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A B S T R A C T

Emotion recognition is the ability to precisely infer human emotions from numerous sources and modalities
using questionnaires, physical signals, and physiological signals. Recently, emotion recognition has gained
attention because of its diverse application areas, like affective computing, healthcare, human–robot in-
teractions, and market research. This paper provides a comprehensive and systematic review of emotion
recognition techniques of the current decade. The paper includes emotion recognition using physical and
physiological signals. Physical signals involve speech and facial expression, while physiological signals include
electroencephalogram, electrocardiogram, galvanic skin response, and eye tracking. The paper provides an
introduction to various emotion models, stimuli used for emotion elicitation, and the background of existing
automated emotion recognition systems. This paper covers comprehensive searching and scanning of well-
known datasets followed by design criteria for review. After a thorough analysis and discussion, we selected
142 journal articles using PRISMA guidelines. The review provides a detailed analysis of existing studies
and available datasets of emotion recognition. Our review analysis also presented potential challenges in the
existing literature and directions for future research.
. Introduction

Emotion is a dynamic cognitive and physiological condition that de-
elops in reaction to inputs, like experiences, thoughts, or interactions
ith people. It includes subjective experience, cognitive processes,
ehavioral influences, physiological responses, and communication.
herefore, emotion recognition is crucial in the application areas such
s marketing, human–robot interaction, healthcare, mental health mon-
toring, and security [1]. The study of emotions for healthcare includes
ast neurological disorders like sleep disorders [2], schizophrenia [3],
valuation of sleep quality [4], and Parkinson’s disease [5]. Human
motions can play a key role in detecting physiological conditions like
atigue [6], drowsiness [7], depression [3], and pain [8]. The experts
lso suggested that variation in emotions are of great importance in
he study of autism spectral disorder [9], attention deficit hyperactivity
isorder [10], and panic disorder [11]. The study of human emotion is
lso crucial for human–robot interaction and brain-computer evalua-
ion, where machines are designed to behave like humans for various
pplications [1]. Therefore, a detailed study of human emotions and
utomated human emotion recognition is crucial.

∗ Corresponding author.
E-mail address: smkh@mmmi.sdu.dk (S.K. Khare).

1.1. Paradigms of emotion

Distinct brain parts induce different emotions [12]. There are three
types of emotional responses: reactional, hormonal, and automatic
[13]. According to psychology, emotions are responses to stimuli,
associated with qualitative physiological changes [13]. Two basic ap-
proaches used to study the nature of emotions are discrete method and
the multidimensional approach [13].

1.1.1. Discrete emotions theory
According to this theory, emotions are different and discrete cat-

egories, each with its ensemble of cognitive, psychological, and be-
havioral factors. Emotions can be positive or negative. According to
proponents of this hypothesis, there exist a few fundamental emo-
tions that are generally recognized across cultures. There are six basic
emotions namely: happiness, sadness, anger, surprise, fear, and dis-
gust [14]. Robert Plutchik provided a comprehensive emotional model
called Plutchik’s wheel of emotions [15]. Plutchik’s wheel consists
of eight emotions namely: fear, joy, sadness, trust, anger, surprise,
anticipation, and disgust. Other associated emotions, which combines
these eight primary emotions are derived by positional intensities. The
vailable online 16 September 2023
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Fig. 1. Plutchik’s wheel of emotions [15].

Fig. 2. 2D VA emotion model.

intensity of the emotions increases as we move towards the center of
the wheel and vice-versa. Fig. 1 provides an overview of Plutchik’s
wheel of emotions [15].

1.1.2. Multidimensional emotions theory
The multidimensional approach for emotions acknowledges that

emotions are complicated and impacted by numerous elements such as
personal experiences, cultural background, and individual variations.
It gives a framework for comprehending the richness and complexity
of emotional experiences and allows for a more in-depth examination
of emotional states. It is categorized as a 2-dimensional (2D) and 3-
dimensional (3D) emotional space model. In the 2D emotional space
model, emotions are divided into valence (V), which can be positive
(Pos) or negative (Neg) and arousal (A), i.e., high activation or low
activation. Russell’s 2D emotional space model that maps using valence
and arousal is shown in Fig. 2 [16].

Similarly, the 3D emotional space model maps various continuous
dimensions, such as V (Pos or Neg), arousal (high or low activation),
and dominance (D) (feeling in control or feeling controlled). The 3D
emotional space model proposed by Mehrabian and Russell is shown
in Fig. 3 [17].
2

Fig. 3. 3D VAD emotion model.

2. Emotion sensing modalities

Emotion sensing is a technique used to extract human emotions.
Over the years, various methods have been adopted to study human
emotions. These techniques are broadly classified into three categories,
namely: questionnaires, physical, and physiological, as shown in Fig. 4.

2.1. Questionnaires

The questionnaire and self-reports are intended to begin people
thinking about the various emotional intelligence competencies as they
pertain to them. Various techniques have been developed based on
manual assessment of emotions, including positive and negative affect
schedule (PANAS) [18], self-assessment manikin (SAM) [19], photo-
graphic affect meter (PAM) [20], and experience sampling method
(ESM) [21]. PANAS is a psychological technique for assessing and
measuring a person’s positive and negative emotions. The PANAS ques-
tionnaire is divided into two sections: the positive affect scale and
the negative affect scale [18]. SAM is a nonverbal pictorial evaluation
approach that directly evaluates the valence, arousal, and dominance
associated with an individual’s emotive reaction to a wide range of
stimuli [19]. PAM is a novel affect measurement technique in which
users select the photo that best matches their present mood from a large
selection [20]. ESM is a research technique used in psychology and
related fields to collect real-time data on individuals’ experiences, be-
haviors, and psychological states in their natural environments. It aims
to capture momentary or near-real-time assessments of participants’
experiences and contexts [21].

2.2. Physical signals

Physical signals for emotion recognition include facial expressions,
speech, text, gestures, and body postures [22]. Speech and facial ex-
pressions are the most commonly employed mechanisms for emotion
identification among physical signals [22]. As a result, we chose to limit
our review study to only physical activities based on speech and facial
expressions.

2.3. Physiological signals

Physiological signals are the most widely used source for emotion
identification. The advantage of physiological signals is that they are
activated unintentionally, so cannot be controlled easily by the subject.
Other benefits include efficient and low-cost data collection, fewer
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Fig. 4. Branching representation and classification of emotion sensing techniques.

errors caused by light and shadow acquisition, and less invasion of
user privacy [22–24]. Electroencephalogram (EEG), electrocardiogram
(ECG), electromyogram (EMG), galvanic skin response (GSR), respira-
tion (RSP), skin temperature, photoplethysmography, and eye tracking
(ET) are the most commonly employed physiological signals for emo-
tion recognition [22]. Among physiological signals, the most often
utilized modalities for detecting human emotions are EEG, GSR, ECG,
and ET. As a result, these four physiological modalities were included
in our review analysis.

3. Overview of automated emotion recognition systems

Automated emotion recognition systems involve several steps for
predicting accurate emotional states. The schematic view of the steps
in an automated emotion recognition system is shown in Fig. 5. The
brief discussion about each step is discussed as follows:

3.1. Source

This first step refers to the part of the body, used for measuring
the responses to various inputs. Since our review covers two physical
signals (speech and facial expressions) and four physiological signals
(EEG, ECG, GSR, and ET), therefore, acquisition sources are limited to
eyes, speech, brain, heart, skin, and face.

3.2. Stimuli

Stimuli are any items, events, or conditions that cause an organ-
ism, such as a person or an animal, to respond or react. Stimuli are
commonly employed in psychology and research to elicit responses or
3

behaviors for studying and understanding various psychological pro-
cesses. Stimuli can include situations, scenarios, or social interactions
that elicit emotional, cognitive, or behavioral responses. Well-known
stimuli for eliciting the targeted emotions are virtual reality (VR),
images, video games, music, audio/video clips, audio, and/or videos
[25–27]. Based on the type of stimulus various emotions are elicited
and are ranked manually using a questionnaire using SAM, PANAS,
PAM, ESM, or other similar techniques.

3.3. Input signals

Input signals are pre-processed for effective analysis. Pre-processing
refers to the steps or procedures performed on raw data prior to analysis
or further processing. Pre-processing is critical in data analysis because
it improves data quality, reduces noise or extraneous information, and
prepares the data for effective analysis and modeling. The specific
pre-processing steps are decided by the nature of the data and the
goals of the study. Typically, the steps involved in pre-processing
are data cleaning (removal of artifacts and other noise sources), data
integration, data transformation, data sampling, and data scaling.

3.4. Feature extraction

In data analysis and machine learning (ML), feature extraction
refers to translating raw data into a set of relevant and representa-
tive characteristics that may be used for further modeling. It seeks
to extract from data important information or patterns that encap-
sulate the key traits or properties of the underlying phenomenon.
The goal of feature extraction is to find and choose a subset of at-
tributes that best capture the subtle details in the data while rejecting
redundant or unnecessary data. This procedure reduces the data’s
dimensionality, making it more understandable and suited for analysis
or modeling activities. The most common features include statisti-
cal features, nonlinear features, frequency-domain features, entropy
features, time–frequency-based features, image-vision-based features,
fractal dimensions, nonlinear decomposition, domain-specific features,
and deep learning (DL) features.

3.5. Feature selection

The process of choosing a subset of pertinent characteristics from a
set of features that are present in a dataset is known as feature selection.
It attempts to choose the most discriminative and informative features
that contribute the most to the analysis or prediction while avoiding
duplicate or unnecessary features. The choice of features is crucial since
it may speed up computation, reduce overfitting, boost interpretability,
and enhance model performance. The most common feature selec-
tion techniques include dimensionality reduction (principle component
analysis or independent component analysis), statistical or univari-
ate analysis (chi-squared test, ANOVA, or correlation), regularization
techniques (Lasso (L1 regularization) and Ridge (L2 regularization)),
feature selection algorithms or wrapper methods (recursive feature
elimination, sequential feature selection, and tree-based methods, or
ensemble based methods).

3.6. Classification

It is a crucial step in an automated detection system that is used
to categorize the values of the variables to its subsequent classes. It
involves decision-making using ML or DL techniques. ML techniques
involve, among others, support vector machine (SVM), k-nearest neigh-
bor (KNN), decision tree (DT), artificial neural network (ANN), random
forest (RF), logistic regression, linear discriminant analysis are some
of the most widely used techniques. Convolutional neural network
(CNN), long-short term memory (LSTM) networks, deep neural net-
works (DNN), multilayer perceptron (MLP), recurrent neural network
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Fig. 5. Schematic diagram of steps involved in an automated emotion recognition system.
(RNN), generative adversarial networks (GAN), gated recurrent units,
self-organizing maps, deep reinforcement learning, deep transfer learn-
ing, autoencoders (AE), transformers, and deep belief network (DBN)
are some of the state-of-the-art DL models.

3.7. Model evaluation

An ML or classification model’s quality and efficacy are assessed
using performance measures. These metrics give numerical evaluations
of the model’s performance regarding predictions and generalizability
to new data. Particular challenge, kind of data, and the required
assessment standards influence the choice of performance indicators.
Some famous indicators of success for ML/DL models are accuracy
(ACC), recall, specificity, precision, confusion matrix, area under the
receiver operating characteristic curve (AUC-ROC), and F-1 score.

4. Motivation and highlights of the review study

In the last decade, several review papers have been published for
emotion recognition and decision-making. We have performed a com-
prehensive search by scanning the relevant review articles published
recently, and identified significant limitations, before designing our
systematic review as shown in Fig. 6.

4.1. Existing emotion recognition review studies

Hasnul et al. [28] presented a review of ECG-based emotion recog-
nition and their applications. Their review strategy did not employ
PRISMA guidelines and was limited to ECG signals. The authors fur-
ther discuss the application areas confined to healthcare with limited
discussion on challenges and future directions. Bota et al. [29] carried
out a comprehensive review on emotion recognition using physiolog-
ical signals and ML techniques. Their review study failed to employ
a systematic review strategy using PRISMA guidelines. Their review
study did not discuss application areas, presented limited discussion,
and limited future directions. Singh and Goel [30] presented a sys-
tematic review of emotion recognition using speech signals following
4

PRISMA guidelines. Their method covered the application of ML and DL
techniques, but failed to cover research challenges and comprehensive
research directions. Kamble and Sengupta [31] presented a review
on emotion recognition using EEG signals without following PRISMA
guidelines. They presented a detailed analysis of feature extraction
methods and decision-making using ML and DL techniques. Their re-
view method did not explore research challenges and future directions.
Zhang et al. [32] presented a review of EEG signals and ML techniques
for emotion recognition without PRISMA guidelines. The authors pre-
sented a comprehensive study on existing methods, open challenges,
and future directions. Adyapady and Annappa [33] provided a com-
prehensive review of facial image-based emotion recognition using
ML and DL techniques. Their emotion detection review method does
not involve PRISMA guidelines. The authors discussed various tech-
niques, datasets, and a few applications of emotion recognition. Ba and
Hu [34] performed a systematic review following PRISMA guidelines
on emotion recognition using wearables in education. Their review
study showed that portable and accurate wearable devices adopting
electro-dermal activity and heart rate signals are common for emotion
detection in education.

4.2. Motivation for the current review study

Human emotions are important markers for different states of con-
ditions and behavioral analysis. Recently, several review studies have
been conducted, focusing on numerous applications and detection tech-
niques. After doing a comprehensive literature analysis on human
emotion recognition review articles, the following gaps have been
identified.

• Many emotion recognition studies have been performed without
PRISMA guidelines [28,29,31–33].

• The majority of the review articles previously published for emo-
tion recognition focused on a single modality i.e., either physio-
logical signal, speech, or facial images [28,31–33].

• The emotion recognition studies on physiological signals are con-
fined to EEG signals or ML techniques [31,32].
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Fig. 6. Comparison and uniqueness of our review study with existing review papers published for emotion recognition.
• A little discussion on research challenges and applications
[28–33].

• Limited directions for future research [28–33].

