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Nonlinear internal solitary waves observed in laboratory experiments are discussed from the stand-
point of their relation to different soliton theories, from the classical integrable models such as the
Korteweg–de Vries, Gardner, Benjamin–Ono, and Joseph–Kubota–Ko–Dobbs equations and their
modifications, through the nonintegrable models describing higher-order nonlinear effects, viscos-
ity, rotation, and cylindrical spreading, to the strongly nonlinear models. First, these theoretical
models are briefly described and, then, laboratory data and their comparison with the theory are
presented. © 2005 American Institute of Physics. �DOI: 10.1063/1.2107087�
Internal solitary waves probably comprise the most ubiq-
uitous type of solitons existing in a natural environment.
They are regularly observed in oceans and often in the
atmosphere. Numerous experimental studies of internal
solitons in laboratory tanks have been performed in the
last few decades. Such experiments provide detailed
quantitative information usually unavailable in field con-
ditions, and they are also an efficient tool for verifying
numerous theoretical models. In this paper we present a
review of studies of internal solitons in laboratory tanks
and a discussion of the relationship between experimental
results and the existing theoretical models, including both
the well-known integrable equations and the less thor-
oughly studied nonintegrable models, taking into account
such factors as dissipation, rotation, cylindrical diver-
gence, and strong nonlinearity.

I. INTRODUCTION

The importance of laboratory observations of internal
solitary waves �or internal solitons; we shall not distinguish
between these two terms� has been appreciated since the
mid-20th century, although researchers have studied internal
waves in laboratory experiments since the beginning of the
20th century, after the famous cruise by Fridtjof Nansen to
the North Pole onboard the ship “Fram” �1893–1896�. It is
worth noting, however, that Benjamin Franklin, one of the
Founding Fathers of America, was apparently the first who
described the observation of internal waves in the “labora-
tory conditions”1 �the authors thank Yu. D. Chashechkin for
this reference�. During his oceanic voyage from Madeira to
America, he observed that the interface between oil and wa-
ter in his self-made lamp was “in great commotion, rising
and falling in irregular waves,” while “the surface of the oil
was perfectly tranquil, and duly preserved its position and
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distance with regard to the brim of the glass.” Since his
arrival in America, Franklin “repeated the experiment fre-
quently” at home with the model of the lamp containing the
same two-layer fluids, water, and oil. Then, he amused him-
self by showing this experiment “to a number of ingenious
persons” and wrote to his friend, Sir John Pringle, “those
who are but slightly acquainted with the principles of hydro-
statics, &c. are apt to fancy immediately that they understand
it, and readily attempt to explain it; but their explanation
have been different, and to me not very intelligible.”

Purposeful laboratory experiments with internal solitons
were conducted practically in parallel with the development
of theoretical models and active field studies of internal
waves after the Second World War. The first simplified mod-
els either known by or developed in that time were mainly
integrable models. They include equations now known as
classical: the Korteweg–de Vries �KdV�, Gardner �also
known as the extended Korteweg–de Vries �eKdV� equation�
Benjamin–Ono �BO�, Joseph–Kubota–Ko–Dobbs �JKKD�
equations, and others �see, e.g., Ref. 2�.

Numerous experiments conducted with both surface and
internal waves in laboratory tanks have demonstrated that
solitons emerge easily from initial perturbations; they can be
readily registered and their properties can be studied in detail
and compared with theoretical predictions. Currently, it is a
widely accepted view that solitons �or at least structures
close to solitary waves� exist as ubiquitous features in oceans
and in the atmosphere, and that they can be observed at
hundreds of locations around the globe. However, in natural
conditions experimentalists can register usually only solitary
waves and roughly measure only few of their characteristics,
whereas in the laboratory, it is possible to control the param-
eters of solitons and study their properties in great detail.

In this review paper we briefly outline some known in-
tegrable and nonintegrable theoretical models of internal

solitons, including recently developed, strongly nonlinear
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models and models accounting for fluid rotation. Then we
give a summary of laboratory experiments available in the
literature and compare their results with theoretical predic-
tions. In the Conclusions we discuss the main outcomes of
existing laboratory experiments.

II. INTEGRABLE WEAKLY NONLINEAR MODELS
OF INTERNAL WAVES

Until now, the majority of relevant laboratory experi-
ments have dealt with verifying weakly nonlinear, long-wave
integrable models such as KdV, BO, JKKD, and their modi-
fications. We begin with a brief list of the well-known equa-
tions considered as basic in laboratory experiments. They
deal with moderate-amplitude waves for which the velocity
variations in the wave are small compared with the wave
phase velocity. Also, the characteristic wavelength is as-
sumed to be large compared with the characteristic vertical
scale of the problem. Nonintegrable models, including those
of strongly nonlinear processes, will be addressed further
later in this paper.

Many equations in question follow from a modal repre-
sentation. In particular, vertical velocity w and horizontal
velocity vector U are represented by an expansion in eigen-
modes:

w = �
m=1

�

Wm�z�wm�x,y,t�, u = �
m=1

�

Cm
dWm

dz
Um�x,y,t�; �1�

and the vertical displacement of the isopycnal surfaces �the
surfaces of equal density� is given by ��x ,y ,z , t�
=�m=1

� �m�x ,y , t�Wm�z�, and similarly for other variables.
Here Cm are constants. The orthogonal eigenfunctions Wm

satisfy the boundary-value problem in the linear, nondisper-
sive approximation:

d

dz
���z�

dW

dz
� +

��z�N2�z�
c2 W = 0. �2�

Here N�z�=�−�g /��d� /dz is the Brunt–Väisälä �buoyancy�
frequency, g is the gravity acceleration, and ��z� is the static
water density.

With the appropriate boundary conditions at the bottom,
W�−H�=0, and the water surface, W�0�=��s /�t, where �s is
surface displacement, the eigenfunctions Wm and eigenvalues
c=cm �m=1,2 ,3 , . . . � can be found with cm being the long-
wave velocity for the corresponding mode. After substituting
these expansions into the hydrodynamic equations and re-
taining only one, mth mode, the equations for horizontal
variations follow in which dispersive and nonlinear terms are
assumed to be small. In general, they are two-directional
equations �known as Boussinesq equations in nonlinear wave
theory, and should not be confused with Boussinesq equa-
tions in shallow water theory�; the next step is a transition to
one-directional �KdV-type� equations describing progressive
waves. The corresponding derivation can be found in differ-
ent textbooks �see, e.g., 3 and 4�; here we only give a few
relevant results. �Note that Boussinesq equations for internal
waves analogous to those known as classical Boussinesq
equations for surface waves were apparently presented for

the first time in Ref. 5.�
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At small density variations, which are always the case in
the ocean and often in the laboratory �see the data below�,
this boundary-value problem is simplified by applying the
“rigid lid” approximation, W�0�=0, applying the Boussinesq
approximation when the variations of water density, �, are
neglected everywhere except in the buoyancy frequency.

A. Korteweg–de Vries „KdV… equation

For a progressive wave propagating, with certainty, in
the positive direction of axis x, the classical KdV equation
widely discussed in the literature has the form

��

�t
+ c

��

�x
+ ��

��

�x
+ �

�3�

�x3 = 0, �3�

where the nonlinearity and dispersion parameters �� and �,
respectively� are

� =
3c�

2H
, � =

c DH2

2
, �4�

with � and D given in the general case by �see, e.g., Ref. 6
and references therein�

� =
H

Q
	

−H

0

��z��dW

dz
�3

dz, D =
1

H2Q
	

−H

0

��z�W2dz ,

�5�

Q = 	
−H

0

��z��dW

dz
�2

dz .

Here ��z� is the density profile in the fluid layer; W�z� is the
eigenfunction for the corresponding m-th mode found from
the boundary-value problem �2� in the limit of infinitely long
waves, and H is the total fluid depth �for details see, e.g., 4,
6, and 7�.

The well-known solitary solution to Eq. �3� is

��x,t� = �0 sech2 x − Vt

�
. �6�

The nonlinear velocity V and characteristic width � of
this soliton are related to the linear speed c and the amplitude
of the displacement �0 by

V = c +
��0

3
, �2 =

12�

��0
. �7�

The dispersion parameter � is always positive for gravity
waves, whereas for capillary waves on a surface of thin liq-
uid film this parameter may be negative. The nonlinear pa-
rameter � may be both positive and negative. The combina-
tion of parameters � and � determines the soliton polarity;
namely, the sign of �0 is such that �2 in Eq. �7� is positive.
Thus, if � is negative, �0 also will be negative, i.e., for
instance, the soliton on the interface of a two-layer fluid is a
depression.

An important limiting case is the two-layer model with
thicknesses of the upper and lower layers of h1 and h2, re-
spectively. The fluid density is �=�1 for 0	z	−h1 and �
=�2	�1 for −h1	z	−H, where H=h1+h2 is the total

depth. In this case the coefficients c, �, and � can be calcu-
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lated in the explicit form. In the case of a rigid lid boundary
condition on the surface of the upper fluid, the coefficients
are �see, e.g., Ref. 6 and references therein�

c = �g��2 − �1�h1h2

�2h1 + �1h2
�1/2


 �g 
�

�

h1h2

h1 + h2
�1/2

, �8�

� =
3c

2h1h2

�2h1
2 − �1h2

2

�2h1 + �1h2



3

2
c

h1 − h2

h1h2
, �9�

� =
ch1h2

6

�1h1 + �2h2

�2h1 + �1h2



ch1h2

6
. �10�

The relations on the right are valid for those cases when

�=�2−�1 is small relative to the density of the layers
�
� /�2�1�; which is important, in particular, for the model-
ing of oceanic conditions. In the case of a free surface
boundary conditions, only small corrections to the coeffi-
cients c and � usually arise, whereas the coefficient � be-
comes more complex8–10 �this is discussed in more detail in
Sec. II B�.

A slightly more general solitary wave solution was ob-
tained by Keulegan11 for the Boussinesq equation describing
interfacial waves propagating in opposite directions in the
two-layer model. The Keulegan’s soliton has the same sech2

profile as the KdV soliton �6�, but with slightly different
relationships between the amplitude, �0, velocity, V, and
half-width, �:

V = c�1 +
h1 − h2

h1h2
�0, �2 =

4

3

h1
2h2

2

�h1 − h2��0
. �11�

In the limit of �0→0 these formulas reduce to the corre-
sponding expressions �7� for the KdV soliton.

B. The extended Korteweg–de Vries „Gardner…
equation

An interesting situation arises when the nonlinear coef-
ficient � is small or even equal to zero. The condition of the
vanishing of nonlinear coefficient � depends on boundary
conditions. As follows from Eq. �9�, in the case of a rigid lid
approximation, there is a simple relationship between the
critical depth ratio b�h1 /h2 and density ratio a��1 /�2 that
provides �=0: bcr=�a �in the Boussinesq approximation
bcr=1�. In the case of a free surface, the critical depth ratio
can be found as the real root of the cubic equation8,9

b3 + �a2 + 3a − 3�b2 + �3 − 4a�b − 1 = 0, �12�

which is

bcr =�3 a

54
�Sp�a� + Sm�a�� + 1 − a −

a2

3
, �13�

where Sp,m�a�= �27+27a+18a2−36a3−18a4−2a5±3�1+2a�
��3�1−a��27+5a��1/3.

The comparison of these two cases is presented in Fig. 1.
As one can see, both dependencies bcr�a� agree only when

a→1, i.e., when the Boussinesq approximation is valid.
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Meanwhile, at smaller values of a, they are quite different: in
the case of a free surface bcr	1, whereas in the case of a
fluid under the rigid lid bcr1.

When the nonlinear coefficient � becomes anomalously
small or vanishes, one must take into account higher-order
nonlinear terms in the evolution equations. In the latter case,
the extended Korteweg–de Vries �eKdV� equation �also
called the combined KdV and Gardner equation�, having
both quadratic and cubic nonlinearities, results in

��

�t
+ �c + �� + �1�2�

��

�x
+ �

�3�

�x3 = 0, �14�

where in the case of a two-layer fluid with a rigid lid, the
second nonlinear coefficient is �see, e.g., Ref. 6 and refer-
ences therein�

�1 =
3c

h1
2h2

2�7

8
��2h1

2 − �1h2
2

�2h1 + �1h2
�2

−
�2h1

3 + �1h2
3

�2h1 + �1h2



 −
3

8
c

�h1 + h2�2 + 4h1h2

h1
2h2

2 . �15�

The last expression is again valid for the case of close den-
sities. As follows from Eq. �15�, within the framework of a
two-layer model, the coefficient �1 is always negative. How-
ever, in the general case �1 may be both negative and posi-
tive depending on the density stratification and shear-flow
profile.12,13

The form of soliton solutions of Eq. �14� depends on the
sign of coefficient �1. In the case of negative �1, the soliton
solution can be written in the form of a stationary moving
kink–antikink pair:

��x,t� = −
�

�1

�

2
�tanh� x − Vt

�
+ �� − tanh� x − Vt

�
− �� ,

�16�

where � is a free dimensionless parameter with the range 0

FIG. 1. Dependency of the critical depth ratio bcr= �h1 /h2�cr on density ratio
a=�1 /�2 for free surface �line 1� and rigid lid approximation �line 2�; line 3
represents a critical depth ratio within the framework of the Boussinesq
approximation, i.e., when �1��2.
�1, and the remaining parameters are
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���� =
1

4
ln�1 + �

1 − �
�, � =�− 24�1�

�2�2 , V = c −
�2�2

6�1
.

�17�

Figure 2 shows the normalized shapes of eKdV solitons
for three values of parameter �. Similar to the KdV soliton,
the velocity of this eKdV soliton is always greater than the
velocity c of long linear waves. The amplitude of the soliton
�0= �� /�1�� tanh � varies from zero at �=0 to the maximum
of

��0

h2
�

max
= � �

�1h2
� =

4b�b2 − a�
b4 + 2ab�4b2 + 7b + 4� + a2 , �18�

at �=1, where a=�1 /�2 and b=h1 /h2. In contrast to the KdV
soliton, which can, in principle, vary in amplitude from zero
to infinity, the eKdV soliton amplitudes are always restricted
from above by that value. When the eKdV soliton ap-
proaches maximum, its width increases so that the soliton
profile changes from a bell shape to a rectangular shape rep-
resenting a kink–antikink pair described by Eq. �16�. In the
limit �→1, the eKdV soliton transforms into infinitely sepa-
rated kink and antikink.

