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Abstract

This work is an investigation into the curvature related potential for flux to flow in the

radial direction in the back-iron of laminated axial flux machine cores. Analytical and

numerical models are presented. Analysis based on these models has shown that, in

practical axial flux machines, the radial component of the flux density can be neglected

with respect to the flux density distribution in the core back-iron. It has also been found

that if the core permeability, core conductivity and number of poles are sufficiently high

then power loss due to curvature related cross-lamination flux is negligible compared to

normal eddy current losses. A closed form expression to predict losses due to curvature

related radial flux is also presented. This expression allows axial flux machine designers

to make quick assessment of the need to consider these losses when designing axial flux

machines.
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Chapter 1

Introduction

1.1 Axial Flux Machines

Although the vast majority of electrical motors are of the radial flux type, there is

continued interest in axial flux machines (AFMs). The physical structure, especially the

short axial length, gives AFMs an advantage in applications such as fans, disk drives,

some electric vehicles and generators (Bumby et al., 2004; Patterson & Spee, 1995).

There has also been claims that compared to radial flux machines (RFMs), AFMs have

greater power to weight ratios (Brown et al., 2002; Bumby et al., 2004; Chan, 1987;

Huang et al., 2002; Varga, 1986; Zhang et al., 1996).

The name “axial flux” machine comes from the fact that the air-gap flux in these

machines is in the axial direction. Figure 1.1 shows a typical main flux path for both

an axial and a radial flux machine.

One major disadvantage of the axial flux machine structure is the axial electromagnetic

forces between the machine cores. Where necessary, multiple air-gap topologies can be

used to overcome this problem with the added advantage of increasing the machine’s

output per unit volume (Varga, 1986). A number of axial flux machine topologies have

been proposed by authors such as Varga (1986) and Chan (1987), three of these are

1
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(a) Main flux path in an axial flux ma-
chine.

(b) Main flux path in a radial flux ma-
chine.

Figure 1.1: Main flux path in an axial and radial flux machine.

shown in Figure 1.2.

The structure of axial flux machines is such that curvature is imposed on flux paths

in the back-iron. This is also the case in radial flux machines (RFMs), however there

is an important difference. In RFMs the direction of curvature is along the plane of

the laminations whereas in AFMs the direction of curvature is perpendicular to the

laminations. The effect of curvature on axial flux machine performance and behaviour

has not been previously reported. It is now shown that core curvature can result in a

radial component in the magnetic flux density distribution. This component has the

potential to cause additional power loss in the core back-iron.
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(a) Single Air-Gap AFM. (b) Double Air-Gap AFM.

(c) Double Air-Gap coreless AFM.

Figure 1.2: Axial Flux machine topologies.

1.2 Curvature related radial flux

Conventionally, design of axial flux machines assumes purely axial and circumferential

flux flow within the laminated stator cores of the machine. This assumption implies

that no radial and thus no cross lamination flux flow occurs within the machine back-

iron. Investigation of flux distributions, based on the assumption of zero radial flux,

results in a radially non-uniform distribution of circumferential flux. This non-uniform

distribution would produce a potential for flux to flow in the radial direction which, if

it occurs, would contradict the original assumption of zero radial flux flow. Thus there

are three possible situations which can occur in the core back-iron:

1) no radial flux flows,
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2) there is significant radial flux flow causing substantial circumferential flux redis-

tribution. That is, the level of radial flux and its effects are such that they cannot

be neglected,

3) the situation is somewhere between that of 1) and 2) but closer to 1). That is,

there exists a radial component of flux density but its effects are small enough to

be neglected.

A simplified representation of a magnetic flux path in an axial flux machine core is

shown in Figure 1.3. The path ACB shown in Figure 1.3 represents situation 1) above.

Substantial shortening of the flux path would occur in situation 2). This cannot happen

without the existence of a radial component in the flux density. The tendency for

magnetic flux to flow radially in the back-iron of AFMs does not seem to have been

considered previously. The question then is whether or not the effects of a radial

component of the magnetic flux density distribution can be ignored.

A

B

C

A B

r

q z

Figure 1.3: Magnetic flux paths for zero radial flux (ACB) and significant radial
flux (AB).

The curvature related radial component of the magnetic flux density can be ignored

only if its magnitude and distribution are such that:

a) it does not cause significant additional losses due to induced eddy currents, and
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b) it does not have any significant influence on the distribution of both the circum-

ferential and axial components of the flux density.

It seems likely that the above condition a) is satisfied in practice as there has been no

theoretical or experimental work published which suggests that the laminated back-iron

of AFMs suffers from noticeably higher iron losses. However, there is still a need for

some theoretical basis to confirm this.

There are two main physical reasons why core curvature results in a radial component

in the magnetic flux density distribution. First, flux paths are greater at larger radii

due to longer circumferential arc-lengths, as shown in Figure 1.4. Second, if end effects

are neglected then the magnetic flux enters the core from the air-gap axially with flux

density constant in the radial direction and varying sinusoidally in the circumferential

direction. As shown in Figure 1.5, this results in more flux entering the core at larger

radii. These two factors produce a non-zero gradient of the magnetic potential in the

radial direction. This potential may in turn cause a radial component in the flux

density.

Whilst a laminated core is designed to reduce eddy current losses caused by flux flowing

along the lamination planes, laminating cannot impede eddy currents caused by cross-

lamination flux. Radial flux in an AFM core is cross-lamination flux and therefore can

cause substantial amounts of eddy current to flow which may result in significant losses.
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1 pole pitch

ro

ri

flux paths

Figure 1.4: Magnetic flux path lengths at different radii.

half pole pitch

ri

ro

Figure 1.5: Magnetic flux entering the core at different radii (the amount of flux
being proportional to the shaded area).

1.3 Research Aims and Objectives

Natural resources and energy savings relate directly to society’s broader aims of sustain-

able living and curtailment of greenhouse gas emission. Electrical motors are significant

consumers of fossil fuel generated energy and the search for lower cost but more effi-

cient electrical motors is ongoing. Iron losses in electrical machines emanate as heat and

thus influence machine efficiency and cooling requirements. Design of efficient machines
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requires a thorough understanding of the loss and flux density distributions within a

machine. This knowledge not only allows a machine designer to minimize losses but it

can also result in savings in core materials.

With these broader goals in mind, the aim of this work was to develop mathematical

models that would allow qualitative investigation of flux density and eddy current

distributions in the back-iron of laminated axial flux machine cores.

Specific objectives were:

1) to develop an analytical model for a simplified axial flux machine core.

2) to develop a numerical model that would allow evaluation of power loss due to

the tendency for flux to flow in the radial direction.

3) to design laboratory tests that would allow some of the predictions of 1) and 2)

to be confirmed.

The rationale behind objective 1) was that an analytical model could be used to par-

tially check the more practical model developed to fulfill the aim of objective 2).

1.4 Literature Review

A good understanding of the nature of the magnetic flux density distribution in the

steel cores of axial flux machines would be an asset to engineers who are designing

or analyzing these machines (Chandler & Patterson, 2001). Unfortunately, there is

very little published work in this area. This is especially true for work that deals

with the flux distribution in the back-iron of AFM cores. Some authors, (Bumby

et al., 2004; Campbell, 1974; Chan, 1987; Zhilichev, 1998), have considered the flux

density distribution in the air-gap region of AFMs, however flux densities in the iron

cores have effectively been ignored since infinite core permeability was assumed. Boldea

et al. (1975), derive expressions for the flux density in the air-gap and machine cores,
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but ignore the effects of finite radius. Huang et al. (1999) derive sizing equations for

AFMs with consideration of the core back-iron depth, which is a significant part of the

axial length of AFMs. However, their approach seems to ignore non-uniformity in the

flux density distribution in the back-iron.

Numerical techniques such as the finite difference and finite element methods have

permitted machine designers to more accurately predict both flux and loss density

distributions. Prediction of core losses in electric machines generally requires numerical

quasi-static analysis. The finite element method has gained significant popularity over

recent years and is possibly the most commonly used technique for electromagnetic

analysis of electrical machines.

The difficulties in performing three-dimensional numerical analysis of electric machines

are well known (Salon, 1995). This is especially true for machines with narrow air-gap

regions (Abdel-Razek et al., 1982; DeBortoli et al., 1991; Feliachi et al., 1983; Guerin

et al., 1994). In order to reduce the often significant computation times and resources

required when performing finite element analysis of electrical machines, techniques

such as the axisymmetric and axiperiodic formulations have been developed. These

techniques, where applicable, have the potential to drastically reduce the problem size.

Unfortunately, not all of these techniques are always available in commercial software

packages.

Although not as popular as the finite element method, the use of coupled networks for

electromagnetic analysis has also been widely reported on by authors such as Demenko

(2000), Balchin & Davidson (1983), Davidson & Balchin (1983), Davidson & Balchin

(1981), Balchin & Davidson (1980), Carpenter (1977), Carpenter (1975a), Carpenter

(1975b), Carpenter (1975c), King (1966a) and King (1966b). From an engineering

point of view, one significant advantage of this approach is the physical interpretation

it readily lends itself to (Guo & Zhu, 2002; Carpenter, 1975c; King, 1966a).

The choice of technique used to solve a particular problem often depends on the problem

type and characteristics as well as the availability of hardware and software resources.
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Throughout most of this work, the “brute force” approach to numerical modeling was

found to be unsuitable. This was primarily due to the three dimensional nature of

the problem and limitations in available computing resources. As a result, it has been

necessary to explore unconventional avenues in order to produce numerical models that

were useful to the project.

1.5 Dissertation Outline

A brief outline of subsequent chapters is as follows:

Chapter 2 - The Effect of Curvature on Axial Flux Machine Cores, develops

an analytical model of an axial flux machine core. This model confirms the pres-

ence of a curvature related radial component in the core magnetic flux density

distribution. Three dimensional Finite Element Analysis is also performed to

validate key results predicted by the analytical model.

The analytical model allows us to predict an upper limit for the magnitude of the

radial flux component and determine its influence on the distribution of the axial

and circumferential components of flux density in the core. It also provides some

insight into the effects of varying physical dimensions and material properties on

the flux density distribution in the core back-iron. The solution is an upper limit

in the case of time-varying fields as induced currents will reduce the magnitude

of the radial flux component.

Of practical significance is the prediction of greatest magnetic flux density in

the circumferential direction in the laminations near the outer radius of the core.

This should be taken into consideration if excessive saturation in this region of

the core back-iron is to be avoided. Experimental results are presented which

confirm the predictions of back-iron flux density distribution made by the model.
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Chapter 3 - The Coupled Network Method, develops a coupled resistive-reluctive

network for the purpose of predicting core losses due to radial flux flow in lami-

nated cores. The periodicity of the fields in the circumferential direction in axial

flux machine cores allows the core to be modeled using an axiperiodic formulation.

Using this formulation has the significant advantage of reducing the problem size

and thus the computation resources required to numerically model the core. The

formulation presented is based on the magnetic scalar potential and a reduced

electric vector potential. The term “reduced” is introduced to signify that only

one of the components of the electric vector potential are non-zero.

The axiperiodic formulation is not widely available in commercial finite element

software packages. Therefore, in order to exploit its advantages, all models were

developed in-house. The coupled network method with regular elements was cho-

sen because of the simple geometry of the core and because it lends itself to

physical interpretation.

It is also shown that the coupled network formulation presented here is really

just an application of the finite difference method.

Chapter 4 - Core Losses and Magnetic Flux Density Distribution, uses the

restricted axiperiodic coupled network method developed in Chapter 3 to predict

core losses due to the radial component of the magnetic flux density distribution.

The coupled network formulation is based on a restricted resistive network formed

by setting the core conductivity in the radial direction to zero. This restriction

results in an induced loss calculation due only to the radial component of the

core magnetic flux density. It is shown that the power loss due to radial flux

is decoupled from that due to parallel running or main flux and therefore their

theoretical evaluations can be performed separately. The axiperiodic model is

also used to investigate the frequency dependence of the radial component of the

magnetic flux density.
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A closed form expression for the power loss due to radial flux is also derived.

This expression can be used by axial flux machine designers to make a quick as-

sessment of the requirement to consider power loss due to curvature related cross

lamination flux.

Chapter 5 - Sub-domain Scaling for Finite Element Analysis of Electrical

Machines, presents a sub-domain scaling technique for finite element analysis of

axial flux machines with narrow air-gap regions. It is shown that this technique

has the ability to both reduce the number of nodes required to mesh the domain

as well as improving the mesh quality.

Whilst this technique does not directly contribute to the work presented in the

previous chapters, it does provide a tool which could be used to extend the work

beyond its current limitations.

Chapter 6 - Conclusion, reviews achievements of the research undertaken with re-

spect to its aim and objectives. A section entitled “Further work” is also included

which addresses some of the possible areas in which research could be performed

to extend on the contributions made here. In this section it is argued that the

scaling technique developed in Chapter 5 may prove very useful for further work

in these areas.

Appendices:

Appendix A - Bessel Function Orthogonality, demonstrates the orthogonality

property of Bessel functions with respect to a scaling coefficient over a fixed region

when homogeneous derivative boundary conditions are imposed. This property

is an integral part of the derivation of the analytical model presented in Chapter

2.

Appendix B - Air-Gap Flux Density Distribution, presents an analytical model

of the air gap region of an axial flux machine. Using the derived model it is
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shown that for narrow air-gaps the magnetic flux density becomes independent

of radius.

Appendix C - Two-Dimensional Magnetostatic Analytical Model, derives a

two-dimensional analytical model for the magnetic flux density distribution in the

core of an axial flux machine. This model is compared with the three-dimensional

model of Chapter 2, where it is shown that the two models agree in the limit of

zero radial permeability.

The two-dimensional model is also used in Chapter 4 to provide an equation for

the loss due to parallel running or main flux in axial flux machine cores.

1.6 Summary of Original Work

The original work presented in this dissertation focuses on the prediction of a radial

component of the magnetic flux density in the back-iron of axial flux machine cores.

The radial component investigated here is a direct consequence of the core curvature.

It is shown that its magnitude is dependent on the core material properties and degree

of core curvature. Analytical and numerical tools have been developed that allow the

behaviour of the radial flux component to be investigated. These models also allow

prediction of the induced losses caused by the tendency for flux to flow in the radial

or cross laminate direction. A scaling technique has also been developed to assist in

the finite element analysis of electrical machine with narrow air-gap regions. When

used to analyse axial flux machines, this technique has the potential to reduce the

computational resources required to perform finite element analysis.

It is concluded that in most practical axial flux machines the effects of curvature related

radial flux on the iron loss and flux density distribution can be neglected. However,

the effects of core curvature on the flux density distribution in the back-iron of these

machines cannot be ignored. In this dissertation it is shown that core curvature results

in a non-uniform flux density distribution with radius. Machine designers need to be

aware of this distribution when sizing back-iron if excessive saturation is to avoided.
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Specifically the original contributions reported in this dissertation include:

1) Derivation of an analytical model of the magnetic flux density distribution in

the core of axial flux machines. This model confirms the presence of a radial

component in the flux density distribution. It also shows that the magnetic flux

density is highest in the laminations near the outer radius of the core.

2) Development of an axiperiodic coupled network formulation for the prediction of

induced losses caused by the tendency for flux to flow in the radial direction.

3) Derivation of a closed form expression for the power loss due to curvature related

radial flux. This expression allows axial flux machine designers to make a quick

assessment of the requirement to consider power loss due to curvature related

cross lamination flux.

4) Development of a sub-domain scaling technique for finite element analysis of elec-

trical machines with narrow air-gap regions. This technique has been developed

as a general tool to assist in the finite element analysis (FEA) of axial flux ma-

chines. It has the potential to significantly reduce the computational resources

required when performing FEA on these and other types of machines.
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Chapter 2

Curvature Related Radial Flux in

Axial Flux Machine Cores

The two main physical reasons for the existence of a curvature related radial component

of the magnetic flux density are longer flux path lengths at larger radii and the amount

of flux being greater at larger radii. The tendency for magnetic flux to flow radially

in the back-iron of AFMs does not seem to have been considered previously. A three-

dimensional (3D) analytical model of the AFM back-iron is presented in this chapter.

An important purpose of the model is to allow investigation of the radial component

of the magnetic flux density.

Determining the magnitude of the radial component will allow us to predict the influ-

ence it has on the distribution of the axial and circumferential components of the flux

density in the core. This will also answer the key question of whether or not the radial

component can be ignored with respect to the flux density distribution. Determination

of the flux density in AFM cores is greatly simplified if the radial component and its

effects can be ignored.

16
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2.1 Analytical Model

An analytical model is now derived for the core of an axial flux machine. This model

provides some insight to the nature of the magnetic flux density distribution inside the

core of these machines and identifies a previously unreported curvature related radial

component of the flux density.

2.1.1 Single-Phase Excitation

For simplicity the following assumptions have been made:

a) magnetic saturation, hysteresis and induced currents can be ignored;

b) magnetic permeabilities in the radial, axial and circumferential directions may

differ from each other, but are all constant;

c) the core is uniform rather than laminated. However a significantly lower perme-

ability is used in the radial direction to account for the effect of the low perme-

ability electrical insulation separating the laminations (Reece & Preston, 2000);

d) the regions outside the core (see Figure 2.1) have zero permeability;

e) the core surface adjacent to the air-gap is smooth, that is the effects of teeth and

slots are ignored;

f) magnetic flux enters the core from the air-gap axially with flux density constant

along the radial direction and varying sinusoidally in the circumferential direction.

Assumptions d) and f) imply that end-effects are ignored in the model. In practice

end-effects will result in an increase in the magnetic flux density at the core edges

(Bumby et al., 2004). Whilst it is acknowledged that end-effects need to be considered

when investigating the magnetic flux distribution in the core back-iron, the focus of

this research is on the effect of core curvature on the distribution.



CHAPTER 2. CURVATURE RELATED RADIAL FLUX IN AXIAL FLUX

MACHINE CORES 18

2b

2a

d

q
Z’

r’

Figure 2.1: Stator core geometry and coordinate system.

The problem is formulated based on Maxwell’s equations and the assumptions listed

above. The assumption of no currents in the core allows the magnetic field intensity

~H ′ to be defined in terms of a magnetic scalar potential φ′ using

~H ′ = −∇φ′. (2.1)

The constitutive relationship between the magnetic flux density ~B′ and ~H ′ can now be

used to produce the defining model equation

∇ ·
(

M ′∇φ′
)

= 0, (2.2)

where M ′ is the permeability tensor given by

M ′ =











µr 0 0

0 µθ 0

0 0 µz











. (2.3)

The boundary conditions are:

1) Magnetic insulation along the lower z ′-plane boundary,

B′

z

∣

∣

z′=0
= 0 (2.4)

2) The magnetic flux injection boundary,

B′

z

∣

∣

z′=δ
= P sin

(

pθ

2

)

(2.5)
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3) Magnetic insulation at the inner and outer radial surfaces,

B′

r

∣

∣

r′=a and r′=b
= 0 (2.6)

where B′
z and B′

r are the axial and radial magnetic flux densities respectively, P is the

peak imposed flux density, a and b are the inner and outer core radii, respectively, δ is

the core thickness, and 0 ≤ θ ≤ 2π is the angular coordinate.

In coordinate form equation (2.2) becomes

µr
∂2φ′

∂r′2
+

µr

r′
∂φ′

∂r′
+

µθ

r′2
∂2φ′

∂θ2
+ µz

∂2φ′

∂z′2
= 0. (2.7)

The problem is non-dimensionalised as follows

r′ = rb

φ′ = φφ0 (2.8)

z′ = zδ

where b is the core outer radius δ the iron axial length and φ0, the characteristic value

of the potential, is defined in equation (2.14). The permeability tensor (2.3) becomes

M =











1 0 0

0 kθ 0

0 0 kz











(2.9)

where kθ = µθ/µr, and kz = µz/µr. The non-dimensional form of equation (2.7) is

∂2φ

∂r2
+

1

r

∂φ

∂r
+

kθ

r2

∂2φ

∂θ2
+

b2kz

δ2

∂2φ

∂z2
= 0 (2.10)

and the non-dimensional boundary conditions are

∂φ

∂z

∣

∣

∣

∣

z=0

= 0, (2.11)

kzµr
φ0

δ

∂φ

∂z

∣

∣

∣

∣

z=1

= P sin

(

pθ

2

)

⇒ ∂φ

∂z

∣

∣

∣

∣

z=1

= sin

(

pθ

2

)

, (2.12)
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and
∂φ

∂r

∣

∣

∣

∣

r=s and r=1

= 0 (2.13)

where s = (a/b). Equations (2.11), (2.12) and (2.13) arise from the dimensional bound-

ary conditions (2.4), (2.5) and (2.6), respectively, and we choose

φ0 =
Pδ

kzµr
=

Pδ

µz
(2.14)

to simplify the boundary condition (2.12).

We now use separation of variables to solve (2.10). Substituting

φ = R (r) · ϕ (θ) · Z (z)

in equation (2.10) gives

R
′′

R
+

1

r

R
′

R
+

kθ

r2

ϕ
′′

ϕ
+

kzb
2

δ2

Z
′′

Z
= 0 (2.15)

where the primes denote the respective derivatives. Consistency within equation (2.15)

requires that
Z

′′

Z
= k2

n

δ2

b2kz
, n = 1, 2, 3, ... . (2.16)

and
ϕ

′′

ϕ
= −l2 (to ensure angular periodicity) (2.17)

where kn are real constants and l = (p/2). Substituting (2.16) and (2.17) into (2.15)

gives

r2R
′′

+ rR
′

+
(

r2k2
n − kθl

2
)

= 0. (2.18)

We now make the following simplifying substitution

m = l
√

kθ (2.19)

which reduces (2.18) to

rR
′′

+ rR
′

+ (r2k2
n − m2)R = 0. (2.20)

Equation (2.20) is a Bessel Differential Equation (BDE), the solution of which is of the

form Rm(knr) = c1Jm(knr) + c2Ym(knr) where Jm and Ym are Bessel functions of the
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first and second kind of order m,respectively. Enforcing the radial boundary condition

(2.13) leads to the nonlinear eigenvalue problem for kn

Fm (kn) = J
′

m (kns)Y
′

m (kn) − J
′

m (kn)Y
′

m (kns) = 0, (2.21)

the solutions of which are shown in Figure 2.2.
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Figure 2.2: Solutions to the non-linear eigenvalue problem of equation (2.21) shown
by * for m =

√
50 (i.e. l = 1, µθ = 1000µo and µr = 20µo) and s = 75/175.