The above-listed gaps motivate us to write a comprehensive and sys-
tematic review of emotion recognition using different modalities. We
have also focused on a detailed discussion of datasets, feature extraction
techniques, and inclusion of artificial intelligence (AI). Our review
study presents a detailed analysis and comprehensive summary of ex-
isting feature extraction and classification techniques. In addition, our
review study includes a detailed analysis of current research gaps, po-
tential application areas, and directions for future research in emotion
recognition.

4.3. Salient features of our systematic review

The uniqueness and salient features of our review study are listed
as follows and shown in Fig. 7:

1. Comprehensive use of datasets: Our review study explores
a comprehensive search strategy of different databases. The
authors have scanned renowned databases, including Web of
Science, MEDLINE, PubMed/PubMed Central, IEEE Explore, Sco-
pus, Wiley, and others for selecting the most relevant research
studies.

2. Systematic review: Our developed review study follows strict
PRISMA guidelines for selecting relevant research articles.

3. Time window: We have considered a time window of last
10 years, for scanning and selecting the articles included in the
review.

4. Multi-modal emotion recognition: We have included physio-
logical signals (EEG, ECG, ET, and GSR) and physical activity
(speech and facial expression). In addition, we have used AI com-
prised of ML and DL techniques used for emotion recognition.

5. Diverse emotion model: We have included articles on dis-
crete and multi-dimensional emotional models to develop our
review study. Also, we have confined our search for articles to
peer-reviewed journals.
5

Fig. 7. Highlights and key points included in the review method for emotion
recognition.

6. Datasets: We have also presented a comprehensive analysis
of the available datasets used for emotion recognition using
different modalities.

7. Analysis: We have presented a detailed analysis and discussion
of existing studies included in the current review.

8. Challenges and future Directions: We identified current chal-
lenges, presented a detailed discussion and future directions for
research. We also explored the application areas of emotion
recognition in various fields.

5. Review method

The current systematic review uses the recommended reporting
elements for systematic reviews and meta-analyses (PRISMA) guide-
lines [35]. The review protocol includes search strategies, selection
criteria, selection standards, and data extraction. The details of search,
selection, and extraction strategies are covered in the following subsec-
tions:
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Table 1
Criteria adopted for inclusion and exclusion for article selection.

Inclusion

(i) emotion recognition
(ii) classification of emotions using EEG signals
(iii) emotion recognition and EEG signals
(iv) detection of emotion using EEG signals
(v) emotion recognition using physiological signals
(vi) detection of emotions using ECG signals
(vii) emotion recognition using ECG signals
(viii) automated emotion recognition using physiological signals
(ix) machine learning and deep learning for emotion recognition
(x) GSR and emotion classification
(xi) galvanic skin response for emotion detection
(xii) automated emotion classification using GSR
(xiii) eye tracking and emotion classification
(xiv) emotion detection using eye tracking
(xv) automated emotion detection and eye tracking
(xvi) speech and emotion classification
(xvi) speech-based emotion recognition
(xvii) automated emotion detection using speech
(xviii) facial images and emotion classification
(xix) automated system for emotion classification using facial images
(xx) emotion and facial images
(xxi) automated human emotion recognition
(xxii) deep learning based emotion detection using facial images

Exclusion

(i) extension or repeated articles
(iii) articles published before 2014
(iii) conference articles
(iv) non-English research articles
(v) book chapters
(vi) non-peer reviewed articles
(vii) articles with statistical analysis

5.1. Search strategy and selection criteria

The search for relevant emotion recognition studies starts with
modalities like physiological signals, including EEG, ECG, GSR, and
ET, speech signals, and facial images. We have also looked for AI,
including ML and DL. We searched famous electronic databases, which
include Web of Science, MEDLINE, PubMed/PubMed Central, IEEE
Explore, Scopus, and Wiley to locate the desired articles on emotion
recognition. The authors limited their articles search to English lan-
guage and journal articles. The search window for articles is adjusted
to the last 10 years, covering articles published between December
2013 to July 2023. The focus of the search was limited to physi-
ological signals, emotion recognition or classification, facial images,
and AI. The key terms used to scan the relevant physiological sig-
nals covers ‘‘electroencephalogram’’, ‘‘electrocardiogram’’, ‘‘galvanic
skin response’’, ‘‘eye tracking’’, ‘‘electrooculogram’’, ‘‘EEG’’, ‘‘GSR’’,
‘‘EOG’’, ‘‘ET’’, ‘‘ECG’’, ‘‘EKG’’, and ‘‘speech’’. The search criteria for
emotions includes ‘‘emotion classification’’, ‘‘emotion detection’’, ‘‘emo-
tion recognition’’, ‘‘emotion identification’’, and ‘‘emotion charting’’.
The search for image-based emotion recognition include ‘‘facial im-
ages’’, ‘‘images’’, ‘‘facial data’’, and ‘‘faces’’. Finally, ‘‘deep learning’’,
‘‘machine learning’’, ‘‘automated recognition’’, ‘‘classification’’, and ‘‘ar-
tificial intelligence’’ have been used for searching artificial intelligence.

The search criteria for scanning and selecting appropriate research
articles for emotion recognition was tedious and time-consuming.
Therefore, we have adopted inclusion and exclusion criteria for select-
ing relevant articles for our review study. Table 1 shows the adopted
criteria for including and excluding the research articles. Initially, in
stage one, authors reviewed the title, keywords, and abstract of articles.
After discussion, the authors decided to finalize the inclusion/exclusion
criteria for the articles. After initial screening, the full text of the
remaining articles was examined and analyzed in stage two.

5.2. Results

Fig. 8 shows the PRISMA guidelines used for screening and select-
6

ing relevant emotion recognition articles. We have categorized article
shortlisting into three steps: identification, screening, and inclusion.
Initially, a total of 14 257 articles were identified from six prestigious
databases and registers, including Web of Science, PubMed, MEDLINE,
Inspec, Scopus, and others. Based on the relevance of the study, we
selected 3846 articles, and discarded the remaining before screening.
During the screening stage, we retrieved 968 articles, of which 234
were screened for further assessment and excluded others. During the
final inclusion stage, out of 234 articles, 92 were excluded based on the
exclusion criteria, and 142 were selected for review. The distribution
includes 44 articles based on EEG, 20 articles on ECG-based emotion
recognition, 16 articles for GSR-based emotion recognition, 6 articles
on ET, and 28 articles each for speech- and facial image-based emotion
recognition. However, some articles are common for EEG-, ECG-, and
GSR-based emotion recognition. Fig. 9 shows the distribution of articles
based on time and publishers. The time-based analysis reveals that the
highest number of articles belongs to the year 2022, whereas, Elsevier
is the mostly preferred publisher followed by IEEE.

6. Summary of emotion recognition studies using EEG signals

The authors have selected 44 articles based on EEG-based emotion
recognition. In addition, 5 articles used EEG signals along with ECG and
GSR modalities taking a total count to 49. Table A.3 presents a detailed
summary of the EEG-based emotion recognition automated system.

6.1. Highlights of EEG-based emotion recognition

The time-based analysis reveals that the highest number of 12 stud-
ies have been reported from the year 2020, followed by 2021 and 2019
with 9 studies each. Elicitation of emotions from audio and video stim-
uli has been most widely preferred during EEG acquisition. EEG-based
emotion recognition has been conducted mostly on public EEG datasets
over private datasets. DEAP, SEED/SSED IV, and DREAMER have been
used most with individual occurrences of 22, 16, and 9 times, respec-
tively. Classification of emotions based on V/A/D is preferred over
discrete emotions and positive (Pos)/Negative (Neg)/Neutral (Neu).
Classification of four basic emotions in the discrete model is highly pre-
ferred over other discrete classification models. Extraction of nonlinear
and statistical features is preferred for direct feature extraction. For
frequency domain features, power spectral density (PSD) is the most
commonly used technique for EEG-based emotion recognition. Decom-
position techniques like wavelet-based decomposition, empirical mode
decomposition (EMD), and variational mode decomposition (VMD)
have been used the most to extract relevant features. In addition, short-
time Fourier transforms (STFT), Cohen’s class, and S-transform have
been utilized to extract time-frequency representation (TFR). The vali-
dation using k-fold cross-validation (FCV), particularly 10 FCV has been
preferred over leave one subject out/ leave one out validation (LOSO)
and holdout validation. ML models are used higher than DL models for
the classification of emotion. The detailed distribution summary of the
decision-making model is shown in Fig. 10. It is evident from Fig. 10
that SVM and its variant have been used the most, followed by KNN and
extreme learning machine (ELM) classifier. In DL taxonomy, CNN has
been used ten times followed by LSTM-based decision-making models.

6.2. Details of the EEG-based emotion datasets

Table B.9 presents the details of the EEG datasets used by the EEG-
based emotion recognition studies. A total of 21 diverse EEG-based
emotion datasets have been used by included studies. It includes 15
publicly available datasets and 6 private datasets. One study each
used music, games, and VR as an elicitor, 2 studies used images, and

remaining used AV stimulus.
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Fig. 8. Overview of the PRISMA guidelines followed during the selection of the articles in the systematic review.

Fig. 9. Details of the papers included after PRISMA guidelines (a) Publisher-based distribution and (b) Time-based analysis (Year-wise distribution).
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Fig. 10. Summary of distribution for emotion recognition studies using EEG signals.

7. Summary of emotion recognition studies using ECG signals

A total of 23 articles have been discussed for ECG-based emotion
recognition as shown in Table A.4. Out of 23 articles, 20 articles
are related to only ECG-based emotion recognition and articles are
combined with EEG- and GSR-based studies.

7.1. Highlights of ECG-based emotion recognition

The year-wise distribution of ECG-based emotion recognition re-
veals that four articles belongs to the years 2017, 2020, and 2021, re-
spectively. The year 2022 has three articles, two articles each for 2019
and 2023, and one for 2014, 2015, and 2018, respectively. Audio/video
and video-only based emotion elicitation have been the most common
choice, followed by images and music-based emotions contributing
equally to emotion elicitation. The researchers preferred public ECG
datasets over private ones for emotional state detection. From the
public datasets, five times DREAMER dataset has been used, three each
in the case of AMIGOS and ASCERTAIN, WESAD and MAHNOB-HCI
each used twice, and others once. Classification of V/A/D has been
the highest, followed by discrete emotion (four class) classification.
Extraction of features directly from ECG signals is preferred the most.
These include nonlinear features (NLF), statistical features (STSF), time-
domain features (TDF), heart rate variability (HRV), frequency-domain
features (FDF), and rhythmic features. In addition, wavelet-based de-
composition and EMD methods have been used for extracting repre-
sentative features. The validation of the classification model mostly
used ten-FCV, followed by holdout and LOSO CV. The distribution of
decision-making models for ECG emotion classification is shown in
Fig. 11. As evident from Fig. 11, 15 times ML models have been used
for emotion recognition and 8 times the usage of DL models. SVM and
KNN are most efficient in ECG classification in ML taxonomy, while
CNN is more common in DL taxonomy.

7.2. Details of the ECG-based emotion datasets

A total of 18 ECG-based emotion datasets have been used in all the
articles included in our review. The details of the ECG-based emotion
datasets are shown in Table B.10. Emotion recognition studies explored
8

Fig. 11. Summary of distribution for emotion recognition studies using ECG signals.

privately developed datasets over public ECG datasets. Audio/video
stimuli have been the most preferred choice to elicit emotions, followed
by music and image-based stimuli. The acquisition system used three
electrode settings. V/A/D emotion classification type has been adopted
the most, followed by discrete emotion classification.

8. Summary of emotion recognition studies using GSR signals

A total of 18 articles have been discussed for GSR-based emotion
recognition as shown in Table A.5. Out of 18 articles, 16 articles used
only GSR-based emotion recognition, and 2 articles combined with
EEG- and ECG-based studies.

8.1. Highlights of GSR-based emotion recognition

Time-based analysis of GSR-based emotion recognition included in
the review shows that the highest number of articles (4 articles) were
from 2020. The year 2016 and 2017 includes three research articles
each, while the years 2018, 2019, 2021, and 2022 reported two articles
each, respectively. There are no articles from 2014, 2015, and 2023.
Elicitation of emotions using audio/video and music-based stimuli was
adopted most frequently. The DEAP and ASCERTAIN datasets were
used three times each, while the other one time. Researchers adopted
private GSR datasets for emotion recognition (11 times) over public
datasets (9 times). The classification of emotions in terms of V/A and
discrete emotions contributed equally. Direct extraction of STSF, NLF,
rhythmic features, and entropy features from GSR signals have been
used for the classification. Also, decomposition techniques like wavelet
decomposition, DWT, and EMD to extract information from GSR have
been used. The validation strategy also includes holdout and k-fold CV.
The classification strategies adopted for emotion recognition are shown
in Fig. 12. It has been observed from Fig. 12 that ML models have
been used more often than that DL models. Within ML models, SVM
and their variants have been the most common classification strategy
(7 times), followed by KNN and ensemble techniques (ET) used two
times each. CNN models, a combination of CNN with long-short-term
memory (LSTM) have been the favorites in DL models. Audio/video
stimuli have been the most preferred choice to elicit emotions, followed
by music stimuli (see Fig. 12).
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Fig. 12. Summary of distribution for emotion recognition studies using GSR signals.

8.2. Details of the GSR-based emotion datasets

A total of 14 GSR-based emotion datasets have been used in all the
articles included in our review. The details of the GSR-based emotion
datasets are shown in Table B.11. Emotion recognition studies explored
privately developed datasets over public datasets. Audio/video stimuli
have been the most preferred choice to elicit emotions, followed by
music and image-based stimuli. The acquisition system used three
electrode settings. Classification of emotions from discrete emotion
models was explored the most, followed by V/A/D and affect states.

9. Summary of emotion recognition studies using ET signals

The detailed summary of ET-based emotion recognition is shown in
Table A.6. A total of 6 articles have been selected and included in our
review analysis.