In the near-critical situation when b→�a and the qua-
dratic nonlinear coefficient is small, the eKdV equation is
indeed applicable. The maxima of the soliton amplitude and
velocity are given by

��0

h2
�

max
�

�b − �a�

1 + �a
, �19�

Vmax = c −
�2

6�1
= c�1 +

�b2 − a�2

b4 + 2ab�4b2 + 7b + 4� + a2�
�

b→�a
c�1 +

�b − �a�2

2�a�1 + �a�2� . �20�

The limiting-amplitude soliton corresponds to the case
when its crest is exactly at the critical depth �in the Bouss-
inesq fluid it is at the mid-depth�. From Eq. �17� it follows
that, in general,

�0 = −
��

�1

�1 + � − �1 − �

�1 + � + �1 + �
, �21�

FIG. 2. Normalized wave shapes in the eKdV equation �16� for three values
of parameter �=1−�: 1—�=10−1 �close to the KdV case�; 2—�=10−4; 3—
�=10−7.
with � related to � and � by Eqs. �17�.
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The width of the soliton increases in both limits: �→0
and �→1. Hence, for some �=�m there exists a minimum
value of D. Figure 3 depicts D0.5, the full width of the soliton
at half its maximum amplitude, as a function of amplitude,
�0. The minimum of D0.5 occurs at ��0.9, when the ampli-
tude is about 0.56 of the maximum. A more detailed discus-
sion of the dependency between D and �0 both for weakly
nonlinear perturbations, described by the eKdV equation,
and for more intensive perturbations, described by the primi-
tive Eulerian equations, can be found in Ref. 14.

Although the eKdV equation is valid for small nonlin-
earity, it can sometimes be successfully applied to the de-
scription of strongly nonlinear internal solitons as a phenom-
enological model, whereas the usual KdV equation fails to
approximate observational and laboratory data. The reason
for this is a qualitative �but, in general, not quantitative�
correspondence of the eKdV solitons to strongly nonlinear
solitary waves in a two-layer fluid in what is regarding a
nonmonotonous dependency of their width on the amplitude
and the existence of limiting amplitude.

In the conclusion of this section, we mention a situation
in which the cubic nonlinear coefficient, �1, is positive. Such
an option can be realized, e.g., in a three-layer fluid.12,13 A
family of possible soliton solutions to the eKdV equation is
much richer in this case; it includes solitons of positive and
negative amplitudes, algebraic solitons similar to BO soli-
tons �see below�, and breathers—nonstationary solitons peri-
odically oscillating in time. They have not been studied in
laboratory experiments thus far; meanwhile, a theory pre-
dicts their existence both in laboratory and in natural oceanic
conditions as well.15 Further study of these phenomena is a
challenge for experimentalists.

C. The Benjamin–Ono „BO… equation

If the wavelength is large compared with one �say, up-
per� layer but small compared with the other �lower� layer of
the ocean, one can let h2→�. These waves may then be

FIG. 3. Dependency of the characteristic width, D̄0.5, of eKdV solitons, Eq.

�16�, on amplitude �̄0 in dimensionless variables: D̄0.5=D0.5��� / �24�1��1/2;
�̄0=�0�1 /�.
described by the differential-integral BO equation:
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��

�t
+ c

��

�x
+ ��

��

�x
+

�

�

�2

�x2�	
−�

� ��x�,t�
x − x�

dx� = 0, �22�

where the symbol � indicates that the principal value of the
integral should be taken, and the coefficients are

c =���2 − �1�gh1

�1
, � = −

3

2

c

h1
, � =

ch1

2

�2

�1
. �23�

“Algebraic” solitons described by this equation are also
well known:

��x,t� =
�0

1 + �x − Vt�2/�2 . �24�

Their amplitudes �0, velocities V, and half-widths � are
related by

V = c +
��0

4
and � =

4�

��0
. �25�

The displacement caused by these solitons is the down-
going motion of the pycnocline �sharp density interface�
when the upper layer is thin, and, conversely, for the case
when the thin layer lies near the bottom �there is a general
rule of thumb: pycnocline displacement induced by a soliton
is directed to the deepest layer�.

D. The Joseph–Kubota–Ko–Dobbs „JKKD… equation

In this case, the thickness of one of the layers, say h1, is
assumed to be small in comparison with the thickness of
another, h2, i.e., h1 /h2�1. At the same time, the perturbation
wavelength, ��h1, may have an arbitrary relationship with
h2, i.e., the total water layer can be either shallow or deep.
The resulting evolution equation can be presented in a vari-
ety of equivalent forms; one of the simplest is

��

�t
+ c

��

�x
+ ��

��

�x
− �

�2

�x2�	
−�

� ��x�/h2,t�

tanh��

2

x − x�

h2
�dx� = 0,

�26�

where, for the two-layer model with a sharp density inter-
face, the parameters c and � are the same as in Eq. �22�, and
�= �c /4��h1 /h2�.

The JKKD equation has a solitary solution that has been
obtained by many authors and presented in different forms.
One of the forms convenient for practical applications is

��x,t� =

�0�1 + cos
2h2

�
�

1 + cos
2h2

�
+ 2 sinh2 x − Vt

�

, �27�

where

�0 =
4

3

h1
2

�

sin
2h2

�

1 + cos
2h2

, V = c�1 −
h1

� tan
2h2 � . �28�
� �
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Here � is a free parameter characterizing the soliton
width.

Equation �26� tends to the KdV and BO equations in the
limits of h2 /�→0 at fixed h1 /h2 and h2→�, respectively.
The same is true for the solutions �27� and �28� in the KdV
limit, although the analytical transition to the BO limit for
this soliton is not completely clear yet.

The main features of the initial perturbation dynamics
within the framework of the JKKD equation are very similar
to those described by the KdV model.

All the models listed above have been proven fully inte-
grable, possessing an infinite set of conservation laws and
exact multisoliton solutions �see, e.g., Ref. 2�. Their proper-
ties have been thoroughly studied by mathematicians. How-
ever, real wave processes even in controlled laboratory con-
ditions do not obey these equations exactly. Some additional
effects such as viscosity, inhomogeneity, effects of strong
nonlinearity, and higher-order dispersion, etc., must be taken
into account; they lead to nonintegrable models that can be
studied by means of approximate or numerical methods.

III. LABORATORY EXPERIMENTS EXAMINING
INTEGRABLE MODELS

There is already a plethora of papers in which results
from laboratory experiments on internal solitary waves rel-
evant to weakly nonlinear integrable models were published.
In general, the results of these experiments are in agreement
with the theories outlined above, provided the corresponding
conditions are met. At the same time, in many cases notice-
able discrepancies have been observed, making it necessary
to discuss their possible nature and causes.

One of the earliest experimental observations of internal
solitary waves in a laboratory was published by Davis and
Acrivos in 1967.16 A typical sketch of the laboratory setup
used in that and subsequent experiments is shown in Fig. 4.
The authors dealt with the second �varicose or sausage-type�
mode internal wave propagating on a thin pycnocline of rela-
tively deep water. Qualitatively, the shape of a second-mode
solitary wave is shown in Fig. 5, taken from the paper by
Kao and Pao.17 It is curious to note that such an experiment
was conducted for a deep water configuration before the
classical internal KdV solitons in shallow water were ob-
served and even before the Benjamin–Ono equation �22� was
derived. Actually, Davis and Acrivos developed their own
approximate analytical theory and conducted numerical cal-
culations that describe solitary waves in a thin stratified layer
between two thick layers of uniform fluid. They also carried
out a laboratory experiment in a tank 250 cm long, 10 cm
wide and 40 cm deep �hereafter, the dimensions of other
tanks will be indicated in the same order: length�width
�depth�. The tank was half-filled with a uniform solution of
saltwater with a density ranging from 1.0 to 1.17 g/cm3 and
then, topped off by freshwater with a density of 1.0 g/cm3

with a smoothly stratified intermediate layer of 1 cm thick-
ness .

The authors observed stationary solitary waves that were
later named Benjamin–Ono �BO� or algebraic solitons. In
their experiment wave amplitudes vary in a wide range from

small to large. They measured the dependency of soliton ve-
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locity on amplitude and found rather good agreement with
theoretical and numerical predictions for small- and
moderate-amplitude solitary waves. For large-amplitude
waves the discrepancy between experimental data and the
weakly nonlinear theory was quite noticeable. Some asym-
metry of wave profiles with respect to the mid pycnocline
level clearly can be seen from the photos presented in Ref.
16 both for small- and large-amplitude waves.

Davis and Acrivos also discovered large-amplitude qua-
sistationary solitary formations containing vortex cores with
water trapped inside. The trapping occurred within closed
streamlines when the amplitude of perturbation exceeded the

FIG. 4. Sketch of the typical laboratory setup �a� and two-layer fluid con-
figuration �b� used in laboratory studies of internal solitary waves.

FIG. 5. �a� Photograph of the second-mode solitary wave shape. Interface
displacements in a three-layer fluid are visible due to a dye floating at the
interfaces �the grid in the photo has a 1 in. spacing�. �b� Temporal record of

the wave form as measured by the hot-film probe. From Ref. 17.
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pycnocline thickness more than 1.2 times. Although no quan-
titative data were presented for such a strongly nonlinear
perturbation, these results demonstrated for the first time that
large-amplitude wave-vortex formations �billows� are pos-
sible in stratified fluids. They were studied later by other
authors whose results are discussed in Sec. V C.

Further, we outline the experiments, which, to a certain
degree, were intended to verify shallow-water models, the
KdV equation, and its modifications. One of the earliest pa-
pers containing detailed quantitative data on KdV solitons
was published in 1973 by Walker.8 This work is characteris-
tic in that, on the one hand, the author claimed that the be-
havior of observed solitary waves “is generally consistent
with that predicted by the Korteweg–de Vries equation.” On
the other hand, a pronounced deviation of measured solitary
wave parameters from theoretical predictions has been de-
tected. Corrections for viscosity improve the situation but do
not solve the discrepancy problem completely. In this section
we describe only the part of Walker’s experiment that some-
how agrees with the predictions of the inviscid KdV model.
The influence of viscosity will be considered in the following
section which deals with experiments with nonintegrable
models.

The laboratory tank used in these experiments was
180.8 cm long, 53.7 cm wide, and 11.5 cm deep; the actual
working depth was only 5.5 cm. Two immiscible fluids were
used, water of density �2=1 g/cm3 on the bottom layer and
Varsol I �Humble Oil� of density �1=0.784 g/cm3 on the
upper layer. Surface tension at the interface is a strong func-
tion of the contact time of the fluids due to mutual solvabil-
ity. It varied from 40 dyn/cm for freshly mixed fluids to
25 dyn/cm after a one-hour-long contact. The thickness of
the lower layer, h2=1 cm, was fixed, whereas different thick-
nesses of the upper layer were used, h1=2 ,0; 1.25; 1.1;
0.875; and 0.75 cm. Surface tension was taken into account
in evaluation of the KdV nonlinearity and dispersion coeffi-
cients, � and �, respectively �note that for surface waves,
these coefficients were evaluated already by Korteweg and
de Vries in their classical paper of 1895�.

Interfacial wave amplitudes in Walker’s experiment were
“chosen to be as small as possible consistent with good
signal-to-noise ratios,” so that the small-amplitude approxi-
mation that warranties the applicability of the KdV model
was well justified. The density difference of two fluids, 
�
=�2−�1=0.216 g/cm3, was fairly significant; therefore, a
critical depth when the nonlinear coefficient � in the KdV
equation vanishes is not predicted well by a theory based on
the rigid lid approximation. Instead, more general kinematic
and dynamic boundary conditions on a free surface were
used.

In Walker’s experiments, both elevation and depression
solitary waves were observed at the interface depending on
depth layer ratios in accordance with the theoretical predic-
tion for fluid with a free surface. The author compared the
wave form in the frontal part of the perturbation with differ-
ent trial functions and found that the agreement with the
sech2 function is the best despite the decay of the solitary
waves in the process of propagation due to viscosity. Never-

theless, the author noticed that there was “a small

P license or copyright, see http://chaos.aip.org/chaos/copyright.jsp



037111-7 Internal solitons in lab experiments Chaos 15, 037111 �2005�

Do
�5% in half-width� systematic departure from the sech2

shape for small waves, with those of elevation being steep-
ened in front and broadened in back, and vice versa for those
of depression.” Because the laboratory tank had a relatively
small size and the depths of the layers were also small, the
viscous effects played a noticeable role, affecting the results
obtained. They are discussed in the subsequent section.

Another experimental study of solitary waves in labora-
tory conditions was published by Kao and Pao.17 They dealt
with a second-mode solitary wave generated in a three-layer
liquid. In these experiments a tank of 796 cm�35.6 cm
�61 cm was filled with a layer of saltwater at the bottom
and an equal-depth layer of freshwater on the top. Before
pouring the freshwater, three thin dyed layers of intermediate
density were poured so that the pycnocline was located at
mid-depth �i.e., h1=h2=30.5 cm� and had a thickness of
about 5 cm. Note that in such a hydrological configuration,
the quadratic nonlinear coefficient � in the KdV equation is
zero for the first mode of the internal waves �see the previ-
ous�. The authors considered the second mode for a continu-
ously distributed density profile fitted by a hyperbolic tan-
gent, ��z�=�0−
� tanh��z−z0� /d�, and found a nonzero
nonlinear �quadratic� coefficient. Solitary waves were gener-
ated as a result of the collapse of a mixed region in the
pycnocline, which was caused by a rotary paddle mixer.