Equation (2.16) is now solved using boundary condition (2.11) as follows:

Z
′′

Z
= k2

n

δ2

b2kz
≡ g2

n

⇒ Z = A cosh(gnz) + B sinh(gnz)

⇒ Z
′

= gnA sinh(gnz) + gnB sinh(gnz). (2.22)

where A is some constant and gn =
[

(knδ) /
(

b
√

kz

)]

. Enforcing (2.11) reduces (2.22)

to

Z = A cosh(gnz). (2.23)

The solution for φ is now

φ =

∞
∑

n=1

Cn

[

Jm (knr) − J
′

m(kns)

Y ′

m(kns)
Ym(knr)

]

sin(lθ) cosh(gnz). (2.24)
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In order to algebraically simplify the solution (2.24) we redefine the coefficient Cn so

that

φ =

∞
∑

n=1

Cn

[

Jm (knr) − J
′

m(kns)

Y ′

m(kns)
Ym(knr)

]

sin(lθ)

gn

cosh(gnz)

sinh(gn)

=
∞
∑

n=1

Cn

[

Jm (knr) − J
′

m(kns)

Y ′

m(kns)
Ym(knr)

]

sin(lθ)

gn

[

egn(z−1) + e−gn(z+1)

1 − e−2gn

]

(2.25)

Applying boundary condition (2.12) to equation (2.25) results in the following infinite

series
∞
∑

n=1

Cn

[

Jm(knr) − J
′

m(kns)

Y ′

m(kns)
Ym(knr)

]

= 1. (2.26)

The orthogonality properties

1
∫

s

rR2
m dr =

1

2k2
n

[(

m2 − k2
ns2
)

R2
m (kns) −

(

m2 − k2
n

)

R2
m (kn)

]

(2.27)

and
1
∫

s

rRm(knr)Rm(ker)dr = 0, n 6= e, (2.28)

where

Rm (knr) = Jm (knr) − J
′

m (kns)

Y ′

m (kns)
Ym (knr)

and kn and ke satisfy the nonlinear eigenvalue problem (2.21) are shown in Appendix

A. Using the orthogonality relationships (2.27) and (2.28) the unknown coefficients in

(2.25) are found to be

Cn =

2k2
n

1
∫

s
r

[

Jm (knr) − J
′

m(kns)

Y ′

m(kns)
Ym (knr)

]

dr

m2 (R2
m (kns) − R2

m (kn)) + k2
n (R2

m (kn) − s2R2
m (kns))

(2.29)

where:

Rm(kns) = Jm (kns) − k̃ Ym (kns).
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In accordance with equations (2.1),(2.2), (2.3) and (2.8) the components of the dimen-

sional magnetic flux density within the core are given by

B
′

r =
µrPδ

µzb

∂φ

∂r
, (2.30)

B
′

θ =
µθPδ

µzbr

∂φ

∂θ
, (2.31)

B
′

z = P
∂φ

∂z
. (2.32)

2.1.2 Three-Phase Excitation (Rotating Fields)

The solution to a balanced three phase system is of the same form as that of the single

phase system and can be found by modifying the injection boundary condition (2.5) to

become

B
′

z = P

[

sin (lθ) sin (ωt) + sin

(

lθ +
2π

3

)

sin

(

ωt − 2π

3

)

+ sin

(

lθ − 2π

3

)

sin

(

ωt +
2π

3

)]

=
3

2
P cos (ωt + lθ) (2.33)

where ω = 2πf , f is the supply frequency and t represents time. The solution for φ is

then

φ =
3

2
cos (ωt + lθ)

∞
∑

n=1

Cn

gn

[

Jm (knr) − J ′
m (knt)

Y ′
m (knt)

Ym (knr)

]

[

egn(z−1) + e−gn(z+1)

1 − e−2gn

]

(2.34)

Equations (2.30),(2.31) and (2.32) can then be used to predict the magnetic flux density

distribution in the core.
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Such a rotating field could be produced by either a static three-phase set of windings

or by a set or rotating magnets.

2.1.3 Air-gap Flux Density Distribution

The analytical model developed in Section 2.1.1 is based on an assumption of magnetic

flux entering the core from the air-gap axially with the flux density being constant in the

radial direction and varying sinusoidally in the circumferential direction. Previous work

performed by Chan & Leung (1980), Chan (1987) and Zhilichev (1998) show that this is

a good approximation when end effects are neglected. Chan (1987) gives an expression

for the air-gap flux density however the assumptions and boundary conditions used are

not clear. A complete derivation of the air-gap flux density is presented in Appendix B.

The prediction of constant axial magnetic flux density with radius is not surprising for

narrow air gaps. This can be seen by applying Ampere’s law for a contour defined over

the angular displacement of one pole pitch as shown in Figure 2.3. For practical core

permeabilities the magnetic field intensity H can be neglected inside the cores making

the integral equal to 2Hzlg where Hz is the axial component of field intensity in the

air-gap and lg the air-gap length. The current enclosed by any such constant radius

contour will be constant and therefore Hz is also be constant with radius. Thus the

magnitude of the axial component of the magnetic flux density will be independent of

radius.

Rotor

Stator

one pole pitch at router

one pole pitch at rinner

air-gap lg

Figure 2.3: Integration contours for Amperes law.
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2.1.4 The Effect of Curvature on the Radial Flux Density

The static three-dimensional solution of Section 2.1.1 predicts a radial component of

the magnetic flux density B
′

r in the core of axial flux machines. The magnitude of this

component is given by equation (2.30) where φ is fully defined by equations (2.25) and

(2.29). It is apparent from equations (2.30) and (2.25) that the magnitude of B
′

r is

influenced by the material permeabilities in the axial and radial directions, the core

axial length, the imposed magnetic flux density and the core outer radius. The dif-

ferential term in equation (2.30) seems to obscure the influence of the circumferential

permeability and the curvature of the core. However, inspection of equation (2.19)

reveals that the Bessel function order is determined by kθ = µθ/µr and l = p/2. There

is also a measure of curvature present in the term s = a/b in equation (2.29). Qual-

itatively we would expect the circumferential permeability to play an important role

in determining B
′

r as it is a significant component of the main flux path reluctance.

As discussed earlier, the two main reasons for the existence of B
′

r are the variations in

the main flux path reluctance or length with radius and the greater amount of flux at

larger radii. Both of these variations are influenced by the core curvature and thus it

is worth investigating the effect of curvature on the peak magnitude of B
′

r.

If the core curvature is defined as the inverse of the average core radius, then variations

in the curvature are achieved by varying the values of a and b in the analytical solution

of Section 2.1.1. Isolation of the curvature effect is achieved by maintaining a constant

value for the imposed magnetic flux per pole pitch. The radial and axial lengths of the

core as well as the pole pitch should also be kept constant. This can be achieved by

considering a single pole pitch of a machine in which the number of poles is varied in

order to keep these values constant. For a constant imposed flux per pole pitch

k =

b
∫

a

π
p
∫

0

cos

(

pθ

2

)

r∂θ∂r =

(

a + b

p

)

(b − a) ,

the average pole pitch k1 = π (a + b) /p and the core radial length k2 = (b − a) are

kept constant. Varying core curvature in the model whilst keeping the desired variables
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constant is achieved by first choosing practical values for k1 and k2. These constants

along with an arbitrary starting value for the number of poles are then used to determine

the core inner and outer radii. The number of poles is varied to give modified values

for the inner and outer radii which in turn change the core curvature. The influence of

core curvature on the the peak radial flux density component is shown in Figure 2.4.

The curves in Figure 2.4 also show the variation in the peak value of B
′

r for differing

circumferential permeabilities over a range of curvature values.
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Figure 2.4: The effect of curvature on the peak radial flux density.

It can be seen from Figure 2.4 that the magnitude of the B
′

r is small in comparison

to the peak air-gap flux density. This is true even when a core exhibits a relatively

large amount of curvature and low magnetic permeability; the potential for radial flux

to flow increasing with curvature and lower permeabilities.
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2.2 Predicted Core Magnetic Flux Density Distribution

The model proposed in Section 2.1.1 was evaluated for the following realistic physical

parameters

a = 0.075m,

b = 0.175m,

δ = 0.1m,

p = 2,

µθ = µz = 1000µo,

where µo is the permeability of free space. A laminate stacking factor sf = 0.95 is

assumed resulting in an effective radial permeability (µr) (Reece & Preston, 2000) of

µr =
µair

(1 − sf)
= 20µo. (2.35)

The convergence results of the infinite series given in equation (2.26) at the magnetic

flux injection boundary for a truncated number of terms is shown in Figure 2.5. All

numerical results presented here are obtained using 60 terms in the series which guar-

antees errors of less than 10−5.

The model predicts the existence of a radial component in the magnetic flux density

with peak values along the pole-centre planes, shown in Figure 2.6. Finite element

analysis using FEMLAB (COMSOL, 2004) makes practically the same prediction.

It can be seen from Figure 2.6 that the peak radial flux densities are small compared

to the peak air-gap flux density P . The predicted radial flux component under the

assumption of no induced currents should be regarded as an upper limit. In practice

levels of radial flux will be smaller, possibly by as much as an order of magnitude, due

to the shielding effect of the eddy currents induced as a result of the tendency for flux

to flow radially.

Figure 2.7 shows theoretically predicted flux densities through planes half way between
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Figure 2.5: Error in the truncated infinite series of equation (2.26).

pole-centre planes. Only the circumferential flux density component is non-zero on

these planes. An economically designed core will have an axial length such that the

back-iron experiences its overall peak flux density on those planes. The top and bottom

curves in Figure 2.7 show that there is a significant difference between peak flux densities

experienced by laminations at different radii. The presence of a radial component in the

flux density causes this difference to be reduced. This is to be expected as radial flux

results in a redistribution of the flux. However, as pointed out previously, the magnitude

of radial flux assumed in Figure 2.7 should be regarded as an upper limit since the

shielding effect of induced eddy currents is likely to be significant. A safe approach

when sizing the axial length of the core back-iron is to assume that the radial component

of the flux density is equal to zero. Under this assumption, flux redistribution cannot

occur and the lamination near the outer radius will experience the greatest overall

circumferential flux density. Figure 2.7 also shows that the circumferential flux density

near the outer radius is much higher than the average core back-iron circumferential

flux density.
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Figure 2.6: Radial component of flux density along the pole-centre plane using
n = 50 modes for the analytical solution given in equation (2.25) .
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Figure 2.7: Normalised circumferential flux densities through planes half way be-
tween pole centre planes.



CHAPTER 2. CURVATURE RELATED RADIAL FLUX IN AXIAL FLUX

MACHINE CORES 30

2.2.1 Experimental Results

Direct physical measurement of the flux density in the core of an electrical machine is

impossible. Measurements of the amount of flux crossing areas in planes perpendicular

to laminations (r-z planes) have been made. The experimental set-up used is shown

in Figure 2.8. This set-up was constructed specifically for the purpose of investigating

the flux distribution in the test core. The slotted bottom core was wound as a 2-pole

single phase stator and was energized from a 50 Hz sinusoidal a.c. supply. There was

a uniform air-gap of approximately 1 mm between the bottom core and the unslotted

test-core. The test-core remained magnetically unsaturated during testing.

laminated
test core

air-gap

laminated
slotted 2-pole
single-phase
wound core

Figure 2.8: Experimental set-up.

Measurements were made using two probes P1 and P2, as shown in Figure 2.9. The

measurement points Z1 and Z2 are at the same radial distance from the central axis.

Point Z2 was located on the air-gap side of the test-core. Access to point Z2 was via one

of the slots in the bottom core. All the slots were filled to about eighty percent making

it possible to both insert a specially made probe in the selected slot and to make good

electrical contact with the test-core at measurement point Z2. The selected slot was

positioned so that Z1 and Z2 were located on the plane half way between pole centre

planes. Careful removal of insulating material was necessary to ensure good electrical

contact at Z1 and Z2.
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Figure 2.9: Test-core voltage measurement.

Measurements were made at ten different locations between r ′ = a and r′ = b. The

normalized amount of flux at r′ was calculated as the ratio

net measured voltage (r′)

net measured voltage (r′ = a)
, (2.36)

where the net measured voltage is the difference between the actual measured voltage

and the measured voltage due to end flux per turn. Net measured voltage rather than

actual voltage is used in equation (2.36) so that there is consistency with theoretical

predictions which assume zero end flux. Voltage due to end flux was measured by

means of a coil spanning one pole pitch of the test core and located so that it links all

the end flux entering the core.

The normalised amounts of measured flux are shown in Figure 2.10. Equation (2.31) is

used to compare theoretical predictions with measured values. The solid line in Figure

2.10 represents a two-dimensional analytical solution obtained in the limit µr → 0. The

assumed value of P in equation (2.31) is such that the total circumferential flux through

the plane half way between pole centre-planes was equal to the measured value.

If flux density was independent of radius, then the graph shown in Figure 2.10 would be

a straight line passing through the origin. However, it is clear that both the theoretical

curves and the measured data suggest greater flux densities at larger radii. Since flux

density is proportional to the gradient of the curves, the experimental results can be

used to obtain an estimate of the ratio of the flux density near the outer radius to the

average flux density. This is found to be approximately 1.37 for the considered geometry

and is in good agreement with the theoretical prediction if the radial component of
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Figure 2.10: Measured and predicted circumferential flux.

the flux density is assumed to be zero (which would be the case if there was ‘perfect

shielding’ due to induced eddy currents). If there were no shielding effect, in theory

Br would assume the levels shown in Figure 2.6. Figure 2.10 gives theoretical curves

corresponding to both the ‘perfect shielding’ (µr → 0) and ‘no shielding’ (µr = 20µ0)

situations. These curves are relatively close to each other and therefore, while the

experimental results provide convincing evidence that the flux density is significantly

greater at larger radii, they cannot be used to confirm that shielding due to eddy

currents has a dramatic effect on the amount of the radial flux component.

2.2.2 Practical Implications

Both theoretical and experimental results show that the magnetic flux density in the

circumferential direction is highest in the laminations near the outer radius of the core

of AFMs. This should be taken into consideration if excessive saturation in this region

of the core back-iron is to be avoided (Hewitt et al., 2005).

In RFM cores, if end effects are neglected, the use of 2D models for purposes such

as prediction of tooth saturation level and electromagnetic torque is justified because
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of the absence of axial flux. On the condition that the radial component of the flux

density B ′
r can be ignored, 2D modeling is also justified for AFMs. However for a given

AFM, several 2D models would be required. Assuming slot-width does not vary with

radius, laminations closer to the inner radius would be modeled with relatively smaller

slot-pitch and tooth-width compared to laminations closer to the outer radius.

The magnitudes of B ′
r shown in Figure 2.4 suggest that in practice the radial compo-

nent of the magnetic flux density can be ignored with respect to its influence on the

distribution of the circumferential and axial components of the flux density in the core.

This offers the significant advantage of being able to use 2D models as suggested above.

The removal of the radial flux density component also significantly simplifies the ana-

lytical solution for the flux density distribution in the core. A 2D analytical solution is

presented in Appendix C. Comparing the 3D and 2D solutions for the non-dimensional

magnetic scalar potential φ given by equations (2.25) and (C.19), respectively, it can

be seen that the 2D solution is of a much simpler form and is thus easier to evaluate.

A comparison of the normalised circumferential flux density component through planes

half way between the pole centre planes found using the 2D and 3D solutions are shown

in Figure 2.11.
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Figure 2.11: Normalised circumferential flux density found using the 2D and 3D
models.
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These curves show that in the limit µr → 0 the 3D model will produce the same results

as that of the 2D model.

While the magnitude of B ′
r is significantly less than that of the main flux components

the question of induced losses caused by this component still needs to be addressed.

It has long been standard engineering practice to use laminated cores to reduce eddy

current losses. Unfortunately the radial component of the flux density flows in a cross

laminate direction and thus induced losses may be significant, even for relatively low

values of B ′
r. In Chapters 3 and 4 numerical techniques are developed and the losses

caused by the tendency for radial flux to flow are investigated.



Chapter 3

The Coupled Network Method

Predicting losses due to the radial component of the magnetic flux density in the stator

back-iron requires numerical quasi-static analysis of the core. There exists a number of

techniques to perform such an analysis including the Finite Element Method (FEM),

Integral equation methods and Finite difference methods (Chari & Salon, 2000).

The finite element method has gained significant popularity over recent years and is

possibly the most commonly used technique for electromagnetic analysis of electrical

machines. There has also been a number of different formulation developed based on

the finite element technique (Ratnajeevan & Hoole, 1995). Finite element formulations

have been extensively implemented in a number of commercially available software

packages.

A less common technique for electromagnetic analysis is the coupled network method.

This method uses a coupled magnetic and electric circuit representation of the domain.

The magnetic or reluctance network has been comprehensively reported on by a num-

ber of authors and has been compared with the finite difference and finite element

methods (Balchin & Davidson, 1980; Carpenter, 1975c; Chari & Salon, 2000; Demenko

et al., 1998; Sykulski, 1995; King, 1966a; King, 1966b). The coupled network formu-

lation is based on two physically separate but electromagnetically coupled networks.

35
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The magnetic and electric networks are commonly referred to as the reluctance and

resistance networks respectively. The use of coupled networks for electromagnetic anal-

ysis has also been widely reported on in published papers such as Demenko (2000),

Balchin & Davidson (1983), Davidson & Balchin (1983), Davidson & Balchin (1981),

Balchin & Davidson (1980), Carpenter (1977), Carpenter (1975a), Carpenter (1975b),

Carpenter (1975c), King (1966a) and King (1966b). Roisse et al. (1998) and King

(1966b) used coupled networks to analyse synchronous and induction machines respec-

tively, including the effects of saturation and motion. One important advantage of the

coupled network approach is the physical interpretation which the network formulation

provides (Carpenter, 1975c; Guo & Zhu, 2002; King, 1966a).

In general, three dimensional numerical quasi-static electromagnetic analysis of regions

involving currents requires the solution to be formulated in terms of a scalar and vector

potential. These formulations require the solution of four unknowns per node in a

discretised system. In order to reduce computation times and resources, techniques and

formulations have been developed to reduce the number of degrees of freedom for some

problems. In some instances it is possible and practical to model a three dimensional

domain as a two dimensional problem with appropriate boundary conditions. The

axisymmetric and axiperiodic formulations are examples of these. Where commercially

available software does not include these formulations the user is required to either

modify existing code or to generate in-house code to solve their particular problem.

The analytical model presented in Chapter 2 showed that the core magnetic flux density

varies sinusoidally in the circumferential direction. This is a direct consequence of the

angular periodicity in the imposed magnetic flux density at the core-air gap boundary.

The periodicity in the circumferential direction allows a slotless axial flux machine

core to be modeled using the axiperiodic formulation. This formulation is not widely

available in commercial finite element software packages. For this reason and because

of the simple geometry of the core as well as the physical interpretation offered, the

coupled network method has been chosen to provide quasi-static analysis of an AFM

core.
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In the following sections a coupled resistance-reluctance network formulation will be

presented. We begin with a generic three dimensional coupled network formulation.

The resistive network is then restricted to a series of planar networks, the purpose

of which is to determine the losses due to and frequency dependence of the radial

component of the core magnetic flux density. It is also show in Section 3.3 that the

coupled network formulation derived here is in fact just an application of the finite

difference method.

An axiperiodic coupled network formulation is presented in Section 3.4. This formu-

lation is used in Chapter 4 to predict the induced losses in axial flux machine cores

caused by the tendency for flux to flow radially.

3.1 Magnetostatic Analysis without Currents

In magnetostatic analysis where no electric currents are present the magnetic field

intensity ~H can be defined in terms of a magnetic scalar potential Ω. In a current free

region

∇× ~H = 0,

and thus the magnetic scalar potential Ω can be introduced through

~H = −∇Ω. (3.1)

The magnetic flux density ~B is related to the magnetic field intensity through the

constitutive relation

~B = µ ~H

where µ is the material permeability. Consequently ~B can be expressed as

~B = −µ∇Ω. (3.2)

The magnetic flux density distribution in the core of an axial flux machine can be deter-

mined by solving equation (3.1) and imposing appropriate boundary conditions. The
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reluctance network formulation presented here numerically solves for Ω by discretising

the core using regular elements. Magnetic nodes are assumed at the element centroid

as shown in Figures 3.1 and 3.2.

Figure 3.1: Core discretization.

Dz

Dr

Dq

j

Figure 3.2: Element shape and node position.
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The formulation is based on the equation

PΩ = φimp (3.3)

where P is the permeance matrix, Ω is a vector of magnetic scalar potentials at the

nodes and φimp is a vector of the imposed magnetic flux at the nodes. The resulting

system of equations is solved to determine Ω. The derivation of the permeance matrix

P and the imposed magnetic flux vector φimp will now be shown.

3.1.1 The Permeance Matrix

The system of equations is derived by considering magnetic Ohms law and the solenoidal

condition of the magnetic flux density ∇ · ~B = 0 at each node in the discretized space.

The resulting system of equations are the same as those used in electric circuit node

analysis where electrical admittances are replaced by magnetic permeances. Magnetic

branch permeances are calculated on an element by element basis using element lengths,

areas and material permeabilities. Figure 3.3 shows a typical element structure with

its associated node and permeance branches.

Figure 3.3: Element structure and associate permeance branches.

The magnetic scalar potential Ω is calculated at the nodes. Each node is connected to

its six surrounding neighbors by permeance branches. The branch permeances ρ are
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defined by

ρ =
µA

l
(3.4)

where l is the path length, µ the material permeability and A the cross sectional area of

the flux path. In order to simplify permeance calculations elements have been chosen

such that material boundaries lie either at nodes or coincide with element boundaries.

The resulting permeance matrix P is sparse with the diagonal entries equal to the sum

of all permeances connected to a node and the off-diagonal entries the negative of the

permeances connecting the nodes.

3.1.2 Imposed Magnetic Flux

Based on the assumption of the magnetic flux entering the core from the air-gap axially

with the flux density being constant in the radial direction and varying sinusoidally in

the circumferential direction, the magnetic flux injection vector φimp can be found.

The imposed magnetic flux for nodes located at the injection boundary of the core are

found using the element axial areas (see Figure 3.1).