9.1. Highlights of ET-based emotion recognition

Year-wise distribution of the articles shows that the highest num-
ber of three articles was published in 2021. In addition, the years
2019, 2020, and 2023 reported one article each. Three articles have
used video-based emotion elicitation, two articles reported image-based
emotion elicitation, and one article used virtual reality. Five articles
used the private ET emotion dataset, while only one ET dataset is
publicly available. All the articles have explored discrete emotion
classification, four of them using four basic emotion categories. STSF,
FDF, and NLP features have been extracted directly from ET signals.
One article used signal transformation using FFT and STFT. Holdout
validation and LOSO CV was the most prevalent for model validation.
The breakout of decision-making models for classification is shown in
Fig. 13. It is seen from Fig. 13 that for ET-based emotion classification,
DL models have been preferred over ML techniques.

9.2. Details of the ET-based emotion datasets

The details of the ET-based emotion dataset are shown in Ta-
ble B.12. The summary shows that emotion recognition has used inde-
pendent datasets for their analysis. Also, out of the six datasets used
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Fig. 13. Summary of distribution for emotion recognition studies using ET signals.

for emotion recognition, five are privately developed, while one is
public. This limits the applicability and usability of ET-based emotion
recognition. Elicitation of emotions from videos was used three times,
images were used twice, and virtual reality was explored once.

10. Summary of emotion recognition studies using speech signals

For speech-based emotion recognition, we have selected 28 journal
articles. The summary of these articles used in the review analysis is
shown in Table A.7.

10.1. Highlights of speech-based emotion recognition

As evident from the summary of Table A.7, one article each has
been included from the years 2014, 2015, and 2017, respectively.
The highest articles, i.e. 8, have been reported from the year 2019,
followed by 6 articles in 2020, 5 in 2021, and 3 each in the years
2018 and 2022, respectively. The audio/video or audio based have
been used the most for emotion elicitation. The dataset analysis reveals
that EMO-DB, RAVDEES, CASIA, and IEMOCAP datasets have been
the most preferred choices for model testing. The highest strength of
speech-based emotion recognition is that multiple datasets have been
used for method verification. Public speech emotion datasets have been
selected over private datasets. Discrete type classification of emotions
has been adopted for all the studies. Power spectral density (PSD),
Mel-frequency cepstrum coefficients (MFCC), Mel spectrogram (MSG),
STFT, and variants of wavelet transform (WT) have been adopted the
most for feature extraction. Model validation using holdout CV was
preferred the most for speech, followed by k-FCV, and the least with
LOSO CV, respectively. The summary and distribution of the classifi-
cation techniques used for emotion recognition are shown in Fig. 14.
The distribution shown in Fig. 14 reveals that DL models have an edge
over ML models for speech-based emotion recognition. The usage of the
SVM classifier was reported 7 times and the extreme learning machine
(ELM) classifier 2 times in ML-based decision-making. For DL models,
CNN was used 10 times, followed by LSTM and BiLSTM 3 times.
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Fig. 14. Summary of distribution for emotion recognition studies using speech signals.

10.2. Details of the speech-based emotion datasets

The detailed summary of the speech-based emotion dataset is shown
in Table B.13. The details revealed that 19 datasets have been utilized
in speech-based emotion recognition studies. Among these, 11 datasets
are publicly available, while 8 datasets are private. Emotion classi-
fication using speech-preferred discrete emotion models with several
emotions varying from 3 to 12.

11. Summary of emotion recognition studies using facial images

The review included 28 articles on the recognition of emotions using
facial images. Table A.8 presents a summary of facial image-based
emotion recognition.

11.1. Highlights of facial images-based emotion recognition

The summary provided in Table A.8 reveals that the highest number
of articles have been from the years 2019 and 2020, respectively. Facial
image-based emotion recognition has one article each from the years
2015, 2016, and 2017, respectively. A total of 2, 4, and 5 articles have
been extracted from the years 2023, 2021, and 2022. The datasets CK+
and JAFFE have been the most commonly used facial image datasets.
In addition, FER2013, RAF-DB, and AffectNet have also been used in
many studies. The facial image-based emotion recognition studies have
validated their model on multiple datasets. The majority of the facial
image datasets are publicly available. A discrete emotion model is used
for classification with several emotions varying from 2 to 10. Features
based on geometric or texture of facial patterns are preferred. The
validation of the model using holdout CV followed by k-FCV strategies
is most common. The distribution of decision-making models for facial
images is shown in Fig. 15. Out of 28 articles, as many as 20 articles
have preferred DL models for classification, 7 used ML models, while
the status of one article is unknown. For ML models, the SVM classifier
has been the most preferred, while CNN has an upper edge over other
DL models.
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Fig. 15. Summary of distribution for emotion recognition studies using facial images.

11.2. Details of the facial image-based emotion datasets

The details of facial image datasets used for emotion recognition
is shown in Table B.14. A total of 24 datasets have been used in
the studies included in our review, 21 datasets are publicly available,
while only 3 datasets are private. All the datasets used discrete emotion
classification.

12. Discussion

Emotion recognition using physiological signals like EEG, ECG, and
GSR has been majorly classified as valence, arousal, and dominance as
evident from Tables A.3, A.4, and A.5. In the case of the ET signals,
speech, and images, discrete emotion classification has been preferred
as shown in Tables A.6, A.7, and A.8. Audio/video-based elicitation
has been the most common and preferred technique. The following
subsection presents the discussion on individual modalities for emotion
recognition.

12.1. Takeaways from EEG-based emotion recognition studies

EEG signals are nonlinear and non-stationary with multi-frequency
components [36–38]. Therefore, to extract meaningful information
from multi-frequency EEG signals, decomposition techniques have been
highly preferred [36–39]. As evident from Table A.3, decomposition
techniques like discrete wavelet transform (DWT), tunable Q wavelet
transform (TQWT), flexible analytic wavelet transform (FAWT), dual-
tree complex wavelet transform (DT-CWT), EMD, VMD, and MVMD
have been extensively used to extract desired frequency bands and
instantaneous information about time and frequency [40–55]. The
features extracted from the sub-components of these decomposition
methods are further used for classification using ML-based techniques.
In addition, due to high temporal resolution and presence of multi-
frequency components, transforming time-series EEG to TFR using
STFT, smoothed pseudo-Wigner Ville distribution (SPWVD), S-trans
form, Wigner Ville distribution (WVD), and quadratic time-frequency
distribution (QTFD) have also been preferred [56–64]. The TFR ob-
tained from these techniques is combined with DL models like CNN for



Information Fusion 102 (2024) 102019S.K. Khare et al.
emotion recognition. The analysis shows that the highest accuracy of
100% has been achieved for valence, arousal, and dominance classifica-
tion on the DREAMER dataset [54]. Similarly, an accuracy of 99.56%,
99.67%, and 99.55% for arousal, dominance, and valence has been
achieved on the DEAP dataset using LOSO CV [54]. Nonlinear decom-
position techniques provide an effective representation of EEG signals,
due to which it has obtained the highest classification accuracy [54]. In
addition, extraction of TFR from EEG signals using SPWVD and TOR-
based on S-T in combination with CNN has resulted in an accuracy
of 93.01% and 94.58% for discrete emotion classification on private
EEG datasets [58,61]. Thus, the summary of Table A.3 reveals that the
decomposition techniques with ML models and the combination of TFR
with DL models have resulted in the highest performance, in terms of
accuracy, for emotion recognition.

12.2. Takeaways from ECG-based emotion recognition studies

ECG signals are quasi-stationary with a high signal-to-noise ratio
(SNR) compared to EEG signals. Therefore, direct feature extraction can
help to extract representative and meaningful information from ECG
signals. Thus ECG-based studies have preferred direct feature extraction
in terms of NLF, STSF, rhythmic, TDF, and FDF [53,65–75]. Since
ECG is quasi-stationary and contains mixed frequency components,
wavelet, and EMD-based decomposition have also attained high accu-
racy [65,76–78]. SVM and KNN-based ML techniques have successfully
classified different emotions due to their ability to draw accurate
boundaries between distinct emotion classes. Due to the rhythmic
nature and high SNR of ECG signals, DL techniques have extracted
representative features, which has resulted in high system performance
[53,73,74,79–83]. The highest accuracy of 100% has been achieved
for discrete emotion classification using rhythmic features clubbed with
SVM classifier on a private dataset [66]. In another study, researchers
obtained 100% accuracy for classifying discrete emotions as well as
the classification of valence and arousal [77]. The authors in [77] used
wavelet-based features and a probabilistic neural network (PNN) classi-
fier. The combination of CNN and LSTM has resulted in an accuracy of
98.73% and 90.5% using DL models on public AMIGOS and DREAMER
datasets [82].

12.3. Takeaways from GSR-based emotion recognition studies

Like EEG and ECG signals, GSR signals are also non-stationary
and nonlinear. Therefore, extracting meaningful and representative
information from them is preferred. Features are extracted in the
form of NLF, STSF, entropy, TDF, FDF, and/or rhythms [53,67,84–90].
Decomposition techniques based on EMD and wavelets were explored,
due to their ability to extract crucial characteristics required for the
classification of emotions [77,85,91–93]. Extraction of features or de-
composition makes it easy for classifiers to draw decision boundaries
for different emotions. Therefore, ML models like SVM and KNN have
yielded very high classification accuracy. Also, transforming a signal
to another domain and applying DL models has been effective for
emotion recognition [53,82,94,95]. The highest accuracy of 100% has
been obtained for features based on Poincare plots (PCP), Lyapunov
exponent (LE), and approximate entropy (APEN) using PNN classifier
on the DEAP dataset [87]. Similarly, the study based on EMD and
TDF using SVM classifier has also achieved the perfect classification of
emotions on a private dataset [91]. In addition, statistical features [89],
wavelet analysis [77], NLF [90], and DWT [93] have also achieved
high accuracy for emotion detection. Thus, direct extraction of STSF,
entropy, TDF, FDF, and NLF can provide accurate emotion representa-
tion using GSR signals. Also, wavelets and decomposition techniques
can extract discriminative characteristics from GSR signals for emotion
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recognition.
12.4. Takeaways from ET-based emotion recognition studies

The summary of Table A.6 reveals that NLF, STSF, and FDF of
ET signals can provide a better emotion representation [96–99]. In
addition, DL models can also extract representative features, which
has resulted in high accuracy [96,97,99]. The highest accuracy of 92%
has been achieved with STSF and deep multi-layer perceptron (DMLP)
classifier for valence state on the eSEE-d public dataset. However, more
analysis is still required to confirm these findings. Also, validation of
the model using holdout CV is prone to over-fitting thus, may not yield
the same performance during LOSO or k-FCV.

12.5. Takeaways from speech-based emotion recognition studies

Speech signals have prosody, non-stationary, language specificity,
and are context dependent. In addition, speech signals are non-station
ary, and some of them have periodicity [100]. Therefore, the rep-
resentation of speech in spectral features using MFCC, MFC, STFT,
and WT has been effective for emotion recognition [101–112]. Sta-
tistical features have provided a discriminant representation of speech
signals, due to which it has obtained the effective classification of emo-
tions [103,109,113,114]. The speech-based emotion recognition has at-
tained higher accuracy when CNN models have been clubbed with spec-
tral representation including simultaneous time and frequency informa-
tion [107,109–112,114–117]. As mentioned earlier, due to prosody and
context dependency features of speech, attention-based CNN, LSTM,
and BiLSTM have also remained effective in speech-based emotion
classification [110,118–121]. The highest accuracy of 100% has been
achieved on EMO-DB and CASIA public datasets using MFCC features
and linear discriminant analysis classifier [105].

12.6. Takeaways from facial image-based emotion recognition studies

Facial images for emotion recognition involves facial characteristics.
Therefore, techniques like face extraction, geometric features, texture
features, and binary patterns have been the most effective [122–132].
Similarly, as emotions are recognized using images, CNN models have
been the most effective decision-making models due to their ability
to extract spatio-temporal characteristics. Attention-modules with CNN
have also been proven effective to detect face geometry for emotion
recognition [129,133–136]. The highest accuracy of 100% has been
achieved on JAFFE public image dataset using convolutional features
and the CNN model [137]. Similarly, an accuracy of 99.36% has been
obtained on the CK+ dataset using the CNN model [138]. An accuracy
of 99.59% has been achieved on the MMI dataset using optical flow
spatial–temporal feature (OFSTF) clubbed with the CNN model [136].

12.7. Overall summary of automated emotion recognition system

The graphical representation of the automated emotion recognition
for all the modalities used in the current review is shown in Fig. 16. The
summary reveals that physiological (EEG, ECG, ET, and GSR) and phys-
ical (speech) signals extensively explored feature extraction. Nonlinear
decomposition is mostly used for extracting meaningful information
from EEG, ECG, and GSR signals. Physiological signals (EEG, ECG, GSR,
and ET) contain multi-components, that are nonstationary and nonlin-
ear nature. Therefore, decomposition techniques like EMD, VMD, and
wavelet transform (DWT, TQWT, FAWT, and others) provide effective
representation of various emotional states. Also, nonlinear and statisti-
cal features from the multi-components of EEG, ECG, GSR, and ET have
yielded the most representative characteristics for emotion recognition.
Frequency-domain features for speech and direct feature extraction for
ET are widely used. Deep features have been used the most for facial
images. The use of Mel-frequency cepstrum coefficients for speech and
face extraction for images has provided the discriminative features for
emotion recognition. Finally, for decision-making, the SVM-based ML
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Fig. 16. Graphical representation and summary of included modalities emotion recognition.
modality has been the most effective and preferred classifier for EEG,
ECG, GSR, and ET signals. The review studies suggest that, for speech
signals and facial images, decision-making using CNN-based DL models
may result in the highest performance. The CNN models have inbuild
convolutional layers, which reduces the high dimensionality of images
without losing its information. Therefore, CNN models can effectively
extract features from images and learn to recognize patterns, making
them well suited for emotion recognition. Also, feature extraction
and transformation techniques are widely used for time-series input
signals, including EEG, ECG, GSR, speech, and ET. The overall analysis
has revealed that information fusion helps to improve the system’s
performance. The study shows that fusion of EEG with ECG/GSR, and
ECG with GSR or by fusing different features provided higher accuracy
than due to single modality [71,82,84,88,92,93]. Therefore, feature-
and sensor-level fusion obtained from multiple sources can be the better
option for emotion recognition.