A typical photograph of the solitary wave shape and a
temporal record of a wave form as measured by a hot-film
probe are depicted in Fig. 5. Qualitatively, the solitary waves
in this experiment were similar to those observed by Davis
and Acrivos16—they have a form of antisymmetric second-
mode perturbation in the intermediate layer. The characteris-
tic scales of these solitary waves were about 3.5 cm, so that
the JKKD model should be applicable in this case instead.
Nevertheless, the authors claims that the KdV theory was
valid when compared with the experiment. They concluded
“the agreement between the experiment and the theory is
found to be excellent.” The main characteristics tested were
as follows:

�a� The wave profile, which was in unexpectedly good
agreement with the KdV soliton shape as described by
Eq. �6� in spite of a breach in the long-wave approxi-
mation; and

�b� The nonlinear correction to the wave speed normalized
by linear velocity, �V−c� /c, versus the amplitude of the
normalized particle velocity, umax/c, which was in sat-
isfactory agreement with Eq. �7�, even for relatively
large values up to 0.7 of the former ratio.

Even better agreement between experimental data and
theory was obtained by Kao, Pan, and Renouard in 1985,18

who conducted their experiment within the framework of
validity of the KdV theory. The same water tank as discussed
above was filled with layers of saltwater of thickness h2 at
the bottom and with freshwater of thickness h1 at the top.
The resultant density profile was measured very carefully,
and could be fitted by a hyperbolic tangent profile as in the
above case, with an interface thickness d=0.3–1.3 cm. In
these experiments, a wide range of variations of the mid-

pycnocline level was used: from 0.95 to 7.6 cm below the
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free surface, so that the ratio of total fluid depth H to the
upper layer depth h1 varied from 4.5 to 36.

The first-mode solitary waves observed in that experi-
ment had negative polarity, because the thickness of the up-
per layer was always less than of the lower one. The first
eigenmode and the eigenvalue c for the corresponding
Sturm–Louiville problem were calculated numerically, and
then the coefficients � and � of the KdV equation were
evaluated. Then, experimental data were compared with the
KdV theory, giving excellent agreement, particularly for
smaller values of h1 /H. A sample plot of the solitary wave
profiles for several values of the h1 /H ratio is depicted in
Fig. 6, with the theoretical shapes of the KdV �solid line� and
BO �dashed line� solitons displayed.

The other important characteristics of solitary waves
also demonstrate very good correlation with the KdV theory.
In Fig. 7 one can see the normalized nonlinear correction to

the wave speed V̄nl��V−c� / �0.5�H� versus the normalized
amplitude. The noticeable deviations from the KdV theory in
this picture are seen for strongly nonlinear solitary waves

FIG. 6. Comparison of several sets of experimental data with KdV �solid
line� and BO �dashed line� solitons for a shallow-water configuration. Filled
circles—h1 /H= 1

18; open circles—h1 /H= 1
21; filled triangles—h1 /H= 1

14;
open triangles, filled and open squares—h1 /H= 1

7 with different soliton am-
plitudes; filled and open hexagons—h1 /H= 3

14 with different soliton ampli-
tudes. From Ref. 18.

FIG. 7. Normalized phase speed, �V−c� / �0.5�H�, for solitary waves in a
shallow-water tank as a function of the normalized wave amplitude, �0 /H.
Filled circles—h1 /H= 1

14; filled squares—h1 /H= 1
7 ; open triangles—h1 /H

3
= 14; the solid line is the KdV theory. From Ref. 18.
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that are beyond the range of validity of the KdV theory. It
was also shown that under these experimental conditions, the
use of a two-layer model is less satisfactory than that of a
continuous model with a hyperbolic tangent approximation;
e.g., the linear velocity c for the former model is about 10%
greater than for the latter �which is closer to the experimental
data�. Note that the same feature was pointed out by Gan and
Ingram19 in their interpretation of field observations of soli-
tons in Manitounuk Sound �southern Hudson Bay�. They
made a comparison of the measured characteristics of the
solitary waves with both the theoretical predictions within
the framework of the usual first-order KdV model based on
continuous stratification and with the second-order KdV
model �with high-order nonlinear and dispersive terms� for a
two-layer fluid. Their conclusion is “the former model may
be even closer to the observed values” than the latter one.

The number of solitons arising from a long pulse-type
initial perturbation also corresponds well to the theoretical
prediction. As is known �see, e.g., Refs. 2 and 20�, the num-
ber of solitons is determined by the Ursell parameter, Ur
=��0L2 /�, where �0 is the amplitude of the initial perturba-
tion and L is its characteristic scale. �This parameter is
known in nonlinear wave theory as the similarity parameter
of the KdV equation.20 We use throughout the term “Ursell
parameter” from the surface-wave terminology and apply it
to the topic of general water waves.� In particular, for the
initial perturbation of a sech2 shape and large Ur, the number
of solitons is N��Ur/6. The number of solitons generated
from the initial perturbation is shown in Fig. 8 versus the
product L���0�, which is proportional to �Ur and character-
izes the nonlinearity of the initial perturbation. The authors
note that the two-layer approximation leads to the overesti-
mation of the number of solitons.

In the experimental papers21–23 some noticeable discrep-
ancies with theoretical models were found. In these experi-
ments a two-layer fluid with a thin lower layer was typically
used �although some experiments23 used a thick lower layer
as well�. The use of the two-layer model for data interpreta-

FIG. 8. Number of solitons formed from a pulse-type initial perturbation �on
the horizontal axis� versus the product L���0���Ur. Solid and dashed lines
are theoretical predictions which follow from different approximations of a
smooth density profile; the dashed-dotted line is the lower boundary from
the two-layer theory. Symbols are experimental data. From Ref. 18.
tion was quite reasonable in experiments with immiscible
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liquids:21,23 water ��1=1 g/cm3� and freon TF ��2

=1.58 g/cm3� in Ref. 21 so that �1 /�2�0.63, and kerosene
��1=0.8 g/cm3� or khladon-113 ��1=0.67 g/cm3� and water
��2=1 g/cm3� in Ref. 23 with density ratios �1 /�2=0.8 or
0.63. On the other hand, Segur and Hammack22 utilized salt-
water in the lower layer and freshwater in the upper
�
� /�2=0.048� with an interface thickness, d, of about
1–2 cm. As was mentioned above, the finite thickness of the
pycnocline may lead to significant discrepancies between ex-
perimental data and predictions based on the two-layer
model. Such discrepancies have actually been discovered
and will be discussed below.

The dimensions of the tank used by Koop and Butler21

were 600 cm�45 cm�60 cm. Two sets of experiments
were carried out: with depth ratios of h1 /h2
5.1 and 35. In
the experiments by Segur and Hammack,22 the water tank
was fairly long, 3000 cm�60 cm�39.4 cm, with a thin
lower layer, h2=5 cm and constant depth ratio, h1 /h2
9.
Bukreev and Gavrilov23 used a tank of 220 cm�15 cm
�15 cm, with different depth ratios of liquid layers varying
in the range of 0.357–3.5.

Qualitatively, the evolution of an initial pulse occurred in
a similar way in all experiments described above, both for
the first and second modes, thereby demonstrating that soli-
tary waves can emerge from a wide class of initial perturba-
tions having, in these cases, a positive polarity that is appro-
priate for a thinner lower layer, in accord with the theory. As
expected, for a negative polarity of the initial perturbation,
no solitons were observed, but dispersive wave trains
emerged instead.

Measurements of soliton profiles in all three papers men-
tioned above,21–23 have shown reasonably good agreement
with a theoretical prediction within the KdV model when it is
applicable. Meanwhile, Bukreev and Gavrilov23 found a no-
ticeable deviation from the KdV soliton shape when the am-
plitude of the solitary wave was relatively large, �0 /h2=0.2,
whereas for small amplitudes, �0 /h2=0.1, the agreement be-
tween theory and experiment was very good. Actually, it was
discovered in that paper that soliton broadening occurs when
the soliton amplitude increases, although this effect was not
studied systematically. The authors compared their data with
Keulegan’s theory11 obtained for the “two-directional”
Boussinesq equation and found that the frontal part of a mea-
sured solitary wave was closer to the KdV soliton �6�,
whereas the rear part was closer to Keulegan’s soliton, Eq.
�11�. This apparent difference in the KdV and Keulegan’s
soliton profiles is probably caused by the misprint in Keule-
gan’s paper,11 which resulted in a �3/2 times larger soliton
width. The broadening in the rear part of the solitary-wave
profile observed in the experiment23 could be caused by vis-
cous effects. As was shown in Ref. 24, certain types of dis-
sipation, e.g., Reynolds dissipation, can result in the broad-
ening of the rear part of a soliton due to the appearance of a
shelf behind the soliton. Note, however, that such soliton
broadening was not detected by Koop and Butler21 for a
shallow-water configuration �h1=6.948 cm, h2=1.366 cm,
h1 /h2�5.1� when the soliton amplitude varied in the fairly
large range 0.04�0 /h20.7. The authors21 concluded “ex-

amination of the results reveals that the agreement between
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the shallow-water data and the ‘sech2’ profile predicted by
the KdV theory is quite good.”

Solitary wave profiles were also measured in Ref. 21 for
a deep-water configuration �h1=47.87 cm, h2=1.366 cm,
h1 /h2�35.0�. Experimental data for solitary waves of differ-
ent amplitudes, 0.06�0 /h20.6, showed a noticeable de-
viation from the KdV-soliton profile grouping around a
slightly wider JKKD-soliton profile with the relative ampli-
tude �0 /h2=0.06 �the JKKD-soliton shape depends on the
amplitude, even in normalized variables�. Note that the
JKKD soliton with �0 /h2=0.6 is practically indistinguish-
able from the BO soliton, which is the widest among the
three KdV, JKKD, and BO solitons. Therefore, one may ex-
pect that solitary-wave profiles in the indicated range of am-
plitudes should lie in the gap between the JKKD soliton with
�0 /h2=0.06 and the BO soliton, whereas in reality they are
centered around the JKKD profile with �0 /h2=0.06. The au-
thors concluded that this comparison “does not yield a con-
clusive result.”

Other discrepancies in the soliton parameters were also
discovered. Thus, soliton speeds measured by Bukreev and
Gavrilov23 were systematically less than those which the
KdV theory9 predicts for soliton amplitudes in the range of
0.04�0 /h20.6. Meanwhile, the experimental data were
in good agreement with Keulegan’s theory11 rather than with
the KdV theory. Different configurations were tested with
h1 /h2 varying within a range 0.36–3.3, so that both positive
and negative polarity solitary waves were generated. The re-
sults were similar for both types of solitary waves.

Segur and Hammack22 also registered solitary wave
speeds smaller than those predicted by the KdV theory for a
two-layer model, and sometimes even less than the speed of
long linear waves, c. The reason for this is apparently the
finite thickness of the pycnocline, d, which was approxi-
mately the same as in Ref. 18.

Another difficulty is in the interpretation of the
amplitude-length relationship. In Fig. 9 taken from Ref. 21,

FIG. 9. Dependency of normalized soliton characteristic wavelength � /h2

on normalized amplitude �0 /h2 as predicted by different theories and mea-
sured in the shallow-water experiment. The solid line denoted “first order”
corresponds to the usual KDV equation �3�; the dotted line denoted “second
order” corresponds to the generalized KDV equation with second-order non-
linear and dispersive corrections; the dashed line denoted “finite depth”
corresponds to the JKKD equation �26�; and another solid line denoted
“infinite depth” corresponds to the BO equation �26�. From Ref. 21.
such a relationship is depicted for the shallow-water configu-
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ration when the depth ratio was h1 /h2�5.1. In this figure
one can see rather good agreement between the KdV theory
and experimental data up to relatively high soliton ampli-
tudes, �0 /h2�0.4. This is somewhat unexpected because the
KdV model is formally valid only for small-amplitude per-
turbations when �0 /h1,2�1 and for large wavelengths, �
�h1,2, whereas in the experimental situation the soliton
wavelength was only several times greater than the thickest
layer depth, � /h1�1–3. Hence, one can conclude that, in
this case, the approximate KdV theory is robust, even be-
yond its formal range of validity.

Koop and Butler derived a “second-order KdV equation”
for internal waves with second-order nonlinear and disper-
sion corrections �a similar equation was derived earlier by
Lee and Beardsley in 1974;25 then by Gear and Grimshaw in
198326 and by many others�. Based on this equation, they
obtained a correction to the soliton profile and improved the
relationship between soliton amplitude and the wavelength.
In Fig. 9 this relationship is shown by the dotted line. As one
can see, the improved theory agrees much better with the
experimental data up to fairly high amplitudes, �0 /h2�0.8.

Meanwhile, in the small-amplitude range, the KdV
theory �as well as the improved KdV model that asymptoti-
cally coincides with the usual KdV theory at small ampli-
tudes� predicts slightly greater values of soliton wavelengths
than what follows from the experiment �see Fig. 9�. The
authors attribute this to the influence of viscosity in the lami-
nar boundary layers �see a further discussion in the subse-
quent section�.

It is not surprising that the BO model is not well corre-
lated with the experimental data, where both layers are com-
parable with the characteristic wave scales. In Fig. 9, the BO
dependency is indicated only for an illustration. However,
the JKKD model is also astonishingly poorly correlated with
these data �see the dashed line in Fig. 9 labeled “Finite
depth”�. Later, Segur and Hammack22 showed that the im-
proved JKKD model with second-order nonlinear and disper-
sive corrections correlates with the experimental data by
Koop and Butler21 quite well, similarly to the second-order
KdV equation. From a practical point of view, there is no
reason to use the fairly complex second-order JKKD model
when the second-order KdV equation gives the same results.
And an even much simpler KdV equation can satisfactorily
approximate the experimental data.

In another experimental realization, where the depth ra-
tio was increased to h1 /h2
35, none of the theories gave a
reasonable correlation with the experimental data, even
though the JKKD or maybe even the BO models should have
worked in this range �Fig. 10�. The second-order JKKD
model does not help; in this case it gives almost the same
dependency between the soliton wavelength and the ampli-
tude as the usual JKKD model �the details can be found in
Ref. 22�. It is interesting to note that even in this case that is
explicitly beyond the applicability limits of the KdV model,
the slope of the best-fit line of experimental points in Fig. 10
is close to the slope predicted by the KdV model, although
the experimental points are shifted downward with respect to

the KdV line.
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The main cause of all these disagreements is apparently
the deviation of experimental conditions from the theoretical
requirements, implying that the wave amplitude must be
small enough, whereas wavelengths must be long compared
to layer thicknesses or long with respect to one layer and
small with respect to another one for the BO model. The
pycnocline thickness must be small in comparison with the
solitary wavelength if the two-layer model is used for com-
parison with a theory. The influence of viscosity, which is
always presents in real experiments, can also explain some
discrepancies between the inviscid theory and experimental
data.

