅ ϕ(x) + b

Fig. 2  ANN network with topology. ANN operates like a human brain and nervous system. It possesses one 
or more hidden layers, input and output layers, which are known as multilayer perceptron (MLP) structures. 
The neurons in the input are feedforwarded through the hidden layers to the output layers, representing the 
response variables. The Levenberg–Marquardt backpropagation algorithm is adopted to train the network
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The model optimisation was subjected to the soft-margin constraint involving hyper-
plane, distinguishing the training data with the maximum margin. The optimization prob-
lem can be solved using the Lagrange multipliers method, which is the Kernel function 
defined as the inner product of the transformed input feature vectors (Rodriguez-Galiano 
et al. 2015):

2.6.3  Random Forest

Random forest is essentially a Classification and Regression Trees (CART) algorithm, 
which is part of a machine learning-based approach with the potential to capture complex 
non-linear relationships between selected models (Wang et al. 2022). Random forest uti-
lizes multiple trees with nodes to train and predict samples, with representation by deci-
sion trees. The chosen training data are randomly returned, and newly learned data is con-
tinuously constructed, resulting in newly established decision trees to increase the overall 
effect of accuracy and stability of predictions. For solving regression problems, the random 
forest generates a final prediction result for each decision tree based on the mean of the 
predicted data.

2.7  Statistical Analysis and Data Fitting Using AI Models

2.7.1  Development of ANN Architecture

All operational parameters used in ANN approach were adopted from the experimental 
data. In addition, the desired output responses were MO removal efficiency, electrical 
energy consumption of MO and TOC, and current efficiency of the electrochemical reac-
tor. Firstly, it was assumed that artificial neurons are arranged in sequential layers. Sec-
ondly, the neurons within the same layers do not interact with one another. Thirdly, all 
input operating parameters entering the network architecture must pass from the input layer 
through the hidden layer to the output layer. All hidden layers must have a similar activa-
tion or transfer function. Once the output variables are generated, they are compared with 
the input variables using statistical analyses involving MSE, RMSE,  R2, etc.

The proposed mathematical equation representing the ANN model can be written as fol-
lows (Asgari et al. 2020):

where  Yn represents the normalized response variable,  f0 denotes the transfer function 
in the output layer,  b0 is the bias value in the output layer,  wk is the weights between the 
output and hidden layers,  fh is the transfer function representing the tan-sigmoid function 
in a specific study in the hidden layer,  ahk is bias value in the hidden layer,  jik represents 
the weights involved between the hidden and input layers, and  Xni denotes the normalized 
input variables ranging between 0.1 to 0.9 for a specific study.

(16)K
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2.7.2  Multiple Regression Analysis

Multiple regression analysis is one of the statistical techniques used to analyse the rela-
tionship between a single dependent variable and a range of independent variables. The 
primary purpose of using multiple regression analysis is to use independent variables to 
predict the value of a single dependent variable (Wagner et  al. 2006). Each predictor is 
weighed, with total weights contributing to the overall prediction. The following represents 
the equation for describing the overall prediction (Wagner et al. 2006):

where Y denotes the dependent variable;  X1 and  Xn represent the number of independ-
ent variables;  b1 and  bn represent the weights to ensure maximum prediction of dependent 
variable from the set of independent variables.