The overall summary of the modalities covered in our review study
for emotion recognition with their strengths and weaknesses/future
recommendations are shown in Table 2. It is noteworthy to mention
that the summary is drawn based on our observations from the papers
included in the systematic review.

13. Challenges

After a thorough investigation of automated emotion recognition
systems, we have identified potential challenges in existing studies. The
major challenges in automated emotion recognition systems are listed
below:

13.1. Datasets

Most of the datasets used for emotion recognition are available
publicly. However, the majority of them have been utilized to their
maximum capacity, resulting in the highest classification accuracy.
In addition, the available datasets have been acquired with a single
modality i.e., either for EEG, ECG, ET, GSR, speech, or facial images.
Therefore, there still exists a research gap in analyzing emotion recog-
nition using multiple modalities from the same subject. Also, the lack of
availability of public emotion datasets for healthcare, brain-computer
interfaces, and other applications limits such analysis.

13.2. Adaptive analysis and classification

The physiological and physical signals are nonlinear, multi-frequ
ency components, and vary spontaneously [39,139,140]. Accurate and
effective analysis of such signals can be accomplished with feature
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extraction and decomposition techniques. But, to extract meaningful
information from such signal, tuning of parameters is required [46,47].
However, our review study shows that few studies have been explored
for an adaptive analysis of these signals. These data-driven models
have been tested on private EEG datasets [46,47]. Therefore, adaptive
analysis can be used for extracting representative information from
EEG, ECG, ET, GSR, and/or speech signals. Similarly, for classification,
ML and/or DL models require extensive tuning of hyper-parameters
for optimal performance. Empirical and pre-fixed settings of tuning
hyper-parameters may not yield desired performance.

13.3. Lack of generalization

The acquisition of physiological and physical signals has been done
with different systems. The varying system specifications and acquisi-
tion time, results in the generation of sequences of different lengths.
Our review analysis shows that research studies for emotion recognition
using EEG, ECG, GSR, and speech signals have been analyzed with
different segment lengths. The changing duration of signals to be
analyzed may not yield desired performance. The lack of information
and generalization on the selection of signal length makes it difficult for
the stakeholders to trust the decision given by the developed models.

13.4. Lack of trust in automated decision-making

It is difficult to trust the outcome of such an automated system, es-
pecially when the findings contrast or conflict with previous knowledge
or expectations. As a result, stakeholders, specialists, and physicians
are hesitant to rely on existing models to make decisions. This is
why, despite several significant technological improvements in signal
processing, feature engineering, and AI, these models fail to gain the
faith of experts. Furthermore, there are few occasions when real-time
support systems for decision-making are used in research facilities. This
is due to the inability of present emotion identification techniques
to explain the predictions provided by decision support systems. To
create confidence in automated systems, the models must explain the
judgments made by the automated system to experts.

14. Future recommendations and research directions

Our review study has identified unresolved research challenges in
current emotion recognition systems. Future research should concen-
trate on innovative ways to increase our understanding of numer-
ous modalities and applications. The following explains the potential
directions for future research directions.
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Table 2
Summary of emotion recognition studies included in the review with their strengths, limitations, and future directions.

Modality Strengths Future recommendations

EEG • Well studied
• Comprehensive analysis of TDF, FDF, STSF, NLF, and TFR features
• Explored ML and DL models
• Attained maximum accuracy
• Validation of multiple datasets
• Availability of public datasets

• Uncertainty in performance
• Exhaustive use of available datasets
• Tested on cleaned and pre-processed data
• Lack of adaptivity
• Lack of explainability
• Non-uniformity in EEG segment length selection
• Limited usage of hyperparameter tuning
• Limited usage of fusion techniques

ECG • Well studied
• Attained maximum accuracy
• Validation of multiple datasets
• Availability of public datasets

• Uncertainty in performance
• Exhaustive use of available datasets
• Tested on cleaned and pre-processed data
• Lack of adaptivity
• Explored mainly ML models
• Lack of explainability
• Non-uniformity in ECG segment length selection
• Limited usage of hyperparameter tuning
• Limited usage of fusion techniques

GSR • Well studied
• Attained maximum accuracy
• Validation of multiple datasets
• Availability of public datasets

• Uncertainty in performance
• Exhaustive use of available datasets
• Tested on cleaned and pre-processed data
• Lack of adaptivity
• Explored mainly ML models
• Lack of explainability
• Non-uniformity in GSR segment length selection
• Limited usage of hyperparameter tuning
• Limited usage of fusion techniques

ET • Usage of datasets generated from different stimuli
• Usage of direct feature extraction
• Generation of simple models

• Uncertainty in performance
• Limited public datasets
• Lack of adaptivity
• Lack of explainability
• Limited usage of hyperparameter tuning

Speech • Comprehensive analysis of feature extraction techniques
• Models are generated and validated on multiple datasets
• Availability of public datasets
• Usage of ML and DL techniques

• Non-data driven models
• Frequency-domain feature centric
• Uncertainty in performance
• Lack of adaptivity
• Lack of explainability
• Limited usage of hyperparameter tuning

Facial images • Models are generated and validated on multiple datasets
• Availability of public datasets
• Usage of ML and DL techniques

• Non-data driven models
• Uncertainty in performance
• Lack of adaptivity
• Lack of explainability
• Limited usage of hyperparameter tuning
14.1. Application of human emotion recognition

Emotion recognition covers many applications, including brain-
computer interfaces, robotics, and healthcare. However, with the recent
technological advancements and rise in electronic gadget usage, emo-
tion recognition can help to accelerate in various fields. Some of them
are listed below:

14.1.1. Detection and monitoring of medical conditions
Human emotion can reveal crucial information for health conditions

and numerous disorders. Research has been conducted on variations
of emotions in Parkinson’s disease (PD), schizophrenia, Alzheimer’s
disease (AZD), attention deficit hyperactivity disorder (ADHD), Autism
spectrum disorder (ASD), epilepsy, and depression. Changes in the emo-
tional states have been witnessed during PD. Variations in emotional
states during PD were observed using facial expressions, speech, and
EEG signals [141–144]. Few researches have also been conducted on
variations in emotions during schizophrenia. Studies have observed
that facial expressions, auditory, and EEG signals measure emotional
states in schizophrenia [145–147]. Reading the Mind in the Eyes Test,
facial expression, eye blinks, and contextual features shows variation
in emotions in AZD [148–151]. Facial expressions, text, EEG signals,
and emoji-based studies have shown emotional changes in depression
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[152–154]. Changes in the emotional states in ADHD from facial pro-
cessing and social cognition have been studied [155–157]. The study of
emotions from facial expressions, video games, speech signals, and EEG
has been used to detect ASD [158–161]. Similarly, facial expressions
and social cognition can be detected in seizures and epilepsy [162,163].
Therefore, a thorough investigation can be explored for the detection
of various disorders from emotions. However, very few studies are
available due to the lack of availability of public datasets. Fig. 17 shows
an automated emotion-based physiological and neurological disorder
detection system.

14.1.2. Children health
The study and analysis of emotions in children can also play a

crucial role in their health monitoring. Studies revealed that emotional
development and regulation can be crucial in children with dyslexia
[164–166], depression [167,168], anxiety [169,170], and autism [171–
173]. Therefore, the study of facial expressions, speech, and physio-
logical signals can be used to detect autism, depression, anxiety, and
dyslexia. Also, emotion recognition can play a crucial role to teach
children with autism and dyslexia.

14.1.3. Environmental health studies
Another potential application of human emotions recognition is

in environmental health studies. It is known that the physical envi-

ronment can have an influence on emotions and, ultimately, affect
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Fig. 17. Overview of the emotion-based automated disorder detection system.
mental health. For instance, environmental stressors (e.g. air and noise
pollution) can be linked to a series of negative emotions, e.g., an-
noyance, anger, disappointment, dissatisfaction, helplessness, anxiety,
and agitation [174,175]. However, a deep understanding of the mental
effects due to various environmental factors has been limited by, among
others, the difficulty in measuring complex emotional states in humans.

14.1.4. Human-robot interactions
The rise in AI has boosted the development of human-modeled

machines. The applications of human emotions have attracted re-
searchers to investigate human-machine interfaces and sentimental
analysis. Human-machine interfaces can infer and understand human
emotions, making them more successful in human interactions; the
models should be able to interpret human emotions and adapt their
behavior appropriately, resulting in an acceptable reaction to those
sentiments.

14.1.5. Patience assistance
Emotion can be pivotal in patient monitoring and assistance. Effec-

tive analysis of emotion can help to sense and detect loneliness, mood
variations, and suicidal cues.

14.1.6. Driving assistance
Emotion recognition can also be used to detect driver’s fatigue. Fa-

cial expressions, eye movements, and/or EEG can be used in real-time
driver fatigue monitoring.

14.1.7. Education
Accurate and effective analysis of emotions can help to study stu-

dents’ level of satisfaction in education.

14.1.8. Marketing
A camera with AI systems in shopping malls can be used to read the

real-time emotions of customers, which may be used for marketing.

14.1.9. Recruitment
Automated analysis of an automatic emotion recognition system can

be used for recruitment. Analysis of emotions during interviews can be
used to monitor the stress level of candidates.

14.1.10. Business models
People show numerous expressions and thoughts about various

products. Retailers can use customers’ thoughts and feeling to improve
the in-store experience. Its purpose is to compare data from typical
satisfaction evaluations to data from emotion recognition technologies
to determine whether emotion recognition can offer a complete picture
or perhaps replace satisfaction measurements [176,177].
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14.1.11. E-learning
We have seen a drastic increase in electronic gadgets and internet

services usage since the COVID era. Online environments and virtual
classrooms can provide uninterrupted learning, and emotion detection
technology assists in identifying students’ emotional and understanding
levels in real-time. This information may be used to create class content
based on children’s diverse learning capacities [178,179].

14.2. Generation of multimodal public datasets

Human emotions can be studied to detect various disorders, but
such studies have not been explored to their maximum capacity. One
reason is that lack of available and diverse datasets. Therefore, the
development of such datasets and making them available freely to
the research community can boost emotion-based physiological disor-
der detection. Also, instead of focusing on a uni-modal dataset, the
development of a multi-modal dataset can enrich and explore higher
possibilities for extended emotion recognition studies. Accessibility and
authorization criteria must be simple and fast so that specialists can
avoid waiting for a long period. Data collecting methodologies and pro-
cesses should be made accessible so that other research organizations
can replicate them and gather more data for study.

14.3. Development of wearable emotion recognition systems

Physical signals, including speech, gesture, facial expression, text,
posture, etc. are susceptible to false positives. Such signals can be
voluntarily changed resulting in false emotion classifications [47,180].
Our review analysis shows that EEG signals have been widely pre-
ferred for emotion recognition, but usage of numerous EEG sensors
for acquisition introduce system complexity. Emotions have also been
detected using ECG signals, which use only three channels [65,67,81,
181]. Thus, the usage of ECG signals for emotion recognition is ad-
vantageous in terms of the number of sensors and high signal-to-noise
ratio [39]. The human central nervous system is built in such a way
that alterations in one organ influence another. As a result, the brain-
heart relationship, brain-eyes interaction, and brain–heart–eyes–muscle
communication may be critical and beneficial in analyzing changes in
many organs [39,182]. Photoplethysmography (PPG) signals provide a
better representation of brain-heart interaction [183,184]. PPGs have
the advantage of not requiring specific setups or many electrodes for
signal collection. The sensors are attached to wristwatches, fingers, or
other wearable devices that are more accessible, less expensive, and
more practical than other physiological signals.
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Fig. 18. Taxonomy of information fusion.
14.4. Distributed learning models

Huge volumes of data are being produced due to expansion in AI
and big data technology. The AI is booming due to the extraction of
valuable information from a large volume of data and has the potential
for the advancement of human society. The current automated emo-
tion recognition models are developed using centralized ML. However,
data acquired from different regions can have subjective changes, geo-
graphical variations, and instrumental differences, which may provide
dynamic variations in the performance of traditional ML models. Also,
traditional ML uses centralized learning model, which suffers privacy
issues and communication load. To overcome this federated learning
(FL) can be used. The main goal of FL is to move model training from
a central server to client devices, allowing many client datasets to work
together on model training while protecting data privacy and lowering
communication costs. It uses a ‘‘data stationary, model moving’’ learn-
ing mode compared to centralized learning’s ‘‘model stationary, data
moving’’ method [185,186].

14.5. Information fusion

Information fusion, also known as data fusion, is a process that
combines, integrates, and analyzes data from numerous sources to
provide a more detailed and precise representation of the desired
phenomenon. The primary purpose of information fusion is to extract
subtle information from diverse often imperfect data sources, resulting
in enhanced decision-making, increased comprehension, and improved
performance in a variety of applications. There are various levels and
types of information fusion as shown in Fig. 18 and discussed below:

14.5.1. Sensor-level fusion
This level includes integrating unprocessed data from each sensor

without any processing or analytics. It is used to enhance data quality,
decrease noise, and deal with missing or incorrect data from certain
sensors [187].

14.5.2. Feature-level fusion
This level combines data from several sources that have been pre-

processed and important characteristics extracted before being inte-
grated [188]. This method seeks to minimize the data’s dimensionality
and establish a single feature representation for subsequent analysis.

14.5.3. Model fusion
Model fusion or model ensemble technique increases predictive

model performance and generalization [189]. Model fusion is based on
the notion of combining predictions from various independent models
in a manner to get a final, more robust prediction. Combining the ca-
pabilities of different models can frequently result in improved overall
prediction precision while reducing the risk of over-fitting.
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14.5.4. Data-level fusion
Data-level fusion includes both sensor-level and feature-level fu-

sion [190]. It entails integrating raw data from numerous sensors and
then extracting important characteristics from the combined data.

14.5.5. Hybrid fusion
Hybrid level combines two or more level of fusion techniques

e.g., feature-level and decision-level fusions. Suppose the classification
of physical signals is accomplished using feature-level fusion with a
single decision-making classifier. On the other hand, analysis of physi-
ological signals can be accomplished using decision-level fusion. The fi-
nal decision is generated by integrating feature-level and decision-level
fusions to generate the desired performance [191,192].