IV. NONINTEGRABLE MODELS OF INTERNAL WAVES

A. Dissipation modified KdV equation

For conditions generally existing in both the laboratory
and in nature, the simple models considered above are rarely
applicable without taking into account a number of perturb-
ing factors, such as the dissipation of various origins, wave-
front curvature, horizontal inhomogeneities, depth variation,
and the like. However, these factors are often locally weak
enough so that their effects become significant only at large
distances compared to a wavelength. Under these conditions,
perturbation theory is generally applicable. Such an approach
results in the appearance of small additive terms in the model
equation, each responsible for a specific perturbing factor. As
an example, for waves much longer than the total depth of
the controlling layer, the perturbations mentioned previously
may be taken into account within the framework of a gener-
alized “time-like KdV” �TKdV� equation �in the context of
oceanic internal waves see, for example, Ref. 27�:

��

�x
+

1

c

��

�t
−

��

c2

��

�t
−

�

c4

�3�

�t3 = − R̂��� . �29�

�Such a version of the KdV equation with transposed tempo-
ral and spatial variables is relevant to waves excited at a
fixed spatial point. It has been used at least since the 1970s
�see, e.g., Ref. 28�. The name “time-like KdV” was appar-
ently introduced by Osborne.29 One can also encounter the

30

FIG. 10. The same as in Fig. 9, but for the experiment with a deeper upper
layer and shallow lower layer. From Ref. 21.
term “KdV equation in the signaling coordinates.” �
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The term R̂��� on the right-hand side has a different
structure depending on the effect taken into account �see,
e.g., Refs. 4 and 6�. Here we consider only the dissipation
caused by viscous effects in laminar boundary layers occur-
ring in the laboratory tanks. This leads to the inclusion of a
fairly complex integral term into Eq. �29�4,21,31–35

R̂��� = 
1	
−�

+� 1 − sgn�t − t��
��t − t��

���t�,x�
�t�

dt�. �30�

�Other types of dissipation and their influence on soliton de-
cay in shallow water are analyzed in Ref. 30.�

In general, the dissipation coefficient 
1 depends on
many parameters such as depth, density, and viscosity of
fluid layers.10 In the Boussinesq approximation with the ad-
ditional assumption that kinematic viscosities of layers are
also equal, �1=�2��m, this coefficient may be presented in
the form35


1 =
1

4c

��m/�

h1 + h2
�b +

�1 + b�2

2b
+ 2

h2

W
�1 + b�� , �31�

where b=h1 /h2 and W is the width of the tank. �A misprint in
the numerator of formula �A6� of Ref. 36 should be men-
tioned, it must be a product of depths rather than their dif-
ference.� The applicability of this dissipation model requires
the boundary-layer thickness to be much less than the total
water depth.

The equation �29� with the nonzero right-hand side is
nonintegrable; however, a perturbation theory can be used

for its solution if the term R̂��� is small enough �see, e.g.,4
and 36�. In the simplest case, the concept of energy balance
can be used for the description of slow variation of the soli-
ton amplitude �0 over large distances �much larger than the
characteristic soliton width�. The corresponding first-order
ordinary differential equations are usually integrable, and
soliton amplitude variation in space can be readily obtained.
This approach is equivalent to the application of one of the
versions of the perturbation theories mentioned above, in the
lowest order of approximation. When the variation of soliton
amplitude with distance is found, the variations of other pa-
rameters, time duration, spatial width, and velocity of the
soliton can be obtained via the local relations, Eq. �7�.

Omitting the details, here we present the resulting varia-
tion of soliton amplitude in space for the particular case of
small dissipation in the laminar boundary layer:10

�0�x� =
�0�0�

�1 + x/Xch�4

→
x→� � 12h2�1 + b�

b +
�1 + b�2

2b
+ 2

h2

W
�1 + b��

4 c2h1
2h2

�b − 1��m
2 x4 , �32�

Xch =
12h2�1 + b�

b +
�1 + b�2

2b
+ 2

h2

W
�1 + b�

�4 c2h1
2h2

�b − 1��m
2 �0�0�

. �33�

�As pointed out in Ref. 10, the expression for the decay

coefficient derived in Ref. 21 is actually incorrect.�
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Here �0�0� is the initial soliton amplitude at the point
x=0, Xch is the characteristic length of soliton decay �note
that it depends on the initial soliton amplitude �0�0��, a
=�1 /�2, b=h1 /h2, and W is the tank width.

As one can see, in contrast to linear perturbations, soli-
ton decay is nonexponential and at large distances, x�Xch,
the soliton amplitude ceases to depend on its initial value at
all �0�x��x−4.

B. Nonlinear waves in rotating fluids

1. Plane waves in a rotating fluid

To study mesoscale oceanic processes having spatial
scales of a few or more kilometers and time durations of an
hour or more, one needs to take into account rotation effects
caused in nature by the Earth’s rotation. In this case there
arise some radically new features in the behavior of nonlin-
ear waves caused by rotation. A detailed mathematical analy-
sis of possible model equations that followed from a primi-
tive set of hydrodynamic equations at different rotation rates
was done by Grimshaw37 and later reproduced by Renouard
and Germain.38 These authors considered the case of rela-
tively small rotation when the parabolicity of the free water
surface or interface between two liquid layers can be ne-
glected and both these surfaces can be treated as a quasi-
plane. The effect of rotation can be formally characterized by
the dimensionless Coriolis parameter FC

= f /��1−a�g / �h1+h2�, where f =2� with � being the fre-
quency of fluid rotation and a=�1 /�2 as previously.

As was shown for the first time by Ostrovsky5 �see also
Refs. 37–40 and references therein�, weakly nonlinear waves
in a shallow fluid can be described by the rotation modified
Korteweg–de Vries �rKdV� equation:

�
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� ��

�t
+ c

��

�x
+ ��

��

�x
+ �

�3�

�x3 � =
f2

2c
� . �34�

�Sometimes it is referred as the Ostrovsky equation �see, e.g.,
Refs. 4, 38, 41, and 42�.�

Its derivation presumes that the nonlinearity �the term
proportional to �� and both Boussinesq and Coriolis disper-
sions �the terms proportional to � and f2, respectively� are
small in comparison with the first two linear terms. However,
the small terms cited can differ between each other in their
order of smallness. The analysis performed in Refs. 37 and
38, was made for the case where the nonlinearity and Bouss-
inesq dispersion are of the same order of smallness, say,
��2, where ��1 is a small parameter. If the Coriolis term is
of the order of �q with q�4, then the rotation effect is com-
pletely negligible so that the right-hand side of Eq. �34� can
be omitted, and it reduces after integration to the usual KdV
equation. As noted in Refs. 37 and 38, in this case of “ex-
tremely weak rotation” �q=4�, the only new effect is an ap-
pearance of the transverse fluid velocity component that is,
however, of the higher order of smallness with respect to the
longitudinal component.

In the case of “very weak rotation” �q=3� the right-hand
side of Eq. �34� can be treated as a small perturbation of the
KdV equation. In this case one can develop an asymptotic

approach to the evolution of nonlinear waves �and KdV soli-
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tons in particular� under the action of perturbation. An inter-
esting new result is that the KdV soliton undergoes a “termi-
nal decay,” i.e., it completely annihilates �more exactly,
transforms into radiation� in a finite time.40,43 The soliton
amplitude varies with the distance in accordance with the
formula

�0�x� = �0�0��1 +
f2

2c
� 12�

��0�0�
�x0 − x��2

, �35�

where �0�0� is the soliton amplitude at some initial point x
=x0.

At some stage when the radiation amplitude becomes
comparable with the soliton amplitude, the asymptotic theory
ceases to work. However, numerical calculations43,44 show
that when the initial soliton disappears, a new pulse whose
shape is close to a KdV soliton forms from the leading edge
of radiation so that some sort of recurrence phenomenon
takes place.

When the rotation term in Eq. �34� is of the same order
as the nonlinear and dispersive terms, i.e., q=2 �“weak rota-
tion” case according to Ref. 38�, exact analytical solutions of
Eq. �34� are unknown, even for stationary waves. However,
many of their features have been investigated by now. In
spite of that, Eq. �34� is apparently nonintegrable, and it
possesses some integrals of motion, e.g., integrals of mass
and energy conservation. Besides, a number of integral in-
variants exist in the form of constraints that dictate some
restrictions on the class of admissible initial perturbations. In
particular, as follows from Eq. �34�, the total “mass” of per-
turbation,

M �	 ��x,t�dx , �36�

must be zero if the perturbation is smooth enough so that the
integral is determined and finite. For periodic perturbations,
the integration in Eq. �36� is taken over the wave period,
whereas for solitary waves the integration is taken over the
entire axis x. Note that for the previously considered inte-
grable equations such as the KdV, mKdV, eKdV, BO, and
JKKD equations, this integral is an arbitrary constant �not
necessarily zero� to be determined by initial conditions.

A relatively simple analysis of stationary solutions of
Eq. �34� can be performed if the Boussinesq dispersion �the
term with �� is neglected, which is possible for sufficiently
long waves. A corresponding reduced version of Eq. �34�
with �=0 was analyzed by Ostrovsky5 for the first time. A
similar equation with �=0 was also obtained later for differ-
ent types of waves �see, e.g., reviews39,40 as well as a paper45

for references�. A detailed analysis of stationary solutions is
presented in Refs. 46 and 95. From the point of view of a
practical application in fluid dynamics the most interesting
stationary solutions to that reduced equation represent a fam-
ily of periodic waves whose shape varies with amplitude
from sinusoidal to parabolic.

An important peculiarity of equations, Eq. �34�, is that
for the Boussinesq-type dispersion of gravity waves �when
the coefficient � in Eq. �34� is positive�, solitary waves in the

42,47,48
form of stationary localized pulses cannot exist at all.
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In spite of this rigorously proven result, an approximate sta-
tionary soliton solution to the rKdV equation with the zero
total mass was constructed in Ref. 38 �they referred to it as
the “Ostrovsky wave”�. Apparently the solitary solution ob-
tained in that paper in the form of a series relates to the case
of �0 �in our notations�. In this case, the “antisoliton theo-
rem” mentioned above is not valid, and solitary solutions can
exist. Indeed, they were found numerically in Refs. 48 and
49.

In addition to stationary solutions, some nonsteady solu-
tions for the rKdV equation have also been studied, mostly
numerically.39,44 It was confirmed that the initial KdV soliton
decays in a finite time, as predicted by the asymptotic
theory.40,43 �More precisely, a periodic sequence of solitons
on a small negative background was considered to satisfy the
zero-mass condition �36�.� During this process of terminal
decay, the soliton background tends toward the parabolic
shape mentioned above.

Another interesting example of a nonstationary wave
propagation within the framework of the rKdV equation
shows that despite the antisoliton theorem,42,47,48 which pro-
hibits the existence of stationary solitary waves, the nonsta-
tionary solitary waves can coexist with smooth periodic per-
turbations of small amplitude and large wavelength. The
solitary wave shape is very close to a KdV soliton, and its
amplitude and other related parameters vary adiabatically in
time and space due to the interaction with a large-scale wave.
During some special conditions when the KdV soliton is
matched with a periodic sequence of parabolic arcs, a steady-
state wave forms.50

In the case of “strong rotation” �q=1� �but still weak
enough to neglect the parabolic curvature of internal and
external surfaces of liquid layers�, Eq. �34� becomes linear
with negligible nonlinearity and Boussinesq dispersion.
Wave dynamics in this case can be studied by traditional
linear methods based on Fourier analysis, and their asymp-
totics can be calculated by means of the stationary phase
method �see, e.g., Ref. 2�. There are also more general ver-
sions of shallow-water models �rotation-modified Boussinesq
equations� that account for weakly nonlinear “two-
directional waves,” i.e., waves propagating in opposite
directions.41,51 Strongly nonlinear interfacial waves in a two-
layer rotating fluid but without Boussinesq dispersion were
studied theoretically by Plougonven and Zeitlin.52 In these
papers neither nonlinearity nor rotation is presumed small.

The main conclusion drawn from this section is that the
rotation acts destructively on solitons of gravitational waves.
Stationary solitons do not exist at all when �	0, both within
the rKdV equation and more general two-directional equa-
tions. A KdV soliton taken as an initial perturbation for the
rKdV equation with a small rotation effect undergoes termi-
nal decay and disappears in a finite time. Nevertheless, non-
stationary solitary waves, very close to KdV solitons, can
exist on a long periodic perturbation.

2. Rotation-modified cylindrical KdV equation

In nature and in some laboratory experiments, waves
excited by localized sources eventually become circular in

the horizontal plane. At this stage the amplitude of the per-

wnloaded 01 Nov 2005 to 140.172.36.224. Redistribution subject to AI
turbation decreases due to cylindrical divergence. The evo-
lution of the parameters of a nonlinear, cylindrically diver-
gent wave, especially in the presence of rotation, can occur
in a complicated way. Laboratory experiments can provide
valuable data for understanding different regimes of cylindri-
cal wave propagation and decay.

In application to nonlinear waves in nonrotating shallow
water, the problem of cylindrical spreading was intensively
studied in the 1970s; analogous problems were also consid-
ered in plasma physics and in other areas of physics. A re-
view of these results can be found in Refs. 53 and 54. A brief
summary of the results are as follows.

Long, weakly nonlinear waves with circular fronts in
rotating fluids can be described by the rotation-modified cy-
lindrical Korteweg–de Vries equation. In the signalling coor-
dinates �when temporal and spatial coordinates are interre-
placed� the equation has the form:55

�

�t
� ��

�r
+

1

c

��

�t
−

��

c2

��

�t
−

�

c4

�3�

�t3 +
�

2r
� =

f2

2c
� . �37�

First consider its particular version for the case of non-
rotating fluid, f =0. The corresponding equation is known as
the cKdV equation.28,56,57

Amplitude variation versus radial coordinate r for a
pulse-type perturbation within the framework of this equa-
tion depends on the relationship between the terms respon-
sible for the effects of nonlinearity, dispersion, and geometri-
cal spreading.