3  Results and Discussion

3.1  Effect of the Operational Parameters on the Electrochemical Process

Current density was one of the most influential parameters affecting the overall electro-
chemical treatment efficiency. The experiment studied the effect of 15 mA/cm2 of current 
density on the degradation efficiency of MO by 3D electrochemical process. In addition, 
Fig. 3 shows that when the current density of 15 mA/cm2 was applied for at least 30 min of 
electrolysis time to treat a range of initial MO concentrations ranging from 50 to 125 mg/L, 
the MO removal rate constants changed from 0.149 to 0.036   min−1 while MO removal 
efficiency decreased from 98.8% to 66.0%. Approximately 70% (0.046   min−1) and 90% 
(0.241  min−1) of removal efficiencies and removal rate constants were achieved in 2D and 
3D electrochemical treatment by Liu et al. (2022). The results indicate that the higher the 
initial MO concentration, the lower the MO removal efficiency and removal rate constants 
due to competitive reaction  between.OH and dye pollutants. There were two types of oxi-
dation reaction: 1) direct anodic oxidation of MO pollutants via anode; 2) indirect oxi-
dation of MO via powerful oxidants such as hydroxyl radical and active chlorine species 
electrogenerated in bulk solution, anode and particle electrode surfaces. In addition, Fig. 3 
shows that the applied current density of 15 mA/cm2 increased the regeneration efficiency 
of GIC particles beyond 100% after a few adsorption-regeneration cycles. This means that 
after 5 cycles, all the adsorbed MO was degraded, leaving the GIC with fully recovered 
active sites. In addition, the propagation of error was calculated to determine the effects of 
function by variable uncertainty to provide a more accurate measurement of uncertainty. 
In this case, the uncertainty propagation for regeneration efficiencies was approximately 
15.3%. This value indicates that the effect of electrochemical regeneration on active site 
recovery on GIC particle electrodes was not significantly different in each cycle of adsorp-
tion-regeneration, and almost equal proportion or approximately 100% of active sites can 
be recovered after electrochemical treatment. Secondly, the result also indicated that the 
effect of electrochemical regeneration on the surface roughening of GIC particle electrodes 
was minimal as prolonged regeneration can affect the physicochemical properties of parti-
cle electrodes, offsetting the recovery of active sites for better regeneration and adsorption 
efficiencies.

(18)Y = a + b1X1 + b2X2 +⋯ + bnXn
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This phenomenon was attributed to surface roughening, which led to changes in sur-
face chemistry or physicochemical properties of GIC (Nkrumah-Amoako et al. 2014). Past 
researchers showed that the surface area of GIC was expanded during the electrochemical 
regeneration process (Nkrumah-Amoako et al. 2014). During the electrochemical oxidation 
process, MO pollutants were adsorbed onto the GIC particle electrodes and oxidized on its 
electroactive surface into intermediate byproducts. The electrogenerated hydroxyl radicals 
from the water-splitting process and active chlorine species formed during the electrolytic 
process helped degrade the MO pollutants through indirect oxidation. In contrast, the direct 
oxidation of MO pollutants occurred on the surface of anodic material (Martínez-Huitle 
and Ferro 2006). Hydroxyl radicals formed on the surface of the anodic material by phys-
isorption were released into the bulk liquid media to degrade the MO pollutants.

Notwithstanding the effect of physisorption, Fig.  4 shows that the regeneration 
efficiency of GIC adsorbent also played a significant role in recovering the surface-active 
sites. The regeneration efficiency was influenced by surface roughening of the GIC particle 
electrodes, resulting in changes in physicochemical properties. Figure  5 shows that MO 
and TOC concentrations decreased significantly when the current density increased from 
15 to 35 mA/cm2. However, when 15 to 35 mA/cm2 of current densities were applied to 
treat the initial MO concentration of 50 mg/L, this significantly decreased MO and TOC 
concentrations. The competitive reaction  of.OH oxidants and active chlorine species 
with MO pollutants affected the amount of highly reactive oxidizing species available to 
mineralise the organic pollutants completely.

The electrochemical oxidation mechanism of organic pollutants via highly reactive 
hydroxyl radicals using anode is the following:

where P denotes pollutants; M denotes metal oxide electrodes.
The hydroxyl radical is one of the most potent oxidants in an aqueous solution with 

 E0 = 2.73 V/SHE, which can be electrogenerated on the surface of the electrode (Serrano 

(19)M(s) + H2O(l) → M(⋅OH) + H+(aq) + e−

(20)M(⋅OH) → MO(s) + H+(aq) + e−

(21)MO(s) + P → M(s) + PO

Fig. 3  Effect of 15 mA/cm2 of 
current density on the miner-
alisation rate and MO removal 
efficiency. The significance of 
this result is that higher current 
density is required to completely 
mineralise large amount of MO 
pollutants in higher concentra-
tions. The higher half-life of MO 
pollutants indicates that not all 
dyes are completely mineralised, 
leaving them in the aqueous 
solution
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2021). It is desirable to have a weak interaction between the radical and electrode 
surface to make reactivity with the nearby pollutant species possible. The physisorption 
process depends on the strength of the interaction of hydroxyl radicals with the 
electrode surface. Attractive electrostatic forces mainly involve van der Waals’ forces, 
which are more vulnerable than a covalent bond. Although the radical species is highly 
reactive, it has a half-life of approximately 10  ns (Serrano 2021). Hydroxyl radicals 
can be either physisorbed or chemisorbed onto the electrode. If the chemisorption is 
predominantly strong, it will hinder the mass transfer of hydroxyl radicals into the bulk 
solution, reducing the oxidation potential of the electrochemical system.