14.6. Application of explainability

Explainable Artificial Intelligence (XAI) is a strategy for developing
AI systems that tries to give explicit and intelligible explanations for
the AI model’s decisions. The decision-making in AI models, such as
SVM, may be complicated to comprehend. This lack of transparency
creates issues, particularly in essential applications such as healthcare,
where knowing the logic behind AI choices is critical for trust, ac-
countability, and safety. These issues are addressed by XAI approaches,
which make AI models more visible and interpretable. Clients, pro-
grammers, and stakeholders can understand how the AI system arrived
at a certain outcome by giving human-readable explanations. The
explanations provided by XAI approaches are transparent, which is
critical for model trust, bias and fairness, debugging, and improve-
ment. For ML models, techniques include feature visualization (learning
patterns in the data), rule-based models (explicit rules for decision-
making), local explanations (local explanations focus on explaining
specific predictions or decisions), and feature importance (LIME (Local
Interpretable Model-agnostic Explanations) and SHAP (SHapley Addi-
tive exPlanations)) [193]. For CNN, heat-maps (class activation map
(CAM)) including Grad-CAM, Grad-CAM++, SMOOTHGRAD, U-CAM,
Eigen-CAM, and Score-CAM have been used for explanations [184]. An
overview of traditional ML models and XAI models is shown in Fig. 19.

14.7. Uncertainty quantification

Uncertainty quantification (UQ) is a collection of mathematical
and computational tools for assessing and characterizing uncertainty
in computational models, simulations, and data analysis [194–196].
Understanding the uncertainty associated with the results is critical
in many scientific and technical domains because precise predictions
are dependent on it [194]. Uncertainty can arise from various sources
including model formulation (from simplifications, assumptions, or ap-
proximations), input data (noise, missing data, or measurement errors),
model parameters (fixed parameters), approximations, and initial and
boundary conditions [197]. The sources of uncertainty can be measured
using UQ, which aims to address the following questions:
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Fig. 19. Illustrative representation of XAI model (A) Traditional ML model and (B) XAI model with explanations.
Fig. 20. Illustrative uncertainty quantification of deterministic model (A) Traditional model with fixed parameter setting and (B) An UQ of the model with distributed parameter
settings.
• How do uncertainties in input parameters affect the model’s
predictions?

• What are the sources of uncertainty in the model and its input
parameters?

• How reliable are the model predictions?
• How can we improve the model and reduce uncertainties?

UQ entails estimating probability distributions, statistical moments
(mean, variance, etc.), and confidence intervals that indicate the uncer-
tainty associated with the results. Some well-known techniques used for
UQ involve Bayesian inference, variance-based methods, Monte Carlo
methods, probabilistic collocation, ensemble modeling, and bootstrap-
ping [194,198]. The graphical overview of uncertainty quantification
of a deterministic model is shown in Fig. 20.

15. Conclusion

Emotion recognition is crucial in multiple fields, including health-
care, E-learning, online shopping, etc. Our paper has presented a
fine-grained analysis of human emotions. This comprehensive analysis
of emotion recognition systems shows that decomposition techniques
provide insight information that extracts representative features from
physiological signals. The SVM-based ML decision-making has been
16
proven the most effective and preferred emotion recognition model.
The ability of DL models to automatically extract and classify deep
features is gaining popularity and has been increasing in the usage of
CNN models. Our review analysis shows that feature fusion and data
fusion help to improve the overall system performance. Hence, infor-
mation fusion should be used in future emotion recognition models.
Emotions can be very helpful in certain healthcare applications, such as
Alzheimer’s disease, Parkinson’s disease, depression, and schizophrenia
detection, as well as in e-learning, market analysis, and human–robot
interactions. However, these fields have seen limited research in hu-
man emotion recognition systems, due to the lack of available public
datasets. Therefore, our review recommends developing and providing
accessible public datasets for increasing the applications of human
emotions research studies. The review shows that deep learning models
have gained popularity over traditional ML. Therefore, combination
of hybrid DL techniques using CNN, autoencoders, LSTM, and trans-
former models may be adopted for emotion recognition applications.
Also, accurate versatile models can be designed using federated meta
learning to train the automated systems on different datasets for a
particular application. Finally, we highlight the importance of model
explainability and uncertainty quantification in emotion recognition to
strengthen the trust and overall impact of AI models.
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Table A.3
Summary of emotion recognition studies using EEG signals included in the review.

Ref. Year Sub. Dataset Dataset name Status Length NCH Emotion (Classes) Feature extraction Classification Validation Accuracy (%) Decision
type

[199] 2019 20 AV – Private 10 s 1 Discrete (4) DF with NLF LSSVM 10 FCV 90.63 ML
[40] 2019 20 AV – Private 10 s 1 Discrete (4) TQWT with STSF ELM 10 FCV 87.1 ML

[41] 2022

23 AV DREAMER Public – 14 V/A (9)

DWT and EMD with STSF Ensemble ML 10 FCV

93.79 (A)
94.5 (V)

ML
15 AV SEED Public – 12 Pos/Neg/Neu (3) 81.39 (A)

79.71 (V)

20 Music MUSEC Public – 27 V/A (2) 81.96 (A)
82.27 (V)

43 AV INTERFACES Public – 4 V/A (3) 59.67 (A)
59.67 (V)

[200] 2014 16 Image – Private 30 s 64 Discrete (5) NLF QDA 8 FCV 47.5 ML

[201] 2018 32 AV DEAP Public 12 s 32 V/A (2) LF and NLF SVM LOSO CV 59.06 ML15 AV SEED Public 12 s 62 Pos/Neg (2) 83.33

[42] 2022 32 AV DEAP Public – 32 V/A (2) VMD DNN Holdout 61.25 (A)
62.5 (V)

DL

[43] 2017 32 AV DEAP Public 4 s 10 DWT with ENT KNN 10 FCV 86.75 ML

[56] 2021 32 AV DEAP Public 3 s 32

V/A/D (3)

PCC CNN Holdout

70.25 (A)
74.92 (V)

DL
V/A (2) 74.92 (A)

78.22 (V)

[202] 2019 32 AV DEAP Public 63 s 32 V/A/D (3) MBFM CapsNet 10 FCV 68.28 (A)
66.73 (V)
67.25 (D)

DL

[203] 2019 32 AV DEAP Public 1 s 32 V/A (2) PSD LSTM 10 FCV 74.38 (A)
81.1 (V)

DL

[204]
2020

15 AV SEED Public 12 s 62 Pos/Neg/Neu (3)

DGCNN LOSO CV

79.95

DL23 AV DREAMER Public – 14 V/A/D (9) PSD 84.54 (A)
86.23 (V)
85.02 (D)

32 AV DEAP Public 2 s 8 V/A (2) 72.81
[205] 2020 15 AV SEED Public 1.5 s 8 Pos/Neg (2) Windowing CNN LOSO CV 86.56 DL

11 AV LUMED Public 0.6 s 8 Valence (2) 81.8

[44] 2020 20 AV – Private – 16 V/A (2) EMD with NLF SVM Holdout 74.88 (A)
82.63 (V)

ML

[57] 2020 15 AV SEED Public 1 s 32 Pos/Neg/Neu (3) STFT CNN Holdout 90.59 DL32 AV DEAP Public 1 s 32 V/A (9) 82.84

[45] 2016 32 AV DEAP Public 3 s 32 V/A (4) EMD and SaENT SVM 10 FCV 94.98 (BC) ML93.20 (MC)

[46] 2021 20 AV – Private 10 s 1 Discrete (4) AVMD with NLF ELM 10 FCV 97.24 ML
[47] 2020 20 AV – Private 10 s 1 Discrete (4) ATQWT with STSF LSSVM 10 FCV 95.7 ML
[58] 2021 20 AV – Private 10 s 16 Discrete (4) SPWVD CNN Holdout 93.01 DL

[206] 2022 15 AV SEED Public – 62 Pos/Neg/Neu (3) DE RGNN LOSO CV 85.3 DL15 AV SEED IV Public 62 Discrete (4) 73.84

[207] 2015 15 AV SEED Public 1 s 62 Pos/Neg/Neu (3) DE DBN Holdout 86.08 DL

[59] 2019 27 AV MAHNOB-HCI Public 10 s 32 Valence PSD and NetP GELM 10 FCV 68 ML15 AV SEED Public 10 s 62 Pos/Neg/Neu (3) DE and NetP 88

[48] 2019
15 AV SEED Public 1 s 1 Pos/Neg/Neu (3)

FAWT and IPF RF 10 FCV
92.84

ML
32 AV DEAP Public 1 s 1 Discrete (2) 80.64

1 s 1 Discrete (4) 72.07

[208] 2019 32 AV DEAP Public 1 s 32 Discrete (2) PSD CNN 10 FCV 100 DL

[49] 2020 15 AV SEED Public 5 s 62 Pos/Neg/Neu (3) DT-CWT SRU Holdout 83.13 DL

32 AV DEAP Public 1 s 32 V/A (9) 90.91 (V)
90.87 (A)

[60] 2022 15 AV SEED Public 1 s 62 Pos/Neg/Neu (3) STFT and DE LSTM LOSO CV 90.92 DL

37 AV CMEED Public 1 s 30 V/A (2) 94.21 (V)
88.03 (A)

[209] 2021

32 AV DEAP Public 1 s 32 V/A (9)

Windowing DFR 10 FCV

97.69 (V)
97.53 (A)

DL23 AV DREAMER Public 1 s 14 V/A/D (9) 89.03 (A)
90.41 (V)
89.89 (D)

[210] 2023

32 AV DEAP Public 6.25 s 1 V/A (9)

Windowing ACRNN 10 FCV

93.72 (V)
93.38 (A)

DL23 AV DREAMER Public 9.76 s 1 V/A/D (9) 97.98 (A)
97.93 (V)
89.23(D)

[61] 2020 20 AV – Private 10 s 1 Discrete (4) TOR-based on S-TF AlexNet (CNN) Holdout 94.58 DL

[62] 2018 32 AV DEAP Public 4 s 23 V/A/D (9) QTFDs SVM 10 FCV 87 (V)
88.4 (A)

ML

[211] 2019 15 AV SEED Public – 62 Pos/Neg (2) NLF SVM LOSO CV 89 ML32 AV DEAP Public – 32 V/A/D (9) 72

[212] 2020 10 AV – Private 14 Discrete (3) PSD and WE ENT RVM 10 FCV 91.18 ML

[63] 2021

23 AV DREAMER Public – 14 V/A (2)

THFM CNN

88.20 (V)
90.43 (A)

DL
15 AV SEED Public – 62 Pos/Neg (2) 88.45 (V)

32 AV DEAP Public – 32 V/A (2) 10 FCV 76.61 (V)
77.72 (A)

40 AV AMIGOS Public – 14 V/A (2) 87.39 (V)
90.54 (A)

[50] 2021 28 CG GAMEEMO Public 3.74 s 1 Discrete (4) TQWT and FFP SVM 10 FCV 99.82 ML

(continued on next page)
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Table A.3 (continued).
Ref. Year Sub. Dataset Dataset name Status Length NCH Emotion (Classes) Feature extraction Classification Validation Accuracy (%) Decision

type

[51] 2022

23 AV DREAMER Public

2 s

4 V/A/D (3)

MVMD and ResNet18 SVM 10 FCV

99.03 (A)
95.17 (D)
94.53 (V)

ML40 AV AMIGOS Public 4 V/A/D (3) 96.68 (A)
97.45 (D)
95.58 (V)

[52] 2017 32 AV DEAP Public 5 s 8 V/A (2) EMD and STSF SVM LOSO CV 69.10 (V)
71.99 (A)

ML

[213] 2022 15 AV SEED IV Public 4 s 62 Discrete (4) NL, PSD, and DEC GFIL LOSO CV 79.17 ML

[214] 2020 32 AV DEAP Public 10 s 14 V/A/D (3) PSD, ENT, WT, and FD SVM 5 FCV 78.96 (A)
77.60 (D)
77.62 (V)

ML

[215] 2018 32 AV DEAP Public – 18 V/A (2) MEMD and STSF KNN LOSO CV 51.01 (A)
67 (V)

ML

[64] 2020 15 AV SEED Public 1 s 62 Pos/Neg/Neu (3) STFT, DE and rhythms CNN 5 FCV 91.68 DL

[216] 2016 32 DEAP Public 4 s 19 Discrete (4) FFT and rhythms SVM 10 FCV 59.13 ML

Pos/Neg/Neu (3) 72.36
[53] 2019 23 AV MPED Private 1 s 62 Discrete (2) PSD, NLF, and NL DEC LSTM Holdout 78.79 DL

Discrete (7) 42.1

[67] 2018 58 AV ASCERTAIN Public 8 V/A (2) STSF NB LOSO CV 60 (A)
61 (V)

ML

[84] 2020 21 AV – Private – 4 Discrete (4) STSF KNN 10 FCV 75 ML

23 AV DREAMER Public 10 s 4 V/A/D (3) 98.82 (A)
98.99 (D)
98.56 (V)

[217] 2021 32 AV DEAP Public 10 s 19 Discrete (4) Rhythms Deep CNN 10 FCV 98.45 (A)
98.69 (D)
98.91 (V)

DL

23 AV DASPS Public 10 s 14 V/A (2) 57.14

23 AV DREAMER Public – 4 V/A/D (3) 100 (A)
100 (D)
100 (V)

[54] 2021 32 AV DEAP Public – 19 Discrete (4) TQWT with PP and STSF SVM LOSO CV 99.56 (A)
99.67 (D)
99.55 (V)

ML

28 CG GAMEEMO Public – 1 Discrete (4) 100

[218] 2022 25 VR VREED Public 4 s 64 Pos/Neg (2) DE SVM Holdout 76.22 ML

[55] 2022 165 Image ICBrainDB Public 3 s 128 Discrete (4) TQWT with HOG, and LBP KNN 10 FCV 90.77 ML

[82] 2020

40 AV AMIGOS Public

1 s

3 V/A(4)

Filtering CNN-LSTM Holdout

98.8 (Fused)
74.65 (EEG) DL

23 AV DREAMER Public 3 V/A/D (4) 90.5 (Fused)
48.54 (EEG)

[71] 2021 20 AV – Private – 14 V/A (4) STSF and rhythms SVM 10 FCV

82.63 (V)
74.88 (A)
EEG

ML

85.38 (V)
77.52 (A)
Fused
18
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Table A.4
Summary of emotion recognition studies using ECG signals included in the review.