For linear dispersionless perturbations, the well-known
law �0�r−1/2 readily follows for the wave amplitude. If the
characteristic scale of the initial pulse is comparable with the
water depth, the dispersion can no longer be neglected, and
the pulse spreads in space and time, eventually transformed
into a wave train. The wave train behind its front decreases
due to both the dispersion effect and the geometrical spread-
ing, resulting in the law �0�r−1, whereas its leading edge
decreases as �0�r−5/6.55

For finite-amplitude perturbations, when nonlinearity
and dispersion are balanced and cylindrical spreading is
weak enough, an approximate solution to Eq. �37� in the
form of a perturbed KdV soliton with gradually changing
amplitude, �0�r−2/3 and wavelength ��r1/3, can be derived
�apparently, it was derived initially by Iordansky56�. Behind
the soliton an oscillatory tail forms in the process of propa-
gation. This law of soliton decay can be readily obtained by
means of the perturbation method or just from the soliton
energy conservation. Numerical results confirm this law very
well �see line 1 and corresponding numerical data in Fig. 11,
later�.

The same dependencies of wave parameters on distance
�at least in a certain spatial domain, far from the center�
follow from the exact solution of the cKdV equation. As
shown by many authors �see, e.g., Refs. 58 and 59�, this
equation belongs to the class of completely integrable sys-
tems. In particular, two independent analytical solutions
�nonlinear modes� were constructed for this equation. They
have a different structure but evolve similarly in space. The
first mode, described by the first kind of Airy function,

58
Ai���, is not well localized; it represents an oscillatory non-
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linear wave train. The second mode, described by the second
kind of Airy function, Bi���,59 represents a pulse-type pertur-
bation with a small oscillatory tail in the rear part. This mode
looks similar to a cylindrically diverging solitary wave ob-
served in experiments and numerical calculations �see, e.g.,
Refs. 53 and 54 and references therein�.

For waves affected by fluid rotation, both the model
equation and the laws of wave evolution are modified. The
resultant rotation-modified cKdV equation, Eq. �37�, be-
comes nonintegrable.

The influence of rotation on the amplitude variation of
pulse-type internal waves in shallow water was theoretically
studied in Ref. 55. The results can be summarized as follows.

The amplitude variation with distance for a perturbed
KdV soliton was obtained with the use of an energy balance
equation:

�0�r� = r2���0�0�1/2

r0
+

3f2

8c
�12�

�
�� r

r0
�−4/3

−
3f2

8c
�12�

�
2

. �38�

In one limiting case, when the rotation is absent, the law
of soliton decay due to cylindrical spreading, �0�r−2/3,
readily follows from this equation. In another limiting case,
when there is no cylindrical divergency �the plane soliton
propagating in a rotating fluid�, the expression �35� for the
“terminal decay” of the KdV soliton can be recovered.

Figure 11 shows a comparison of theoretical and numeri-
cal results obtained within the framework of the rotation-
modified cKdV, Eq. �37�, for the same initial perturbation
having the form of a KdV soliton, Eq. �6�.

For a cylindrically diverging soliton in the nonrotating
case, numerical and theoretical results are in excellent agree-
ment �see line 1 and asterisks in Fig. 11�. It was found that
the soliton gradually changes its shape and acquires a very
small negative tail due to the influence of radial spreading.
However, these variations are so small that they are almost
invisible in a scale of amplitudes even at long distances. The
relationship between amplitude and characteristic duration of
a solitary wave is in good agreement with the formula �7� for

−1/2 1/3

FIG. 11. A comparison of solitary wave decay within the framework of a
rotation-modified cKdV equation with and without rotation, as predicted by
approximate theories and calculated numerically. For details see text. �From
Ref. 55.�
the KdV soliton, T��0 �r .
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The attenuation of a plane soliton due to weak rotation
as predicted by Eq. �35� is presented by line 2 and crosses in
Fig. 11. Some discrepancy between theory and numerical
data at large distances was caused by the influence of radi-
ated waves. �The calculations were performed with periodic
boundary conditions; therefore, the radiated waves eventu-
ally began to interact with the main pulse. The increase of
the period decreased the discrepancy.� In comparison with
the nonrotating case, the radiated tail behind the pulse was
very intensive and increased with the distance.

The simultaneous action of weak rotation and cylindrical
divergence on a KdV soliton is illustrated by line 3 and
pluses in Fig. 11. As one can see, the results obtained agree
with the theory, Eq. �38�, even better than in the plane case.
This can be explained by a more compact tail formed behind
the main pulse. Therefore, its effect on the solitary wave
manifests itself later in the periodic system.

The result of evolution of the initial KdV soliton in the
linear system is depicted in Fig. 11 by curve 4. The syner-
getic action of rotation, Boussinesq and Coriolis dispersions
lead to amplitude decay as �0�r−1, in accordance with the
theoretical prediction.

C. Strongly nonlinear models

In previous sections, both nonlinearity and dispersion
were considered small so that, e.g., in a two-layer fluid, the
displacement of the pycnocline is significantly smaller than
its equilibrium depth �or, for a pycnocline close to the bot-
tom, than its height over the bottom�. In oceanography, along
with a number of observations for which the weakly nonlin-
ear models provide a good approximation, there is also a
growing amount of data for which they are evidently wrong
�see examples in the experimental subsection, V C�.

To describe strongly nonlinear internal waves, direct nu-
merical simulation for the basic hydrodynamic equations has
been used. In particular, many numerical works considered
steady waves in a two-layer fluid. In this case the linear
Laplace equation can be used for each layer. The first was
probably the paper by Amick and Turner60 �see also Ref. 61�.
In addition to a detailed mathematical treatment of the prob-
lem, they have shown that there exists a limiting amplitude at
which a soliton acquires a flat top and tends to two separated
kinks, similar to the case of the eKdV equation, but with
different parameters. The amplitude and velocity of such a
limiting soliton are

�0 lim =
h1 − h2

�a

1 + �a
, Vlim =

�g�1 − a��h1 + h2�

1 + �a
, �39�

where a=�1 /�21, and positive displacement is the upward
one.

Subsequently, a direct numerical analysis of the two-
layer case as applied to stationary solitary waves was per-
formed by many authors �see, e.g., Refs. 62 and 63�. As an
example, Fig. 12 shows calculations of soliton profiles for a
two-layer fluid using the parameters chosen by Evans and
Ford.62 More recently, calculations of solitary waves in a
layer with smooth stratification were performed. Also, some

nonsteady, strongly nonlinear processes were studied by di-
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rect numerical simulation. Vlasenko and Hutter64,65 modeled
the shoaling of long internal waves in coastal areas. These
processes include steepening, the formation of soliton
groups, and breaking with the generation of turbulence.
Lamb66,67 showed that shoaling of a solitary wave can result
in the formation of a trapped core, which was previously
observed in the laboratory experiment by Davis and
Acrivos.16 Stastna and Lamb68 calculated soliton propagation
on a background current.

However, direct numerical computations are usually
time costly and, also important, it is often difficult to under-
stand the qualitative pattern of the process. Although there
are, strictly speaking, no a priori small parameters that could
be used to simplify the problem, in many cases the soliton
length remains much larger than the thickness of one of the
layers or of the total depth of the ocean, especially in coastal
areas. For these cases, a long-wave approximation can be
constructed that uses the corresponding expansion of disper-
sive terms while keeping the nonlinearity strong. This ap-
proach was first suggested by Whitham69 for surface waves
based on the expansion of the Lagrangian.

For internal waves in a two-layer fluid, Miyata was ap-
parently the first who suggested �albeit without a detailed
derivation� the long-wave equations for strongly nonlinear,
weakly dispersive waves in a two-layer fluid, and analyzed a
steady solitary solution of these equations.70–72 Miyata’s
equations, together with other weakly nonlinear models,
KdV, eKdV, BO, and JKKD, were examined against numeri-
cal calculations in �Refs. 71 and 73� �see the experimental
subsection, V C�. A detailed analysis of the same problem for
a two-layer fluid was performed by Choi and Camassa74 for
two layers with arbitrary densities, �1 and �2	�1. For shal-
low water, these equations �essentially the same as those ob-
tained by Miyata�, being reduced to the case of a small den-
sity jump, ����1,2, typical of oceanic conditions and most
of the laboratory experiments with strong solitons, can be

FIG. 12. Soliton profiles, ��x� /h1 vs x /h1, for a two-layer fluid with
h2 /h1=3, �1 /�2=0.997 �the surface is at +1; the bottom at −3 on the vertical
axis�. The profiles shown correspond to different soliton amplitudes,
−�0 /h1=0.05; 0.1; 0.2; 0.3; 0.4; 0.5; 0.6; 0.7; 0.8; 0.9; 0.925; 0.95; 0.975;
and 0.99. The dashed horizontal line marks the level of the limiting ampli-
tude wave. From Ref. 62.
represented in the form
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�

�x
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u2 = − u1
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h2 − �
, �41�
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+ u2
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�x2 − � �u2

�x
�2� .

�42�

Here the z axis is directed downward, and u1,2 are the hori-
zontal velocities in the layers, each averaged over the layer
thickness. After the substitution of u2 onto the rhs of the last
equation, we have two equations for � and u1. This reduction
has been done in Ref. 75, where it was also demonstrated
that the set of Eqs. �40�–�42� is a straightforward result of the
long-wave expansion of the Lagrangian suggested by
Whitham69 for surface waves.

For a stationary soliton in which all variables depend on
one variable x−Vt, this system can be reduced to a second-
order ordinary differential equation that can be readily ana-
lyzed. In particular, as follows from the equation of mass
balance, Eq. �40�, the current velocities at the soliton crest
��=�0� and the soliton speed are

u1 =
V�0

h1 + �0
, u2 = −

V�0

h2 − �0
, �43�

V��0� =�g��h1 + �0��h2 − �0�
h1 + h2

.

An evolution equation for a wave propagating in one
�e.g., positive� direction �� model� was written in the
form75,76

��

�t
+ c���

��

�x
+

�

�x
�����

�2�

�x2 � = 0. �44�

Here ����= �c��� /6��h1+���h2−�� is the nonlinear disper-
sion parameter corresponding to the KdV dispersion param-
eter �see previously� at an instantaneous depth, h1+�. The
value of c��� is the velocity of a simple wave that is exact if
the wave is so long that dispersion can be completely
neglected:77

c��� = c�0��1 + 3
�h1 − h2��h1 − h2 − 2��

�h1 + h2�2

����h1 − ���h2 + ��
h1h2

−
h2 − h1 + 2�

h2 − h1
� , �45�

where c�0��c is the velocity of linear perturbations.
It should be emphasized that, unlike in the weakly non-

linear case, the long-wave approximations for surface and

internal waves considered above �both two and one direc-
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tional� are of a somewhat contradictory nature. Indeed, these
equations combine strong nonlinearity and weak dispersion,
whereas a soliton exists as a balance between the nonlinear-
ity and dispersion, so that it is a priori unclear whether a
strong soliton would be long enough to provide sufficiently
small dispersion terms and thus secure the applicability of
the shallow-water approximation. This makes the verification
of these models especially necessary. Such a comparison
with the fully nonlinear numerical models has been done, in
particular, in Refs. 7 and 74. The corresponding laboratory
experiments are described in Sec. V C.

For a very large depth ratio the applicability of the
“shallow-water” model is limited because the basin is not
always shallow enough for the solitons. For these cases,
similar models have been constructed for a thin upper and
infinitely deep lower layer both for two-directional and one-
directional cases. The corresponding conditions were not cre-
ated in laboratory experiments, so we do not present the
corresponding formulas here �the details can be found in
Refs. 7 and 75�.

V. LABORATORY EXPERIMENTS EXAMINING
NONINTEGRABLE MODELS

A. Soliton damping in laboratory experiments

Evidently, dissipation is present in all experiments. How-
ever, in some experiments its effect is relatively small and
can be neglected. In others, dissipation was marked as a pos-
sible cause of disagreement between theoretical predictions
and experimental data, still without a systematic study of its
effect. Only in a few papers has the influence of viscosity on
internal waves been intentionally studied.

The first such paper was probably that by Walker.8 He
made estimates for a two-layer fluid that shows that due to
viscosity one can expect a wave-speed reduction of about
10% in comparison with the inviscid theoretical value, this
effect being more pronounced for waves of smaller ampli-
tudes. As was described in Sec. III, two immiscible fluids
were used in that experiment, water of density �2=1 g/cm3

in the bottom layer and Varsol I �Humble Oil� of density
�1=0.784 g/cm3 in the upper layer. Their viscosities are �2

=0.01 and �1=0.015 cm2/s, respectively.
Results of wave profile measurements show that the ob-

served solitary waves were “severely narrowed,” even with
respect to the case when the surface tension effect also lead-

ing to wave narrowing is taken into account �Fig. 13�. The
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effect was especially noticeable at small wave amplitudes,
whereas at �0 /h2�0.25 the “narrowing is substantially less.”
As already mentioned �see Sec. III�, the author also found “a
small �5% in half-width� systematic departure from sech2

shape for small waves, with those of elevation being steep-
ened in front and broadened in back, and vice versa for those
of depression.” The reader should not be confused with the
statement in Sec. III, where we wrote that the author found
good agreement between the experimentally measured wave
shape and the theoretically predicted sech2 function in the
frontal part of a solitary wave. As one can see from Fig. 13,
the deviation of experimental data from theoretical lines is
quite significant; nevertheless, the experimental data still can
be best fitted by the sech2 function, but of a different
�smaller� time scale. The detected solitary wave profiles were
not symmetrical, apparently due to the known effect of vis-
cosity on a soliton �see, e.g., Refs. 24 and 78�. Because of
that, the comparison of experimental data with KdV theory
was made only for the frontal parts of waves �this situation is
typical for many experiments of different authors�.

Solitary wave velocities were also measured versus
wave amplitudes at different depth ratios, then the values
extrapolated to �0→0 were compared with theoretical pre-
dictions for long linear waves. It was found that “in general,
the speeds are 8% less than those predicted by the inviscid
theory and display a rather pronounced decrease” as h1 /h2

approaches from below to the critical value �where the qua-
dratic nonlinear coefficient � in the KdV equation vanishes�.