Active chlorine species are often present with hydroxyl radicals, especially in 
an electrochemical system that uses NaCl as an electrolyte species.  H+ ions lead to 
increased acidity of treated wastewater, but it positively affects sustaining hydroxyl radi-
cals and active chlorine species. On the other hand, high current density exacerbates the 
side reactions, resulting in reduced treatment efficiency.

In addition, the cathodic half-reaction for active chlorine species and water electroly-
sis for an electrochemical reaction is as follows:

The presence of chloride and hydroxide species increases alkalinity in the catholyte 
solution.

(22)2H2O (l) + 4e− → 2OH−(l) + H2(g)

(23)−OCl(l) + H2O(l) + 2e− → Cl−(l) + 2OH−(l)

Fig. 4  Effect of 15 mA/cm2 of current density on the regeneration efficiency of GIC particle electrodes. The 
significance of this result is that electrolysis leads to changes in GIC physicochemical properties, causing 
surface roughening and surface area recovery or availability for more adsorption due to high regeneration 
efficiency, thereby improving the uptake of MO pollutants
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During electrochemical process, assuming that the nitrogen and sulfur atoms in MO 
are converted into nitrate and sulfate, the complete electrochemical oxidation reaction 
of MO is given by the equation as follows:

For incomplete electrochemical oxidation reaction of MO due to the influence of side 
reactions, the equation is as follows:

Judging from Eqs. (24) and (25), both complete and incomplete oxidation reactions influ-
ence the MO and TOC removal efficiencies. Figure 6 shows the differences between the effects 
of complete and incomplete oxidation reactions on current efficiency of 3D electrochemical 
process. Complete oxidation reaction of MO  by.OH oxidants resulted in higher current effi-
ciency than incomplete oxidation reaction. This phenomenon was caused by greater utilization 
efficiency of current to generate powerful oxidants such as hydroxyl radicals and active chlorine 
species to degrade MO pollutants in aqueous solutions. However, when the current density was 
increased from 15 to 35 mA/cm2, the current efficiency decreased significantly for all initial dye 
concentrations. The result indicated that the formation of side reactions produced a significant 
amount of intermediate transformation byproducts, which offset the current efficiency.

In electrochemical process, electrical energy consumption is a critically important param-
eter. Electrical conductivity of the MO solution and GIC particle electrode directly influenced 
the energy consumption of the 3D electrochemical reactor. Therefore, enhancing electrical con-
ductivity by integrating the electrochemical reactor with electrically conductive GIC particle 

(24)
C14H14N3NaO3S(s) + 38H2O(1) → 14CO2(g) + 90H+(aq) + Na+(aq) + SO2−

4
(aq) + 3NO−

3
(aq) + 90

e−

(25)
C14H14N3NaO3S(s) + 11H2O(1) → 14CO(g) + 36H+(aq) + Na+(aq) + S2−(aq) +

3

2
N2(aq) + 36e−

Fig. 5  Effect of changing current densities and electrolysis time on different MO and TOC concentrations. 
The significance of this result is that the greater the current density, the greater the mineralisation effi-
ciency, resulting in a significant decrease in MO and TOC concentrations over electrolysis time
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electrodes can decrease the solution’s electrical and mass transfer resistances, leading to better 
voltage utilization when fixing an electric current. The existence of ions such as nitrate, ammo-
nium and sulphate ions provided electrical conductivity in the solution. Mineralisation of MO 
pollutants was accompanied by the evolution of NH+