At an average element radius of

r̃ =
ri + ro

2
(3.5)

where ri and ro are the element inner and outer radii, respectively, the element axial

injection area is given by

A = ∆θ r̃ (ro − ri)

= 4θ

(

r2
o − r2

i

2

)

. (3.6)

Here ∆θ, shown in Figure 3.2, is given by 4θ = 2π/nθ, where nθ is the number of

divisions used to discretise the core in the circumferential direction. The imposed
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magnetic flux over an arbitrary element j is given by

φimpj
=

r2j
∫

r1j

θ2j
∫

θ1j

B̂z cos

(

pθ

2

)

r ∂θ ∂r

=
B̂z

p

(

r2
2j − r2

1j

)

[

sin

(

pθ2j

2

)

− sin

(

pθ1j

2

)]

=
2B̂z

p

A

4θ

[

sin

(

pθ2j

2

)

− sin

(

pθ1j

2

)]

(3.7)

where r1j and r2j are the inner and outer radii of the j th element, θ1j and θ2j are the

angular limits of the element, B̂z is the peak axial magnetic flux injection at the core

surface and p the number of machine poles. The element angular limits θ1j and θ2j

can be replaced by the constant 4θ = (θ2j − θ1j) and the node angular position θj by

rewriting the trigonometric difference in equation (3.7) as

sin

(

pθ2j

2

)

− sin

(

pθ1j

2

)

= sin

(

pθj

2
+

p4θ

4

)

− sin

(

pθj

2
− p4θ

4

)

= 2 sin

(

p4θ

4

)

cos

(

pθj

2

)

. (3.8)

Substituting equation (3.8) into (3.7) results in

φimpj
=

4B̂z

p

A

4θ
sin

(

p4θ

4

)

cos

(

pθj

2

)

. (3.9)

For small angular discretization 4θ → 0 the approximation

sin

(

p4θ

4

)

≈ p4θ

4

can be used to reduce equation (3.9) to

φimpj
= B̂zA cos

(

pθj

2

)

. (3.10)

3.1.3 Solving the System of Equations

Having constructed the permeance matrix P and the vector of imposed magnetic flux

φimp equation (3.3) can be solved to determine the values of the scalar potential Ω at

the nodes. Solving this matrix equation requires the permeance matrix to be inverted
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which may cause difficulties if the matrix is very large. The size of P will depend on

the number of elements (or nodes) used in the core discretization. Discretization needs

to be sufficiently fine to describe variations in the magnetic field. Sparse matrices and

numerical inversion techniques can be used where required.

3.2 Eddy Current Analysis using the Coupled Network

Method

The system of equations for a coupled magnetic and electric networks is now derived.

These equations are derived based on the interaction between the two networks as

described by Faraday’s and Ampere’s laws. The formulation derived here is restricted

to that required to predict curvature related power loss in laminated axial flux machine

cores. This is achieved by setting the conductivity in the radial direction σr to zero.

Imposing this restriction results in only axial and circumferential components in the

current density and only the coupling between induced currents and radial permeance

branches need be considered.

Consider the modified magnetic or reluctance network described by

PΩ = φimposed + φinduced (3.11)

where φimposed is a vector applied or imposed magnetic flux at the nodes and φinduced

a vector of induced magnetic flux at the nodes due to induced currents. Let φinduced

be represented by a vector of loop currents I and a connectivity matrix Q which links

the loop currents to node flux injections to give

PΩ = φimposed − QI (3.12)

or equivalently

PΩ + QI = φimposed. (3.13)

The connectivity matrix Q can be derived by considering two magnetic branches con-

nected to a common node j as shown in Figure 3.4. Let each magnetic permeance
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branch be enclosed by an associated current loop, also shown in Figure 3.4. The source

of this current being the emf induced by a time varying magnetic flux in the permeance

branch. This will be discussed further in the following sections.

j

i

k

rij

rjk

Ij

Ii

Figure 3.4: Radial permeance branches with their associated loop currents.

The loop currents of each of the magnetic branches can be replaced by Norton equivalent

circuits as shown in Figure 3.5.

j

i

k

rij

rjkIjrjk

Iirij

Figure 3.5: Norton equivalent circuit .

The Norton equivalent circuit of Figure 3.5 shows how the magnetic branch loop current

modifies the magnetic flux entering node j, which is the basis for the derivation of the
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Q matrix. For any arbitrary node j the Q matrix will have two entries

Q (j, j) = ρjk (3.14)

Q (j, i) = −ρij . (3.15)

The permeance matrix P and the vector of imposed magnetic flux φimp of equation

(3.13) is found in the same way as described in Sections 3.1.1 and 3.1.2.

We now derive a system of equations for the unknown loop currents. As stated earlier

these loop currents are the result of the induced emf given by Faraday’s law

∮

~E · dl = −
∫∫

∂ ~B

∂t
· ds.

The element structure which includes both magnetic permeance branches and electric

loop resistances is shown in Figure 3.6. The electric network is formed by a system of

resistive loops surrounding the magnetic branches. Resistance values are found using

element lengths, areas and material conductivity σ in a similar way to that used to

calculate the magnetic permeances. The branch resistances being defined by

R =
l

σA
,

where l is the path length and A the path cross sectional area.

The resistance values are not calculated using the same element dimensions as those

used for the permeances. This is because the elements which define the electric network

effectively lie between the elements of the magnetic network. The elements in both

instances have the same shape and share common axial and radial lengths. Only the

element average radii differ. If the magnetic elements have average radii denoted by

rj for j = 1, 2, 3, ... and the element radial length is ∆r then the electric elements

have average radii given by (rj + ∆r/2). In the magnetic network the nodes lie at the

element average radii in the radial direction, and similarly this can be considered the

case for the electric network. The resulting discretization can then be considered as a

radially staggered mesh between the magnetic and electric networks.
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Figure 3.6: Element structure including both the magnetic and electric networks.

The loop current equations are derived by expressing the magnetic flux in a permeance

branch in terms of the magnetic scalar potential at the branch nodes and the branch

loop current. For the general branch shown in Figure 3.7 the loop current can be

represented as a branch mmf = Ij as shown in Figure 3.8.

j

k

rjk

Ij

fjk

Figure 3.7: Permeance branch and its associated loop current.

It should be noted that in order to satisfy Ampere’s law for all contours the loop current

must be associated with the magnetic branch flux to which the loop current is linked.

This requirement is further discussed in Section 3.3.3.

The branch magnetic flux φjk is now expressed in terms of the branch loop current Ij

and the node scalar potentials Ωj and Ωk. From equation (3.2) the branch flux can be
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Figure 3.8: Permeance branch with its loop current replaced by an equivalent
branch mmf.

written as

φjk = BA = −Aµ∇Ω

=
µA

l
(Ωj − Ωk) (3.16)

where B is the branch magnetic flux density, A is the element cross sectional area and l

the branch length. Comparing equation (3.16) with equation (3.4) it is seen that (3.16)

can be rewritten as

φjk = ρjk (Ωj − Ωk) . (3.17)

Figure 3.8 shows that the branch loop current modifies the node magnetic potentials.

The modified node potential are shown in Figure 3.9.

Adding the loop current term given in equation (3.17) results in

φjk = ρjk [(Ωj + Ij) − Ωk]

= ρjk (Ωj − Ωk) + ρjkIj . (3.18)

In matrix form this system of equations is written as

φ = WΩ + SI, (3.19)
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Figure 3.9: Permeance branch and its modified node scalar potentials.

where φ is a vector of branch flux, Ω a vector of magnetic scalar potentials, I a vector

of loop currents and W and S are matrices of permeance values given by

W (j, j) = ρjk (3.20)

W (j, k) = −ρjk (3.21)

and

S (j, j) = ρjk, (3.22)

respectively. The loop voltages Vj can be found using Faraday’s law. For fields varying

harmonically in time the loop voltages are defined by

Vj = −∂φjk

∂t
= −jωφjk, (3.23)

where ω = 2πf and f is the frequency of the harmonic time variation. Substituting

equation (3.18) into (3.23) in matrix form gives

V = −jωφ = −jωWΩ− jωSI (3.24)

where V is a vector of induced loop voltages. The loop currents can be determined by

using loop analysis theory. Loop analysis produces the system of equations

V = RI (3.25)

where R is a matrix of loop resistances.
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The resistance matrix R is found by applying Kirchhoff’s voltage law around each

loop (i.e. loop analysis). For the arbitrary loop i, j, k, shown in Figure 3.10, the loop

equation is given by

Rθ (Ii,j,k − Ii,j,k+1) + Rz (Ii,j,k − Ii,j+1,k) + Rθ (Ii,j,k − Ii,j,k−1)

+ Rz (Ii,j,k − Ii,j−1,k) = V (3.26)

where V is the distributed loop emf and the loop branch resistances are defined by

Rθ =
r∆θ

σθ∆r∆z
, (3.27)

Rz =
∆z

σzr∆θ∆r
. (3.28)

Ii,j,k Ii,j+1,kIi,j-1,k

Ii,j,k+1

Ii,j,k-1

Rz Rz

R
q

R
q

loop i,j,k

Figure 3.10: A general electric loop structure.

The resulting R matrix will be a sparse matrix with diagonal entries equal to the sum

of the branch resistances forming the individual loops, and off-diagonal entries equal

to the negative of the resistance of the common branch.
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Substituting equation (3.25) into equation (3.24) results in

RI = −jω (WΩ + SI)

⇒ W̃Ω +
(

R + S̃
)

I = 0 (3.29)

where W̃ = jωW and S̃ = jωS. Quasi-static analysis requires the system of equations

defined by equations (3.13) and (3.29) to be solved simultaneously. The resulting system

of equations is then




P Q

W̃
(

R + S̃
)









Ω

I



 =





φ

0



 . (3.30)

3.2.1 Alternate Formulation

The quasi-static formulation given in equation (3.30) solves for both the vector of

magnetic scalar potentials Ω and the vector of loop currents I simultaneously. The

system of equations can be rewritten such that only the magnetic scalar potentials are

solved for. The derivation is the same as that presented previously up to equation

(3.24). Using equation (3.25), equation (3.24) can be rewritten as

RI = −jωWΩ− jωSI

= −W̃Ω− S̃I

⇒ I = −
[

R + S̃
]−1

W̃Ω. (3.31)

Substituting (3.31) into equation (3.13) results in

φimp = PΩ− Q
[

R + S̃
]−1

W̃Ω

⇒ Ω =

[

P − Q
[

R + S̃
]−1

W̃

]−1

φimp (3.32)

which permits Ω to be solved for without solving for I. Having solved for Ω the loop

currents can subsequently be calculated using equation (3.31).

The choice of formulation will depend on the type of matrix solver used. The augmented

matrix system given by equation (3.30) is constructed from sparse and diagonal ma-

trices. For models requiring very fine discretization the number of node can be quite
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large and, unless sparse techniques are used, computing memory requirements will be

large. Matrix inversion is also required which may cause matrices to become full. The

formulation given in equation (3.32) does not require the augmented matrix of equa-

tion (3.30) however it does require multiple matrix inversions and more computational

steps. The choice of formulation should be based on the model size (number of nodes)

and the type of solution technique chosen.

3.2.2 Postprocessing

Having solved for Ω and I the magnetic flux density distribution and induced core losses

can be found. The magnetic flux density in any magnetic branch can be calculated using

equations (3.16) and (3.18). If desired, the magnetic flux density at the nodes can be

found by taking the average of the branch magnetic flux densities connected to that

node. For example, the radial component of the magnetic flux density at node j can

be found using

Brj
=

φij + φjk

2A
,

where the magnetic branch flux are as shown in figure 3.11 and A is the element cross-

sectional area in the radial direction. As magnetic flux density is a vector quantity

averaging must be performed over magnetic branches in the coordinate directions.

The induced losses in the core are calculated using loop current differences. The loop

current difference or electric branch current (i.e. the current in the common branch

resistance between adjacent loops) can then used in an I 2
j Rj calculation over the do-

main. The summation of all these losses giving the total induced core losses. Current

density distribution can also be calculated using the branch currents.
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Figure 3.11: Radial connected permeance branches and their branch magnetic
flux.

3.3 Coupled Networks and the Finite Difference Method

The finite difference method replaces the describing electromagnetic partial differential

equations by difference equations. The domain is divided into cells (of finite area or

volume) by a grid and the equations are written for the unknowns at the nodes. This

process replaces the original partial differential equations with a set of simultaneous

equations which are solved to give the unknown variables at the nodes. The finite

difference method was one of the first numerical methods developed and is a well known

and accepted technique for solving differential equations (Chari & Salon, 2000).

It will now be shown that the coupled network formulation of Section 3.2 is in fact just

a finite difference formulation to the quasi-static problem. This is demonstrated for the

restricted coupled network used to predict induced losses due to the radial component

of the magnetic flux density. Justification for isolating this component of the losses is

discussed in Chapter 4.
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3.3.1 Node Equations

Most electromagnetic analysis is based on solving the differential form of Maxwell’s

equations on a domain with specified boundary conditions. There are a number of dif-

ferent formulations which permit these equations to be solved whilst offering a reduced

number of unknowns. One way of achieving this is to express the system of differential

equations in terms of scalar and vector potentials. Here we choose to rewrite Maxwell’s

equations in terms of an electric vector potential ~T and a magnetic scalar potential Ω.

The (T − Ω) formulation is derived from the quasi-static approximations to Maxwell’s

equations

∇× ~H = ~J, (3.33)

∇ · ~B = 0, (3.34)

∇× ~E = −∂ ~B

∂t
, (3.35)

∇ · ~J = 0, (3.36)

and the constitutive relations

~B = µ ~H (3.37)

~J = σ ~E. (3.38)

The solenoidal condition of equation (3.36) allows ~J to be defined in terms of an electric

vector potential ~T by

~J = ∇× ~T . (3.39)

Substituting (3.39) into equation (3.33) allows us to express ~H in terms of ~T and a

magnetic scalar potential Ω by

~H = ~T −∇Ω. (3.40)

Using the constitutive relation given in equation (3.37), equation (3.34) can be written

in terms of ~T and Ω as

∇ · µ
(

~T −∇Ω
)

= 0. (3.41)
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Equation (3.35) is also rewritten in terms of ~T and Ω using equations (3.37), (3.38) and

(3.40) to produce

∇×
(

σ−1∇× ~T
)

= − ∂

∂t

[

µ
(

~T −∇Ω
)]

. (3.42)

For sinusoidally varying quantities taking the partial derivative with respect to time is

equivalent to multiplying by jω, where j =
√
−1, and ω is the angular frequency in

radians per second. Thus equation (3.42) can be written in complex phasor notation

as

∇×
(

σ−1∇× ~T
)

= −jω
[

µ
(

~T −∇Ω
)]

. (3.43)

The partial differential equations (3.41) and (3.43) are now expressed in difference form

and compared with the system of equations produced by the coupled network method.

For algebraic simplicity we rewrite equation (3.41) as

∇ · µ~T −∇ · µ∇Ω = 0. (3.44)

We now restrict our analysis to those terms required to predict the losses due to the

radial component of the magnetic flux density. As stated in Section 3.2, this is achieved

by setting the conductivity in the radial direction σr to zero and results in only axial

and circumferential components in the current density. The induced current density

can thus be fully described by choosing an electric vector potential of the form

~T = Trr̂ + 0θ̂ + 0ẑ (3.45)

Using the central difference approximation and equation (3.45) the first term in equation

(3.44) can be written as

µr
Ti+1,j,k − Ti−1,j,k

2∆r
+

µr

r
Ti,j,k (3.46)

and the second term as

µr
2Ωi,j,k − Ωi+1,j,k − Ωi−1,j,k

∆r2
+ µr

Ωi−1,j,k − Ωi+1,j,k

2r∆r

+µθ
2Ωi,j,k − Ωi,j+1,k − Ωi,j−1,k

r2∆θ2
+ µz

2Ωi,j,k − Ωi,j,k+1 − Ωi,j,k−1

∆z2
(3.47)
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where the subscripts i,j and k represent variations in the radial, circumferential and ax-

ial directions, respectively. These two equations are represented in the coupled network

formulation by the equation

PΩ + QI = φimposed (3.48)

where the φimposed terms of equation (3.48) are non-zero only at nodes located at an

imposed magnetic flux boundary. For nodes not at the imposed magnetic flux boundary

equation (3.48) is reduced to

PΩ + QI = 0. (3.49)

The PΩ term in equation (3.49) at a magnetic node i, j, k is given by

(Ωi,j,k − Ωi+1,j,k) ρro+(Ωi,j,k − Ωi−1,j,k) ρri+(Ωi,j,k − Ωi,j+1,k) ρθ+(Ωi,j,k − Ωi,j−1,k) ρθ

+ (Ωi,j,k − Ωi,j,k+1) ρz + (Ωi,j,k − Ωi,j,k−1) ρz, (3.50)

where the permeances are defined by

ρro =
µr

(

r + ∆r
2

)

∆θ∆z

∆r
, (3.51)

ρri =
µr

(

r − ∆r
2

)

∆θ∆z

∆r
, (3.52)

ρθ =
µθ∆r∆z

r∆θ
, (3.53)

ρz =
µzr∆θ∆r

∆z
. (3.54)

Substituting (3.51), (3.52), (3.53) and (3.54) into equation (3.50) and simplifying results

in the expression

µr
(2Ωi,j,k − Ωi+1,j,k − Ωi−1,j,k) r∆θ∆z

∆r
+ µr

(Ωi−1,j,k − Ωi+1,j,k) ∆θ∆z

2

+ µθ
(2Ωi,j,k − Ωi,j+1,k − Ωi,j−1,k) ∆r∆z

r∆θ
+ µz

(2Ωi,j,k − Ωi,j,k+1 − Ωi,j,k−1) r∆θ∆r

∆z
,

(3.55)

and dividing each term of (3.55) by r∆θ∆r∆z gives

µr
(2Ωi,j,k − Ωi+1,j,k − Ωi−1,j,k)

∆r2
+ µr

(Ωi−1,j,k − Ωi+1,j,k)

2r∆r

+ µθ
(2Ωi,j,k − Ωi,j+1,k − Ωi,j−1,k)

r2∆θ2
+ µz

(2Ωi,j,k − Ωi,j,k+1 − Ωi,j,k−1)

∆z2
. (3.56)
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Comparing the expressions given in (3.56) and (3.47) it can be seen that PΩ/ (r∆r∆θ∆z)

and the finite difference form of −∇ · µ∇Ω result in the same nodal expressions for Ω.

In the coupled network formulation setting σr to zero results in a series of isolated

electric planar networks. Using equations (3.14) and (3.15) the QI term of equation

(3.49) expressed about magnetic node i, j, k is given by

ρroIi,j,k − ρriIi−1,j,k (3.57)

where the loop currents are as shown in Figure 3.12 and the permeances are those given

by equations (3.51) and (3.52).

i,j,k

i-1,j,k

i+1,j,k

rri

rro

Ii, j, k

Ii-1, j, k

Figure 3.12: Permeance branches with their associated loop currents.

Substituting the permeance expressions given in (3.51) and (3.52) into equations (3.57)

and simplifying gives

µr

∆r
(Ii,j,k − Ii−1,j,k) r∆θ∆z + µr

(Ii,j,k + Ii−1,j,k)

2
∆θ∆z (3.58)

and dividing by r∆θ∆r∆z results in

µr

∆r

(Ii,j,k − Ii−1,j,k)

∆r
+

µr

2r

(Ii,j,k + Ii−1,j,k)

∆r
. (3.59)

The coupled network formulation is based on a series of “magnetic nodes” (at which we

solve for Ω) and a series of loop currents which enclose the magnetic branches connecting
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these nodes. The finite difference method however is based only on a discretising grid

and its associated nodes. For consistency between the two methods we define a “branch

electric vector potential” T̃ in terms of the adjacent node potentials as

T̃i,j,k =
(Ti,j,k + Ti+1,j,k)

2
. (3.60)

Equation (3.46) is rewritten in terms of branch potentials to give

µr

∆r

(

T̃i,j,k − T̃i−1,j,k

)

+
µr

2r

(

T̃i,j,k + T̃i−1,j,k

)

. (3.61)

Comparing equations (3.59) and (3.61) it can be seen that these equations are the same

where

Ii,j,k = T̃i,j,k∆r (3.62)

It should be noted that in order to write equation (3.61) from equation (3.46) the

approximation
µrTi,j,k

r
=

µr (Ti+1,j,k + Ti−1,j,k)

2r
(3.63)

was made. The error introduced by making this approximation is given by

E =
µr (Ti+1,j,k + Ti−1,j,k)

2r
− 2µrTi,j,k

2r

=
µr (Ti+1,j,k − 2Ti,j,k + Ti−1,j,k)

2r

≈ µr∆r2

2r

∂2T

∂r2
. (3.64)

It can be seen from equation (3.64) that using such an approximation will result in

a system which is second order accurate. This is reasonable as the central difference

approximation used in the finite difference formulations is of the same order of accuracy.

We now compare the finite difference and coupled network solutions to equation (3.43).

Substituting (3.45) into equation (3.43) and expanding the left hand side gives

r̂

(

− 1

r2σz

∂2Tr

∂θ2
− 1

σθ

∂2Tr

∂z2

)

+θ̂

(

1

rσz

∂2Tr

∂θ∂r
− 1

r2σz

∂Tr

∂θ
+ lim

σr→0

[

1

rσr

∂2Tz

∂z∂θ
− 1

σr

∂2Tθ

∂z2

])

+

ẑ

(

1

σθ

∂2Tr

∂z∂r
+

1

rσθ

∂Tr

∂z
+ lim

σr→0

[

1

rσr

∂2Tθ

∂θ∂z
− 1

r2σr

∂2Tz

∂θ2

])

(3.65)
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and similarly the right hand side of equation (3.43) becomes

−jωµrTrr̂ + jω

[

µr
∂Ω

∂r
r̂ +

µθ

r

∂Ω

∂θ
θ̂ + µz

∂Ω

∂z
ẑ

]

. (3.66)

For losses due to the radial component of the magnetic flux density we only need to

consider the radial components of (3.65) and (3.66). This means that we do not need

to use the limit terms of equation (3.65). However, as shown in Appendix E, if the

circumferential or axial components of equation (3.65) are to be used then these terms

cannot be neglected.

Equation (3.43) is represented in the coupled network formulation by equation (3.29)

which can be rewritten as

RI = −jω (SI + WΩ)

= −S̃I − W̃Ω.

The electric vector potential term Tr in equation (3.66) is accounted for in the coupled

network formulation by the S̃I matrix equations. The resulting system of equations

given by

−SI = −ρijIi (3.67)

where the radial permeances ρij are defined by

ρij = ρr =
µr

(

ri + ∆r
2

)

∆θ∆z

∆r
(3.68)

and Ii is a loop current circulating around the radial permeance branch between nodes

i and j. Substituting (3.68) into (3.67) gives

− SI = −µr
Ii

∆r
(r∆θ∆z)

= −µrT̃i (r∆θ∆z) (3.69)

and thus

−S̃I = −jωSI = −jωµrT̃i (r∆θ∆z) . (3.70)

The substitution Ii/∆r = T̃i in equation (3.69) can be made as T̃i can be interpreted

as the loop current per unit length in the radial direction over element ĩ (see Figure

3.13). This relationship was shown in equation (3.62).
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Figure 3.13: Relative positioning of elements.

The radial component of the gradient of the magnetic scalar potential given in (3.66) is

accounted for in the coupled network formulation by the W̃Ω terms. For the reduced

formulation (σr = 0) the W matrix contains only radial permeances. The resulting

system of equations given by −W̃Ω is

−jωρr (Ωi,j,k − Ωi+1,j,k) = jωµr
(Ωi+1,j,k − Ωi,j,k)

∆r
(r∆θ∆z) . (3.71)

Dividing equation (3.71) by r∆θ∆z gives

jωµr
(Ωi+1,j,k − Ωi,j,k)

∆r
(3.72)

which is the central difference approximation of the jωµr∂Ω/∂r term in equation (3.66)

expressed about a mid-way node ĩ.