Ref. Year Sub. Dataset Dataset name Status Length NCH Emotion (Classes) Feature extraction Classification Validation Accuracy (%) Decision
type

[65] 2021 40 AV AMIGOS Public 20 s 3 V/A (2) WST, TDF, and FDF Ensemble 10 FCV 88.8 (A)
88.9 (V)

ML

[66] 2017 69
Video

– Private 20 s 3 Discrete (2) Rhythmic features SVM 10 FCV
100

MLImage 100
AV 100

[67] 2018 58 AV ASCERTAIN Public 3 V/A (2) NLF and rhythmic features Naïve Bayes LOSO CV 60 (V)
59 (A)

ML

[68] 2017 69
Video

– Private 20 s 3 Discrete (5) Rhythmic features SVM 10 FCV
73.8

MLImage 62.4
AV 72.8

[69] 2014 60 AV – Private 3.6 s 3 Discrete (6) NLF FKNN Holdout 92.87 ML

[76] 2014 30 AV – Private – 3 Discrete (6)
EMD with HHT

KNN Holdout
40.14

MLEMD 29.92
EMD with DFT 52.11

[70] 2020 – Music Augsburg university database Public – Discrete (4) Rhythmic features FHMM Holdout 95 ML

[79] 2022

23 Image – Private 20 s 3 V/A (2)

Filtering CNN 10 FCV

76.19 (V)
80.95 (A)

DL
23 AV DREAMER Public 20 s 3 V/A (2) 97.56 (V)

96.34 (A)

[53] 2019 23 AV MPED Private 1 s 3
Pos/Neg/Neu (3)

FFT and NLF LSTM Holdout
53.2

DLDiscrete (2) 55.24
Discrete (7) 25.1

23 AV DREAMER Public 1 s 3 V/A (5) – 87.7 (V)
87.4 (A)

[80] 2023 15 AV WESAD Public 1 s 3 Affect state (4) – CNN with CBAM Holdout 97.5 DL

58 AV ASCERTAIN Public 1 s 3 V/A(7) – 78.7 (V)
76.3 (A)

[219] 2017 24 AV MAHNOB-HCI Public – 3 V/A(2) HRV SVM – 60.83 (V)
65.73 (A)

ML

[81] 2021 15 AV – Private 3 Discrete (4) Filtering and CWT CNN-LSTM LOSO CV 71.67 DL

[86] 2021 58 ASCERTAIN Public 4 s 3 V/A (4) Heart rate variability SVM 10 FCV 78.32 (V)
76.83 (A)

ML

[71] 2021 20 AV – Private – 3 V/A (2) STSF and rhythmic features SVM 10 FCV

76.65 (V)
70.15 (A)

MLEEG-ECG
85.38 (V)
77.52 (A)

[72] 2015 27 Audio – Private 88 s 3 V/A (2) NLF and LF QDA LOSO CV 84.72 (V)
84.26 (A)

ML

[220] 2020 86 AV BioVid Emo DB Public 68 s 3 Discrete (5) Filtering SVM Holdout 80.89 ML

[73] 2022 23 AV DREAMER Public – 3 V/A/D (–) TDF, FDF, and NLF CNN 10 FCV 95.16 (V)
85.56 (A)
77.54 (D)

DL

[82] 2020

40 AV AMIGOS Public 1 s 3 V/A (4)

Filtering and segmentation CNN-LSTM Holdout

98.8 (Fused)
98.73 (ECG)

DL

23 AV DREAMER Public 1 s 3 V/A/D (4) 90.8 (Fused)
90.5 (ECG)

[74] 2023 24 AV MAHNOB-HCI Public 15 s 3 V/A (2) MRF and HRV BiLSTM 10 FCV 83.61 (A)
78.28 (V)

DL

[77] 2017 11 Music – Private – 16 Discrete (5) WDEC and DCT PNN Holdout 100 (Discrete)
100 (V) 100
(A)

ML

[75] 2020 61 Music – Private 60 s 3 Discrete (4) TDF, FDF, and NLF LS-SVM LOSO CV 10 FCV 68.1 (LOSO)
80.51 (10
FCV)

ML

[83] 2022

40 AV AMIGOS Public 20 s 3 V/A (4)

Windowing SL CNN 10 FCV

88.9 (A)
87.5 (V)

DL

23 AV DREAMER Public 60 s 3 V/A (4) 85.9 (A)
85 (V)

25 AV SWELL Public 60 s 3 Discrete (4) 93.3 (Stress)
96.7 (A)
97.3 (V)

15 AV WESAD Public 5 s 3 Discrete (4) 96.9

[78] 2019 25 AV – Private 20 s 2 Discrete (4) Rhythmic and EMD Extra tree 10 FCV 70.09 ML
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Table A.5
Summary of emotion recognition studies using GSR signals included in the review.

Ref. Year Sub. Dataset Dataset name Status Length Emotion (Classes) Feature extraction Classification Validation Accuracy (%) Decision
type

[77] 2017 11 Music – Private – Discrete (5) WDEC and DCT PNN Holdout 99.59 (Discrete)
99.52 (V)
99.66 (A)

ML

[84] 2020 21 – Private – Discrete (4) STSF KNN 10 FCV 72.61 (GSR)
79.76 (Fused)

ML

[85] 2017 32 AV DEAP Public 3 s V/A/D (2) DWT and EMD based STSF RF 10 FCV 89.29 (V)
81.81 (A)

ML

[86] 2021 58 AV ASCERTAIN Public 4 s V/A (4) TDF and FDF SVM 10 FCV

60.05 (V)
55.63 (A)

ML
Fused features
76.81 (V)
75.24 (A)

[87] 2020 32 AV DEAP Public 3 s V/A/D (4) PCP, LE, and APEN PNN 5 FCV 100 (V) 100
(A)

ML

[94] 2019 100 AV MDSTC dataset Private 1 s Discrete (6) Spectrogram CNN-LSTM Holdout Recall: 80.07 DL
[91] 2020 37 AV – Private – Discrete (3) EMD and TDF SVM 10 FCV 100 ML
[221] 2018 39 AV – Private – Discrete (3) filtering SVM Holdout 75.65 ML

[88] 2016 30 AV – Private – Discrete (4) STSF RF 10 FCV 75 (Fused
features)

ML

[95] 2022

62 AV MERTI-Apps Public 1.1 s V/A (2)

Windowing and filtering 1D AE Holdout

81.33 (A)
80.25 (V)

DL
32 AV DEAP Public 1.1 s V/A (3) 79.18 (A)

74.84 (V)

[89] 2021 34 Audio – Private – Discrete (4) STSF ANN 10 FCV 99.4 ML15 AV WESAD Public – Discrete (4) 99.4

[92] 2016 11 Music – Private 10 s

V/A (3)

DWT PNN Holdout

95.10 (Dis)
97.90 (V)
95.80 (A)

MLDiscrete (5) Fused 100
(Dis) 100
(V) 100
(A)

[90] 2017 35 Music – Private 10 s Discrete (4) NLF LSSVM 5 FCV 99.98 ML

[222] 2022 58 AV ASCERTAIN Public V/A (4) – SVM – 99.67 ML

[93] 2016 11 Music – Private –

V/A (3)

DWT with matching pursuit PNN Holdout

69.93 (Dis)
81.82 (V)
79.02 (A)

ML

Discrete (5) Fused 99.64
(Dis)
99.51 (V)
99.44 (A)

Pos/Neg/Neu (3) 60.24
[53] 2019 23 AV MPED Private 1 s Discrete (2) FFT and NLF LSTM Holdout 63.37 DL

Discrete (7) 31.19

[67] 2018 58 AV ASCERTAIN Public – V/A (2) NLF and rhythmic features NB LOSO CV 68 (V) 66 (A) ML

[82] 2020 40 AV AMIGOS Public 1 s V/A (4) Filtering and segmentation CNN-LSTM Holdout 98.8 (Fused)
63.67 (GSR)

DL
Table A.6
Summary of emotion recognition studies using ET signals included in the review.

Ref. Year Sub. Dataset Dataset Status Length Emotion Feature Classification Validation Accuracy Decision
name (Classes) extraction (%) type

[96] 2021 16 Image – Private – Discrete (4) FFT and STFT
with FDF

DGCNN Holdout 87.97 DL

[97] 2023 48 Video eSEE-d Public – Discrete (4) STSF DMLP 10 FCV 92 (V) 81
(A)

DL

[223] 2021 10 Virtual reality – Private – Discrete (4) – SVM LOSO CV 59.19 ML

[98] 2019 10 Video – Private – Discrete (4) – – – –

[224] 2020 30 Video – Private – Discrete (3) NLF SVM LOSO CV 80 ML

[225] 2021 10 Image – Private – Discrete (8) NLF and FDF DGNN Holdout 88.1 DL
20
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Table A.7
Summary of emotion recognition studies using SPEECH signals included in the review.

Ref. Year Sub. Dataset Dataset name Status Length Emotion (Classes) Feature extraction Classification Validation Accuracy Decision
(%) type

[101] 2020 24 AV RAVDESS Public 10 ms Discrete (8) MFCC and MS CNN Holdout 78.2 DL
[102] 2020 7 Audio LDC Public Discrete (4) MFCC and LPCC SVM Holdout 90.08 ML
[103] 2020 24 AV RAVDESS Public 10 ms Discrete (8) DWT, MFCC, and STSF Decision Tree Holdout 85 ML

10 AV IEMOCAP Private – Discrete (4) 86.1
[113] 2020 24 Acted RAVDESS Public 10 ms Discrete (8) STSF 1D CNN 5 FCV 71.61 DL

10 Audio EMO-DB Public – Discrete (7) 64.3

[226] 2014 10 Audio EMO-DB Public – Discrete (7) Spectral analysis KNN Holdout 50 ML
[104] 2019 330 AV AFEW Public 40 ms Discrete (7) FFT and MSG CNN Holdout 60.59 DL

[105] 2022 10 Audio EMO-DB Public 2 s Discrete (7) MFCC and BLS LDA Holdout 100 ML4 Audio CASIA Private 2 s Discrete (6) 100

[106] 2015
10 Audio EMO-DB Public – Discrete (6)

Fourier parameters and MFCC SVM Holdout
88.88 ML4 Audio CASIA Private – Discrete (6) 79

16 Audio EESDB Public – Discrete (4) 50.67

[107] 2019 10 AV IEMOCAP Private – Discrete (4) SG and MFCC CNN 5 FCV 73.6 DL

10 Audio EMO-DB Public 25 ms Discrete (7) 92.45
[108] 2019 24 AV RAVDESS Public 25 ms Discrete (8) MFCC and SCF Bagged tree 10 FCV 75.69 ML

10 Audio IITKGP-SEHSC Private 25 ms Discrete (8) 84.11

42 AV eNTERFACE Public – Discrete (6) 89.6
[118] 2019 4 Audio CASIA Private – Discrete (6) – LSTM Holdout 92.8 DL

AV GEMEP Private – Discrete (12) 57

[227] 2019 4 Audio CASIA Private – Discrete (6) FFT DNN-SVM Holdout 72.92 DL

24 AV RAVDESS Public 0.5 s Discrete (8) 77.02
[119] 2020 10 AV IEMOCAP Private 0.5 s Discrete (4) clustering BiLSTM Holdout 72.25 DL

10 Audio EMO-DB Public 0.5 s Discrete (7) 85.57

10 Audio EMO-DB Public – Discrete (7) 89.65
[120] 2021 24 AV RAVDESS Public – Discrete (8) PSF and EE SVM 7 FCV 82.59 ML

14 AV SAVEE Public – Discrete (7) 77.74

4 Audio CASIA Private – Discrete (6) 90.28
[109] 2018 14 AV SAVEE Public – Discrete (7) MFCC and STSF BEL Holdout 76.4 DL

51 Audio FAU Private – Discrete (7) 71.05

[115] 2022 10 AV IEMOCAP Private 10 ms Discrete (4) SIT CNN (ResNet152) Holdout 82.25 DL10 Audio EMO-DB Public 10 ms Discrete (7) 5 FCV 96.14

[116] 2019 10 Audio EMO-DB Public – Discrete (7) STFT CNN Holdout 77.33 DL
[228] 2021 2 Audio TESS Public 2–3 s Discrete (6) EMD with ENT LDA 10 folf CV 93.3 ML
[110] 2021 10 AV IEMOCAP Private 20 ms Discrete (4) MFCC, ZCR, spectral spread, and centroid LSTM Holdout 72.5 DL

[121] 2019 10 Audio EMO-DB Public 20 ms Discrete (7) PSCF ELM Holdout 91.02 ML14 AV Amritaemo Arabic database Private 20 ms Discrete (6) 86.98

[229] 2017 10 AV IEMOCAP Private 25 ms Discrete (4) Log FT CNN LOSO CV 64.78 DL

[230] 2022 18 Audio Turkish SER dataset Private 5 s Discrete (3) TQWT and SLP SVM 10 FCV 96.41 ML45 Audio English SER dataset Private 5 s Discrete (3) 94.97

[114] 2019 10 AV IEMOCAP Private – Discrete (4) STFT and SG CNN 5 FCV 81.75 DL24 AV RAVDESS Public – Discrete (8) 79.5

[111] 2020

24 AV RAVDESS Public – Discrete (8)

MEL spectrogram

MLP

–

83.8

DL10 AV IEMOCAP Private – Discrete (4) CNN-SVM 81.3
10 Audio EMO-DB Public – Discrete (7) SVM 95.1
14 AV SAVEE Public – Discrete (7) SVM 82.1

[117] 2018

31 AV BAUM Public 10 ms Discrete (12)

LMSG CNN LOSO CV

44.61

DL10 Audio EMO-DB Public 10 ms Discrete (7) 87.31
42 AV eNTERFACE Public 10 ms Discrete (6) 79.25
8 AV RML Public 10 ms Discrete (6) 75.34

[231] 2018 4 Audio CASIA Private Discrete (6) PSF ELM LOSO CV 89.6 ML

[112] 2021
24 AV RAVDESS Public – Discrete (8)

Spectrum and spectrogram CNN 10 FCV
85

DL10 Audio EMO-DB Public – Discrete (7) 95
14 AV SAVEE Public – Discrete (7) 82

[232] 2021

24 AV RAVDESS Public – Discrete (8)

TQWT with TSP SVM 10 FCV

87.43

ML10 Audio EMO-DB Public – Discrete (7) 90.09
14 AV SAVEE Public – Discrete (7) 84.79
6 Audio EMOVO Public – Discrete (7) 79.08
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Table A.8
Summary of emotion recognition studies using IMAGE signals included in the review.