4
 , NO−

3
and SO2−

4
 . In addition, the electro-

generated oxidant species may lead to corrosion of the electrodes, inadvertently increasing the 
electrical resistance. The increase in ohmic resistance of the electrode due to corrosion may 
result in additional maintenance and repair costs after prolonged electrochemical treatment. 
Moreover, the results from Fig. 6 showed that the current efficiency significantly impacted the 
utilisation efficiency of current, directly influencing the amount of energy channelled into the 
degradation of dye contaminants. The differences between the complete and incomplete oxida-
tion reactions were due to differences in the number of coulombic electrons produced. Com-
plete oxidation reactions were considered ideal reactions with more electrons yielded as pre-
sented by Eq. (24). On the other hand, incomplete oxidation reactions involved some loss of 
electrons due to inefficient reactions and desirable uptake of electrons due to the quenching 
effect of surrounding media. In addition, Fig. 7a shows that when the current density increased 
from 15 to 35  mA/cm2 for all initial MO concentrations, the electrical energy consumption 
increased from 5 kWh/kg MO to greater than 30 kWh/kg MO. On the other hand, Fig. 7b shows 
that the electrical energy consumption for TOC removal increased more significantly than the 
electrooxidation of MO pollutants due to greater electrical energy required to achieve complete 
mineralisation efficiency. In addition, the values of electrical energy consumption of TOC were 
more critical and reflective of the actual breakdown of dye contaminants into  CO2 and  H2O, 
representing the complete reduction of dye contaminants to prevent it from forming aromatic 
amines, which could be more ecotoxic than its original organic compound.

Fig. 6  Effect of different current densities on current efficiency of the 3D electrochemical reactor. The sig-
nificance of this result is that not all current potentials are utilised efficiently to mineralise the MO pol-
lutants. Some currents were lost through the buildup of side reactions or quenching effect of surrounding 
media and interference from intermediate transformation byproducts
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3.1.1  The Prediction Efficiency of Multi-regression Analysis, ANN and SVM models

To assess the prediction efficiency of ANN model in relation to multiple regression 
analysis and SVM models, 14 experimental runs were conducted for each set of cur-
rent density, initial MO concentration and electrolysis time. The ANN prediction results 
for the experimental and predicted removal efficiencies demonstrated that the models 

Fig. 7  a) Effect of different current densities and initial MO concentrations on electrical energy consump-
tion (kWh/kg MO) of 3D electrochemical reactor; b) Effect of different current densities and initial MO 
concentrations on electrical energy consumption (kWh/kg TOC) of 3D electrochemical reactor. This result 
shows that higher electrical energy is required to completely mineralise the MO pollutants compared to the 
lower electrical energy needed to break down or convert the MO pollutants into intermediate transforma-
tion byproducts through different oxidation pathways. Side reactions may influence the amount of electrical 
energy consumption
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yielded a promising result, with experimental values remarkably close to the predicted 
data as shown in Fig.  8a-d. Similarly, the prediction results for electrical energy con-
sumption of MO and TOC and current efficiency showed high  R2 values between the 
experimental and predicted values, highlighting the robustness of ANN optimization 
power to provide accurate predictions. Figures  8a-d showed different training, valida-
tion, and testing proportions, and all data were randomly segregated and imported into 
the ANN model. The efficiency of MSE calculation depended on the number of neurons 
applied in the hidden layer so that the statistical metric could be evaluated. The statisti-
cal analyses were based on the parameterized hypotheses between the experimental and 
AI-generated data. The value of MSE trained network was 22.44, along with the corre-
lation coefficient  (R2 = 0.992), as shown in Fig. 8a and e. The degree of curve fitting and 
its relationship between experimental and predicted responses were demonstrated by  R2. 
The  R2 values obtained for the training, validation and testing were 0.992, 0.965 and 
0.845, respectively as shown in Fig. 8a. The  R2-value close to 1 indicates a satisfactory 
relationship between outputs and target values. The linear fitting model attained plotting 
regression outputs of ANN, which were given in Fig. 8a-d. The plot of validation out-
puts and targets created the model (output = 0.72*Target + 15) in Fig. 8a. Figures 8a-d 
show a good correlation between the experimental and theoretical results obtained using 
the training function. Furthermore, the ANN topology was examined by varying the 
number of layers and neurons at the hidden layer to yield an optimal solution. In other 
words, the number of hidden layers was determined by trial-and-error methodology. 
Statistical metrics were used as evaluation criteria to determine the best optimal result 
with minimal deviation between the response variables in the experimental and theo-
retical results. The prediction capability of ANN did not increase with the number of 
neurons in the hidden layer due to overfitting of data, leading to increased error devia-
tion and variability. In addition, one of the prediction results of MO removal efficiency 
showed that the  R2 values for training, validation, testing and all data were 0.992, 0.965, 
0.845 and 0.909 in Fig. 8a-d. These results indicated remarkable compatibility between 
the experimental and predicted results using the ANN model. Furthermore, Levenberg 
Marquardt Post-Diffusion Algorithm (LMPA) was used to train the network. The perfor-
mance plot of the trained network is shown in Fig. 8e-h, which showed that the training 
stopped at 0.0713 at epoch 100 in Fig. 8f, which was close to the acceptable range. In 
general, the function estimation with network parameters less than 100, the LMP tends 
to show higher efficiency and speed of calculation. However, high accuracy is still sig-
nificantly prominent in the majority of cases. The benefit of using this algorithm is due 
to minimal error. During the data training, the output predicted by the model was com-
paratively better than the expected value, which can be observed when the MSE values 
are calculated.