The radial component of expression (3.65) is represented by the term RI in the coupled

network formulation. This can be seen by first expressing the radial component of (3.65)

in difference form as shown in equation (3.73).

−1

r2σz

T̃i,j+1,k − 2T̃i,j,k + T̃i,j−1,k

∆θ2
− 1

σθ

T̃i,j,k+1 − 2T̃i,j,k + T̃i,j,k−1

∆z2
(3.73)

By substituting the resistance expressions given in equations (3.27) and (3.28) into

equation (3.26) and simplifying gives

− r∆θ

σθ∆z

(Ii,j,k+1 − 2Ii,j,k + Ii,j,k−1)

∆r
− ∆z

σzr∆θ

(Ii,j+1,k − 2Ii,j,k + Ii,j−1,k)

∆r
. (3.74)
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Dividing (3.74) by r∆θ∆z and writing in terms of Tr reduces the equation to

−1

σθ

T̃i,j,k+1 − 2T̃i,j,k + T̃i,j,k−1

∆z2
− 1

r2σz

T̃i,j+1,k − 2T̃i,j,k + T̃i,j−1,k

∆θ2
(3.75)

which shows that the resulting nodal equations given by ∇×
(

σ−1∇× T̃r

)

using the

finite difference method (3.73) and the coupled network formulation (3.75) are the same.

3.3.2 Boundary Conditions

The magnetic boundary conditions are as follows,

1) magnetic insulation for r < ri and r > ro,

2) magnetic insulation for z < 0 and

3) imposed magnetic flux density at z = δ.

These boundary conditions are the same as those used in Section 2.1.1. The boundary

conditions and domain are shown in Figure 3.14.

Magnetic insulation
for r<r and r>ri o

Magnetic insulation
for z<0

Imposed magnetic flux

density at z=d

ri ro

z=0

z=d

Figure 3.14: Magnetic boundary conditions.

The magnetic insulation boundaries are enforced in the coupled network formulation by

the removal of all nodes and permeance branches beyond the domain. This is equivalent

to assuming zero permeability outside the domain. In the finite difference formulation

the magnetic network is formulated in terms of the magnetic scalar potential Ω which
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is solved for at the nodes. A magnetic insulation boundary condition is described by a

zero gradient in Ω normal to the boundary. This is equivalent to having an extra node

just beyond the domain with the same potential as that of the node at the boundary.

For example consider the insulation boundary at the outer radial limit of the domain.

If we place an additional node radially outside the boundary and set its potential equal

to that of the boundary node then the derivative in the radial direction will equal zero.

Substituting Ωi+1,j,k = Ωi,j,k into (3.47) and considering only those terms which are

differentiated with respect to the radial direction we get

µr
Ωi,j,k − Ωi−1,j,k

∆r2
+ µr

Ωi−1,j,k − Ωi,j,k

2r∆r
, (3.76)

Equation (3.76) coupled with the circumferential and axial components of equation

(3.47) then defines the finite difference method node equations at the magnetic in-

sulation boundaries. The equivalent coupled network system of equations is given in

equation (3.50). Setting ρro to zero, substituting (3.52), (3.53) and (3.54) into equation

(3.50) and simplifying gives the node boundary equation

µr
(Ωi,j,k − Ωi−1,j,k) r∆θ∆z

∆r
− µr

(Ωi,j,k − Ωi−1,j,k) ∆r∆θ∆z

2∆r

+ µθ
(2Ωi,j,k − Ωi,j+1,k − Ωi,j−1,k) ∆r∆z

r∆θ
+ µz

(2Ωi,j,k − Ωi,j,k+1 − Ωi,j,k−1) r∆θ∆r

∆z
.

(3.77)

Dividing the radial terms of (3.77) by r∆θ∆r∆z gives

µr
Ωi,j,k − Ωi−1,j,k

∆r2
+ µr

Ωi−1,j,k − Ωi,j,k

2r∆r
. (3.78)

Comparing equations (3.76) and (3.78) it is seen that the magnetic insulation boundary

condition is imposed in the same way in both the finite difference and coupled network

formulations. These same arguments can be used to show that the magnetic insulation

boundary conditions at the inner radius (r = ri) and the at lower axial limit (z = 0) of

the domain also result in the same boundary equations for the two formulations.

In the coupled network formulation the imposed magnetic flux boundary is enforced

using a known magnetic flux injection φimposed at the nodes located on the boundary

z = δ. The imposed magnetic flux at the nodes being calculated as shown in Section
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3.1.2. Imposing a node magnetic flux in the finite difference formulation can be achieved

by considering an extra set of nodes ∆z axially above the boundary z = δ. The scalar

potential of these nodes being chosen such that they give a desired gradient in the

scalar potential. For an axially imposed magnetic flux density at the boundary the

finite difference boundary node equations are derived using the general node equation

given by (3.47). For the imposed axial magnetic flux boundary condition we need only

consider the axial components of (3.47), i.e.

µz
2Ωi,j,k − Ωi,j,k+1 − Ωi,j,k−1

∆z2
. (3.79)

Let the boundary node be designated i, j, k and the node ∆z axially above be i, j, k+1.

We choose this node to have a potential Ωi,j,k+1 which will result in the desired imposed

magnetic flux at the boundary node. The electric vector potential ~T is zero outside the

domain and thus the axial component of the electric field strength ~H is defined by

Hz = −∇Ω

where the gradient of Ω is taken in the axial direction. This allows the imposed axial

magnetic flux density Bz to be expressed as

−Bz = µzHz = −µz
∂Ω

∂z
. (3.80)

The differential term in equation (3.80) is approximated in the region outside the do-

main by

Bz = µz
Ωi,j,k+1 − Ωi,j,k

∆z
. (3.81)

We can now write an expression for the imposed axial magnetic flux φz at a boundary

node in terms of the gradient of the scalar potential. The elementary area normal to

the imposed flux density is given by r∆θ∆r and thus the imposed axial magnetic flux

over an element is given by

φz = Bzr∆θ∆r

= µzr∆θ∆r
Ωi,j,k+1 − Ωi,j,k

∆z
, (3.82)

which is rearranged to obtain

(Ωi,j,k − Ωi,j,k+1)

∆z
=

−φz

µzr∆θ∆r
, (3.83)
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where the left hand side of equation (3.83) is the negative of the difference approxima-

tion of the gradient of the scalar potential at the boundary. Expanding (3.79) results

in
µz

∆z

(Ωi,j,k − Ωi,j,k+1)

∆z
+ µz

(Ωi,j,k − Ωi,j,k−1)

∆z2

and replacing (Ωi,j,k − Ωi,j,k+1) /∆z with the expression found in equation (3.83) gives

−φz

r∆θ∆r∆z
+ µz

(Ωi,j,k − Ωi,j,k−1)

∆z2
. (3.84)

In the coupled network formulation the imposed magnetic flux boundary nodes are

defined by equation (3.48). Outside the domain no loop current exist and thus equation

(3.48) reduces to

PΩ = φimposed. (3.85)

For a boundary node i, j, k, with an imposed axial magnetic flux φz, the axial component

of equation (3.85) is

ρz (Ωi,j,k − Ωi,j,k−1) − φz (3.86)

where ρz is defined by equation (3.54). Substituting equation (3.54) into (3.86) and

dividing by r∆θ∆r∆z gives

µz
(Ωi,j,k − Ωi,j,k−1)

∆z2
− φz

r∆θ∆r∆z
(3.87)

which is the same boundary node equation as that imposed by the finite difference

method (see equation (3.84)).

Electric insulation is assumed everywhere outside the domain. The mid-node equations

for the electric vector potential T̃r using the finite difference and coupled network for-

mulations are given in equations (3.73) and (3.75), respectively. In the coupled network

an electric insulation boundary condition is equivalent to setting all loop currents to

zero outside the domain. It was shown in Section 3.3.1 that the reduced electric vector

potential T̃r can be thought of as the loop currents per unit length in the radial direc-

tion over each element. This means that T̃r is also zero outside the domain which is

not surprising since ~J will be equal to zero in this region. At the domain boundaries

z = 0 and z = δ this is enforced in equations (3.73) and (3.75) by setting T̃i,j,k+1 to
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zero at z = δ and T̃i,j,k−1 to zero at z = 0. At both boundaries the resulting boundary

node equations for the two formulations are the same.

It was shown in equations (3.76) and (3.78) that the magnetic insulation boundary

conditions at the domain radial limit r = ro results in the same boundary node equation

for the magnetic scalar potential Ω in both the finite difference and coupled network

formulations. We must now consider the influence of the electric vector potential terms

on the node equations at the radial boundaries. These additional terms are given

by equations (3.59) and (3.61) for the coupled network and finite difference methods,

respectively. In both formulations an electric insulation boundary at r = ro can be

imposed by setting Ii,j,k = T̃i,j,k = 0 where the subscript i denotes the mid-node

radially outside the domain boundary. In either case it can be seen from equations

(3.59) and (3.61) that this will result in the same boundary node equation. This will

also be the case at the inner radial boundary r = ri in which case we would set

Ii−1,j,k = T̃i−1,j,k = 0. It should also be noted that due to the decoupling of the electric

networks in the radial direction equations (3.73) and (3.75) do not contain T̃i±1,j,k

terms. This means that these equations do not contain boundary terms.

3.3.3 Loop Currents and the Electric Vector Potential

For the reduced electric vector potential ~T = T̃rr̂ the radial component of the magnetic

flux density is described by

Br = µrHr = µr

(

T̃r −∇rΩ
)

(3.88)

in accordance with equation (3.40) and the constitutive relationship (3.37). The radial

magnetic flux φr flowing in an elementary area r∆θ∆z is given by

φr = Brr∆θ∆z

= µrr∆θ∆z
(

T̃r −∇rΩ
)

= µrr∆θ∆zT̃r −
µrr∆θ∆z

∆r
(Ωi+1,j,k − Ωi,j,k)

= ρr∆rT̃r + ρr (Ωi,j,k − Ωi+1,j,k) . (3.89)
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The relationship between the electric vector potential T̃r, the magnetic scalar potential

Ω and the magnetic branch flux φr can be seen from equation (3.89). In the coupled

network formulation T̃r are loop currents per unit length in the radial direction. These

loop currents modify the branch magnetic flux as shown in Figures 3.7 and 3.8. Equa-

tion (3.18) defines the interaction between the magnetic and electric circuits used in

the coupled network formulation. Comparing equations (3.18) and (3.89) it can be seen

that these are the same if the substitution I = ∆rT̃r is made in equation (3.18).

3.3.4 Comparing Formulations

It was shown in Section 3.3.1 that the node equations for the magnetic scalar potential

Ω and the reduced electric vector potential ~T = T̃r given by:

1)
PΩ

r∆r∆θ∆z
and −∇ · µ∇Ω,

2)
QI

r∆r∆θ∆z
and ∇ · µT̃r,

3)
RI

r∆θ∆z
and ∇×

(

σ−1∇× T̃r

)

,

4)
−S̃I− W̃Ω

r∆θ∆z
and − jωµ

(

T̃r −∇Ω
)

are the same. The T − Ω quasi-static formulation requires equations (3.41) and (3.43)

to be solved simultaneously. The coupled network formulation requires equations (3.13)

and (3.29) to be solved simultaneously. Thus the coupled network formulation and the

finite difference method result in practically the same system of equations for both the

magnetic scalar potential and the electric vector potential at the nodes. It was also

shown in Section 3.3.2 that the two methods result in the same set of node equations for

the imposed boundary conditions. Thus it can be concluded that the reduced coupled

network formulation presented here is really just an application of the finite difference

method.
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3.4 Axiperiodic Formulation

A slotless axial flux machine core can be modeled by considering only a single plane

of fixed angular position. This simplification can be made because of the angular

periodicity in the core-air gap boundary condition and the uniformity of the core in the

circumferential direction. It is shown in Appendix D that if the boundary condition

(excitation) is sinusoidal in the circumferential direction then all resulting fields are also

sinusoidal in the circumferential direction. Reducing the three dimensional problem to

a two dimensional axiperiodic problem offers significant savings in the number of nodes

and thus unknowns required to describe the fields in the core. The T −Ω formulation is

chosen here and is expressed in terms of a coupled network (or finite difference) system

.

An axiperiodic model of a restricted coupled network formulation is used. The restricted

network being formed by a full three dimensional magnetic reluctance network coupled

with a series of planar resistance networks. This formulations is chosen to provide a

prediction of the induced core losses caused by the radial component of the magnetic

flux density. The planar resistive network is the result of setting the radial component of

the core conductivity σr to zero. A validation of this restriction is provided in Chapter

4.

3.4.1 The Magnetic Node Equation

We will now derive the axiperiodic coupled network formulation for the magnetic node

equation

PΩ + QI = φimposed.

The core is discretised in the radial and axial directions within a chosen cutting plane

as shown in Figure 3.15. Figure 3.16 shows the elementary volumes used in the disreti-

sation as well as the magnetic node associated with elementary volume j.
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a.) Plan view of the core showing
the symmetry cutting plane.

b.) Symmetry plane showing element
discretisation and permeances.
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z

Figure 3.15: Axial symmetry plane and discretisation
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Figure 3.16: Element structure.

Volume elements are considered in the limit of ∆θ → 0. Element permeances in the

limit are defined as

∆ρr =
µrr∆θ∆z

∆r
, (3.90)

∆ρθ =
µθ∆r∆z

r∆θ
, (3.91)

∆ρz =
µzr∆θ∆r

∆z
, (3.92)

where the subscripts r, θ, z denote the radial, circumferential and axial directions, re-

spectively. The permeances connected from node j to adjacent nodes are shown in

Figure 3.17. Circumferentially displaced nodes located in planes at θ ±∆θ (not shown

in Figure 3.17) are represented by Ωθl at (θ − ∆θ) and Ωθr at (θ + ∆θ).
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Figure 3.17: r-z plane node configuration and permeance connections.

Conservation of magnetic flux at node j requires that

(Ωj − Ωri)∆ρri + (Ωj − Ωro) ∆ρro + (Ωj − Ωzu)∆ρzu + (Ωj − Ωzl)∆ρzl

+ (Ωj − Ωθl) ∆ρθl + (Ωj − Ωθr) ∆ρθr − Iri∆ρri + Ij∆ρro = ∆Φj, (3.93)

where Iri and Ij are the loop currents circulating around permeance branches ρri and

ρro, respectively, and ∆Φj is the imposed magnetic flux at node j. For regular elements

of a fixed volume (i.e. constant ∆r, ∆θ and ∆z) the radial and axial permeances shown

in Figure 3.17 are given by the permeance expressions of equations (3.90) and (3.92).

In the circumferential direction the permeances ∆ρθl and ∆ρθr are equal to ∆ρθ given

in (3.91), and thus equation (3.93) becomes

(Ωj − Ωri) ∆ρr|r−∆r
2

+ (Ωj − Ωro) ∆ρr|r+∆r
2

+ (Ωj − Ωzu) ∆ρz + (Ωj − Ωzl) ∆ρz−

Iri ∆ρr|r−∆r
2

+ Ij ∆ρr|r+∆r
2

+ (2Ωj − Ωθl − Ωθr) ∆ρθ = ∆Φj. (3.94)

A Taylor series expansion is taken about θ to express Ωθl and Ωθr as

Ωθl = Ωj −
∂Ωj

∂θ
∆θ +

∂2Ωj

∂θ2

∆θ2

2
+ ... (3.95)

and

Ωθr = Ωj +
∂Ωj

∂θ
∆θ +

∂2Ωj

∂θ2

∆θ2

2
+ ... , (3.96)
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respectively. Substituting these expressions into equation (3.94) and dividing by ∆θ

we obtain

(Ωj − Ωri) ρ′r
∣

∣

r−∆r
2

+ (Ωj − Ωro) ρ′r
∣

∣

r+∆r
2

+ (Ωj − Ωzu) ρ′z
∣

∣

r
+ (Ωj − Ωzl) ρ′z

∣

∣

r
−

Iri ρ′r
∣

∣

r−∆r
2

+ Ij ρ′r
∣

∣

r+∆r
2

− ∂2Ωj

∂θ2
ρ′θ
∣

∣

r
=

∆Φj

∆θ
, (3.97)

where

ρ′r =
µrr∆z

∆r
, (3.98)

ρ′θ =
µθ∆r∆z

r
, (3.99)

ρ′z =
µzr∆r

∆z
. (3.100)

The imposed magnetic flux at node j is given by

∆Φj = B (θ) r∆θ∆r, (3.101)

where B (θ) is the imposed axial magnetic flux density. The right-hand term of equation

(3.94) is then

Φ′

j = B (θ) r∆r (3.102)

and thus equation (3.97) becomes

(Ωj − Ωri) ρ′r
∣

∣

r−∆r
2

+ (Ωj − Ωro) ρ′r
∣

∣

r+∆r
2

+ (Ωj − Ωzu) ρ′z
∣

∣

r
+ (Ωj − Ωzl) ρ′z

∣

∣

r
−

Iri ρ′r
∣

∣

r−∆r
2

+ Ij ρ′r
∣

∣

r+∆r
2

− ∂2Ωj

∂θ2
ρ′θ
∣

∣

r
= B (θ) r∆r. (3.103)

Sinusoidal variation in the angular component θ is assumed and thus the second deriva-

tive of the scalar potential with respect to θ at node j will be given by

∂2Ωj

∂θ2
= −Ωj

(p

2

)2
. (3.104)

Substituting (3.104) into equation (3.103) leads to

(Ωj − Ωri) ρ′r
∣

∣

r−∆r
2

+ (Ωj − Ωro) ρ′r
∣

∣

r+∆r
2

+ (Ωj − Ωzu) ρ′z
∣

∣

r
+ (Ωj − Ωzl) ρ′z

∣

∣

r
−

Iri ρ′r
∣

∣

r−∆r
2

+ Ij ρ′r
∣

∣

r+∆r
2

+ Ωj

(p

2

)2
ρ′θ
∣

∣

r
= B (θ) r∆r, (3.105)
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which is rearranged to give

Ωj

(

ρ′r
∣

∣

r−∆r
2

+ ρ′r
∣

∣

r+∆r
2

+ 2 ρ′z
∣

∣

r
+
(p

2

)2
ρ′θ
∣

∣

r

)

− Ωri ρ′r
∣

∣

r−∆r
2

− Ωro ρ′r
∣

∣

r+∆r
2

−

Ωzu ρ′z
∣

∣

r
− Ωzl ρ′z

∣

∣

r
− Iri ρ′r

∣

∣

r−∆r
2

+ Ij ρ′r
∣

∣

r+∆r
2

= B (θ) r∆r, (3.106)

From equation (3.106) it can be seen that the diagonal entries of the permeance matrix

P for the axiperiodic formulation are given by

P (j, j) = ρ′r
∣

∣

r−∆r
2

+ ρ′r
∣

∣

r+∆r
2

+ 2ρ′z
∣

∣

r
+
(p

2

)2
ρ′θ
∣

∣

r
(3.107)

and the off-diagonal entries will be the negative of the branch permeance connecting

node j to its adjacent nodes, where all branch permeances are found using equations

(3.98) through (3.100).

It can also be seen from equation (3.106) that the Q matrix will be formed using

Q (j, j) = ρ′r
∣

∣

r+∆r
2

(3.108)

and

Q (j, ri) = − ρ′r
∣

∣

r−∆r
2

. (3.109)

3.4.2 The Electric Loop Equation

We now consider the electric loop equation

W̃Ω +
(

R + S̃
)

I = 0

for the axiperiodic formulation. Nodes in the electric network are regularly spaced

with distances between adjacent nodes equal to ∆r, ∆z and ∆θ in the radial, axial

and circumferential directions, respectively. Because a radially staggered grid between

the magnetic and electric networks is used, if the coordinates of the magnetic nodes

are (rm, θm, zm), then the coordinates of the electric nodes will be given by (rm ±
∆r/2, θm ± ∆θ/2, zm ± ∆z/2).
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As was the case in the magnetic node equation, the volume elements of the electric

network are considered in the limit ∆θ → 0. Element resistances are defined by

∆Rz =
∆z

σzr∆θ∆r
, (3.110)

∆Rθ =
r∆θ

σθ∆z∆r
, (3.111)

where the subscripts r, θ, z denote the radial, circumferential and axial directions, re-

spectively. The path in which loop current Ij flows is shown in Figure 3.18.

Ij

Loop jLoop L Loop R

Loop T

Loop B

IRIL

IT

IB

Z

q

Dz

Dz

Dz

Dq Dq Dq

Rz Rz

R
q

R
q

Figure 3.18: Electric network.

Applying Kirchhoff’s voltage law and Faraday’s law around loop j gives the loop equa-

tion

(Ij − IT )∆Rθ + (Ij − IB)∆Rθ + (Ij − IL) ∆Rz + (Ij − IR) ∆Rz = −∂∆φj

∂t
, (3.112)

where ∆φj is the flux flowing magnetic branch j which links electric loop j taken in

the limit ∆θ → 0.
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It was shown in Section 3.2 that the electric loop equation used in the coupled network

formulation can be used to rewrite equation (3.112) as

RI = −jω (WΩ + SI) , (3.113)

where RI is the left hand side of equation (3.112) and the right hand side is represented

by −jω (WΩ + SI). The elements of the W and S matrices are defined in equations

(3.20) through (3.22). Equation (3.112) can thus be rewritten as

(Ij − IT ) ∆Rθ + (Ij − IB) ∆Rθ + (Ij − IL)∆Rz + (Ij − IR)∆Rz =

− jω [(Ωj − Ωro) ∆ρro + Ij∆ρro] , (3.114)

where ∆ρro is defined by equation (3.90) at r = rj + ∆r/2.

A Taylor series expansion is taken about θ to express IR and IL as

IR = Ij +
∂Ij

∂θ
∆θ +

∂2Ij

∂θ2

∆θ2

2
+ ... (3.115)

and

IL = Ij −
∂Ij

∂θ
∆θ +

∂2Ij

∂θ2

∆θ2

2
+ ... , (3.116)

respectively. Substituting equations (3.115) and (3.116) into equation (3.114) and di-

viding by ∆θ we obtain

(Ij − IT ) R′

θ + (Ij − IB) R′

θ −
∂2Ij

∂θ2
R′

z = −jω (Ωj − Ωro + Ij) ρ′r
∣

∣

r+∆r
2

, (3.117)

where

R′

θ =
r

σθ∆z∆r
, (3.118)

R′

z =
∆z

σzr∆r
(3.119)

and ρ′r is defined by equation (3.98).