Ref. Year Sub. Dataset name Status No. of
images

Emotion
(Classes)

Feature extraction Classification Validation Accuracy (%) Decision
type

[122] 2022 70 KDEF Public 4900 Discrete (7) FLC SVM Holdout 85 ML201 CK+ Public 3368 Discrete (7) RF 97.86

[233] 2022 201 CK+ Public 3368 Discrete (7) GM-WLBP, GLCM and GLRM CNN-LSTM Holdout 91.42 DL10 JAFFE Public 213 Discrete (7) 92.85

[123] 2022 337 CMU Multi-PIE Public 750K+ Discrete (5) Face extraction using MTCNN MTCNN Holdout 90 DL– AffectNet Public 1M Discrete (8) 90

[138] 2022 10 JAFFE Public 213 Discrete (7) Normalization, scaling, and
augmentation CNN Holdout 95.65 DL118 CK+ Public 3150 Discrete (7) 99.36

[124] 2023

10 JAFFE Public 213 Discrete (7)

RetinaFace CNN Holdout

98.44

DL– FER2013 Public 35,887 Discrete (7) 74.64
≈450 000 AffectNet Public 1M Discrete (8) 62.78
19 MMI Public 4756 Discrete (6) 99.02

– RAF-DB 15 539 Discrete (7) 72.84
[234] 2020 ≈35,887 FER2013 Public 35,953 Discrete (7) Reinforcement learning CNN Holdout 72.35 DL

– ExpW 91 793 Discrete (7) 50.61

[125] 2019
123 CK+ Public 309 Discrete (7) Geometric and texture

features DAGSVM –
91.11

ML10 JAFFE Public 213 Discrete (7) 63.33
52 MUG Public 304 Discrete (6) 82.28

[235] 2021 – CK+ Public 918 Discrete (7) – MobileNet CNN Holdout 98.5 DL

[236] 2019 97 CK+ Public 8150 Discrete (7) Gaussian normalization CNN with RB Holdout 93.24 DL10 JAFFE Public 213 Discrete (7) 95.23

[126] 2019 450 000 AffectNet Public 220K+ Discrete (8) MTCNN Generater CAE Holdout 74.8 DL– RAF-DB 15 539 Discrete (7) 81.83

[133] 2021

123 CK+ Public 593 Discrete (7)

SIFT, HOG, and LBP Attention
CNN Holdout

98

DL– FER2013 Public 35,887 Discrete (7) 70.02
10 JAFFE Public 213 Discrete (7) 92.8
– FERG Public 55,767 Discrete (7) 99.3

[127] 2020 SAVEE Public 480 Discrete (7) Facial graphs ANN Holdout 90 ML

[237] 2020
95 SFEW Public 700 Discrete (7)

GGPI GAN Holdout
27.24

DL100 BU-3DFE Public 21 000 Discrete (7) 81.95
270 CMU Multi-PIE Public 7655 Discrete (6) 92.09

[128] 2019 123 CK+ Public 593 Discrete (7) Appearance and
geometric features CNN 10 FCV 96.46 DL10 JAFFE Public 213 Discrete (7) 91.27

[238] 2019 – FER2013 Public 35,887 Discrete (7) Normalization, equalization,
and image edge CNN Holdout 88.56 (fused) DL– LFW Public 13 000 Discrete (7)

10 JAFFE Public 213 Discrete (7) 98.52

[129] 2020
123 CK+ Public 593 Discrete (7) Cropping and facial feature

extraction CNN with attention Holdout
98.9

DL– FER2013 Public 35,887 Discrete (7) 75.82
35 NCUFE Private 26,950 Discrete (7) 94.33
80 Oulu-CASIA Public 2880 Discrete (6) 94.63

[239] 2020
27 CK+ Public 450 Discrete (7)

Expressional vector CNN Holdout
85

DL337 CMU Multi-PIE Public 750K+ Discrete (5) 78
1573 NIST Public 3248 – 96

[134] 2019 – AffectNet Public 300K Discrete (8) Position level features BiRNN Holdout – DL

[240] 2021
123 CK+ Public 593 Discrete (7)

MSWGT SVM –
98.9

ML10 JAFFE Public 213 Discrete (7) 97.1
18 FEEDTUM Public – Discrete (7) 95.8

[241] 2016 20 – Private 700 Discrete (7) BOWT SVM 10 FCV 96.77 ML
[135] 2020 – Downloaded Private 23,164 Discrete (8) – ResNet-MldrNet 5 FCV 67.75 DL
[242] 2023 – FER2013 Public 35,887 Discrete (7) Gray scale CNN Holdout 54 DL

[136] 2019
67 RaFD Public 1608 Discrete (8)

OFSTF CNN with
inception Holdout

99.17
DL123 CK+ Public 593 Discrete (7) 98.38

88 MMI Public 5042 Discrete (9) 99.59

[130] 2020 67 Turkey student DB Private – Discrete (7) Facial features – – –

[137] 2021

70 KDEF Public 4900 Discrete (7)
Convolutional-based
features CNN (DenseNet121) Holdout 10 FCV

98.78 (Holdout)
96.51 (10 FCV) DL

10 JAFFE Public 213 Discrete (7) 100 (Holdout)
99.52 (10 fold CV)

[131] 2015 – CK+ Public 329 Discrete (6) Salient facial patches SVM 10 FCV 94.09 ML10 JAFFE Public 183 Discrete (6) 91.79

[243] 2017 2,64,683 SocialMedia Public 2 mil. Discrete (10) Generic and special features SVM Holdout – ML

[132] 2022 – UNBC-McMaster Public 88 427 Discrete (2) Aligned face crop LSTM LOSO CV 90.3 DL123 CK+ Public 593 Discrete (7) 97.2
22
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Table B.9
Details of the EEG datasets used for emotion recognition.

Ref. Subjects Dataset Dataset
name

Status of
dataset

Recorder NCH Samp.
Freq.

Type of
classification

Evoked emotions Self-
assessment

[199] 20 AV – Private EEG
traveler

24 256 Discrete
emotions

Happy, fear, sad, and relax SAM

[244] 23 AV DREAMER Public Emotive
EPOC

14 128 V/A/D Amusement, surprise,
excite- ment, happiness,
calmness, anger, disgust,
fear, and sadness

SAM

[207,
245]

15 AV SEED Public ESI
NeuroScan
System

62 200 Pos/Neu/Neg Positive, neutral, and
negative

PQES,
FAM, UL

[246] 20 Music MUSEC Public g.USBamp 62 1200 V/A Favored Melody, favored
Song, non-favored Melody,
non-favored Song

–

[247] 32 AV DEAP Public Biosemi
ActiveTwo

32 128 V/A/D/liking LALV, HALV, LAHV, and
HAHV

SAM

[248] 43 AV INTER-
FACES

Public OpenBCI 8 250 V/A Happiness, Excitement, and
Fear

SAM

[200] 16 Images – Private g.USBamp 64 512 V/A/D Happy, curious, angry, sad,
and quiet

SAM

[249] 11 AV LUMED Public Neuro-
electrics
Enobio 8

8 500 V (Neg and
Pos)

Positive, neutral, and
negative

–

[44] 20 AV – Private Emotiv
Epoc

16 – V/A Happy, relaxed, angry, sad
and disgust

SAM

[250] 15 AV SEED IV Public ESI
NeuroScan
System

62 200 Discrete
emotions

Happiness, sadness, fear,
and neutral

PANAS

[251] 27 AV MAHNOB-
HCI

Public Biosemi
Active II s

32 1024 Valence Amusement, joy, neutral,
sadness, fear, and disgust

SAM

[252,
253]

37 AV CMEED Public NuAmps 40 32 128 V/A Positive, neutral, and
negative

SAM

[212] 10 AV – Private Emotiv
EPOC

14 Discrete
emotions

Happiness, neutral, and
sadness

SAM

[254] 40 AV AMIGOS Public Emotiv
EPOC

14 128 V/A/D Neutral, Disgust,
Happiness, Surprise, Anger,
Fear and Sadness

SAM

[255] 28 Games GAMEEMO Public EMOTIV
EPOC

14 128 Discrete
emotions

Funny, Boring, Horror,
Calm

SAM

[256] 23 AV MPED Private ESI
NeuroScan
System

62 1000 Discrete
emotions

Joy, funny, anger, fear,
sadness, disgust, and
neutral

PANAS,
SAM, and
DES

[257] 58 AV ASCER-
TAIN

Public Neuro Sky
EEG

8 32 V/A Arousal, Valence,
Engagement Liking,
Familiarity

SAM

[258] 23 AV DASPS Public Emotiv
EPOC

14 128 V/A LALV, HALV, LAHV, and
HAHV

SAM and
HAM-A

[259] 25 VR VREED Public Wireless
EEG device

64 1000 Neg and Pos Neg and Pos –

[260] 165 Image ICBrainDB Public Brain
Products
actiChamp

128 1000 Discrete
emotions

Happy, angry, sad, and
neutral

–

[71] 20 AV – Private Emotive
EPOC

14 128 V/A LALV, HALV, LAHV, and
HAHV

SAM
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Table B.10
Details of the ECG datasets used for emotion recognition.

Ref. Subjects Dataset Dataset
name

Status of
dataset

Recorder NCH Samp.
Freq.

Type of
classification

Evoked emotions Self-
assessment

[254] 40 AV AMIGOS Public SHIMMER 3 256 V/A/D Neutral, Disgust,
Happiness, Surprise,
Anger, Fear and Sadness

SAM

[66] 69 Image
Video
AV

– Private Radio
frequency
type device

3 960 Discrete
emotions

Happy, neutral, and
anger

–

[257] 58 AV ASCER-
TAIN

Public – 3 – V/A Arousal, Valence,
Engagement Liking,
Familiarity

SAM

[69] 60 AV – Private Power Lab
data
Acquisition

3 1000 Discrete Happiness, sadness, fear,
disgust, surprise and
neutral

SAM

[261] – Music Augsburg
university
database

Public – – 256 Discrete Joy, anger, sadness, and
pleasure

–

[79] 23 Image – Private MP150
system

3 1000 V/A Calm, relaxed, content,
glad, delighted, bored,
annoyed, depressed,
others, gloomy, afraid,
angry, excited

SAM

[244] 23 AV DREAMER Public SHIMMER 3 256 V/A/D Amusement, surprise,
excite- ment, happiness,
calmness, anger, disgust,
fear, and sadness

SAM

[256] 23 AV MPED Private BIOPAC
System

3 250 Discrete
emotions

Joy, funny, anger, fear,
sadness, disgust, and
neutral

PANAS,
SAM, and
DES

[262] 15 AV WESAD Public RespiBAN
Professional

3 700 Affect state Neutral, stress,
amusement

PANAS,
STAI, and
SAM

[251] 24 AV MAHNOB-
HCI

Public Biosemi
active II

3 256 Valence Amusement, joy,
neutral, sadness, fear,
and disgust

SAM

[81] 15 AV – Private ECG
monitor
(PC-80B)

3 154 Discrete
emotions

Relax, scary, disgust,
and joy

SAM

[71] 20 AV – Private – 3 128 V/A Happy, relaxed, angry,
sad, and disgusted

SAM

[72] 27 Audio – Private BIOPAC inc. 3 500 V/A Low-medium valence
and medium-high
valence

SAM

[263] 86 AV BioVid
Emo DB

Public Nexus-32 3 512 Discrete
emotions

Amusement, sadness,
anger, disgust and fear

SAM

[77] 11 Music – Private PowerLab 16 400 Discrete
emotions

Peacefulness, happiness,
sadness, rest, and scary

–

[75] 61 Music – Private NeXus-10 3 2048 Discrete
emotions

Joy, tension, sadness,
and peacefulness

GEMS-9

[264] 25 AV SWELL Public TMSI MOBI
device

3 2048 Affect state Valence, arousal, and
stress

SAM

[78] 25 AV – Private SpikerShield
Heart

2 1000 Discrete
emotions

Joy; sadness; pleasure;
anger; fear; and neutral

SAM
24
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Table B.11
Details of the GSR datasets used for emotion recognition.

Ref. Subjects Dataset Dataset
name

Status of
dataset

Recorder Samp.
Freq.

Type of
classification

Evoked emotions Self-
assessment

[77] 11 Music
clips

– Private PowerLab 400 Discrete
emotions

Peacefulness, happiness,
sadness, rest, and scary

–

[84] 21 – Private Shimmer 256 Discrete
emotions

Happy, angry, sad, and
relaxed

SAM

[247] 32 AV DEAP Public Biosemi
ActiveTwo

128 V/AD/liking LALV, HALV, LAHV, and
HAHV

SAM

[94] 100 AV MDSTC Private Customized
physiological
sensor device

200 Discrete
emotions

Surprise, angry, disgust,
happy, fear, and sad

SAM

[91] 37 AV – Private Bluno Nano,
DFRobot

500 Discrete
emotions

Amusement, sadness, and
neutral

SAM

[257] 58 AV ASCER-
TAIN

Public – 256 V/A Arousal, Valence, Engagement
Liking, Familiarity

SAM

[221] 39 AV – Private – – Discrete Positive, negative, and neutral PANAS

[88] 30 AV – Private BIOPAC MP150 1000 Discrete Neutral, sadness, fear and
pleasure

SAM

[265] 62 AV MERTI-
Apps

Public BIOPAC MP150 1000 V/A Happy, angry, sad, and scared SAM

[89] 34 Audio – Private MySignals
hardware

260 Discrete Relax, stressed, partially
stressed, and happy

–

[262] 15 AV WESAD Public RespiBAN
Professional

700 Affect state Neutral, stress, amusement PANAS,
STAI, and
SAM

[90] 35 Music – Private PowerLab 400 Discrete
emotions

Happiness, sadness,
peacefulness, and scary

–

[256] 23 AV MPED Private BIOPAC System 250 Discrete
emotions

Joy, funny, anger, fear,
sadness, disgust, and neutral

PANAS,
SAM, and
DES

[254] 40 AV AMIGOS Public Shimmer 256 V/A/D Neutral, Disgust, Happiness,
Surprise, Anger, Fear, and
Sadness

SAM
Table B.12
Details of the ET datasets used for emotion recognition.