During the first phase, the error training decreased until the network approached 
a minimal error, and by supplying more data, the error increased again. The network 
training was halted at this stage, and weights were returned to the minimum error. In 
addition, Fig.  8e to h showed the statistical significance and error distribution (MSE) 
of MO removal efficiency, electrical energy consumption of MO and TOC, and cur-
rent efficiency, predicted by ANN model. The MSE values were significantly low cou-
pled with high  R2 values determined the goodness of measured and predicted results. 
Although linear relationships between the experimental and predicted results showed a 
good fit, it provided limited information on the model prediction efficiency due to the 
absence of non-linear multiple regression analysis. Furthermore, Fig. 8f and h showed 
that the MSE values were the lowest compared to other statistical metrics in the number 
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Fig. 8  The performance of ANN models with topology for training, validation, test and all data for a) MO 
removal efficiency; b) electrical energy consumption (kWh/kg MO); c) electrical energy consumption 
(kWh/kg TOC); d) current efficiency; e) mean square error of validation performance for MO removal effi-
ciency; f) mean square error of validation performance for electrical energy consumption (kWh/kg MO); 
g) mean square error of validation performance for electrical energy consumption (kWh/kg TOC); h) 
mean square error of validation performance for current efficiency; i) SVM prediction efficiency between 
the experimental and predicted data for MO removal efficiency; j) SVM prediction efficiency between the 
experimental and predicted data for electrical energy consumption of MO; k) SVM prediction efficiency 
between the experimental and predicted data for electrical energy consumption of TOC; l) ANN predic-
tion efficiency between the experimental and predicted data for MO removal efficiency; m) RF prediction 
efficiency between the experimental and predicted data for MO removal efficiency; n) ANOVA analysis 
prediction efficiency between the experimental and predicted data for MO removal efficiency. The signifi-
cance of the result is that when the ANN algorithm yields robust prediction efficiency of response variables 
such as MO and TOC removal efficiencies that can be improved significantly, rectifying the imprecise or 
complicated data to derive and extract patterns by controlling the operating parameters to minimise system 
perturbations or errors
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of neurons contained within the hidden layer. The relationship between the experimen-
tal and predicted data can be evaluated using the correlation coefficient. On the other 
hand, Fig. 8i-k showed the equivalent prediction results between the experimental and 
predicted values, indicating that SVM algorithm can be used to strengthen the optimiza-
tion power of ANN model. In other words, the SVM model yielded one of the best fit-
ness between the experimental and predicted values.

The nature of surrounding media and quenching effect of ions on hydroxyl radicals 
and active chlorine species within the bulk solution influenced the synergistic adsorption 

Fig. 8  (continued)
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and electrochemical oxidation of MO pollutants in wastewater. Some minor offset in the 
response variables predicted by the ANN models and experimental data stemmed from 
side reactions and interference from the immediate transformation byproducts from differ-
ent oxidation pathways, resulting in slightly reduced correlation coefficients. In addition, 
the electrolytic effect of anode and cathode on the surface physicochemical properties of 
the GIC adsorbent can impact the adsorption capacity, increasing the surface area avail-
ability for further uptake of MO pollutants from the bulk solution. The surface function-
alisation of GIC adsorbent also played a critical role in imparting electrostatic attraction 
between the MO pollutants and adsorbents. Moreover, the normalisation of experimental 
and ANN-predicted data shown in Fig. 8a-d indicated that the trained network was applied 
throughout the dataset, evidencing no misleading interpretation of the results. The minor 
deviation between the experimental and ANN-predicted data was partly due to experimen-
tal variability. Still, the entire experimental dataset yielded a high correlation coefficient 
with small MSE values, indicating that the ANN optimisation technique was efficient.