Due to the sinusoidal variations in the loop currents Ij with angular displacement θ we

can write the second derivative term in equation (3.117) as

∂2Ij

∂θ2
= −

(p

2

)2
Ij, (3.120)
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where p is the number of machine poles. Substituting equation (3.120) into equation

(3.117) leads to

(Ij − IT ) R′

θ + (Ij − IB) R′

θ +
(p

2

)2
IjR

′

z = −jω (Ωj − Ωro + Ij) ρ′r
∣

∣

r+∆r
2

. (3.121)

It can be seen from equation (3.121) that the diagonal entries of the resistance matrix

R for the axiperiodic formulation are given by

R (j, j) = 2R′

θ +
(p

2

)2
R′

z. (3.122)

where R′

θ and R′
z are given by equations (3.118) and (3.119), respectively. The off-

diagonal entries of R being equal to −R′

θ (i.e. the negative of the resistances common

to the adjacent loops).

It can also be seen from equation (3.121) that the W and S matrices for the axiperiodic

formulation are given by

W (j, j) = ρ′r
∣

∣

r+∆r
2

, (3.123)

W (j, ro) = − ρ′r
∣

∣

r+∆r
2

(3.124)

and

S (j, j) = ρ′r
∣

∣

r+∆r
2

. (3.125)

3.4.3 The Axiperiodic System of Equations

The coupled network formulation was described in Section 3.2 and is defined by equation

(3.30). The P, Q, R, W and S matrices required to write the system of equations for

an axiperiodic formulation have been derived in Sections 3.4.2 and 3.4.1. The imposed

magnetic flux vector φ can be found by using equation (3.102).

Using these matrices, equation (3.30) and the sinusoidal variation in the circumferential

direction the magnetic fields and induced currents can be found/approximated at any

point within the domain.
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3.4.4 Calculating Induced Losses

Induced losses in the coupled network method are calculated using an I 2
b Rb calculation,

where Ib are the resistance network branch currents and Rb the branch resistances in

which the current flows. Figure 3.19 shows the relationship between the loop and

branch currents.

Ij IRIL

IT

IB

R’z R’z

R
q
’

R’
q

IbRIbL

IbT

IbB

q

z

Figure 3.19: Branch current calculation.

The branch currents are calculated using the superposition of the loop currents in

common branch resistances. From Figure 3.19 it can be seen that the resulting branch

currents are given by

IbR = Ij − IR,

IbB = Ij − IB ,

IbL = Ij − IL,

IbT = Ij − IT

and the induced losses associated with loop j are thus

(

I2
bR + I2

bL

)

R′

z +
(

I2
bT + I2

bB

)

R′

θ.
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For the axiperiodic formulation, we solve for loop currents in the r − z plane with

variation in the circumferential direction assumed sinusoidal. The branch currents in

the axial resistances are found using the Taylor series expansion given by equation

(3.115). The resulting branch current IbR using this expansion can be approximated

by

IbR = Ij − IR

≈ ∂I

∂θ
∆θ. (3.126)

The general form of the loop currents Ij in the circumferential direction are given by

Ij = Îj sin

(

pθ

2

)

, (3.127)

where p in the number of machine poles and Îj is the peak value of Ij . Substituting

equation (3.127) into equation (3.126) gives the branch current expression

IbR ≈ −Îj
p∆θ

2
cos

(

pθ

2

)

. (3.128)

From equations (3.119) and (3.128) the induced losses due to an axial branch resistance

R′
z is given by

I2
bRR′

z ≈ Î2
j

(p

2

)2
cos2

(

pθ

2

)

∆z∆θ

σzr∆r
(3.129)

and due to a circumferential branch resistance R′

θ by

I2
bT R′

θ = (Ij − IT )2
r∆θ

σθ∆r∆z
. (3.130)

Using the circumferential periodicity, for a given radius and axial position, the total

losses due to axial branch resistances are found by the integral

2π
∫

0

Î2
j

(p

2

)2
cos2

(

pθ

2

)

∆z

σzr∆r
∂θ =

Î2
j πp2∆z

4σzr∆r
(3.131)

and similarly, the losses due to circumferential resistances are found by

2π
∫

0

(

Îj − ÎT

)2
sin2

(

pθ

2

)

r

σθ∆r∆z
∂θ =

πr

σθ∆r∆z

(

Îj − ÎT

)2
. (3.132)

The total core losses due to the radial component of the magnetic flux density are

calculated using the summation of the values given by equations (3.131) and (3.132)
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for all planar resistive networks. This requires a summation over all radii and axial

elements used in the discretization.

The restricted axiperiodic coupled network formulation presented here is used in Chap-

ter 4 to predict the induced losses due to the radial flux component as well as its

dependence on frequency.



Chapter 4

Core Losses and Magnetic Flux

Density Distribution

In Chapter 2 it was concluded that curvature related radial flux density is relatively

small compared to the peak axial and circumferential flux densities even when the

shielding effect of induced eddy currents is ignored. However, the model used in Chapter

2 was a magnetostatic one and thus could not address the question of power loss

resulting from curvature related radial flux.

We will now use a quasi-static electromagnetic model in the form of the axiperiodic

coupled network formulation, derived in Chapter 3, to predict classical eddy current

loss due to the radial flux component as well as its dependence on frequency. The

classical eddy current power loss due to curvature related radial or cross-lamination

flux will also be compared with classical eddy current loss due to the main or parallel

running flux to show that in most practical instances it can be neglected.

For simplicity and brevity, classical eddy current loss will now be simply referred to as

either induced loss, eddy current loss or power loss. In Section 4.5 we will investigate

experimental techniques which allow classical eddy current loss to be separated from

hysteresis and excess loss.

76
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4.1 Eddy Current Loss Separation

The coupled network formulation derived in Chapter 3 is based on a restricted resistive

network formed by setting the core conductivity in the radial direction σr to zero. This

restriction results in a series of planar resistive networks coupled only to the radial

permeance branches of the full three dimensional permeance network. The restricted

network is chosen so that the losses due to and frequency dependence of the radial

component of the core magnetic flux density can be determined. It is now shown that

the power loss due to radial or cross-lamination flux is decoupled from the power loss

due to parallel running or main flux and therefore their theoretical evaluations can be

performed separately.

Induced currents within a lamination sheet are made up of the superposition of eddy

currents due to flux that runs parallel to the lamination faces (or “main” flux) and

eddy currents due to cross-lamination flux. Let the distribution of eddy currents due

solely to a given distribution of parallel running flux be given by X and similarly, the

distribution of eddy currents due solely to a given distribution of cross-lamination flux

be given by Y. We now show that the power loss due to eddy current distribution X

and that due to eddy current distribution Y are mutually independent and that the

interaction between the two eddy current distributions contribute zero net additional

power loss.

The power loss density D at any given point within a laminate is given by

D =
J2

rp

σr
+

(Jθc + Jθp)
2

σθ
+

(Jzc + Jzp)
2

σz
, (4.1)

where Jrp, Jθp and Jzp are the radial, circumferential and axial components of the in-

duced current density due to parallel running flux, respectively, Jθc and Jzc are the

circumferential and axial components of the induced current density due to cross-

lamination flux, respectively and σr, σθ and σz are the radial, circumferential and

axial components of the material conductivity, respectively.
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Expanding the right hand side of equation (4.1) results in

D =
J2

rp

σr
+

J2
θp

σθ
+

J2
zp

σz
+

J2
θc

σθ
+

J2
zc

σz
+

2JθcJθp

σθ
+

2JzcJzp

σz
. (4.2)

The first three terms of equation (4.2) represent contributions to power loss density

due to parallel running flux alone. The fourth and fifth terms represent contributions

to power loss density due to cross-lamination flux alone. The last two terms represent

contributions to power loss density which result from the interaction between the two

sets of induced currents.

The following realistic assumptions are now made:

1) Jθc and Jzc are constant along a radial line within a laminate; and

2) If x is measured radially from the laminate centre, as shown in Figure 4.1, then

Jθp (x) = −Jθp (−x) and Jzp (x) = −Jzp (−x).

x

t

O

Figure 4.1: Cross-section of a lamination sheet.

Based on these assumptions, it is clear that the last two terms in equation (4.2) do not

contribute to the total power loss in the lamination.

The decoupling between power loss due to the parallel running flux and that due to

cross-lamination flux allows them to be calculated separately. There are well established

methods for the calculation of power loss due to parallel running flux (Lammeraner &

Stafl, 1966) and these are applicable to the laminated cores of axial flux machines.

Here we will consider only the power loss due to cross-lamination flux. Although cross-

lamination and parallel running flux are both present in the model, eddy currents due
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to parallel running flux have been eliminated by assuming zero radial conductivity.

Whilst this assumption makes power loss due to parallel running flux equal to zero, we

have now shown that this will have no effect on the power loss due to cross-lamination

flux.

4.2 Main Flux Loss Prediction

An expression for induced power losses due to the time varying main or parallel running

flux is now derived. We begin with the following reasonable assumptions:

a) Br = 0,

b) Bθ and Bz are independent of radius within a laminate,

c) Er = 0 (i.e. σr = ∞),

d) Eθ (x) = −Eθ (−x) and

e) Ez (x) = −Ez (−x),

where B is the magnetic flux density, E is the electric field intensity, σ is the material

conductivity, the subscripts r, θ and z denote the radial, circumferential and axial

directions, respectively and x represents the radial distance from the laminate centre,

as shown in Figure 4.2.

Substituting Er = Br = 0 into the Maxwell equation

∇× ~E = −jω ~B (4.3)

and expanding results in the following system of equations

1

r

∂Ez

∂θ
− ∂Eθ

∂z
= 0 (4.4)

jωBθ =
∂Ez

∂r
(4.5)

−jωBz =
1

r

∂ (rEθ)

∂r
. (4.6)
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Based on assumption b) equation (4.6) can be rewritten as

rEθ = −jωBz

∫

r dr. (4.7)

We now express Eθ in terms of x by making the substitution r = rc + x in equation

(4.7) to give

Eθ (rc + x) = −jωBz

x
∫

0

(rc + x̄) dx̄

= −jωBzx
(

rc +
x

2

)

. (4.8)

r
c

t

x

Figure 4.2: Lamination sheet cross-section.

Equation (4.8) is rearranged to give

Eθ = −jωBzx

(

rc + x
2

)

(rc + x)
. (4.9)

Now −t/2 ≤ x ≤ t/2 and thus for any practical core x � rc which allows us to make

the approximation

Eθ ≈ −jωBzx. (4.10)

Similarly, Ez is expressed in terms of x using equation (4.5) to give

Ez =

x
∫

0

jωBθdx̄

= jωBθx. (4.11)
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The current density within a laminate is found by substituting equations (4.10) and

(4.11) into the constitutive relation ~J = σ ~E to give

~J = Jr r̂ − σθjωBzx θ̂ + σzjωBθx ẑ. (4.12)

For isotropic material (i.e. σθ = σz = σ) the power density D is given by

D = ~E · ~J

= σ (jωx)2
(

B2
θ + B2

z

)

= −σω2x2
(

B2
θ + B2

z

)

(4.13)

and the power density averaged in the thin direction of the laminate D̃ is given by

D̃ =
2

t

t
2
∫

0

D dx

= −σω2t2
(

B2
θ + B2

z

)

12
. (4.14)

From equation (4.14) the time averaged power loss density due to the main flux within

a laminated core is found to be

Fp =
σω2t2

24

(

B2
θ + B2

z

)

. (4.15)

This result is not surprising being the cylindrical co-ordinate form of the well known

expression (Lammeraner & Stafl, 1966)

Fp =
σω2t2

24
|B|2 . (4.16)

Using the 2D magnetic flux density distribution derived in Appendix C and equation

(4.15), the main flux losses within a laminated core are given by

Fp =
ω2t2σ

24

∫

V





(

P
√

kzθ
cosh

(gz
δ

)

sinh (g)
cos (lθ)

)2

+

(

P
sinh

(gz
δ

)

sinh (g)
sin (lθ)

)2


 dV

=
ω2t2σ

24

P 2δπ

4



kzθ

b
∫

a

r′

g sinh2 (g)
[sinh (2g) + 2g] dr′

+

b
∫

a

r′

g sinh2 (g)
[sinh (2g) − 2g] dr′



 , (4.17)
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where g, kzθ, a and b are defined in Appendix C. We now redefine g as

g =
Gb

√
kzθ

r′
, (4.18)

where

G =
δl

b
. (4.19)

Substituting equation (4.18) into equation (4.17) and rearranging gives

Fp =
ω2t2σπP 2δ

96





b
∫

a

r′2 sinh
(

2G
√

kzθ
b
r′

)

Gb
√

kzθ sinh2
(

G
√

kzθ
b
r′

) (kzθ + 1) dr′

+

b
∫

a

2r′

sinh2
(

G
√

kzθ
b
r′

) (kzθ − 1) dr′



 . (4.20)

It can be seen from equation (4.20) that the core loss density distribution due to the

main magnetic flux components are dependent on b/r ′, the material permeability ratio

kzθ = µθ/µz and G. Figure 4.3 shows plots of the integrand of equation (4.20) for

varying values of G with kzθ = 1.
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Figure 4.3: Plot of integrand of equation (4.20) for varying G and kzθ = 1.
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Axial flux machine designers can use equation (4.20) to directly predict classical eddy

current loss due to the main flux or to investigate the loss density distribution with

radius for varying values of G. Figure 4.3 allows a machine designer to predict the

radial variation in the loss density, averaged in the axial and circumferential directions,

for varying physical dimensions and number of poles. The example shown in Figure

4.3 demonstrates that as G falls the loss density distribution tends to increase rapidly

towards the outer radius. Integration of the curves given in Figure 4.3 can also be used

to give total core loss due the main flux.

4.3 Coupled Network Loss Prediction

The axiperiodic coupled network formulation presented in Section 3.4 has been used to

make predictions of the power loss due to curvature related cross-lamination flux. The

assumed nominal core characteristics are: ri = 0.075 m, ro = 0.175 m, δ = (0.2/p) m,

µr = 20µo, µ = µθ = µz = 1000µo, σr = 0 S/m, σθ = σz = 5 × 106 S/m, ω = 100π

rad/s, t = 0.27 mm and B̂z = 0.7 T. In practice it would be expected that the core

back-iron length δ be progressively reduced with increasing number of poles p. For this

reason δ has been chosen to be inversely proportional to the number of poles. Power

loss predictions are shown in Table 4.1 and Figure 4.4.
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Table 4.1: Power loss due to cross-lamination flux.

Number of poles Losses (W) for Losses (W) for
µ = 1000µo µ = 5000µo

2 1.62 0.074

4 0.48 0.021

6 0.24 0.011

8 0.14 0.006
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Figure 4.4: Dependence of power loss on frequency.

For comparison, classical eddy-current power loss due to the main flux, Fp , have been

evaluated using equation (4.20). These values are given in Table 4.2.
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Table 4.2: Power losses due to main flux.

Number of poles 2 4 6 8

Fp(W ) 6.15 3.07 2.05 1.52

The following observations can be made:

a) The power loss F has a strong dependence on the number of poles and on the

relative permeability of the core.

b) Except for the two-pole case and at low values of core permeability, the power

loss due to cross-lamination flux is insignificant compared to the power loss due

to the main flux.

c) The power loss due to cross-lamination flux may be expressed as

F = k
√

f, (4.21)

where k is independent of frequency but is a function of the core physical dimen-

sions, material properties, number of poles and B̂z (r). Good fits to the curves

shown in Figure 4.4 were obtained with k chosen to be 0.2285 and 0.0691 for the

2- and 4- pole cases, respectively.

The explanation for observation c) is based on characteristics of the circumferential

component of the induced current which is shown in Figures 4.5 and 4.6. The first

point is that the induced current experiences high resistance circumferentially since it

is restricted to flow through a thin layer near the flat surfaces of the core because of

the skin-effect. The second point is that the total circumferential current (Figure 4.6)

is practically independent of frequency. The high circumferential resistance, compared

to the axial resistance, implies that practically all the power losses are associated with

the circumferential component of current. Thus there exists a current, which is almost

independent of frequency, flowing through a cross-sectional area that is proportional to

the skin-depth. This implies that the power loss is proportional to the square root of
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frequency.
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Figure 4.5: Circumferential current distribution (integrated from ri to ro) along a
pole centre plane (2-pole machine).
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Figure 4.6: Circumferential current crossing the pole-centre plane in one direction.
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4.4 Closed Form Expression for Power Loss

The relative significance of power loss due to cross lamination flux depends on several

factors including the number of poles, material properties physical dimensions and

operating frequency. A closed form expression for the power loss due to radial flux is

now derived. This expression can be used by axial flux machine designers to make a

quick assessment of the requirement to consider power loss due to curvature related

cross lamination flux.

f
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f
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O

P
out

P
in

W
out

W
in

Figure 4.7: Simplified representation of an axial flux machine core.

As shown in Figure 4.7, the core is represented by a simplified equivalent coupled

reluctive-resistive network. The reluctive circuit contains only three nodes. Nodes A

and B are located on the pole centre plane at (ri + (ro − ri) /4, 0, δ/2) and

(ro − (ro − ri) /4, 0, δ/2), respectively, where ri and ro are the core inner and outer

radii, respectively and δ is the core axial length. The third node represents the plane of

uniform magnetic potential which is equidistant from adjacent pole centre planes. The

resistive circuit is a single loop linking the reluctive branch which represents permeance

in the radial direction between nodes A and B.
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The following assumptions are now made:

a) Half of the flux per pole that enters the core from the air-gap between r =

ri + (ro − ri) /2 and r = ro flows through branch BO. This is represented by φout

in Figure 4.7.

b) Half of the flux per pole that enters the core from the air-gap between r = ri

and r = ri + (ro − ri) /2 flows through branch AO. This is represented by φin in

Figure 4.7.

c) The resistance of the resistive loop is sufficiently small such that the induced

current cause the net flux flowing in the reluctive branch between nodes A and

B to be practically zero.

d) Reluctance in the axial direction is assumed to be zero.

e) Branch BO represents flux paths between r = ri + (ro − ri) /2 and r = ro.

f) Branch AO represents flux paths between r = ri and r = ri + (ro − ri) /2.

g) Due to the skin effect, the circumferential component of the loop current decays

exponentially from the core flat surfaces with characteristic decay length equal

to the skin depth.

Based on these assumptions and Figure 4.8 equations (4.22) through (4.27) are now

derived. The flux exiting the core from the air-gap between r = ri + (ro − ri) /2 and

r = ro is given by

φout =

ro
∫

(ro+ri)
2

π
p
∫

0

B̂z sin

(

pθ

2

)

r∂θ∂r

=
B̂z (3ro + ri) (ro − ri)

4p
, (4.22)

where B̂z is the peak air-gap magnetic flux density and p the number of machine poles.

The flux entering the core from the air-gap between r = ri and r = ri + (ro − ri) /2 is
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Figure 4.8: Core radial divisions used to derive a closed form loss equation.

given by

φin =

(ro+ri)
2
∫

ri

π
p
∫

0

B̂z sin

(

pθ

2

)

r∂θ∂r

=
B̂z (3ri + ro) (ro − ri)

4p
. (4.23)

The permeance of branch BO is given by

Pout =
µθδ

(

ro−ri

2

)

π
(

ro−
ro−ri

4

)

p

=
2pµθδ (ro − ri)

π (3ro + ri)
. (4.24)

The permeance of branch AO is given by

Pin =
µθδ

(

ro−ri

2

)

π
(

ri+
ro−ri

4

)

p

=
2pµθδ (ro − ri)

π (3ri + ro)
. (4.25)

The axial and circumferential components of the loop resistance are given by

Rz =
δ

σz

(ro−ri)π
(

ro+ri
2

)

p

=
2pδ

σzπ
(

r2
o − r2

i

) (4.26)
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and

Rθ =

π
(

ro+ri
2

)

p

σθ (ro − ri) S

=
π (ro + ri)

2 σθp S (ro − ri)
, (4.27)

respectively, where S is the skin depth defined by

S =

√

2

ωµrσθ
. (4.28)

In accordance with assumption c), the loop current linking the permeance branch AB

is given by

I = Ωout − Ωin

=
φout

Pout
− φin

Pin

=
B̂zπ

(

r2
o − r2

i

)

µθδp2
(4.29)

and thus the induced core loss F is found using

F = pI2 (Rz + 2Rθ)

=
B̂2

zπ2
(

r2
o − r2

i

)

µ2
θδ

2p3

[

2pδ

πσz
+

π (ro + ri)
2

Spσθ

]

. (4.30)

Loss predictions made using equation (4.30) and the axiperiodic coupled network for-

mulations are given in Table 4.3.

Table 4.3: Comparison between power loss (F) predicted by equation (4.30) and
that predicted by the axiperiodic coupled network method.

Loss prediction (W) 2-pole 4-pole 6-pole 8-pole

using equation(4.30) 2.66 0.672 0.308 0.171

using the axiperiodic coupled network method 1.62 0.482 0.236 0.144



CHAPTER 4. CORE LOSSES AND MAGNETIC FLUX DENSITY

DISTRIBUTION 91

Table 4.3 shows that equation (4.30) tends to over estimate power loss. This is to

be expected given the fairly crude assumptions on which equation (4.30) is based on.

For example, assumption c) results in an over estimation of the induced current while

assumption g) means that the current will be forced to flow in a high resistance path.

The nature of these assumptions are such that they lead to an overestimation of power

loss. Although the predictions made by equation (4.30) may not be very accurate,

predicted losses can still be used by machine designers to allow a quick decision to be

made on whether or not there is a need for detailed investigation into power loss due

cross-lamination flux.

4.4.1 Rotating Fields

The imposed magnetic flux boundary condition derived in Section 3.1.2 is for the case

where the fields are stationary with respect to the core and pulsating at frequency

ω. That is, the imposed magnetic flux density distribution B (r, θ, t) is given by

B̂z (r) cos (ωt) cos (pθ/2), where B̂ (r) is the peak value of the magnetic flux density

in time at the pole planes. In practice, a rotating air-gap magnetic field is more likely.

It is now shown that, for any given B̂z (r), the power loss for the rotating field case is

twice that for the pulsating field case.