Another detailed study of the viscosity effect on internal
waves was undertaken in Ref. 21. The authors modified
Keulegan’s results79 obtained for surface waves to adapt
them for internal waves in a two-fluid system. The resultant
expression governing solitary-wave amplitude decay is given
by Eq. �32� above, with the viscosity coefficients for water
�1=0.01 cm2/s and for freon TF �2=0.0044 cm2/s.

The authors carefully studied single-soliton propagation
and found that “in actuality, a wave of permanent form is
never realized experimentally.” In particular, in their tank
�see the description in Sec. III�, the solitary wave that trav-
eled a distance of 3.5 m and reflected from one of the tank
walls was only 30% in amplitude of the incident wave when
it returned to the same place.

To quantify the viscous decay of solitary waves, “experi-
ments were performed where multiple reflections off the end

FIG. 13. Comparison of observed soli-
tary wave shapes �open circles� with
KdV solitons of the same amplitudes
as obtained within the framework of
the inviscid KdV equation, both with-
out surface tension �curve labeled by
T=0� and with surface tensions at the
interfaces water Varsol and Varsol air
�the curve labeled by T�0�. �a� shows
an elevation wave with h2=11.5 cm,
h1 /h2=1.25 �0 /h2=0.0336; �b� shows
a depression wave with h2=11.5 cm,
h1 /h2=0.875 �0 /h2=−0.0237. From
Ref. 8.
walls were monitored in order to increase effectively the dis-
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tance traveled by given disturbance.” The results are pre-
sented in Fig. 14. Solitary wave amplitudes are normalized
by the incident-wave amplitude measured at some distance
from the wavemaker. As already mentioned in Sec. III, the
experiment described in Ref. 21 was carried out both for
deep- and shallow-water configurations. Circles and boxes in
Fig. 14 represent data obtained in the deep-water configura-
tion with initial amplitudes ��0 /h2�2a=0.305 and 0.109, re-
spectively. Triangles represent shallow-water data with
��0 /h2�2a=0.269. In the same figure one can see a numerical
solution of the generalized KdV equation �29� augmented by
the integral viscous term �30� describing a viscosity in the
laminar boundary layers. For the initial condition, the experi-
mentally recorded wave form near the wavemaker was used.
Two calculations were performed, with and without viscos-
ity. Numerical results without viscosity show a soliton for-
mation; initial pulse amplitude gradually increases and
quickly tends to a constant value, as shown by the dashed
line in Fig. 14. However, when the viscosity is taken into
account, the initial pulse amplitude only slightly increases
and then decreases noticeably, as shown by the solid line in
Fig. 14. Unfortunately, that solution was restricted due to
numerical difficulties; therefore, the solid curve was termi-
nated and continued as a broken line representing an ap-
proximate analytical solution of the disturbed KdV equation,
as described by Eq. �32�. One can see that experimental and
theoretical data agree well. The authors note the “use of the
more-accurate expression” of Ref. 10 yields even better
agreement with these data �see, however, the discussion of
results of Ref. 10 below�.

As the viscosity affects the solitary wave amplitude, it is
natural to expect that it can also affect the wavelength. How-
ever, the dissipation of linear perturbations in the laminar

FIG. 14. Comparison of solitary wave decay as calculated numerically
�solid line�, analytically on the basis of the asymptotic theory resulting in the
adiabatic solution, Eq. �32� �dashed line� and experimentally measured.
From Ref. 21.
boundary layer linearly depends on wave number k, whereas
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the dispersion term in the KdV equation is proportional to k3.
This means that, for relatively large amplitude and, hence,
small-wavelength solitons �we recall that for the KdV soli-
ton, ���0

−1/2�, the nonlinear and dispersive effects prevail
over dissipation. In the process of soliton damping, when its
amplitude decreases due to viscosity and wavelength grows,
dissipation becomes increasingly important and can eventu-
ally prevail over dispersion. Then, the adiabatic relationship
for a KdV soliton, �2�0=const, ceases to be valid. The au-
thors of Ref. 21 found in their numerical study that there is
indeed a deviation from the adiabatic relationship for small-
amplitude KdV solitons: at the same amplitude, the soliton is
shorter in the viscous case. �Nonadiabatic corrections to soli-
ton shapes due to different kinds of dissipation were studied
in Refs. 24 and 78.� The smaller the soliton amplitude, the
more this deviation was pronounced in that experiment. The
viscosity effect is insignificant for soliton amplitudes of
�0 /h2	0.1. Now the experimental data deviation from the-
oretical lines at small amplitudes presented in Figs. 9 and 10
can be explained by the influence of boundary-layer dissipa-
tion. The deviation remains small exactly within the pre-
dicted amplitude range �0 /h20.1.

In Ref. 10 the authors derived an expression for the total
rate of energy loss per unit width of tank for a KdV internal
soliton in a two-layer fluid in the general case of layers of
different density, viscosity, and depth. They took into ac-
count the energy loss from the lower fluid due to the bottom
and wall boundary layers in the tank, in the upper fluid due
to the wall boundary layers, and in the boundary layers at the
interface between two fluids. The equation derived for the
soliton amplitude decay in space has the same form as �32�
with the same expression for the characteristic distance of
soliton decay in the limit of �� /�1,2�1 and �1=�2.

The authors tested the validity of their theory by com-
paring its predictions with the decay rate of the internal soli-
tons observed in Ref. 22 �see the description of the experi-
ment in Sec. III�. Their results are presented in Fig. 15. The
obvious discrepancy between the theory �solid line� and ex-
perimental data �triangles� were explained by the influence

FIG. 15. Comparison of solitary wave decay as calculated on the basis of
“improved” �solid line� and “revised” �dashed line� theories for the adiabatic
soliton decay described by Eq. �32� and experimental data. From Ref. 10.
of “parasitic” water motions. Namely, when the internal soli-
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ton was generated first, the surface waves were also pro-
duced by the same piston. Surface waves propagate faster
than the internal waves and leave some residual water mo-
tion behind that is codirected with the water motion induced
by the internal soliton in the upper layer. Because of that, the
velocity shear is reduced in the upper layer and, as a conse-
quence, the decay is also reduced �by about 1 /3 according to
the authors’ empirical estimate�. Meanwhile, when the soli-
ton is reflected from the remote tank end and moves back
toward the wavemaker, it propagates in a head-on direction
with the residual surface and its own internally induced mo-
tion. Therefore, the velocity shear is noticeably greater than
in the previous case, and the soliton decays faster. The results
presented in Fig. 15 are in qualitative agreement with such
an explanation �the reflection boundary at the remote end of
the tank is shown in the figure�. The revised theory with the
empirically reduced decay rate is shown in the figure by the
dashed line; the last two triangles correspond to solitons
propagating toward the wavemaker after reflection from the
remote tank end.

The paper by Gavrilov80 was also devoted to the study of
soliton attenuation due to viscosity. The author carefully
studied this effect for different combinations of two immis-
cible fluids, both under rigid lid conditions and with a free
surface. He used tanks of different sizes: 220 cm�17.5 cm
�15 cm, 390 cm�20 cm�6 cm, and 390 cm�6 cm
�6 cm filled with two-layer fluid: the saltwater in the lower
layer ��2=1 g/cm3, �2=0.01 cm2/s�, and a mixture of kero-
sene with khladon-113 ��1=0.9 g/cm3, �1=0.0141 cm2/s� or
pure kerosene ��1=0.8 g/cm3, �1=0.0162 cm2/s� in the up-
per layer. To explain these data, the author slightly modified
the theoretical results of Refs. 10 and 21 and found very
good agreement between theory and experimental data for
the dependency of the soliton amplitude on distance. The
shapes of solitary waves corresponded very well to the KdV
theory for rather small amplitudes ��0 /H�0.05�, where H
=h1+h2. For larger amplitudes, the discrepancy between
theory and experiment was quite noticeable. However, ex-
perimental data agreed very well, up to �0 /H�0.15, with
the second-order shallow-water theory developed by
Ovsyannikov.81

B. Experimental study of waves in a rotating fluid

1. Quasiplane wave beams in a rotating fluid

In this section we discuss the results of experimental
study of internal wave generation and propagation in a large
rotating tank built in the “Coriolis” laboratory �LEGI,
Grenoble, France�.42 The tank, 14 m in diameter and 1.2 m
in height, is placed on a rotating platform whose frequency
of rotation can vary in a wide range. This facility allows the
modelling of important geophysical processes, including sur-
face and internal waves in a rotating ocean.

The tank was filled with a two-layer fluid, saltwater in
the lower layer, and freshwater in the upper layer. The angu-
lar velocity of tank rotation varied within a wide range. This
allowed study of different regimes of fluid rotation starting
from nonrotating fluid and “extremely weak” rotating to

strongly rotating.
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The first set of experiments to be discussed concerns
waves with approximately plane fronts �actually they repre-
sented two-dimensional �2D� wave beams�.38 Thicknesses of
water layers in these experiments were h1=5 cm �upper
layer� and h2=35 cm �lower layer�. The relative density dif-
ference between the layers, 
� /�, was about 0.5%. Internal
waves were generated at the periphery of the tank by a plane
wavemaker 3 m long and 45 cm wide �Fig. 16�a��. The
maximum wave amplitude was 1.5 cm without rotation and
less than 1 cm when rotation occurred.

Prior to studying waves in a rotating fluid, the authors
conducted an experiment with the generation of quasiplane
internal solitary waves in a nonrotating fluid. As the wave-
maker of limited width generated an internal wave beam that
was not limited by sidewalls, as occurs in typical channel-
type tanks, a small transversal diffraction occurred. The dif-
fraction caused an energy leakage from the axis of the beam
to the sides. In spite of such energy loss, reasonably good
agreement between parameters of generated solitary waves
and KdV solitons was found; the results of that experiment
were considered further as reference data.

Then, the authors studied four regimes of rotation pa-
rameterized by the value of exponent q of a small parameter
�, as described in Sec. IV B 1: “extremely weak” �q=4�,
“very weak” �q=3�, “weak” �q=2�, and “strong” rotation
�q=1�. They did not specify explicitly the value of the rota-
tion frequency in each particular case, but indicated that the
period of rotation varied in the range 50–1000 s.

It was discovered in the experiments that, unlike the soli-
tary waves observed in tanks with rigid walls, the interface
between the leading solitary wave and the following disper-
sive wavetrain never comes back to the rest level, both with
and without rotation. The leading solitary wave was a de-
pression of the pycnocline, because the thickness of the
lower layer in the experiment was greater than that of the
upper one, h2	h1. However, the depression was followed
immediately by the pycnocline elevation of a smaller ampli-
tude. The authors presumed that this could be due to the
effective wave energy loss through the sides of the wave
beam caused by diffraction. This explanation sounds reason-
able because, as was shown by Gorshkov and Papko24 and
Khasanov,78 the shape of the tail behind the soliton in dissi-
pative media strongly depends on the type of dissipation, and

FIG. 16. Sketch of the rotating water tank equipped with the plane wave-
maker �PWM� in �a� and cylindrical wavemaker �CWM� in �b�.
for some kinds of dissipation �e.g., for Rayleigh dissipation�,
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the perturbation immediately behind the soliton might be op-
posite to the soliton polarity. However, the detailed influence
of energy leakage due to diffraction on the structure of a
soliton tail was not studied.

In the case of extremely weak rotation, as expected, the
shape of the wave closely resembled that recorded without
rotation: there was a leading solitary wave of negative polar-
ity followed by an elevation and a train of dispersive waves
�Fig. 17, q=4�. At the central zone of the wave beam the
wave was quasiplane with amplitude variation within ±8%
along the crest of 2.5 m length covered by several recording
probes. When the rotation increases in a certain range, “the
general solitary wave shape is conserved”; however, its am-
plitude decreases, “while the amplitude of the elevation im-
mediately following it becomes much larger than in the non-

rotating case.”
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For the case of very weak rotation, �q=3�, experimental
data for the wave velocity versus amplitude for the leading
solitary wave were found to be in satisfactory agreement
with the theoretical prediction; i.e., they were close to that
predicted by the KdV theory, Eq. �7�. As mentioned in Sec.
IV B 1, the only effect of rotation in this case is the appear-
ance of a transverse component of fluid velocity that is of the
next order of smallness with respect to the longitudinal com-
ponent. An agreement with KdV theory was also obtained for
the relationship between the solitary wave amplitude and its
characteristic wavelength. Still, an agreement with the theory
was much better when there was no rotation at all or when
the rotation was extremely weak. It was observed that the
experimental data for the dependency of characteristic wave-

FIG. 17. Wave profiles at two dis-
tances from the wavemaker �left
frames—6 m away from the wave-
maker; right frames—7.2 m away
from the wavemaker� for four different
rotation rates: q=1—“strong rotation”
case; q=2—“weak rotation” case; q
=3—“very weak rotation” case; and
q=4—“extremely weak rotation”
case. From Ref. 38.
length � on amplitude �0 were somewhat more scattered and
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shifted down from the theoretical line when the rotation in-
creases from an “extremely weak” to “very weak” value. The
characteristic wavelength was defined as

� =
1

�0
	

0

�

��x,t�dx . �46�

Note that �=M / �2�0�, where the “wave mass” M is deter-
mined in Eq. �36�; only the frontal portion of a solitary wave
was used for calculation � to exclude the distorting influence
of the tail following in the rear part of the wave.

In our opinion, in this case the authors actually observed
an initial stage of the terminal decay of the KdV soliton. A
limited distance did not allow observation of a complete soli-
ton disappearance due to rotation. The circumstantial evi-
dence of this regime is the heavy tail generated behind the
solitary wave and the linearly growing background in the
space in front of the solitary wave. This strongly resembles
wave patterns obtained in numerical calculations of soliton
terminal decay.39

For the higher rotation rate �the “weak rotation” case�,
the authors obtained very repeatable results, observing “the
same distinctive equilibrium shape, with three crests evolv-
ing together in front of a tail of dispersive waves” �Fig. 17,
q=2�. The leading part of the wave had a stable shape,
whereas the shape of the tail changed with the distance. The
dependency of the wave speed on the solitary wave ampli-
tude was still close to linear, although the data were more
scattered than in the nonrotating or very weakly rotating
cases with q=4 or 3.