Table 1 lists the MSE/RMSE and  R2 obtained from Fig. 8 and compares them with val-
ues from the literature. It can be observed that MSE/RMSE and  R2 values for the response 
variable MO removal efficiency were approximately similar to the best AI optimization 
results achieved by other researchers, albeit experimenting on different pollutants. This 
result shows that AI optimization techniques can be applied to the electrochemical treatment 
of dye wastewater, which was not previously shown. More interestingly, the ANN-optimised 
results were similar to the values in Table 1, especially when compared with the conven-
tional wastewater treatment plants. Minor differences were attributed to the side reactions 
and buildup of intermediate transformation byproducts from different oxidation pathways, 

Fig. 8  (continued)
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affecting the pollutant removal efficiency. The discrepancies in results are attributed to the 
type of pollutant under treatment, unit operations, and other laboratory parameters.

To compare and validate ANN, the Random Forest optimization technique using the 
CART algorithm was used to evaluate this work. The following Fig. 9 presents the general 
process of random forest by CART algorithm (Wang et al. 2022):

Figure  9 shows the random forest process and computational procedure for gener-
ating the regression trees or optimal tree diagrams. Figure SM1a shows that the opti-
mal tree diagrams using random forest can be used to analyse the energy efficiency of 
three-dimensional electrochemical process by finding the optimum current density for 
electrolysing the MO textile wastewater. The optimal tree diagram in Figure SM1a in 
Supplementary File shows that when the current density dropped below 20  mA/cm2, 
the predictive analytics showed terminal node 1 with percentages around 7.1% for a 
range of calculations for electrical energy consumption of MO. The optimization results 
indicated that any current density below 20 mA/cm2 can achieve better energy efficiency 
than higher current density. When the current density was between 20 and 30 mA/cm2 
at terminal node 2, the prediction results indicated that the electrical energy consump-
tion of MO was higher than terminal node 1, indicating lower energy efficiency when 
the current density increased beyond 20  mA/cm2. However, when the current density 
increased beyond 30 mA/cm2, the energy efficiency decreased more significantly. The 
patterns of electrical energy consumption of TOC for Figure SM1b in Supplementary 
File were similar to Figure SM1a except that the amounts of energy consumption of 
TOC were higher than the typical energy consumption of MO due to greater electrical 
energy required to mineralize the dye contaminants in aqueous solutions. The efficiency 
analysis tree approach can optimize or monitor the energy usage in the electrochem-
ical process within the WWTPs to substantially benefit people and the environment, 
reducing operational costs and greenhouse gas emissions significantly (Maziotis and 
Molinos-Senante 2023; Maziotis et al. 2023).

In conjunction with ANN and SVM models, multiple regression analyses in Fig. 10a-d 
showed variations between the fitness of experimental and predicted values. In addition, 
multi-regression analysis results presented in Fig. 10b shows a small residual error between 
the experimental and predicted values. The result indicates a slight variation between the 
experimental and predicted values when determining the adequate current efficiency required 
to facilitate oxidation reactions. The benefits of optimisation using multi-regression analysis 
are due to more controllability over the process parameters while maintaining the energy effi-
ciency of the oxidation reactions. The results from multiple regression analysis in Fig. 10d 
showed minimal residuals between the experimental and predicted results, indicating that 
the prediction efficiency was a good fit for optimising the process parameters. On the other 
hand, the results from Fig. 10c and d show very minimal residuals between the experimental 

Fig. 9  Random forest process is an ensemble learning method or algorithm for classification and regression 
by operating a multitude of decision trees at different training times. The step-by-step procedure used to 
construct the decision trees is stipulated
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Fig. 10  a) Multiple regression 
analysis for optimisation of MO 
removal efficiency at 50 mg/L 
of initial MO concentration; b) 
Multiple regression analysis for 
optimisation of current efficiency 
using current densities rang-
ing from 15 to 35 mA/cm2; c) 
Multiple regression analysis for 
optimisation of electrical energy 
consumption of MO using cur-
rent densities ranging from 15 to 
35 mA/cm2; d) Multiple regres-
sion analysis for optimisation of 
electrical energy consumption 
of TOC using current densi-
ties ranging from 15 to 35 mA/
cm2. The significance of using 
multiple regression analysis is to 
analyse the relationship between 
dependent variables and several 
independent variables to predict 
the outcome of the dependent 
values. In this case, multiple 
regression is used to compare the 
effects of initial MO concentra-
tions and current densities on 
MO removal efficiency and 
electrical energy consumption 
of MO and TOC, respectively. 
The predictive outcomes of 
multiple regression analyses can 
be compared with the prediction 
efficiency of AI and machine 
learning techniques for validation
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Fig. 10  (continued)