The power loss density D in the core is given by

D =
[

~J · ~J
]











σr 0 0

0 σθ 0

0 0 σz











−1

, (4.31)

where ~J is the current density and σr, σθ and σz are the radial, circumferential and

axial components of the core conductivity. For consistency with the coupled network

formulation derived in Chapter 3, we express ~J in terms of the electric vector potential

~T using

~J = ∇× ~T . (4.32)

It was shown in Chapter 3 that, in order to predict the losses due only to the ra-
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dial component of the magnetic flux density, the induced current density can be fully

described by choosing an electric vector potential of the form

~T = Trr̂ + 0θ̂ + 0ẑ. (4.33)

Substituting equation (4.33) into (4.32) gives

~J = 0r̂ +
∂Tr

∂z
θ̂ − 1

r

∂Tr

∂θ
ẑ. (4.34)

The core power loss density D given in equation (4.31) can thus be written in terms of

~T as

D =
1

σθ

(

∂Tr

∂z

)2

+
1

σzr2

(

∂Tr

∂θ

)2

. (4.35)

For the axiperiodic case presented in Section 3.4, the electric vector potential is of the

form

Tr (r, θ, z, t) = T̂ (r, z) cos (ωt + ϕ) cos

(

pθ

2

)

, (4.36)

where T̂ (r, z) is the peak value of Tr in time on a pole-centre plane and ϕ is the phase

angle between Tr and B (r, θ, z). Substituting equation (4.36) into (4.35) results in

D =
1

σθ

(

∂T̂

∂z

)2

cos2 (ωt + ϕ) cos2

(

pθ

2

)

+

1

σzr2

(p

2

)2
T̂ 2 cos2 (ωt + ϕ) sin2

(

pθ

2

)

. (4.37)

Based on equation (4.37), the instantaneous power loss F (t) in the core is given by

F (t) =

δ
∫

0

ro
∫

ri

2π
∫

0

D r∂θ∂r∂z

= π cos2 (ωt + ϕ)

δ
∫

0

ro
∫

ri





1

σθ

(

∂T̂

∂z

)2

+
1

σzr2

(p

2

)2
T̂ 2



 r∂r∂z, (4.38)

where δ is the core axial length and ri and ro are the core inner and outer radii,

respectively. From equation (4.38), the power loss in the core F is given by

F =
1

P

P
∫

0

F (t) ∂t

=
π

2

δ
∫

0

ro
∫

ri





1

σθ

(

∂T̂

∂z

)2

+
1

σzr2

(p

2

)2
T̂ 2



 r∂r∂z, (4.39)
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where P = 1/f is the period of the field.

The Tr given in equation (4.36) and used to derive equation (4.39) is for the case where

the field is stationary with respect to the core and pulsating at frequency ω. For a

rotating field the electric vector potential will be of the form

Tr (r, θ, z, t) = T̂ (r, z) cos

(

ωt + ϕ − pθ

2

)

, (4.40)

where T̂ (r, z) is the peak value of Tr in time. This was demonstrated using the principle

of superposition in Section 2.1.2 for a three phase system. Substituting equation (4.40)

into (4.35) results in

DR =
1

σθ

(

∂T̂

∂z

)2

cos2

(

ωt + ϕ − pθ

2

)

+
1

σzr2

(p

2

)2
T̂ 2 sin2

(

ωt + ϕ − pθ

2

)

, (4.41)

where the subscript R denotes a rotating field. The instantaneous power loss FR (t) in

the core due to the rotating field is given by

FR (t) =

δ
∫

0

ro
∫

ri

2π
∫

0

DR r∂θ∂r∂z

= π

δ
∫

0

ro
∫

ri





1

σθ

(

∂T̂

∂z

)2

+
1

σzr2

(p

2

)2
T̂ 2



 r∂r∂z. (4.42)

From equation (4.42), the power loss in the core FR is given by

FR =
1

P

P
∫

0

FR (t) ∂t

= π

δ
∫

0

ro
∫

ri





1

σθ

(

∂T̂

∂z

)2

+
1

σzr2

(p

2

)2
T̂ 2



 r∂r∂z. (4.43)

Comparing equations (4.39) and (4.43) it can be seen that the core loss due to a rotating

field is twice that due to the pulsating field. Thus the coupled network formulation of

Chapter 3 can be used with the imposed magnetic flux boundary given in Section 3.1.2

and the power loss for a rotating field of the same peak amplitude will be twice that of

the pulsating field case.
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4.5 Laboratory Tests

The theory and loss predictions presented in Sections 4.3 and 4.4 point to the likelihood

of increased core loss due to the curvature of the core in axial flux machines. Curvature

related loss cannot be separately measured as it is part of the total input power to the

machine. Its extraction from total measured core loss could, however, be based on its

relationship with frequency. Total core loss, PT , can be expressed as

PT = F + k1f + k2f
3/2 + k3f

2, (4.44)

where F represents loss due to cross-lamination flux, k1f represents hysteresis loss,

k2f
3/2 represents excess loss (Barbisio et al., 2004; Fiorillo & Novikov, 1990) and k3f

2

represents classical eddy-current loss due to main or parallel running flux.

As shown in Figure 4.9, if there is a significant amount of eddy current loss due to

cross-lamination flux, then the axiperiodic model predicts a non-linear relationship

between PT /f and f , irrespective of the value of k2. The non-linearity is characterised

by a minimum turning point occurring at frequency fm. The more significant the loss

due to cross-lamination flux, compared to classical eddy current and excess loss, the

higher the value of fm and the easier it would be to locate using test data. The practical

identification of the turning point at fm requires tests to be performed over a frequency

range extending sufficiently below fm. Indication of the existence of a turning point

by test data would signify the presence of a significant amount of power loss due to

cross-lamination flux. Conversely, it can be shown that if F is equal to zero, no turning

point exists in the PT /f against f graph.
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Figure 4.9: Determination of k from hypothetical experimental data.

Equation (4.45), which is obtained by substituting equation (4.21) into (4.44), is now

used to show how loss due to cross lamination flux can be separated from the other

core loss components.
PT

f
=

k√
f

+ k1 + k2

√

f + k3f (4.45)

The turning point located at f = fm in Figure 4.9 is found by differentiating equation

(4.45) with respect to f and equating to zero, that is

−k

2
f−3/2

m +
k2

2
√

fm
+ k3 = 0. (4.46)

Equation (4.46) is then be rearranged to give

k = k2fm + 2k3f
3/2
m . (4.47)

Using equation (4.45) at points Qm and Qn in conjunction with equation (4.47), it can

be shown that

k =
2
√

fm (Qn − Qm) + k2fm

(

3 − 2
√

2
)

(√
2 − 1

) (4.48)

where Qm and Qn are defined in Figure 4.9. Equation (4.48) allows k to be estimated

from experimental data. If accurate estimation of k2 is not possible, and it is assumed
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to be equal to zero (resulting in k3 assuming its maximum possible value), equation

(4.48) returns the lower bound for k. Equation (4.49), which is based the assumption

of k3 being equal to zero (which results in k2 assuming its maximum possible value),

gives the upper bound for k:

k =

√
2fm (Qn − Qm)
(

3 − 2
√

2
) (4.49)

By comparing equations (4.48) and (4.49), it can be deduced that the maximum error

from assuming a zero value for k2 in equation (4.48) is 41%. However, such a high error

is unlikely in practice as classical eddy-current loss will always be relatively significant

compared to excess loss.

Figure 4.10 shows experimental data for test cores with physical dimensions ri =

0.075m, ro = 0.175m and δ = 0.1m. The test set-up is shown in Figure 4.11. Core loss,

for both cores, was obtained by subtracting copper loss from the total measured power.
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Figure 4.10: Experimental results (B̂z = 0.5T).

Experimental results suggest that core loss due to cross-lamination flux is not signif-

icant. That is, there is no indication of the existence of a turning point for varying



CHAPTER 4. CORE LOSSES AND MAGNETIC FLUX DENSITY

DISTRIBUTION 97

W

slotless core

2mm air-gap

single-phase
wound core
(24 slots, 2-pole)

Figure 4.11: Experimental set-up for measuring core losses.

test frequencies. From measurements made with one of the cores wound as a toroidal

transformer, the core permeability was estimated to be greater than 5000µo. From

manufacturer’s data σθ was estimated to be about 4.5×106S/m. Based on these values

the axiperiodic model predicts the losses due to cross-lamination flux to be 0.311W at

50Hz. This is relatively small compared to the total measured core loss of approximately

21W of which 10W is estimated to be hysteresis loss. It is not surprising, therefore,

that the experimental data points in Figure 4.10 do not indicate the existence of a

significant amount of power loss due to cross-lamination flux.

4.6 Flux Density Distribution

It was predicted in Chapter 2 that curvature related radial flux density is relatively small

compared to the peak axial and circumferential flux densities even when the shielding

effect of induced eddy currents is ignored. The model used to make this prediction was

a magnetostatic one and thus could not be used to investigate the frequency dependence

of the radial component.

The axiperiodic coupled network model developed in Section 3.4 has been used to

analyse the flux density distribution in a core with the following nominal characteristics:

ri = 0.075 m, ro = 0.175 m, δ = (0.2/p) m, µr = 20µo, µθ = µz = 1000µo, σr = 0 S/m,

σθ = σz = 5 × 106 S/m, ω = 100π rad/s and B̂z = 0.7 T.

Figure 4.12 shows theoretical predictions for the normalised radial flux density as a
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function of radius, and averaged over the core axial length. Similarly, Figure 4.13

shows the normalised circumferential flux density as a function of radius, averaged over

the core axial length.

Based on these results the following observations can be made:

a) The peak radial flux density is much smaller than the peak axial or circumferential

flux densities.

b) The radial component of the magnetic flux density is almost non-existent under

a.c. conditions. This is theoretical confirmation of what was already postulated

in Chapter 2 based on magnetostatic analysis and experimental results.

c) The amount of radial flux, although small, is a strong function of core permeabil-

ity.

d) The circumferential flux density is greatest near the outer radius of the core. As

stated Chapter 2, this must be accounted for when sizing the back-iron of axial

flux machines.
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(b) µθ = µz = 5000µo

Figure 4.12: Normalised average radial flux density along a pole-centre plane.
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Figure 4.13: Normalised average circumferential flux density half way between
pole-centre planes.
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4.7 Practical Axial Flux Machines

It has been the aim of this research to predict the magnetic flux density distribution and

power loss due to curvature related radial flux in the back-iron of axial flux machines.

Whilst these aims have been achieved, the assumptions upon which the models have

been based does limit their practicality. In practice, core losses and the magnetic flux

density distribution will be affected by material non-linearities, end effects, air-gap

length, magnet shape in the case of permanent magnet machines and the presence of

slots. Further to the work carried out here, the influence of these factors should be

investigated.

In order to relax some of our assumptions it would be necessary to include the air-

gap region in the core model. This in itself may present additional difficulties when

using techniques such as the Finite Element Method (FEM). Whilst FEM is now a well

accepted tool for the design and analysis of practically all types of electrical machines

(Binns et al., 1992; Salon, 1995) it does struggle with the small air gap length of

electrical machines (Salon, 1995). This is fundamentally due to the increase in the

number of nodes or elements required to mesh sub-domains of poor aspect ratio. This

situation is common when modeling electrical machines which incorporate narrow air

gap regions relative to other dimensions.

A scaling technique is developed in Chapter 5 which provide one way of reducing the

number of nodes required when performing finite element analysis of electrical machines

with narrow air-gap regions. Whilst this technique does not directly contribute to the

work presented here, it does provide a tool which could be used to extend the work

beyond its current limitations.



Chapter 5

Sub-domain Scaling for Finite

Element Analysis of Electrical

Machines

We will now develop a scaling technique which can be used when performing electro-

magnetic finite element analysis. This technique has the ability to overcome problems

associated with meshing domains of poor aspect ratio. Such a situation occurs com-

monly when modeling electrical machines which incorporate narrow air-gap regions

with respect to dimensionally much greater steel cores. Here we will develop the scal-

ing technique with a focus on scaling in the axial direction for the finite element analysis

of axial flux machines.

Although not of direct application to the work presented previously, it will be shown

that the scaling technique is a general tool for the finite element analysis of electrical

machines. As such it has the ability to permit further analysis which would allow some

of the assumptions made in this project to be relaxed. For this reason and because of its

general usefulness, sub-domain scaling for finite element analysis of electrical machine

is now presented.

102
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5.1 Finite Element Analysis and Scaling

Finite element analysis is now a well accepted tool for the design and analysis of prac-

tically all types of electrical machines (Binns et al., 1992; Salon, 1995). Finite element

magnetostatic analysis allows machine designers to investigate phenomena such as sat-

uration and magnetic torque, while quasi-static analysis can be used to predict eddy

current losses and associated heating.

The small air gap length of an electrical machine compared to its other dimensions can,

however, make it difficult or even impossible to obtain accurate field solutions (Salon,

1995). Techniques based on the use of shell elements (Guerin et al., 1994), specialist

air-gap elements (Abdel-Razek et al., 1982; Feliachi et al., 1983) or the coupling of finite

element analysis with an analytical solution (DeBortoli et al., 1991), have been proposed

to overcome this problem. There have also been other techniques (Choi et al., 2001;

Henrotte et al., 1999; Melissen & Simkin, 1990; Ouazzani et al., 1999), not specifically

related to electrical machines, on geometry transformations and for overcoming meshing

difficulties in the finite element method. All of these techniques require some form of

modification to the finite element formulation. The method proposed here is based on

a rescaling of the air gap region. The original problem, with the narrow air gap, is

mapped onto a scaled problem with an improved aspect ratio.

Compared to previous techniques, a major advantage of the proposed method is that,

when applied to axial flux machines, it can be simply implemented using any standard

finite element package. In addition, techniques such as shell elements do not permit the

user to investigate the fields in the air gap region whereas the scaling method provides

the user with field solutions in all sub-domains.

5.1.1 The Finite Element Mesh

The Finite Element Method (FEM) is based on the discretization of the domain under

consideration. The mesh quality or element aspect ratio can have a significant effect on
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the solution accuracy (Adams & Askenazi, 1999; Chari & Salon, 2000). When meshing

geometries of poor aspect ratio, or where adjacent sub-domains of large scale differ-

ences exist, the mesh quality can deteriorate if the number of elements is insufficient.

Maintaining good element quality often requires vast numbers of elements and their as-

sociated nodes. This can be most easily seen in a two dimensional example. Consider

the domain represented in Figure 5.1 where a large sub-domain is adjacent a much

smaller one and triangular elements have been chosen.

Figure 5.1: Finite element 2D mesh .

The nodes at the boundary between the two sub-domains are common to the elements

on either side and thus the element sizes are comparable near the boundary. Due to the

thinness of Sub-domain 1 the maximum characteristic size (d) of an element in this re-

gion is equal to the region’s height. Ideally, the element shape is an equilateral triangle.

This restriction alone requires a significant number of elements to mesh a region which

is thin in one direction and significantly larger in the other (i.e. poor aspect ratio). At

the boundary, the elements in Sub-domain 2 have edges of the same lengths as those in

Sub-domain 1 because of their common nodes. Away from the boundary the elements

can grow in size, however, this requires a gradual transition in order to maintain an ac-

ceptable element aspect ratio. In these circumstances the number of elements required

to mesh the domain rapidly increases as d decreases. Depending on desired accuracy of

the solution in Sub-domain 1, the maximum element size may not be desirable which
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will further exaggerate the problem. This problem is considerably worse when perform-

ing three-dimensional meshing on geometries containing sub-domains with poor aspect

ratios. Such a situation occurs when modeling electrical machines which incorporate a

small air gap region compared to other dimensions. The number of nodes determines

the computing resources required to solve a finite element problem and thus it is highly

desirable to reduce this number whilst retaining the desired solution accuracy.

Sub-domain rescaling provides one way of overcoming this problem. The rescaling tech-

nique can be regarded as a transformation of the problem domain into another domain

in which meshing can more readily be achieved. The transformation generally involves

changes in dimensions, material properties and source current densities. Such a trans-

formation is useful where the flux density in the transformed sub-domain, B
′

(r
′

, θ
′

, z
′

),

can be calculated and thus the flux density in the original sub-domain, B(r, θ, z),found.

The reduction in the number of nodes due to the scaling process will be problem

dependent. At one extreme, scaling a problem which has an already large air gap

region may not produce any benefit. On the other hand there will be instances where,

due to very poor aspect ratios in the geometry, an acceptable finite element solution

may not be possible without the use of some form of scaling. An excessively small air

gap may even cause generic meshing algorithms to fail or produce a poor quality mesh.

It may seem, particularly in cases where there are regions in which the field variables

change rapidly in space, that the coarser mesh produced by the scaling process will

result in increased solution errors. However, if adaptive meshing methods are used this

will not be the case. Even where adaptive meshing is not available manually controlled

mesh refinement can be used to improve solution accuracy (Hewitt & Ahfock, 2005).

5.1.2 Quasi-Static Formulation

There are a number of different quasi-static finite element formulations, two of the

more common being the magnetic vector potential-electric scalar potential (A−φ) and
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electric vector potential-magnetic scalar potential (T − Ω) formulations (Ratnajeevan

& Hoole, 1995). Regardless of the formulation type all are based on the quasi-static

approximation to Maxwell’s equations:

∇ · ~B = 0 (5.1)

∇× ~H = ~J (5.2)

∇× ~E = −∂ ~B

∂t
(5.3)

where ~B is the magnetic flux density, ~H the magnetic field intensity, ~J the current

density, ~E the electric field intensity and t is time.

The scaling technique developed here is based on these equations and not a finite

element formulation. This has the advantage of not requiring specialist finite element

formulations or element types.

5.2 Scaling Equations

Scaling in the axial direction is desirable when modeling axial flux machines in which

the air gap length is defined in the axial (or z) direction. Scaling in the radial direction

is equally attractive when modeling radial flux machines. Transformations for radial

scaling have been presented in Hewitt & Ahfock (2005).

The focus here is on the development of an axial scaling technique for the finite element

analysis of axial flux machines with narrow air gap regions. Whether modeling the

entire machine or some part of it which includes the air-gap, scaling has the potential

to reduce the number of elements required to mesh the domain. This also means a

reduction in the total computational cost of solving the problem.
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5.2.1 Axial Scaling

Consider an axial flux machine (AFM) with its domain divided into the three sub-

domains

a) Sub-domain 1 : −zl < z < 0

b) Sub-domain 2 : 0 < z < za

c) Sub-domain 3 : za < z < zu

as shown in Figure 5.2.

Sub-domain 3

Sub-domain 1

Sub-domain 2

z

r

z=-zl

z=zu

z=lg

z=0

Figure 5.2: Axial scaling sub-domains.

It is proposed that Sub-domain 2 be scaled by a scale factor ks in the axial direction

so that it then occupies the extended region 0 < z < kslg. Sub-domains 1 and 3 have

none of their dimensions scaled and thus their respective field variables are unchanged.

Sub-domain 3 does however undergo a translation of its axial position as defined by

zT = z + lg (ks − 1) (5.4)

in order to permit the expansion of Sub-domain 2. As Sub-domains 1 and 3 are not

scaled, the boundary conditions between them and the scaled region remain invariant.

The transformation that maps the physical dimensions of the original problem onto

the dimensions of the transformed problem are fully defined by ks. Based on this
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transformation, the relationships between the field variables in the original problem

and the corresponding field variables in the transformed problem can be found. In

general these take the form of

GT
(

rT , θT , zT
)

= y(ks) G (r, θ, z)

where GT represents a transformed quantity in the transformed domain, G is the cor-

responding quantity in the original domain and y(ks) defines the relationship between

them. The functions represented by y(ks) are derived by ensuring that if GT satisfied

Maxwell’s equations in the transformed domain, then G satisfied Maxwell’s equations

in the original domain. In other words, y(ks) permits the field solutions obtained in

the transformed problem to be converted into the corresponding field solutions to the

original problem. Having derived the y(ks) functions for all the field variables, the

relationships between the material properties of the original problem and those of the

transformed one can be deduced.

5.2.2 Axial Scaling Transformations

In the scaled sub-domain, let the coordinate system be transformed according to

rT = r,

θT = θ, (5.5)

zT = ksz.

Let the magnetic flux density ~B and the magnetic field intensity ~H in this region be

transformed by

BT
r = frBr, (5.6)

BT
θ = fθBθ, (5.7)

BT
z = fzBz, (5.8)

HT
r = grHr, (5.9)

HT
θ = gθHθ, (5.10)

HT
z = gzHz, (5.11)
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where all scale factors are functions of z only. Expanding ∇ · ~B = 0 in cylindrical

coordinates results in
1

r

∂ (rBr)

∂r
+

1

r

∂Bθ

∂θ
+

∂Bz

∂z
= 0. (5.12)

In the scaled region equation (5.12) becomes

1

r

∂ (rfrBr)

∂r
+

1

r

∂fθBθ

∂θ
+

1

ks

∂fzBz

∂z
= 0. (5.13)

For both equations (5.12) and (5.13) to hold for all (r, θ, z) it is required that

Bz
∂fz

∂z
= 0 (5.14)

and

fr = fθ =
fz

ks
. (5.15)

Equation (5.14) requires that fz = k, where k is independent of z, and thus

fr =
k

ks
,

fθ =
k

ks
, (5.16)

fz = k.

The unknown constant k in (5.16) is found by considering the boundary condition

between Sub-domains 1 and 2. In order to satisfy the continuity of the normal com-

ponent of ~B across the boundary it is required that fz = k = 1. Substituting k = 1

in equation (5.16) and in accordance with equations (5.6), (5.7) and (5.8) the resulting

transformations for the magnetic flux density components are

BT
r =

Br

ks
,

BT
θ =

Bθ

ks
, (5.17)

BT
z = Bz.

It should be noted that fz = 1 also satisfies the continuity of the normal component of

~B across the boundary between Sub-domains 2 and 3.

The quasi-static approximation of equation (5.2) guarantees the solenoidal condition

∇ · ~J = 0. As both ~B and ~J are are defined through the same divergence condition, ~J
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will have the same transformation functions as that of ~B, that is:

JT
r =

Jr

ks
,

JT
θ =

Jθ

ks
, (5.18)

JT
z = Jz.

The transformation functions for the magnetic field intensity ~H can be found by ex-

panding equation (5.2) in a cylindrical coordinate system to obtain

~J = r̂

[

1

r

∂Hz

∂θ
− ∂Hθ

∂z

]

+ θ̂

[

∂Hr

∂z
− ∂Hz

∂r

]

+ ẑ

[

1

r

∂(rHθ)

∂r
− 1

r

∂Hr

∂θ

]

(5.19)

In the transformed region the radial component of the current density J T
r can be ex-

pressed in terms of the magnetic field intensity HT by substituting equations (5.10)

and (5.11) into (5.19) to give

JT
r =

1

r

∂HT
z

∂θ
− ∂HT

θ

∂zT

=
1

r

∂ (gzHz)

∂θ
− ∂ (gθHθ)

ks∂z

=
gz

r

∂Hz

∂θ
− 1

ks

∂ (gθHθ)

∂z
. (5.20)

At z = 0 the boundary condition Ht1 = Ht2 where the subscripts t1 and t2 represent

the tangential components of the magnetic field intensity ~H in Sub-domains 2 and 3,

respectively, must be fulfilled. Sub-domain 3 is unscaled and thus ~H is unchanged in

this region. At the boundary this requires Hr2 = Hr3 and Hθ2 = Hθ3. This will also

be the case at the z = kslg boundary (i.e. between Sub-domains 1 and 2). These

boundary conditions are satisfied by setting gr = gθ = 1 in equations (5.9) and (5.10),

respectively. Substituting JT
r = Jr/ks and gθ = 1 in equation (5.20) results in

Jr

ks
=

gz

r

∂Hz

∂θ
− 1

ks

∂Hθ

∂z

⇒ Jr = ksgz
1

r

∂Hz

∂θ
− ∂Hθ

∂z
. (5.21)

Comparing equations (5.21) and (5.19) it can be seen that ksgz = 1 and thus gz = 1/ks.
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The transformations for the magnetic field intensity ~H are thus

HT
r = Hr,

HT
θ = Hθ, (5.22)

HT
z =

Hz

ks
.