As for the relationship between solitary wave amplitude
and width, there is an ambiguity in the definition of the width
due to the alternative character of the solitary wave profile
even in its frontal part �see Fig. 17, q=2�. Therefore, the
results obtained by the authors do not seem to be reliable and
need further examination.

The authors suggest that in this experiment they obtained
experimental evidence of their analytical solution for the
“Ostrovsky wave” �see Sec. IV B 1�. Their opinion is based
on the analysis of the relationship between solitary wave
amplitude and characteristic wavelength, especially for
����0�: “such a relation between distances characterizing the
front part of the wave supports the conclusion that this front
part is a permanent feature, at least for the distance over
which we measured it, i.e., between 3 and 8 m from the
wave generator.” In the meantime, they admit “the wave
shape is not correctly described by our asymptotic solution,”
which does not predict a small depression pulse on the front
of the main solitary wave �see Fig. 17, q=2�.

In the case of strong rotation, a wave packet of much
smaller amplitude ��0�0.5 cm� emerged from the initial
pulse generated by the wavemaker. No solitons were ob-
served. The shape of the wave packet was “distinctly sym-
metrical with respect to the undisturbed interface level” �see
Fig. 17, q=1�. The velocity of the wave packet was “almost
constant with x, and not related to the amplitude.” Our esti-
mates for this case with a rotation period Tr=50 s �which is,
apparently, the “strong rotation” case� show that the Coriolis

dispersion predominated over nonlinearity by more than an
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order of magnitude. Evidently, this case represents a linear
evolution of a wave packet in a rotating medium.

In the conclusion the authors discuss several possible
sources of discrepancy between the theory and their experi-
ments. For instance, a pulse of depression with a nonzero
total mass was generated by the wavemaker, which is incon-
sistent with Eq. �34� used for the theoretical analysis. As was
already mentioned �see Sec. IV B 1�, the rKdV equation �34�
is valid only for initial perturbations of zero total mass �see,
however, a paper by Grimshaw,94 in which the problem of
the adjustment of an initial perturbation to the zero-mass
condition is studied�.

Another discrepancy with the theory, which is not men-
tioned by the authors explicitly, is the disappearance of the
first depression on the wave front at far distances from the
wavemaker when the wave amplitude becomes small. Ac-
cording to the authors, the shape of a solitary wave in this
case becomes “very similar to the computed shape” for the
“Ostrovsky soliton.” Meanwhile, as mentioned in Sec.
IV B 1, solitary solutions approximately constructed by Re-
nouard and Germain38 indeed look similar to the large am-
plitude “Ostrovsky solitons” numerically constructed in
Refs. 48 and 49, but for the case of negative �! And in
contrast with the results of Ref. 38, oscillations on soliton
tails appear when the soliton amplitude decreases; the
smaller the amplitude, the more oscillations appear. Some-
thing similar to that was observed by Papko82 in wave mod-
eling in an electromagnetic LC lattice �see Ref. 3�.

This classification of rotational regimes is conditional to
some extent because the authors evenly notice that “the
boundaries between the different regimes are not clear cut,
and thus there is some overlapping of the domain of validity
for the equations” describing wave propagation.

2. Cylindrical waves in a rotating fluid

Another series of experiments conducted in the same
large rotating tank in the laboratory “Coriolis” dealt with
cylindrical internal waves.55 The results obtained were inter-
preted within the framework of a rotation-modified cKdV
equation �37�. A circular, piston-type paddle with an internal
radius of 1.25 m was placed in the center of the circular tank
�Fig. 16�b��. This 5-cm thick, 25-cm wide cylindrical annu-
lus moved vertically along a cylinder 2.5 m in diameter. The
paddle could perform either sine-like �“periodic”� motion
with given numbers of oscillations or a single one-directional
motion �upward or downward� with a constant speed. The
amplitude E and period Tp �or a duration Ts for the single
displacement� of the paddle movement could vary.

Two different ratios of the upper- to lower-layer thick-
nesses were chosen: h1 /h2=4 and 1/4, as well as two differ-
ent values of relative density difference of the upper and
lower layers, 
� /����2−�1� /�2=0.35% and 1%.

The amplitude and period of excitation were chosen in
the ranges of E=1–3 cm and Tp=10–70 s for the “periodic”
movement; and E=3 cm, the duration Ts=4 s for the upward
or downward single movements. In order to obtain a refer-
ence set of data, experiments without rotation �f =0 rad/s�

were performed; then, the weak �f =0.058 rad/s� and strong
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�f =0.1 rad/s� rotation cases were studied with f =2�r

=2�2� /Tr� being the Coriolis parameter related to the fre-
quency �r and period Tr of fluid rotation.

For the case of a very weak density difference, 
� /�
=0.35%, the experiment was conducted in the nonrotating
fluid at two rotation rates: “weak rotation,” f =0.058 rad/s,
Tr=216 s, and “strong rotation,” f =0.1 rad/s, Tr=126 s.

The values of linear velocity of long internal waves in a
two-layer approximation were c=3.7 cm/s for 
� /�
=0.35% and c=6.26 cm/s for 
� /�=1%.

In the experiments described below, the initial pulse gen-
erated by the wavemaker had a shape of one period of a sine
function with a leading front of positive polarity for the in-
terface displacement. According to the KdV theory,2,20 in the
plane case without rotation such a pulse evolves into a se-
quence of solitons, if the corresponding Ursell parameter is
greater than the critical one, Urcr=�7; otherwise, it evolves
into a dispersive wavetrain. For the experimental conditions,
the Ursell parameter was always above the critical value.
Hence, at least one soliton could be formed from the initial
perturbation in the plane case without rotation. However, cy-
lindrical divergence and especially rotation can prevent soli-
ton creation because of an amplitude decrease due to energy
spreading along the outgoing wave front. As mentioned
above, even weak rotation can lead not only to a gradual
decay of the soliton but also to its eventual “terminal” de-
struction. The rotation also modifies the number of generated
solitons from the intensive initial perturbations and can even
prohibit soliton formation completely.38,40,51,83

In the first experiment, only one period of sinusoidal
perturbation was produced with the amplitude E=1 cm and
period Tp=60 s. At least two solitary waves emerged from
the perturbation with a heavy trailing tail behind them. Ac-
tually, it was not easy to separate solitary waves from the
trailing wavetrain and, therefore, it is difficult to indicate
precisely how many solitary waves were generated. The am-
plitude of the leading wave decreased with the distance from
the paddle, and such a decrease became stronger when rota-
tion increased. At all distances from the wavemaker, the per-
turbation amplitude decreased when the rotation increased.

In another experiment, the initial perturbation was pro-
duced by a single steady paddle movement downward at a
distance E=3 cm for the time Ts=4 s. In the nonrotating
case, at least two solitary waves emerged and separated from
the train of much smaller waves. Similarly to the plane case,
separation between two solitary waves increased with the
distance from the paddle. Under the rotating action, such a
clear separation was no longer observed. Near the wave-
maker the leading solitary wave always had the largest am-
plitude, independently of the rotation frequency. Without ro-
tation, as well as at very weak rotations, the leading pulse
was the largest at all distances, although its amplitude gradu-
ally decreased. However, at high rotation rates the amplitude
of the second solitary wave at large distances, r	300 cm,
became larger than the amplitude of the first wave.

In all experiments, the speed of the leading wave was
independent of the initial condition and of the wave ampli-
tude, and it was always approximately equal to the phase

speed of long linear interfacial waves. Without rotation, the
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second wave velocity was always smaller than the phase
speed of long perturbations. When rotation is introduced, the
velocity difference between the first and the second waves
diminished and eventually, in the strong rotation case, two
solitary waves moved with the same speed. Apparently, this
indicates that the nonlinearity was not suppressed by strong
rotation.

For the first wave the characteristic wavelength was
measured against wave amplitude. For the nonrotating and
weakly rotating cases, the same dependency as that predicted
by the KdV theory for plane solitons, ��1/��0, was ob-
tained. In the strong rotation case, the wavelength was inde-
pendent of the amplitude, similar to plane waves in the ex-
periment by Renouard and Germain38 described above; this
indicates again that the linear regime took place in this case.

A decrease of the first solitary wave amplitude with dis-
tance was studied for both aforementioned regimes of wave
generation, i.e., when the wavemaker performed one period
of sinusoidal motion �regime 1� and when it displaced
steadily downward �regime 2�. The power-type approxima-
tion of pulse amplitude versus distance was used, i.e., it was
assumed that �0�r��r�. Results obtained for the damping
exponent � of the amplitude of the leading wave for various
experimental conditions are presented in Table I.

In the nonrotating case for both regimes of generation,
solitary waves appeared at the leading edge of the wavetrain
and decreased with distance, in agreement with the theory for
KdV solitons, �0�r−2/3 �see previous�.

Under the influence of rotation, the damping of the lead-
ing wave was stronger, and the decay exponent equaled to
�=−2 for the weak rotation and �=−4 for the strong rota-
tion. In Fig. 18�a� one can see the dependency of the first
wave amplitude on distance for the particular case of wave
generation �regime 1� with the period Tp=70 s and amplitude
E=1 cm.

To illustrate the robustness of the theoretical model—the
rotation modified cKdV equation �37�—to describe wave dy-
namics in a cylindrical rotating system adequately, two lim-
iting cases of rotation were studied numerically within the
framework of that equation:

�i� the nonrotating case with the strong density differ-
ence, 
� /�=1%; and

�ii� the strong rotation case, Tr=126 s, with the small
density difference, 
� /�=0.35%.

The boundary conditions for these computations were

TABLE I. Damping exponent � of the leading pulse for various experimen-
tal conditions. Regime 1: E=1 cm, 10 s�Tp�70 s; regime 2: E=4 cm,
Ts=4 s.

f �s−1�


� /�=0.35% 
� /�=1%

Regime 1 Regime 2 Regime 1

0 �=−2/3 �=−2/3 �=−1
0.058 �=−2 �=−2 �=−1

0.1 �=−4 �=−4 �=−2
taken from the real laboratory experiment, as recorded by the
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first probe located at a distance of 201 cm from the center of
the tank �curves a in Figs. 19 and 20�. The subsequent
frames, �b�–�e�, show the records of the interface displace-
ment and corresponding numerical results for different dis-
tances: �b� 245 cm; �c� 259 cm; �d� 302 cm; �e� 361.5 cm.

As one can see from these figures, there is fairly good
agreement between experimental �thin lines� and numerical
�thick lines� data. Some discrepancy between these data can
be explained by the influence of dissipation, turbulence, and
other side factors that always present in the real experiment
but was ignored in the computations. Another source of dis-
crepancy may be linked to the relatively small distances of
wave registration points from the center of the tank, whereas
the cKdV equation is formally valid at large distances from
the center. For the particular experimental conditions this
requires r�50 cm.

A comparison of these two figures shows a qualitative
difference in the evolution of the initial perturbation in rotat-
ing and nonrotating fluids. In the latter case, Fig. 19, one can
see a pronounced leading pulse followed by a nonstationary
wavetrain. The frontal part of the pulse is close to the KdV
soliton. The pulse amplitude gradually decreases. In the
former case, Fig. 20, the perturbation evolves into an essen-
tially nonstationary wavetrain. The amplitude of the leading
wave decreases very fast while the wave maximum shifts to
the rear and slowly decreases. Moreover, at short distances
from the center, the global maximum of the wavetrain can
even increase because of the energy transformation from the

FIG. 18. First wave amplitude versus distance in the logarithmic scale for
the periodic wave excitation. �a� Weak density difference, 
� /�=0.35%,
Tb=70 s. �b� Stronger density difference, 
� /�=1.0%, Tb=45 s. Pluses—f
=0 rad/s; stars—f =0.058 rad/s; circles—f =0.1 rad/s. From
Ref. 55.
front to the back of the wavetrain.
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To study the influence of the rotation effect on the decay
of outgoing pulse perturbation, an additional numerical com-
putation was conducted within the framework of Eq. �37�.
The initial pulse was chosen in the form of one period of
sinusoidal perturbation, similar to that generated in the ex-
periment described above. Parameters for the equation coef-
ficients were calculated from the hydrological experimental
data.

It was determined that the pulse evolves into the
wavetrain that decays with the distance in a fairly complex
way �see Fig. 21�. The amplitude of the leading edge of the
wavetrain �the first wave amplitude� decays much faster than
the global wavetrain amplitude �cf. the data around lines 1
and 2 in Fig. 21�. Both of them decay, apparently, in a non-
power manner. However, at small distances, separate limiting

FIG. 19. Comparison of experimental data �thin lines� with numerical re-
sults �thick lines� for the internal wave in a cylindrical system without
rotation. From Ref. 55.
pieces of line 1 might be misinterpreted as a power-type
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decay �0�r� with different exponents, �=−1, −2, −3, or
even −4. Perhaps this explains the variety of experimentally
obtained exponents presented in Table I.

The results obtained can be summarized as follows:

�1� without rotation, the experimental data are in very good
agreement with the results obtained by different authors
for the cylindrical KdV solitons. This involves the phase
speed, wavelengths, and soliton damping rate;

�2� when the rotation is introduced, there are important
changes, some of them in agreement with the previous
experimental observations38 and numerical studies.51,83

It involves a decrease in the number of solitons gener-
ated from the initial perturbation and the destructive ac-
tion of rotation on KdV solitons. In particular, the damp-
ing rate of the first wave increases with an increase of
the rotation rate. In addition, it was found that the am-
plitude of the second wave tends to become larger than
the amplitude of the first wave when the distance in-
creases. Apparently, this indicates the formation of a
quasilinear wavetrain.

C. Solitary waves of large amplitudes in laboratory
experiments

As was mentioned in Sec. III, in the pioneering experi-
ment by Davis and Acrivos in 1967,16 large-amplitude inter-
nal solitary waves of the second mode were observed. It was
demonstrated that such billows can contain vortex cores with
water trapped inside so that they can transport not only en-
ergy and momentum but also mass. However, quantitative
characteristics of billows were not studied in detail at that
time.