Monte Carlo Simulation, Artificial Intelligence and Machine… Page 25 of 31 41

and predicted values, indicating that the prediction efficiency was a good fit with  R2 values 
greater than 0.95. However, both ANN and SVM models yielded high  R2 values, highlight-
ing its superior optimisation power over multiple regression functions. In addition, a two-
layer feed-forward network imparted with hidden sigmoid neurons and linear output neurons 
can solve problems for multidimensional mapping to improve curve fitting to match the data. 
MLP network (3:4:4) was trained with the Levenberg–Marquardt backpropagation algorithm 
(LMBPA). MSE varied in validation samples, and the training automatically stopped or 
adjusted to improve the generalisation. The network was trained for 4 replications to find the 
best number of neurons for the hidden layer.

Finally, the multi-regression analysis in Fig.  10c and d shows minor residual errors or 
variations between the predicted and experimental values, indicating that the optimisation 
technique can achieve more robust process conditions by adjusting parameters. However, the 
ANN optimisation method provided the best prediction result over control of process param-
eters compared to multi-regression analysis. In addition, Table 2 summarises model valida-
tion by ANOVA analysis to compare differences between AI/ML optimisation techniques and 
multiple regression fit to actual versus predicted values for examining the three-dimensional 
electrochemical treatment of 50 mg/L MO using a current density of 15 mA/cm2.

3.1.2  Monte Carlo Simulations

The uncertainties associated with different ML predicted models were estimated using 
Monte Carlo simulations. The uncertainty and variability of input parameters influence the 
estimation of uncertainty. Compared to actual data, the predicted variables have an inher-
ent uncertainty in estimating response variables. The Monte Carlo simulation was based on 

Table 2  Model validation by comparing AI/ML optimisation and ANOVA analysis through multiple linear 
regression fit to actual versus predicted data

Actual values MSE MSE MSE MSE
22.44 172.74 149.015 183.655

R2 R2 R2 R2

0.909 0.898 0.907 0.806

ANN (Predicted 
values)

SVM (Predicted 
values)

Random forest 
(Predicted values)

ANOVA (Model 
validation)

0.000 21 35.743 39.571 31.170
37.626 48.84302 38.151 31.038 34.012
46.088 55.10498 40.559 42.382 36.853
45.426 54.61491 42.967 45.616 39.694
45.426 54.61491 45.375 44.503 42.535
43.341 53.07211 47.783 47.750 45.376
48.320 56.75668 50.191 48.805 48.218
49.644 57.73682 52.599 47.625 51.059
47.143 55.88545 55.007 53.584 53.900
65.759 69.66176 59.823 47.895 59.582
97.694 93.29384 71.862 88.889 73.788
98.577 93.94727 83.902 98.546 87.994
98.896 94.18322 95.942 98.395 102.200
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the repeated random sampling (n = 1,000 simulated samples) of the probability distributions 
defined for principal response variables of certain variation and uncertainty of each input 
parameter. The Monte Carlo approach allows the approximate estimation of variation and 
uncertainty stemming from system perturbation associated with specific input parameters 
and incorporating them into the estimates of response variables. In addition, simulations with 
1,000 iterations were used to construct the distributions to calculate the level of uncertainties 
in different predictive model platforms. The simulated parameters can be extended beyond the 
current number of operating parameters. Uncertainty analyses in wastewater treatment sys-
tems compare the reliability of results, which is subject to variability that leads to significant 
imprecision in the predictive model platforms. The quality of wastewater treatment standards 
is based on rigorous regulation of water quality criteria to monitor the risk of adverse effects 
on the receiving bodies. This research aims to apply Monte Carlo simulation to assess the 
probability of adverse effects of xenobiotic dye wastewater in meeting environmental stand-
ards for effluent discharge. The achievable limits for textile dyeing effluent standards can be 
evaluated based on the simulated models to adhere to water quality standards.