The transformations for ~H given in (5.22) are now tested in the circumferential and

axial terms of equation (5.19). From equation (5.19) the circumferential component of

the current density JT
θ in terms of ~HT is given by

JT
θ =

∂HT
r

∂zT
− ∂HT

z

∂r

=
1

ks

∂ (grHr)

∂z
− gz

∂Hz

∂r
. (5.23)

Substituting JT
θ = Jθ/ks, gr = 1 and gz = 1/ks into (5.23) results in

Jθ

ks
=

1

ks

∂Hr

∂z
− 1

ks

∂Hz

∂r

⇒ Jθ =
∂Hr

∂z
− ∂Hz

∂r
, (5.24)

which is in agreement with equation (5.19). Similarly, the axial component of the

current density JT
z is given by

JT
z =

1

r

∂
(

rHT
θ

)

∂r
− 1

r

∂HT
r

∂θ

=
gθ

r

∂ (rHθ)

∂r
− gr

r

∂Hr

∂θ
. (5.25)

Substituting equation JT
z = Jz and gθ = gr = 1 into equation (5.25) results in

Jz =
1

r

∂ (rHθ)

∂r
− 1

r

∂Hr

∂θ
, (5.26)

which is also in agreement with equation (5.19).

The transformation function for the coordinate components of the electric field intensity

~E can be found in the same way as that for the magnetic field intensity ~H. In fact, as

both ~E and ~H share common boundary conditions and can be defined through their
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curl operators (i.e. equations (5.3) and (5.2), respectively) where ~J and ~B share the

same transformation functions, their transformations are also the same, that is:

ET
r = Er,

ET
θ = Eθ, (5.27)

ET
Z =

Ez

ks
.

The transformations for the magnetic permeability and electric conductivity are now

found using the constitutive relations

~B = µ ~H (5.28)

~J = σ ~E. (5.29)

Using equations (5.22), (5.17) and (5.28) the permeability transformations are

µT
r =

BT
r

HT
r

=
1

ks

Br

Hr
=

µr

ks
,

µT
θ =

BT
θ

HT
θ

=
1

ks

Bθ

Hθ
=

µθ

ks
, (5.30)

µT
z =

BT
z

HT
z

= ks
Bz

Hz
= ksµz.

Similarly from equations (5.18), (5.27) and (5.29) the conductivity transformations are

given by

σT
r =

JT
r

ET
r

=
1

ks

Jr

Er
=

σr

ks
,

σT
θ =

JT
θ

ET
θ

=
1

ks

Jθ

Eθ
=

σθ

ks
, (5.31)

σT
z =

JT
z

ET
z

= ks
Jz

Ez
= ksσz.

A complete list of all field variable and material property transformations for the scaled

Sub-domain are presented in Tables 5.1 and 5.2.
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Table 5.1: Axial Scaling Transformations

Quantity/Property Symbol Sub-domain 2

Radial component of the current density Jr JT
r =

Jr

ks

Angular component of the current density Jθ JT
θ =

Jθ

ks

Axial component of the current density Jz JT
z = Jz

Radial component of the magnetic field intensity Hr HT
r = Hr

Angular component of the magnetic field intensity Hθ HT
θ = Hθ

Axial component of the magnetic field intensity Hz HT
z =

Hz

ks

Radial component of the magnetic flux density Br BT
r =

Br

ks

Angular component of the magnetic flux density Bθ BT
θ =

Bθ

ks

Axial component of the magnetic flux density Bz BT
z = Bz
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Table 5.2: Axial Scaling Transformations continued

Quantity/Property Symbol Sub-domain 2

Radial component of the electric field intensity Er ET
r = Er

Angular component of the electric field intensity Eθ ET
θ = Eθ

Axial component of the electric field intensity Ez ET
z =

Ez

ks

Radial component of the permeability µr µT
r =

µr

ks

Angular component of the permeability µθ µT
θ =

µθ

ks

Axial component of the permeability µz µT
z = ksµz

Radial component of the conductivity σr σT
r =

σr

ks

Angular component of the conductivity σθ σT
θ =

σθ

ks

Axial component of the conductivity σz σT
z = ksσz



CHAPTER 5. SUB-DOMAIN SCALING FOR FINITE ELEMENT ANALYSIS OF

ELECTRICAL MACHINES 115

5.2.3 Energy and Power Invariance

The magnetic energy stored per unit volume (W ) in an unscaled region is given by

W =
1

2
~B · ~H (5.32)

and in the corresponding scaled region it becomes

W T =
1

2
~BT · ~HT

=
1

2
(frgrBrHr + fθgθBθHθ + fzgzBzHz) . (5.33)

Inspection of Table 5.1 shows that in the scaled region the equality

frgr = fθgθ = fzgz (5.34)

always holds. This means that

W T = fg W =
W

ks
, (5.35)

where fg = frgr = fθgθ = fzgz = 1/ks. An elementary volume in the scaled region is

related to the same volume in the unscaled region by

dV T =
dV

fg
= ksdV. (5.36)

Equations (5.35) and (5.36) show that a volume integration of the transformed magnetic

energy over the scaled region will result in the same stored magnetic energy as that of

the unscaled region. This result also holds for Ohmic power dissipation ( ~E · ~J).

The invariance in the magnetic energy and power dissipation greatly simplifies post

processing as there is no need to transform these quantities. It also implies that torque

and inductance are also invariant under the transformation.

5.2.4 Material Non-Linearity

When using the axial scaling technique to scale the air gap region of axial flux machines,

the air is normally the only material type occupying the region. Even where components
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such as end-shields are included, it is reasonable to assume that these parts remain

magnetically unsaturated. Material properties for the air gap region are easily deduced

from Table 5.2, since µ and σ in this region are independent of the field quantities.

Saturation in the stator or rotor iron region is modeled as if scaling was not performed

as these regions are not affected by the transformation.

Whilst the assumption of linear behaviour in the scaled region does simplify the ap-

plication of the scaling technique, it is not restricted to linear analysis. An example

of scaling for non-linear finite element analysis of electrical machines can be found in

Hewitt & Ahfock (2005).

5.3 Node and Element Reduction using the Axial Scaling

Technique

For AFMs with air gaps of poor aspect ratio or with large iron regions adjacent to

narrow air gaps, the scaling technique has the potential to significantly reduce the

number of elements required to perform finite element analysis. This will result in

reduced computational costs (i.e. time and memory requirements).

It was demonstrated in Hewitt & Ahfock (2005) that whilst element savings for 2D

models are significant, they are even greater when performing 3D analysis. For axial

flux machines, even further savings will be made if the machine has multiple air gap

regions.

An example of node and element savings when using a scaled air gap region for 2D finite

element analysis is shown in Figures 5.3 and 5.4. The meshes shown in Figures 5.3(b)

and 5.4(b) were generated using the finite element package FEMLAB (COMSOL, 2004).

The mesh of Figure 5.3(b) required 2822 nodes and 5574 elements whereas that of Figure

5.4(b) only required 637 nodes and 1220 elements.
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(a) 2D geometry with narrow air-gap region.

(b) Finite element mesh of the 2D geometry of Figure 5.3(a).

Figure 5.3: Finite element mesh of a 2D geometry with narrow air-gap region.

(a) 2D geometry of Figure 5.3(a) with a scaled (×5) air gap region.

(b) Finite element mesh of the 2D geometry of Figure 5.4(a).

Figure 5.4: Finite element mesh of a 2D geometry with scaled (×5) air-gap region.
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When performing 3D finite element analysis of both the iron cores and air-gap region,

as shown in Figure 5.5, the scaling technique can be used to improve the air-gap aspect

ratio and thus significantly reduce the number of elements required to mesh the domain.

Figure 5.5: 3D model of the iron cores and air-gap region.

Figure 5.6: Finite element mesh of the geometry of Figure 5.5.

Figures 5.5 and 5.7 represent sections of a stator core, air gap and rotor for an unscaled

and scaled problem, respectively. A general rotor region has been chosen for demonstra-

tion purposes. In practice the rotor geometry may include slots and the conductor cage

for induction machines or a surface mounted magnet for a permanent magnet (PM)

machine. The finite element meshes shown in Figures 5.6 and 5.8 were generated using
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Figure 5.7: 3D model of the iron cores and scaled (×5) air-gap region.

Figure 5.8: Finite element mesh of the geometry of Figure 5.7.

FEMLAB (COMSOL, 2004). The number of elements required to mesh the domains

shown in Figures 5.5 and 5.7 were 44234 and 14119, respectively.

As stated earlier, the use of a coarser mesh may imply reduced solution accuracy,

however if adaptive meshing or manual mesh refinement is used then the desired solution

accuracy can be attained with fewer nodes. This was shown to be the case in Hewitt

& Ahfock (2005).



Chapter 6

Conclusions

It is now well recognized that energy and natural resource conservation will play a vital

role if sustainable development is to be achieved. Design of efficient electric machines

requires a thorough understanding of the loss and flux density distributions within the

machine. This knowledge allows a machine designer to both minimize losses and usage

of core material.

Here we have predicted the presence of a radial component of the magnetic flux density

distribution in the core of axial flux machines. The question then is what effect does

this component have on core power loss and flux density distribution.

It is the aim of this research to answer this question and in doing so provide axial

flux machine designers with a better understanding of the electromagnetic and thermal

behaviour of these machines. An improved understanding of the loss and magnetic flux

density distributions in the back-iron of axial flux machine cores will allow designers to

design more efficient and economical AFMs.

In the following sections the key findings of the work presented here are briefly reviewed.

Possible further work based on these findings are also discussed.

120
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6.1 Curvature Related Radial Flux

The analytical model developed in Chapter 2 confirmed the presence of a radial com-

ponent of the magnetic flux density in AFM cores. The magnitude of this component

is dependent on the core permeability, physical dimensions and number of poles. While

the model confirmed the presence of a radial component of the flux density, it also

showed that the magnitude of this component is significantly less than that of the main

flux components. This conclusion was further reinforced in Chapter 4 where it was

shown that the radial component of the flux density is almost non-existent under a.c.

conditions. In practice, this means that the radial component can be ignored with

respect to its influence on the distribution of the circumferential and axial components

of the flux density distribution in axial flux machine cores.

It was also concluded that, while the magnitude of the radial flux component is signifi-

cantly less than that of the main flux components, the question of induced losses caused

by this component still needs to be addressed. The need to address this question arises

from the fact that radial flux flow is in the cross-laminate direction and thus has the

potential to cause significant loss.

6.2 Losses due to Radial Flux

An axiperiodic coupled network model was developed in Chapter 3 to evaluate power

loss due to curvature related radial flux in the laminated cores of axial flux ma-

chines. This model was used in Chapter 4 to evaluate these losses and to investigate

the frequency dependence of the radial component of the flux density. It was found

that if the core permeability, core conductivity and number of poles are high enough

(µ > 1000µo, σ > 106, p > 2) then power loss due to curvature related cross-lamination

flux is negligible compared to normal eddy current losses.

A closed form expression for power loss due to cross-lamination flux was also derived
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in Chapter 4. This expression can be used to help axial flux machine designers make

a quick assessment on whether or not power loss due curvature related radial flux is

likely to be significant. If these losses are deemed significant, the axiperiodic model can

be used to predict the losses more accurately.

Direct measurement of power loss due to cross-lamination flux is not possible. However,

if values of total core loss are obtainable from laboratory tests, then, the component of

power loss due cross-lamination flux can be isolated based on its frequency dependence.

The technique to achieve this was developed in Chapter 4.

6.3 Magnetic Flux Density Distribution

The static model developed in Chapter 2 predicts peak back-iron flux density in the

laminations near the outer radius of the core. Under the assumption of zero radial flux,

which is justifiable in practice, flux redistribution in the core cannot occur and thus the

lamination near the outer radius will experience the greatest overall circumferential flux

density. Experimental data was presented which confirmed these predictions. It was

also shown that the circumferential flux density near the outer radius is much higher

than the average core back-iron circumferential flux density. This should be taken into

consideration when sizing the core back iron if excessive saturation in this region is to

be avoided.

The predictions made in Chapter 2 were further tested in Chapter 4. Here a quasi-static

model was used and it was found that:

a) The radial component of the magnetic flux density is almost non-existent under

a.c. conditions.

b) The amount of radial flux, although small, is a strong function of core permeabil-

ity.

c) The circumferential flux density is greatest near the outer radius of the core.
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As discussed previously, finding c) has important practical implications for axial flux

machine designers when sizing the core back-iron. Finding a) means that two-dimensional

models can be used to predict both loss and flux density distributions in the back-iron

of AFMs. An equation for main flux power loss was derived in Chapter 4 based on a

two-dimensional model of the core. Finding a) also means that, in practical machines,

the radial component does not influence the the flux density distribution in the core.

6.4 Sub-domain Scaling for Finite Element Analysis of

Electric Machines

A sub-domain scaling technique for electromagnetic finite element analysis of electric

machines was developed in Chapter 5. This technique can be used to overcome meshing

difficulties when modeling axial flux machines with narrow air-gap regions. Whilst the

technique does not directly contribute to the work presented in the previous chapters,

it does provide a tool which could be used to extend the work beyond its current

limitations.

The ability to include the air-gap region in a finite element analysis of an AFM would

allow the effect of iron saturation and that of end-region flux to be investigated. It

is likely that these effects will influence the electromagnetic and thermal behaviour of

AFMs and thus are important areas of further research. It is proposed that the scaling

technique presented here has the ability to overcome the problem of limited computing

resources faced by anyone who intends to perform these types of analysis using the

finite element method. Possible areas of further research are discussed in the following

section.
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6.5 Further Work

The work completed here has addressed three main issues. These can be broadly de-

scribed as, the detection of a curvature related radial flux density component, prediction

of core losses due to the radial flux component and determination of the magnetic flux

density distribution in the back-iron of axial flux machines.

The use of Soft Magnetic Composites (SMC) in the construction of axial flux machine

cores is an area of great interest. In SMC cores radial flux is not inhibited nor does it

incur additional eddy current loss. The resultant magnetic flux density redistribution

would mean that the axial length of the core back iron could be reduced. The analysis

presented here would allow machine designers using SMC to investigate this possibility.

The presence of a radial flux density component also has potentially significant impact

on solid rotor designs. In a solid core the radial flux is not inhibited, however the

shielding effect is likely to be significant. Additionally, harmonics introduced by variable

speed drives are likely to affect core losses. An investigation into these phenomena

would be of great interest and complement the work presented here.

The models developed in the dissertation are based on the assumption of linear material

properties and have neglected the influence of end effects. Both material non-linearity

and end-effects would have some influence on the conclusions presented.

Using finite element analysis, a preliminary investigation of the influence of end effects

on the radial flux density was made. The flux density entering the core along a radial

line was based on that given in Bumby et al. (2004), where it was shown that the

magnetic flux density entering the core increases at the core edges. Not surprisingly,

the total radial flux increased and, compared with Figure 2.6, the peak radial flux

density occurs closer to the outer radius. In other words, radial flux due to end-effects

adds to that caused by core curvature. Further investigation into additional power loss

due to end effect related radial flux needs to be carried out. It also seems likely that

the additional flux entering the core at the radial ends due to end effects will cause the
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laminations toward the outer radius to become magnetically saturated. Thus the flux

entering the core due to end effects may need to be considered when sizing the core

back-iron.

Effective use of core iron in electrical machines generally requires some regions of the

core to be pushed toward magnetic saturation. As shown in the preceding chapters, this

may occur in the laminations near the outer radius of the core. For a slotted machine

tooth saturation may also occur at the inner radius of the core. Three-dimensional non-

linear analysis would be required for a rigorous study of iron saturation and its effect

on the core and air-gap flux density distributions. Such an analysis would require both

the iron and air-gap regions to be modeled, which would be computationally expensive

even when the scaling technique is used. Thus further research needs to be carried out

on possible techniques that could be used to model the effects of saturation within the

limitations of available computing resources.
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Appendix A

Bessel Function Orthogonality

We now prove the orthogonality property of Bessel functions with respect to a scaling

coefficient within the fixed region r ∈ [s; 1] when homogeneous derivative boundary

conditions are imposed.

Consider the Bessel Differential Equation (BDE)

r2R
′′

+ rR
′

+ (r2k2
n − m2)R = 0 (A.1)

where kn (n = 1, 2, 3, . . .) is the eigenvalue ensuring the existence of a nontrivial solution

of equation (A.1) with the following derivative boundary conditions

R
′

1(kns) = R
′

1(kn) = 0. (A.2)

Let

R1 = A1Jm(knr) + B1Ym(knr) (A.3)

and

R2 = A2Jm(klr) + B2Ym(klr) (A.4)

be two distinct solutions of equation (A.1) with boundary conditions (A.2). Here Jm

and Ym are Bessel functions of the first and second kind, respectively, of order m, A1,

A2, B1 and B2 are undefined constants and n 6= l. Then

r
(

rR
′

1

)′

+
(

k2
nr2 − m2

)

R1 = 0 (A.5)
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and

r
(

rR
′

2

)′

+
(

k2
l r

2 − m2
)

R2 = 0. (A.6)

Multiply equation (A.5) by R2, equation (A.6) by R1 and subtract the results to give

(

k2
n − k2

l

)

rR1R2 = R1

(

rR
′

2

)′

− R2

(

rR
′

1

)′

. (A.7)

Now integrate both sides of equation (A.7) over the region to obtain

(

k2
n − k2

l

)

1
∫

s

rR1R2 dr =

1
∫

s

[

R1

(

rR
′

2

)′

− R2

(

rR
′

1

)′
]

dr. (A.8)

Since

R1

(

rR
′

2

)′

− R2

(

rR
′

1

)′

=
d

dr

[

rR1R
′

2 − rR
′

1R2

]

(A.9)

equation (A.8) becomes

(

k2
n − k2

l

)

1
∫

s

rR1R2 dr =
[

rR1R
′

2 − rR2R
′

1

]1

s
. (A.10)

The right hand side of equation (A.10) is equal to zero according to the boundary

conditions (A.2) and thus

1
∫

s

rR1 (knr) R2 (klr) dr = 0 for n 6= l (A.11)

which demonstrates orthogonality.

For the case n = l multiply the BDE (A.1) by 2R
′

to obtain

2r2R
′

R
′′

+ 2r
(

R
′

)2
+ 2

(

r2k2
n − m2

)

RR
′

= 0

or equivalently
(

r2
(

R
′

)2
)′

+
(

r2k2
n − m2

) (

R2
)
′

= 0.

Integrating over the region gives

1
∫

s

[

(

r2
(

R
′

)2
)′

−
(

m2R2
)
′

+ r2k2
n

(

R2
)
′

]

dr = 0
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or
[

r2
(

R
′

)2
− m2R2

]1

s

+ k2
n

1
∫

s

r2
(

R2
)′

dr = 0. (A.12)

Using the homogeneous boundary conditions (A.2) in equation (A.12) and integrating

by parts results in

m2
[

R2(kn) − R2(kns)
]

− k2
n



r2
[

R2 (kn) − R2 (kns)
]

− 2

1
∫

s

rR2 (knr) dr



 = 0 (A.13)

which can be rearranged to obtain

1
∫

s

rR2 (knr) dr =
1

2k2
n

[(

m2 − k2
ns2
)

R2(kns) −
(

m2 − k2
n

)

R2(kn)
]

. (A.14)



Appendix B

Air-Gap Flux Density

Distribution

B.1 Air-Gap Magnetic Flux Density

The separation of variables technique used to produce the analytical solution for the

core of an axial flux machine (see Section 2.1) can also be applied to the air-gap region

to investigate the behaviour of the axial component of the magnetic flux density in the

radial direction at the air-iron boundary. The assumption of constant axial magnetic

flux density with radius used in Section 2.1 is also shown to be valid for narrow air-gaps.

The analytical solution for the air-gap magnetic flux density is obtained as follows.

a) The air-gap boundaries are formed by the stator and rotor regions with magnetic

insulation assumed elsewhere. Our analysis is restricted to the effects of the mag-

netising currents in the stator. These currents can be represented by a uniformly

distributed current sheet in the r − θ plane at the stator air-gap boundary. The

current sheet is defined such that it produces the same fundamental component

of the air-gap mmf wave as the physical windings (Fitzgerald et al., 1992). The
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current sheet equation is found by considering a purely radial current with sinu-

soidal variation in the angular direction θ. For a p-pole machine this produces

the equation
2π
p
∫

0

J (r, θ) r∂θ = I (B.1)

where I is the total imposed current flowing in one pole pitch, and J (r, θ) is the

surface current density.