Ref. Subjects Dataset Dataset
name

Status of
dataset

Recorder Samp.
Freq.

Type of
classification

Evoked emotions Self-
assessment

[96] 16 Image – Private Tobii pro
eye-tracker

600 Discrete
emotions

Calm, happy, nervous, and sad –

[97] 48 Video eSEE-d Public Pupil Labs 240 Discrete
emotions

Anger, disgust, sadness and
tenderness

SAM

[223] 10 Virtual
reality

– Private Pupil Labs Discrete
emotions

– –

[98] 10 Video – Private Tobii TX300
eye-tracker

300 Discrete
emotions

Joy, love, inspiration, and
serenity

–

[224] 30 Video – Private EyeTribe 60 Discrete
emotions

Pleasant, neutral, and
unpleasant

SAM

[225] 10 Image – Private Eye-Tracking 600 Discrete
emotions

Angry, disgust, fear, sad,
expect, happy, surprised, trust

SAM
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Table B.13
Details of the SPEECH datasets used for emotion recognition.

Ref. Subjects Dataset Dataset
name

Status of
dataset

Recorder Samp.
Freq.

Type of
classification

Evoked emotions Self-
assessment

[266] 24 Audio
video

RAVDESS Public Rode NTK 48 K Discrete
emotions

Calm, happy, sad, angry,
fearful, surprise, and disgust
expressions

SAM

[267] 7 Audio LDC Public WAVES+ 22.05
K

Discrete
emotions

Disgust, panic, anxiety, hot
anger, cold anger, despair,
sadness, elation, happy,
interest, boredome, shame,
pride, and contempt

–

[268] 10 Audio
video

IEMOCAP Private VICON motion
capture system

48 K Discrete
emotions

Anger, happiness, sadness,
neutrality

SAM

[269] 10 Audio EMO-DB Public Tascam DA-P1 16 K Discrete
emotions

Disgust, sadness, happiness,
boredom, fear, neutral, and
anger

–

[270] 330 Audio
video

AFEW Public – – Discrete
emotions

Happiness, surprise, anger,
disgust, fear, sadness and
neutral

–

[271] 4 Audio CASIA Private RODE K2 16 K Discrete
emotions

Angry, happy, fear, sadness,
surprise and neutral

–

[272] 16 Audio EESDB Public Cooleditpro – Discrete
emotions

Angry, disgust, fear, happy,
neutral, sad, and surprise

–

[273] 10 Audio IITKGP-
SEHSC

Private SHURE dynamic
cardioid
microphone
C660N

16 K Discrete
emotions

Happy, Sad, Angry,
Sarcastic, Fear, Neutral,
Disgust, and Surprise

–

[274] 42 Audio
video

eNTERFACE Public D1/DV PAL 48 K Discrete
emotions

Anger, Disgust, fear,
happiness, sadness, and
surprise

–

[275] Audio
video

GEMEP Private SENNHEISER 41 K Discrete
emotions

Amusement, pride, joy,
relief, interest, pleasure, hot
anger, panic fear, despair,
irritation, anxiety, sadness

SAM

[276–
278]

14 Audio
video

SAVEE Public Surrey
audio-visual
expressed emotion
database

44.1 K Discrete
emotions

Anger, Disgust, Fear,
Happiness, Sadness,Surprise,
and Neutral

–

[279] 51 Audio FAU Private SHURE UHF-serie 16 K Discrete
emotions

Angry, Emphatic, Positive,
Neutral, and Rest

SAM

[280] 2 Audio TESS Public – – Discrete
emotions

Anger, disgust, fear,
happiness, pleasant surprise,
sadness, and neutral

–

[121] 14 Audio
video

Amritaemo
Arabic
database

Private Adobe Audition
software

16 K Discrete
emotions

Anger, happy, sad, disgust,
surprise, and neutral

SAM

[230] 18 Audio Turkish SER
dataset

Private – – Discrete
emotions

Positive, negative, and
neutral

–

[230] 45 Audio English SER
dataset

Private – – Discrete
emotions

Interesting, boring, and
neutral

–

[281] 31 Audio
video

BAUM Public – 48 K Discrete
emotions

Happiness, sadness, fear,
anger, disgust, confusion,
boredom, and interest

–

[282] 8 Audio
video

RML Public – 44.1 K Discrete
emotions

Anger, disgust, fear, joy,
sadness, and surprise

–

[283] 6 Audio EMOVO Public Marantz PMD670 48 K Discrete
emotions

Neutral, Anger, Disgust,
Fear, Happiness, Sadness,
Surprise

SAM
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Table B.14
Details of the IMAGE datasets used for emotion recognition.

Ref. Subjects Dataset Dataset
name

Status of
dataset

Type of
classification

Evoked emotions Self-
assessment

[284] 70 KDEF Public 4900 Discrete emotions Angry, Fearful, Disgusted, Sad, Happy,
Surprised, and Neutral

–

[285] 210 CK+ Public 8150 Discrete emotions Angry, Contempt, Disgust, Fear, Happy,
Sadness, and Surprise

FACS

[286] 10 JAFFE Public 213 Discrete emotions Happiness, sadness, surprise, anger, disgust,
fear, and neutral

–

[287,
288]

337 CMU
Multi-PIE

Public 750K+ Discrete emotions Neutral, smile, surprise, squint, disgust, and
scream

–

[289] – AffectNet Public 1M Discrete emotions Neutral, happy, sad, surprise, fear, disgust,
anger and contempt

SAM

[290] – FER2013 Public 31K+ Discrete emotions Angry, Disgust, Fear, Happy, Sad, Surprise,
Neutral

–

[291] 88 MMI Public 5042 Discrete emotions Anger, fear, and sadness, happiness, surprise
and disgust

FACS

[292,
293]

– RAF-DB Public 29 672 Discrete emotions Disgust, happy, sad, anger, fear, and surprise SAM

[294] – ExpW Public 91 793 Discrete emotions Angry, disgust, fear, happy, sad, surprise, and
neutral

–

[295] 52 MUG Public 304 Discrete emotions Disgust, happy, sad, anger, fear, and surprise FACS
[296] – FERG Public 55K+ Discrete emotions Angry, Disgust, Fear, Happy, Sad, Surprise,

Neutral
FACS

[276–
278]

– SAVEE Public 480 Discrete emotions Anger, Disgust, Fear, Happiness, Sadness,
Surprise, Neutral

–

[297] 95 SFEW Public 700 Discrete emotions Anger, Disgust , Fear, Happiness , Sadness,
Surprise, and Neutral

SAM

[298] 100 BU-3DFE Public 21K Discrete emotions Anger, Disgust , Fear, Happiness , Sadness,
Surprise, and Neutral

SAM

[299] 5749 LFW Public 13 233 Discrete emotions Angry, Disgust, Fear, Happy, Sad, Surprise,
Neutral

SAM

[129] 35 NCUFE Private 26,950 Discrete emotions Anger, disgust, fear, happiness, sadness,
surprise, and neural

–

[300] 80 Oulu-CASIA Public 2880 Discrete emotions Anger, disgust, fear, happiness, sadness, and
surprise

–

[301] 1573 NIST Public 3248 – – –

[302] 18 FEEDTUM Public – Discrete emotions Neutral, anger, disgust, fear, happiness,
sadness and surprise

–

[135,
303]

– Downloaded Private 23,164 Discrete emotions Happy, sadness, surprise, anger, disgust, fear,
and neutral

–

[304] 67 RaFD Public 1608 Discrete emotions Anger, disgust, fear, happiness, sadness,
surprise, contempt, and neutral

SAM

[130] 67 Turkey
student DB

Private – Discrete emotions Disgust, sadness, happiness, fear, contempt,
anger, and surprise

FACS

[243] 2,64,683 SocialMedia Public 21 mil. Discrete emotions Amusement, awe, contentment, excitement,
anger, disgust, fear, and sadness

SAM

[305] – UNBC-
McMaster

Public 48,398 Discrete emotions Pain and no-pain FACS
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Table C.15
Abbreviations used in the review method.

A

Adaptive VMD (AVMD)
Adaptive TQWT (ATQWT)
Approximate entropy (APEN)
Artificial intelligence (AI)
Artificial neural network (ANN)
Arousal (A)
Attention-based convolutional recurrent neural network (ARCNN)
Audio/Video (AV)
Autoencoder (AE)

B

Binary class (BC)
BiOrthogonal wavelet transform (BOWT)
Brain emotional learning (BEL)
Broad learning system (BLS)

C

Capsule Net (CapsNet)
Continuous wavelet transform (CWT)
Convolutional autoencoder (CAE)
Convolutional neural network (CNN)
Convolutional Block Attention Module (CBAM)
Cross validation (CV)

D

Decomposition (DEC)
Deep forest (DFR)
Deep belief networks (DBN)
Deep learning (DL)
deep multilayer perceptron (DMLP)
Deep neural network (DNN)
Differential Emotions Scale (DES)
Differential entropy (DE)
Directed Acyclic Graph (DAG)
Discrete cosine transform (DCT)
Discrete Fourier transform (DFT)
Discrete wavelet transform (DWT)
Dominance (D)
Dual filtering (DF)
Dual-tree complex wavelet transform (DT-CWT)
Dynamic graph neural network (DGNN)
Dynamical Graph CNN (DGCNN)

E

Empirical mode decomposition (EMD)
Energy effective (EE)
Entropy (ENT)
Extreme learning machine (ELM)

F

Facial Action Coding System (FACS)
Facial landmark coordinates (FLC)
Familiarity (FAM)
Fast Fourier transform (FFT)
Fine KNN (FKNN)
Flexible analytic wavelet transform (FAWT)
Fold cross validation (FCV)
Fourier transform (FT)
Fractal dimension (FD)
Fractal Firat pattern (FFP)
Frequency-domain features (FDF)
Fuzzy Hidden Markov Model (FHMM)

(continued on next page)
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Table C.15 (continued).

G

Generalized low-rank model (GLRM)
Generative adversarial network (GAN)
Geneva Emotional Music Scale (GEMS)
Geometry Guided Pose-Invariant (GGPI)
Geometric Mean based Weighted Local Binary Pattern (GM-WLBP)
Graph ELM (GELM)
Gray Level Co-occurrence Matrix (GLCM)
Graph-regularized least square regression with feature importance learning
(GFIL)

H

Hamilton Anxiety Rating Scale (HAM-A)
Heart rate variability (HRV)
High arousal (HA)
High valence (HV)
Hilbert Huang transform (HHT)
Histogram of oriented gradients (HOG)

I

Information potential feature (IPF)

K

K nearest neighbor (KNN)

L

Leave one subject out (LOSO)
Least square SVM (LSSVM)
Linear features (LF )
Linear discriminant analysis (LDA)
Linear Predictive correlation coefficient (LPCC)
Local binary pattern (LBP)
Log Mel-spectrograms (LMSG)
Long short term memory (LSTM)
Low arousal (LA)
Low valence (LV)
Lyapunov exponents (LE)

M

Machine learning (ML)
Mel-frequency cepstrum coefficients (MFCC)
Mel spectrogram (MSG)
Modulation spectral (MS)
Morphological features (MRF)
Multiband feature matrix (MBFM)
Multiclass (MC)
Multilevel stationary wavelet gradient transform (MSWGT)
Multi Task Convolutional Neural Network (MTCNN)
Multivariate EMD (MEMD)
Multivariate VMD (MVMD)

N

Naïve Bayes (NB)
Negative (Neg)
Network pattern (NetP)
Neutral (Neu)
Nonlinear features (NLF)

O

One (1)-dimensional (1D)
Optical flow Spatial-Temporal feature (OFSTF)

(continued on next page)
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Table C.15 (continued).

P

Pearson’s Correlation Coefficient (PCC)
Philippot questionnaire: emotion state (PQES)
Poincare plots (PCP)
Positive and Negative Affect Schedule (PANAS)
Positive (Pos)
Power spectral density (PSD)
Prime pattern (PP)
Probabilistic neural network (PNN)
Prosodic and spectral features (PSF)
Prosodic, spectral and cepstral features (PSCF)

Q

Quadratic discriminant analysis (QDA)
Quadratic time-frequency distributions (QTFDs)

R

Random forest (RF)
Regularized Graph Neural Networks (RGNN)
Relevance vector machine (RVM)
Residual block (RB)

S

S-transform (S-TF)
Scale-invariant feature transform (SIFT)
Sample Entropy (SaENT)
Self-Assessment Manikin (SAM)
Selflearned (SL)
Short-time Fourier transform (STFT)
Showlace pattern (SLP)
Simple Recurrent Units (SRU)
Smoothed Pseudo Wigner Ville distribution (SPWVD)
Speech-to-image transform (SIT)
Spectrogram (SG)
Spectral centroids featurs (SCF)
State-Trait Anxiety Inventory (STAI)
Statistical features (STSF)
Support vector machine (SVM)

T

Time-domain features (TDF)
Time order representation (TOR)
Topographic and holographic feature maps (THFM)
Tunable Q wavvelet transform (TQWT)
Twine shuffle pattern (TSP)

U

Understandable level (UL)

V

Valence (V)
Variational mode decomposition (VMD)
Virtual reality (VR)

W

Wavelet decomposition (WDEC)
Wavelet energy (WE)
Wavelet scattering transform (WST)
Wavelet transform (WT)

Z

Zero-crossing rate (ZCR)
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