Appropriate selection of certain input distributions to estimate uncertainty and variability 
between the actual and predicted models from ML optimisation helps facilitate probabilistic 
analysis of optimized results. A distribution is determined based on how well it represents a 
certain dataset from the actual experimental results. The best representation of probabilistic dis-
tributions can be empirical or take any form of parametric distributions such as normal, loga-
rithmic normal, uniform, triangular etc. All parameters in this study were assumed to be normal 
or logarithmic normal distributions. When a certain number of random variables influences 
the dataset, the result tends to form a normal distribution as shown in Figure SM2 in Supple-
mentary File. A theoretical criterion for selecting a certain normal distribution is based on a 
central limit theorem (CLT). In addition, Figure SM2 shows the probabilistic density distribu-
tions of actual and optimized models. The uniformity of probabilistic distributions and then 
lack of skewness or heavy-tailedness highlight the prediction efficiency of AI/ML optimized 
models with limited uncertainty or variability. However, the probability distribution for different 
artificial intelligence and machine learning-based models showed that the higher the efficiency 
of targeted responses, the greater the uncertainty, which impacted the accuracy and precision 
of predictive models. The random forest algorithm generated greater uncertainty than other 
artificial neural network and support vector machine algorithms, indicating greater instability 
of system perturbation predicted by random forest. The simulated normal distribution seen in 
all artificial intelligence and machine learning-based models showed that most of the targeted 
responses achieved efficiencies within the 90% and 100% range. The strong correlation between 
the current density and targeted responses based on the sensitivity analysis indicated that cur-
rent density had the most significant effect on the pollutant removal efficiency. When the pre-
dicted models were combined, especially between ANN and SVM, the level of uncertainties 
or system perturbation increased, leading to greater variability of combined predictive models. 
Similarly, if the ANN and RF models were integrated into a single predictive model platform, 
the level of uncertainties in prediction efficiency was less than the ANN-SVM model.

4  Conclusions

The results above confirmed that 3D electrochemical treatment integrated with graphite inter-
calation compound (GIC) particle electrodes and anodic oxidation technology is a very effi-
cient technique to degrade methyl orange (MO) pollutants in simulated wastewater, achieving 
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greater than 98% removal rate within 30 min of electrolysis time. The GIC particle electrodes 
in the 3D electrochemical process act as an electrocatalytic adsorbent material to effectively 
improve mineralisation efficiency and generation  of.OH oxidants, demonstrating the effective-
ness of combined adsorption and electrochemical oxidation. However, the strength of elec-
trolysis in this experiment was limited by the type of electrocatalytic material used, and the 
acidified salt concentration was also limited, resulting in slightly reduced electrical conductivity 
of solution, and less active chlorine species available to degrade MO pollutants. Nonetheless, 
the research results justify the application potential of green and efficient 3D electrochemical 
treatment of complex industrial wastewater. The synergistic effect of 3D electrochemical pro-
cess resulted in high MO removal and current efficiencies, reducing overall electrical energy 
consumption. In addition, GIC particle electrodes consistently maintained high regeneration 
efficiency beyond 100% throughout several consecutive cycles of adsorption and regenera-
tion, highlighting the potential for reusability of particle electrodes. The AI optimisation power 
of multi-regression analysis, ANN, SVM and random forest ranked in the following order: 
ANN > RF > SVM > multiple regression analysis. The probabilistic distributions and scatter-
plots from Monte Carlo simulations indicated limited uncertainty and variability between actual 
and optimised models, highlighting the prediction efficiency of AI/ML optimisation approaches 
that are potentially applicable to water resources engineering and wastewater remediation in 
WWTP. Most interestingly, the overall critical findings of the research showed that RF is intrin-
sically suited for analysing multiclass problems, while SVM is only suited for two-class prob-
lems. In this research, the predictive performance of RF versus SVM was approximately com-
parable due to almost equal uncertainties. In contrast, the ANN algorithm yielded significantly 
better prediction efficiency than the other two algorithms with fewer uncertainties. Although 
RF is considered robust to overfitting and excellent in handling extensive nonlinear data, SVM 
can effectively operate at high dimensional spaces or hyperplanes and is versatile in handling 
multiple data types. The predictive performance of these algorithms is primarily influenced by 
the sample size, the complex nature of the dataset and the type of problem being addressed. The 
subsequent studies should focus on evaluating other equally robust classifiers for optimising the 
electricity costs from industrial operation and greenhouse gas emissions of WWTP to identify 
the potential gap between pollutant generation and discharge sources to improve the efficacy 
and broaden the applicability of optimised models.
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