Let

J (r, θ) = J
′

(r) sin
(p

2
θ
)

. (B.2)

Substituting (B.2) into (B.1) we obtain

2π
p
∫

0

J
′

(r) sin
(p

2
θ
)

r∂θ = I

⇒ 4r

p
J

′

(r) = I (B.3)

and upon substituting (B.3) into (B.2) the current density is expressed in terms

of the imposed current per pole pitch by

J (r, θ) =
Ip

4r
sin

(

pθ

2

)

. (B.4)

b) The magnetostatic problem is formulated in the same way as that used to model

the core (see Section 2.1) and thus the defining equation is

∇ ·
(

M
′∇φ

′

)

= 0. (B.5)

The permeability matrix in the air-gap is given by

M
′

=











µo 0 0

0 µo 0

0 0 µo











, (B.6)

where µo is the permeability of free space. This simplifies equation (B.5) to the

Laplace equation

∇2φ
′

= 0. (B.7)
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In coordinate form equation (B.7) becomes

∂2φ
′

∂r′2
+

1

r′

∂φ
′

∂r′
+

1

r′2

∂2φ
′

∂θ2
+

∂2φ
′

∂z′2
= 0. (B.8)

Non-dimensionalising the problem using (2.8) we obtain

∂2φ

∂r2
+

1

r

∂φ

∂r
+

1

r2

∂2φ

∂θ2
+

b2

δ2

∂2φ

∂z2
= 0. (B.9)

c) We now introduce the following boundary conditions:

1) at z′ = 0 the air-gap adjoins the iron and the conservation of the tangential

components of the magnetic field intensity ~H must be adhered to. If the iron

is assumed to have infinite permeability, then the tangential components of

~H are zero. This results in the boundary conditions

B
′

r|z′=0 = B
′

θ|z′=0 = 0

⇒ ∂φ

∂r
|z=0 =

∂φ

∂θ
|z=0 = 0; (B.10)

2) magnetic insulation is assumed at the inner and outer radii boundaries to

produce the radial boundary conditions

B
′

r|r′=a and r′=b = 0

⇒ ∂φ

∂r
|r=s and r=1 = 0, (B.11)

where s = (a/b);

3) at z′ = δ the radial current sheet of equation (B.3) is assumed. The boundary

condition is modeled using the continuity condition of the magnetic field

intensity

n̂ ×
(

~H
′

1 − ~H
′

2

)

= ~Jn (B.12)

where n̂ is a unit vector normal to the boundary plane, ~H
′

1 and ~H
′

2 are the

magnetic field intensity vectors on either side of the boundary and ~Jn is

the normal component of the boundary current density. The current sheet
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is defined to have only a radial current component, and thus the current

density will also only have a radial component (i.e. ~Jn = (Jr, 0, 0)). Imposing

this condition on equation (B.12) and assuming the stator iron is of infinite

permeability results in

H
′

θ = −Jr (B.13)

and thus

B
′

θ|z′=δ = −µ0
IP

4r
sin

(

pθ

2

)

⇒ ∂φ

∂θ
|z=1 =

−IP

4φ0
sin

(

pθ

2

)

. (B.14)

We choose

φ0 =
IP

4
(B.15)

which results in
∂Φ

∂θ
|z=1 = − sin

(

pθ

2

)

. (B.16)

d) Upon applying the separation of variables technique equation (B.9) becomes

R
′′

R
+

1

r

R
′

R
+

1

r2

ϕ
′′

ϕ
+

b2

δ2

Z
′′

Z
= 0, (B.17)

where the primes denote the respective derivatives. Consistency of equation

(B.17) requires that
Z

′′

Z
= k2

n

δ2

b2
, n = 1, 2, 3, ... . (B.18)

and

ϕ = cos(lθ) (to ensure angular periodicity), (B.19)

where kn are real constants and l = (p/2). Substituting (B.18) and (B.19) into

(B.17) results in

r2R
′′

+ rR
′

+
(

r2k2
n − l2

)

R = 0. (B.20)

Equation (B.20) is a Bessel Differential Equation (BDE), the solution of which is

of the form Rl(knr) = c1Jl(knr)+c2Yl(knr) where Jl and Yl are Bessel functions of

the first and second kind, respectively, of order l. Enforcing the radial boundary
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conditions defined in equation (B.11) leads to the nonlinear eigenvalue problem

for kn

J
′

l (kns)Y
′

l (kn) = J
′

l (kn) Y
′

l (kns) . (B.21)

Equation (B.18) is now solved using the boundary conditions defined in equation

(B.10) and the periodicity condition defined in equation (B.19) as follows. Let

Z
′′

Z
= k2

n

δ2

b2
= g2

n

⇒ Z = A cosh(gnz) + B sinh(gnz). (B.22)

The boundary conditions (B.10) and the periodicity condition (B.19) requires

that

R
′

cos (lθ)Z|z=0 = 0

⇒ R
′

Z|z=0 = 0, (B.23)

and

− Rl sin (lθ)Z|z=0 = 0

⇒ RZ|z=0 = 0. (B.24)

The non-trivial solution to (B.23) and (B.24) is

Z|z=0 = 0

and thus

Z = B sinh (gnz) , (B.25)

where B is some constant and gn = [(knδ) /b].

The solution for φ is then

φ =

∞
∑

n=1

Cn

[

Jl (knr) − J
′

l (kns)

Y
′

l (kns)
Yl (knr)

]

cos(lθ) sinh(gnz). (B.26)

For algebraic simplicity of the solution we redefine the coefficient Cn so that

φ =

∞
∑

n=1

Cn

[

Jl (knr) − J
′

l (kns)

Y
′

l (kns)
Yl (knr)

]

cos(lθ)

l

sinh(gnz)

sinh(gn)
. (B.27)
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Applying boundary condition (B.16) to (B.27) results in the following infinite

series
∞
∑

n=1

Cn

[

Jl (knr) − J
′

l (kns)

Y
′

l (kns)
Yl (knr)

]

= 1. (B.28)

Using the orthogonality relationships derived in Appendix A, the unknown coef-

ficients in (B.27) are found to be

Cn =

2k2
n

1
∫

s
r
[

Jl (knr) − k̃Yl (knr)
]

dr

l2
(

R2
l (kns) − R2

l (kn)
)

+ k2
n

(

R2
l (kn) − s2R2

l (kns)
) (B.29)

where

k̃ =
J

′

l (kns)

Y
′

l (kns)

and

Rl(s) = Jl (kns) − k̃ Yl (kns).

In accordance with (B.5), (B.6), (2.1) and (2.8) the components of the dimensional

magnetic flux density within the air-gap region are given by

B
′

r = µ0
Ip

4b

∂φ

∂r
, (B.30)

B
′

θ = µ0
Ip

4r′

∂φ

∂θ
, (B.31)

B
′

z = µ0
Ip

4δ

∂φ

∂z
. (B.32)
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B.2 Narrow Air-Gaps

In the limit δ → 0 equation (B.9) can be rewritten as

δ2

b2

∂2Φ

∂r2
+

δ2

b2

1

r

∂Φ

∂r
+

δ2

b2

1

r2

∂2Φ

∂θ2
+

∂2Φ

∂z2
= 0 (B.33)

which has terms of order unity and (δ2/b2) only. Let

Φ = Φ0 + ε2Φ2 + ... (B.34)

where ε = δ/b, and substitute (B.34) into (B.33) to give

∂2Φ0

∂z2
+ ε2

(

∂2Φ0

∂r2
+

1

r

∂Φ0

∂r
+

1

r2

∂2Φ0

∂θ2
+

∂2Φ2

∂z2

)

+ ... = 0. (B.35)

In the limit ε → 0 equation (B.35) becomes

∂2Φ0

∂z2
= 0

⇒ Φ0 = zf1 (r, θ) + f2 (r, θ) (B.36)

where f1 and f2 are undetermined functions of r and θ.

Enforcing boundary conditions (B.10), (B.11) and (B.16) we obtain

Φ = z
2

p
cos

(

pθ

2

)

and thus

Bz =
∂Φ

∂z

is a function of angular displacement θ only, and is independent of radius r. This

validates the assumption of uniform axial magnetic flux density in the radial direction

at the air-iron boundary for narrow air-gaps. However, boundary condition (B.11)

eliminates end effects and thus this assumption is only valid away from the radial ends

of the core. Work performed by Zhilichev (1998) confirms that this is the case in

practice.



Appendix C

Two-Dimensional Magnetostatic

Model

If the radial component of the magnetic flux density can be neglected the magnetostatic

solution for the simplified core given in section 2.1 can be reduced to a simpler two-

dimensional solution. The assumptions stated in Section 2.1.1 are applied and the

defining model equation is

∇ ·
(

M ′∇φ′
)

= 0, (C.1)

where M ′ is the permeability tensor given by

M ′ =











0 0 0

0 µθ 0

0 0 µz











. (C.2)

The boundary conditions are defined by:

a) Magnetic insulation located at the lower z-plane boundary,

B′

z

∣

∣

z′=0
= 0 (C.3)
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b) The magnetic flux injection boundary,

B′

z

∣

∣

z′=δ
= P sin

(

pθ

2

)

(C.4)

where B′
z is the axial component of the magnetic flux density, P is the peak imposed

flux density, δ is the core axial length, and 0 ≤ θ ≤ 2π is the angular coordinate.

In coordinate form equation (C.1) becomes

µθ

r′2
∂2φ′

∂θ2
+ µz

∂2φ′

∂z′2
= 0. (C.5)

The problem is non-dimensionalised as follows

φ′ = φφo (C.6)

z′ = zδ

where δ is the iron thickness and φo is the characteristic value of the potential. The

permeability tensor (C.2) becomes

M =











0 0 0

0 kzθ 0

0 0 1











, (C.7)

where kzθ = µθ/µz. The non-dimensional form of equation (C.5) is

∂2φ

∂θ2
+

r′2

kzθδ2

∂2φ

∂z2
= 0. (C.8)

Comparing equations (C.8) and (2.10) it can be seen that in the limit µr = 0 the

3D equation is reduced to that of the 2D problem. The non-dimensional boundary

conditions corresponding to (C.3) and (C.4), respectively, are given by

∂φ

∂z

∣

∣

∣

∣

z=0

= 0 (C.9)

and

µz
φo

δ

∂φ

∂z

∣

∣

∣

∣

z=1

= P sin

(

pθ

2

)

⇒ ∂φ

∂z

∣

∣

∣

∣

z=1

= sin

(

pθ

2

)

. (C.10)
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and we choose

φo =
Pδ

µz
(C.11)

to simplify the boundary condition (C.10).

Separation of variables is now used to solve (C.8). Substitution of

φ = ϕ (θ) · Z
(

z; r′
)

,

where r′ enters only as a parameter, in equation (C.8) gives

ϕ
′′

ϕ
+

r′2

kzθδ2

Zzz

Z
= 0, (C.12)

where primes denote derivatives with respect to θ and Zzz is the second derivative of

Z with respect to z. To ensure angular periodicity it is required that

ϕ
′′

ϕ
= −l2 (C.13)

where l = (p/2). Substituting (C.13) into (C.12) we obtain

Zzz

Z
= kzθ

(

δl

r′

)2

. (C.14)

Equation (C.14) is now solved using boundary conditions (C.9) and (C.10) as follows.

Let

Zzz

Z
= kzθ

(

δl

r′

)2

= g2

⇒ Z = Aegz + Be−gz. (C.15)

Boundary condition (C.9) requires that

A = B, (C.16)

and boundary condition (C.10) requires that

Ageg − Bge−g = 1

⇒ Ag
[

eg − e−g
]

= 1

⇒ A =
1

g (eg − e−g)
. (C.17)

Substituting (C.16) and (C.17) into equation (C.15) results in

Z =
ezg + e−zg

g (eg − e−g)
(C.18)



APPENDIX C. TWO-DIMENSIONAL MAGNETOSTATIC MODEL 145

and thus the solution to equation (C.8) is

φ =
(ezg + e−zg)

g (eg − e−g)
sin (lθ)

=
1

g

cosh (gz)

sinh (g)
sin (lθ), (C.19)

where g = δl
√

kzθ/r
′. In accordance with equations (2.1), (C.1), (C.2) and (C.6), the

non-zero components of the dimensional magnetic flux density within the core are given

by

B
′

θ =
µθ

µz

Pδ

r′
∂φ

∂θ
, (C.20)

B
′

z = P
∂φ

∂z
. (C.21)

As a simple test of the validity of equation C.20, it is easy to show that

1

δ

1
∫

0

B
′

θ ∂z =
4Pr′

p
(C.22)

which demonstrates that B
′

θ averaged in the axial direction is proportional to r, as we

would expect from the excitation boundary condition.



Appendix D

Proof of Sinusoidal Periodicity in

the Circumferential Direction

We now show that the assumption of sinusoidal periodicity in the circumferential direc-

tion used in Section 3.4 is valid. This assumption is based on the angular periodicity

in the core-air gap boundary condition and the uniformity of the core in the circum-

ferential direction.

We begin our proof with the partial differential equations given in (3.43) and (3.44).

For convenience these equations are restated here as (D.1) and (D.2), respectively.

∇×
(

σ−1∇× ~T
)

= −jω
[

µ
(

~T ×∇Ω
)]

(D.1)

∇ · µ~T −∇ · µ∇Ω = 0 (D.2)

Substituting ~T = (Tr, 0, 0) into equation (D.2) gives

µr

r

∂ (rTr)

∂r
− µr

∂2Ω

∂r2
− µr

r

∂Ω

∂r
− µθ

r2

∂2Ω

∂θ2
− µz

∂2Ω

∂z2
= 0 (D.3)

and similarly the radial components of equation (D.1) are given by

− 1

r2σz

∂2Tr

∂θ2
− 1

σθ

∂2Tr

∂z2
+ jωµr

(

Tr −
∂Ω

∂r

)

= 0. (D.4)
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Equations (D.3) and (D.4) together with the boundary conditions fully define the prob-

lem. These are the only two equations needed to solve for the two scalar unknowns Tr

and Ω. Equation (D.1) does however yield two other equations. These are obtained

by considering the circumferential and axial components of this equation. These two

additional equations are automatically satisfied by the solution to equations (D.3) and

(D.4). However, as a result of the physical condition σr = 0, they serve no practical

purpose and thus have not been given consideration nor used in the Chapter 3. In

fact, as shown in the Appendix E, some of the terms in these equations can be easily

overlooked and if this happens, not surprisingly, they can lead to incorrect conclusions.

Due to the core geometry, periodicity in the circumferential direction must be satisfied.

Thus in general we can express Tr as

Tr =
∑

i

Tci cos

(

i
pθ

2

)

+
∑

i

Tsi sin

(

i
pθ

2

)

(D.5)

and Ω as

Ω =
∑

i

Ωci cos

(

i
pθ

2

)

+
∑

i

Ωsi sin

(

i
pθ

2

)

. (D.6)

Substituting expressions (D.5) and (D.6) into equations (D.3) and (D.4) leads to

∑

i

[

µr

r

∂ (rTci)

∂r
− µr

∂2Ωci

∂r2
− µr

r

∂Ωci

∂r
+

µθ

r2

(

i
p

2

)2
Ωci − µz

∂2Ωci

∂z2

]

cos

(

i
pθ

2

)

+

∑

i

[

µr

r

∂ (rTsi)

∂r
− µr

∂2Ωsi

∂r2
− µr

r

∂Ωsi

∂r
+

µθ

r2

(

i
p

2

)2
Ωsi − µz

∂2Ωsi

∂z2

]

sin

(

i
pθ

2

)

= 0

(D.7)

and

∑

i

[

1

r2σz

(

i
p

2

)2
Tci −

1

σθ

∂2Tci

∂z2
+ jωµr

(

Tci −
∂Ωci

∂r

)]

cos

(

i
pθ

2

)

+

∑

i

[

1

r2σz

(

i
p

2

)2
Tsi −

1

σθ

∂2Tsi

∂z2
+ jωµr

(

Tsi −
∂Ωsi

∂r

)]

sin

(

i
pθ

2

)

= 0, (D.8)

respectively. Since Fourier terms of one spatial frequency are orthogonal to Fourier

terms of any other frequency, equations (D.7) and (D.8) may be split into an infinite

number of equations. Each one of these equations corresponding to a particular spatial
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frequency. In other words, for the nth spatial harmonic we would have

µr

r

∂ (rTcn)

∂r
− µr

∂2Ωcn

∂r2
− µr

r

∂Ωcn

∂r
+

µθ

r2

(np

2

)2
Ωcn − µz

∂2Ωcn

∂z2
= 0 (D.9)

µr

r

∂ (rTsn)

∂r
− µr

∂2Ωsn

∂r2
− µr

r

∂Ωsn

∂r
+

µθ

r2

(np

2

)2
Ωsn − µz

∂2Ωsn

∂z2
= 0 (D.10)

1

r2σz

(np

2

)2
Tcn − 1

σθ

∂2Tcn

∂z2
+ jωµr

(

Tcn − ∂Ωcn

∂r

)

= 0 (D.11)

1

r2σz

(np

2

)2
Tsn − 1

σθ

∂2Tsn

∂z2
+ jωµr

(

Tsn − ∂Ωsn

∂r

)

= 0. (D.12)

A formal way of deriving equation (D.9) to (D.12) from equations (D.7) and (D.8) could

be based on the following steps:

1) Multiply each term of equation (D.7) and (D.8) by cos
(

npθ
2

) (

or sin
(

npθ
2

))

.

2) Integrate each of the resulting product terms over one spatial period.

Applying these steps results in only the coefficients of cos
(

npθ
2

) (

or sin
(

npθ
2

))

re-

maining to form equations (D.9), (D.10), (D.11) and (D.12). Equations (D.9) to (D.12)

imply that each of the Fourier terms describing Tr or Ω can be solved separately. In

addition to these equations we require known boundary conditions in order to fully

define the problem. For the case presented in Chapter 3 the boundary conditions are:

a) the normal derivative of Ω is zero at all the core boundaries except at z = δ where

∑

i

∂

∂z

[

Ωci cos

(

i
pθ

2

)

+ Ωsi sin

(

i
pθ

2

)]

=
∑

i

[

Bci cos

(

i
pθ

2

)

+ Bsi sin

(

i
pθ

2

)]

(D.13)

b) at the flat boundaries of the core (i.e. at z = 0 and z = δ)

Jz =
∂Tr

∂θ
= 0 (D.14)
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Equation (D.14) need not be considered as it does not contribute to the system excita-

tion. Just as equations (D.7) and (D.8) were split into an infinite number of equations

the same can be done with equation (D.13). For example, for the nth spatial harmonic

we have
∂Ωcn

∂z

∣

∣

∣

∣

z=δ

= Bcn (D.15)

and
∂Ωsn

∂z

∣

∣

∣

∣

z=δ

= Bsn. (D.16)

It is now clear that the solution for each harmonic component of Tr and Ω can be

sought separately. In other words, the principle of superposition applies. For example,

to solve for Ts7 and Ωs7 we would use

µr

r

∂ (rTs7)

∂r
− µr

∂2Ωs7

∂r2
− µr

r

∂Ωs7

∂r
+

µθ

r2

(

7p

2

)2

Ωs7 − µz
∂2Ωs7

∂z2
= 0 (D.17)

and
1

r2σz

(

7p

2

)2

Ts7 −
1

σθ

∂2Ts7

∂z2
+ jωµr

(

Ts7 −
∂Ωs7

∂r

)

= 0. (D.18)

with boundary conditions

∂Ts7

∂θ

∣

∣

∣

∣

z=0

=
∂Ts7

∂θ

∣

∣

∣

∣

z=δ

= 0 (D.19)

and
∂Ωs7

∂z

∣

∣

∣

∣

z=δ

= Bs7. (D.20)

However, in the case presented in Chapter 3, Bs7 = Bc7 = 0. Thus we can conclude that

there is no seventh harmonic component in Tr or Ω. Since only the spatial fundamental

component of the flux density is present in the imposed boundary condition, the above

arguments prove that there can only be spatial fundamental components present in Tr

and Ω. In other words, the system is linear and therefore only those spatial harmonics

present in the excitation will appear in Tr and Ω. It should also be noted that the

above arguments also prove that Tr and Ω are in spatial phase with the excitation.

That is Tr and Ω reach their respective peak values at the same value of θ at which the

excitation reaches its peak value.
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The Circumferential and Axial

Components of:

∇× σ−1∇× ~T = −jω
[

µ
(

~T ×∇Ω

)]

The vector equation

∇×
(

σ−1∇× ~T
)

= −jω
[

µ
(

~T ×∇Ω
)]

(E.1)

when expanded and resolved into its coordinate components yields three scalar partial

differential equations. These being

1

r2σz

∂2rTθ

∂θ∂z
− 1

r2σz

∂2Tr

∂θ2
− 1

σθ

∂2Tr

∂z2
+

1

σθ

∂2Tz

∂z∂r
= −jωµr

(

Tr −
∂Ω

∂r

)

(E.2)

1

rσr

∂2Tz

∂z∂θ
− 1

σr

∂2Tθ

∂z2
− 1

rσz

∂2rTθ

∂r2
+

1

r2σz

∂rTθ
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+

1

rσz

∂2Tr

∂r∂θ
− 1

r2σz

∂Tr

∂θ
= −jωµθ

(

Tθ −
1

r

∂Ω

∂θ

)

(E.3)

1

σθ

∂2Tr

∂r∂z
+

1

rσθ

∂Tr

∂z
− 1

σθ

∂2Tz

∂r2
− 1

rσθ

∂Tz

∂r
−

1

r2σr

∂2Tz

∂θ2
+

1

rσr

∂2Tθ

∂θ∂z
= −jωµz

(

Tz −
∂Ω

∂z

)

. (E.4)
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For ~T = (Tr, 0, 0) and σr = 0 some of the terms in equations (E.2), (E.3) and (E.4)

will become equal to zero. However, as will be shown, one must be cautious when

neglecting terms.

In Chapter 3 we used

− 1

r2σz

∂2Tr

∂θ2
− 1

σθ

∂2Tr

∂z2
+ jωµr

(

Tr −
∂Ω

∂r

)

= 0 (E.5)

together with

µr

r

∂ (rTr)

∂r
− µr

∂2Ω

∂r2
− µr

r

∂Ω

∂r
− µθ

r2

∂2Ω

∂θ2
− µz

∂2Ω

∂z2
= 0 (E.6)

to find the solution for Tr and Ω. The two other scalar partial differential equations

yielded from equation (E.1) are given in (E.3) and (E.4). Removing those terms equal

to zero reduces these equations to

1

rσz

∂2Tr

∂r∂θ
− 1

r2σz

∂Tr

∂θ
− jω

µθ

r

∂Ω

∂θ
+ lim

σr→0

[

1

rσr

∂2Tz

∂z∂θ
− 1

σr

∂2Tθ

∂z2

]

= 0 (E.7)

and

1

σθ

∂2Tr

∂r∂z
+

1

rσθ

∂Tr

∂z
− jωµz

∂Ω

∂z
+ lim

σr→0

[

1

rσr

∂2Tθ

∂θ∂z
− 1

r2σr

∂2Tz

∂θ2

]

= 0, (E.8)

respectively. It is quite easy to overlook the limit terms of equations (E.7) and (E.8).

This is because Tθ and Tz are taken to be equal to zero implying that their derivatives

are also equal to zero. It is also easy to make the wrong assumption that any product

which contains the derivatives of Tθ or Tz is equal to zero. But a derivative of Tθ or Tz

when multiplied by 1/σr may result in a non-zero-value and in the case of equations

(E.7) and (E.8) this is exactly what happens.

Equations (E.5) and (E.6) are sufficient to find solutions for Tr and Ω. Once Tr and

Ω are found, they can be substituted into equations (E.7) and (E.8) to evaluate the

limit terms of these equations. Generally then, these terms will have non-zero values

and thus equations (E.7) and (E.8) are automatically satisfied. It is important not to

ignore the limit terms of equations (E.7) and (E.8) if those equations are to be used.

Failure to include them will result in erroneous conclusions.
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As was shown in Chapter 3, equations (E.5), (E.7) and (E.8) are electrical loop equa-

tions. Each of the terms in these equations represent a resistive branch voltage (per

m) or and electromagnetically induced EMF (per m). In the case of equation (E.5) the

plane in which the loop lies is in the radial direction. In the case of equation (E.7) the

plane in which the loop lies is in the circumferential direction. In the case of equation

(E.8) the plane in which the loop lies is in the axial direction.

A physical interpretation for the limit terms in equations (E.7) and (E.8) can be based

on the idea that these equations are loop equations. In equation (E.5) all the branch

voltage terms relate to voltages across branches of finite resistance. In equations (E.7)

and (E.8) all the branch voltage terms relate to the voltage across branches of finite

resistance, except for the limit terms. The loops represented by equation (E.7) and

(E.8) contain open-circuits because σr is equal to zero. Therefore these loops contain

branches whose resistance is infinite. The limit term in each of equations (E.7) and

(E.8) represent the sum of the voltages across the open-circuit branches forming part

of their respective loops.
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