Another experiment in which strongly nonlinear IWs
were observed was performed by Yates in 1978. His paper is
cited by Koop and Butler in Ref. 21 but, unfortunately, we
were unable to obtain its copy. According to Ref. 21, Yates
experimented with internal waves of large amplitudes in a
continuously stratified fluid.

Strongly nonlinear solitary waves were then studied by
Miyata,71 who performed a laboratory experiment to verify
the solitary solution obtained within the framework of his
long-wave theoretical model mentioned previously in the
theoretical part. Experiments were carried out in a glass tank
180 cm�30 cm�7 cm. Two types of immiscible fluids
were used in the study: �i� freshwater ��1=0.999 g/cm3� and
aniline ��2=1.02 g/cm3�, and �ii� oil ��1=0.87 g/cm3� and
freshwater ��1=0.999 g/cm3�. In both cases the results ob-
tained were very similar. Solitary waves propagating along
the density interface were photographed by two cameras and
then plotted against theoretical curves. Several depth ratios
were used so that upper-layer thickness varied from
10 to 20 cm and lower layer thickness, from 1.3 to 1.5 cm.
Solitary-wave amplitudes ranged from 0.9 to 2.2 cm.

Figure 22 taken from Ref. 71 illustrates a comparison of
theoretical and experimental data. The ratio of soliton ampli-
tude to the thickness of the lower layer was greater than 0.64
in the experiment, so that the nonlinearity was very strong.
FIG. 20. Same as in Fig. 19 but with strong rotation, Tr=126 s. From Ref.
55.
FIG. 21. Dependencies of the leading wave �pluses� and maximum of

As seen from Fig. 22, experimental data �dots� agree very
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well with Miyata’s nonlinear model �solid line� in the full
range of amplitude ratios. As mentioned above, the latter
model is essentially the same as the system �40�–�42�. KdV
theory �dashed line� approximates experimental data more or
less well only for the minimal amplitude ratio, �0 /h2=0.64
�in that particular experiment�. The stronger the nonlinearity,
the poorer the agreement between experimental data and the
KdV model, whereas Miyata’s nonlinear model works well
even for large amplitudes �see Fig. 22�a��.

Soliton shapes predicted by other models, BO �thin solid
line� and JKKD �dashed-dotted line� are also far from the
experimental data. This is not surprising because both these
models are valid only for weakly nonlinear cases disregard-
ing the other limitations �the BO model is applicable for the
case when one of the layers is infinitely deep; the limitations
of the JKKD model were discussed above�. More surprising
is that the KdV model is again the most robust.

The results of this experiment also agree with other
strongly nonlinear theoretical models discussed above. In-
deed, Miyata’s model is equivalent to the Choi-Camassa
model, and for the depth ratios, h2 /h1, lying between 6 and
12, both the beta- and Choi-Camassa models give close re-
sults.

Miyata’s experimental results were later augmented by
Michallet’s and Barthélemy’s numerical and experimental
data.73 Their laboratory tank of approximate dimension
300 cm�15 cm�10 cm was filled with two immiscible flu-
ids: petrol ��=0.78 g/cm3� and water ��=1.0 g/cm3�. Due
to a relatively large density difference, the rigid lid approxi-
mation is not valid for this case, and the authors compared
their results with free surface theory. The main goals of that
study were to examine the characteristics of interfacial soli-
tary waves for a wide range of layer thickness ratios and to
focus on properties of large-amplitude solitary waves. There,
the term “large-amplitude” related to waves whose ampli-
tudes are comparable with the difference between the real

FIG. 22. Comparison of theoretical and experimental data for large-
amplitude solitons. Dots are experimental points. Solid line—solitary wave
from Miyata’s long-wave model; dashed line—KdV soliton; thin solid
line—BO soliton; dot-dashed line—JKKD soliton. The latter two theoretical
profiles are not shown in �b�–�e�, but they are below the KdV profile. ���� is
equivalent to our ����, where �=x−Vt. �a� �0 /h2=1.57; �b� �0 /h2=1.27; �c�
�0 /h2=1.14; �d� �0 /h2=0.92; �e� �0 /h2=0.64. From Ref. 71.
position of the pycnocline, h1 �or the thickness of the upper
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layer�, and its critical position, hc, when the coefficient of
quadratic nonlinearity, �, vanishes �see Eq. �9��, i.e., to
waves having amplitudes �0�h1−hc�. Two main characteris-
tics of solitary waves were tested versus amplitude: the wave
velocity, V, and “frequency” �s, the quantity inverse propor-
tional to the pulse duration, �s=V /�, where � is defined in
Eq. �46�. Figure 23 illustrates the dependency of �s on �0 /H
for free surface and rigid lid conditions, where H=h1+h2 is
the total depth of the fluid. It clearly demonstrates a nonmo-
notonous dependency of soliton “frequency” �duration� on its
amplitude, predicted both by the eKdV equation and as
Miyata’s model.70–72

The above results can be summarized as follows. There
was good agreement between the experimental data and the-
oretical prediction within the framework of the KdV model
for very small wave amplitudes, 0.01�0 /H0.05. This
finding was valid for all layer thickness ratios. Larger soli-
tons were found to be in satisfactory agreement with the
eKdV model, even when the pycnocline position was rela-
tively far from the critical one; we remind the reader that the
actual validity of this equation is at �h1−hc� /h1�1. When
this condition is fulfilled, it was found that the eKdV model
gives a very good prediction for all amplitudes of solitary
waves. The authors also carried out a fully nonlinear numeri-
cal integration of the Euler equation for steady-state solitary
waves, as suggested by Miyata,70–72 and found very good
agreement between predicted and measured data for all depth
ratios and for all values of solitary wave amplitudes.

In 1995 Stamp and Jacka published a paper84 in which
they reported the results of an experimental investigation of
the second-mode solitary waves propagating on a thin inter-
face between two deep layers of different densities. Their
configuration was similar to that used by Davis and
Acrivos16 in their pioneering paper. Freshwater of density
�1=0.9982 g/cm3 was in the upper layer, and saltwater, the
density of which varied from �2

=1.0501 g/cm3 to 1.1997 g/cm3, was in the lower layer. A
glass tank used in the experiment was 180 cm long, 15 cm
wide, and 28 cm deep. The pycnocline located at the middle
of the depth was approximated by the hyperbolic tangent:
��z�=�0−
� tanh��z−z0� /d� with the characteristic thickness
d=2.5 mm. The ratio of the total fluid depth to the effective
thickness of the pycnocline 2d was 56. A special generation
technique was used to produce single large-amplitude waves
similar to those generated in the Davis and Acrivos
experiment.16 The authors observed solitary waves of maxi-
mum amplitude � /d=3.75; however, the technique allows
production of waves up to at least � /d=5.

In the process of propagation of large-amplitude solitary
waves, their gradual decay was observed after reflections
from the faceplate walls and several traverses of the tank.
The authors found that “the large-amplitude waves had both
laminar and turbulent regions: along the open streamlines the
flow was laminar and fluid stratified, whereas within the
closed streamline region the flow was turbulent and the fluid
well mixed.” Eventually the large-amplitude solitary wave
decreased, lost its turbulent core, and transformed into a
small-amplitude wave with open streamlines whose shape

was very close to a BO soliton similar to that shown in Fig.
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5 from Ref. 17. The asymmetry of wave profiles with respect
to the mid-pycnocline level also has been found both for
small- and large-amplitude waves similar to that in the pho-
tos shown in Ref. 16. The authors assume that it might be
caused by the non-Boussinesq effects and/or the difference in
the free upper boundary condition and fixed lower boundary.

Since the wavelength–amplitude relationship for solitary
waves provides a simple accurate basis for comparing ex-
perimental data with theoretical predictions, the authors at-
tempted to make measurements for the entire range of am-
plitudes. However, they failed to obtain accurate results for
small-amplitude waves and to determine the functional de-
pendency between the wavelength and the amplitude. In the
meantime, results obtained for large-amplitude waves were
fitted by linear dependency �=0.95d+2.1�0 within the am-
plitude range 1.0��0 /d�3.1. Note that this linear depen-
dency is quite different from the monotonically decreasing
dependency, Eq. �25�, for small-amplitude BO solitons. A
similar nonmonotonic relationship between the wavelength
and amplitude is already well known for eKdV solitons �see

Fig. 3�. A new important and interesting finding is that “all
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waves of amplitudes �0 /d�1 are similar in shape and differ
only by a scaling factor.” This observation correlates with the
numerical results of Pullin and Grimshaw,85 who found that
for limiting wave amplitudes in the deep fluid, �→2.18�0.

The authors also determined wave-speed–amplitude de-
pendency for solitary wave amplitudes within the range 0.1
��0 /d�3.1. They supplemented their data with the results
obtained by Davis and Acrivos16 and fitted all combined data
by straight line V /c=1.0+0.49�0 /d. This can be compared
with the corresponding dependency for small-amplitude BO
solitons given by Eq. �25�. Then they came to the conclusion
that “the weakly nonlinear theory is accurate at small ampli-
tudes, �0 /d0.5; however, at large amplitudes the measure-
ments �of the wave speed� are underestimated” by the pre-
diction of weakly nonlinear theory. Meanwhile, a numerical
solution obtained by Tung et al.86,87 for the interfacial waves
of the second mode at a similar stratification, “is in excellent
agreement with measurements over the entire range of am-
plitudes” �see, also, a more general theory presented by

87

FIG. 23. Characteristic “frequency” of
solitary wave, �s, versus amplitude
�0. Different symbols stand for the in-
cident wave, once reflected wave from
the sidewall of the tank and twice re-
flected wave from two walls. The solid
line is a numerical calculation from
the fully nonlinear two-layer model;
the dashed line represents eKdV de-
pendency for a solitary wave; the
dash-dotted line represents the usual
KdV dependency. Frames �a�, �c�, and
�e� for free surface condition; frames
�b�, �d�, and �f� for the rigid lid condi-
tion. �a� h2 /H=0.4; �b� h2 /H=0.63;
�c� h2 /H=0.77; �d� h2 /H=0.84; �e�
h2 /H=0.91; �f� h2 /H=0.09. �For de-
tails see Ref. 73.�
Turkington et al. �.
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Other features of large-amplitude waves in deep fluid
were also studied, including wave attenuation, wave–wave
interactions, and reflection from a solid vertical boundary. It
was found that “the attenuation was independent of ampli-
tude” and the amplitude decreased linearly with distance.
However, the authors admit that “further work is required”
for the understanding of wave attenuation.

In another study of large-amplitude solitary waves ac-
complished by Grue et al. in 1999,63 a precise technique was
used to examine different characteristics of solitary waves
against the theory. The wave tank was 50 cm wide and of
three different lengths: 620, 1230, and 2140 cm. The total
fluid depth varied between 38.5 cm �h1=7.5 cm, h2

=31.0 cm� and 77 cm �h1=15.0 cm, h2=62.0 cm�, so that in
both cases the h2 /h1 ratio was 4.13. Fluid stratification was
represented by two miscible layers: saltwater of density �2

=1.022 g/cm3 in the lower layer, and freshwater of density
�1=0.999 g/cm3 in the upper layer. The thickness d of the
pycnocline ranged from 0.13h1 to 0.26h1. In the experiments
the particle velocity as well as wave velocity and soliton
shape were measured by means of particle tracking velocim-
etry �PTV�. The results obtained were compared with the
KdV theory and a fully nonlinear model for the two-layer
fluid mentioned above. The latter model is based on the exact
representation of two-dimensional hydrodynamic equations
in the integral form with the rigid lid approximation. The
wave velocity and profile can be obtained by numerically
solving integral equations of the Fredholm type of the second
kind.

Theoretical predictions within the KdV equation agreed
well with the results of a fully nonlinear model when soliton
amplitudes were relatively small, �0 /h10.4. In the experi-
ment at �0=0.4, the deviation of soliton velocity from the
value predicted by the KdV theory was about 50%. For
larger amplitudes the exact theory predicts much wider soli-
tons than follows from the KdV model. These results agree
well with Miyata’s long-wave model and evolution equations
discussed above.

Good agreement between experimental data and numeri-
cal results obtained within the framework of a strongly non-
linear model was found both for the propagation velocity and
the shape of a soliton. Normalized solitary wave amplitudes,
�0 /h1, varied between 0.4 and 1.51; the latter value is rather
close to the limiting soliton amplitude, which amounts to
�max/h1=1.56. The calculated vertical profiles of the hori-
zontal velocity component, ux�z�, in both layers also agreed
well with measurements performed for wave amplitudes
ranging from 0.22h1 to 1.45h1. A comparison of theoretical
dependencies of horizontal particle velocities on wave am-
plitude for the fully nonlinear theory showed that it remains
robust within a wide range of depth ratios, h2 /h1, up to 100
�in the experiments, the depth ratio was 4.13�. This agrees
with the experimental observations by Kao, Pan, and
Renouard.18 With regards to average horizontal velocities in
each layer, they are very well approximated by Eqs. �43�. As
already mentioned, this is due to the mass conservation that
for long waves �when the velocity is almost horizontal, and
exactly horizontal at the crest� gives the same result indepen-

75
dently of the applicability of any specific model.
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Unfortunately, no experimental data were obtained for
the wave velocity for amplitudes less then 0.4h1. For this
minimally measured soliton amplitude, �0=0.4h1, the dis-
agreement of experimental data with the KdV theory predic-
tion is already about 50%. The larger the wave amplitude,
the better the agreement with Miyata’s theory for the wave
profile. However, near-limiting solitons whose amplitudes
were close to the predicted maximum value, �0 /h1=1.55,
Eq. �39�, deviated from the theoretical shape in the rear part
of their profiles. They produced strong horizontal velocity
shear between upper and lower layers so that the Kelvin–
Helmholtz instability occurred, and that was the cause of the
wave profile distortion. The authors of Ref. 63 estimated that
a strong solitary wave with an amplitude �0=1.45h1 pro-
duces a shear flow with the local Richardson number, Ri
=0.07. Meanwhile, in accordance with the theory of hydro-
dynamic stability, in the cases when Ri was greater than
0.25, the instability was not observed in the experiment.

Note that in Miyata’s experiments, the maximum value
of the relative soliton amplitude, �0 /h2, was about 1.57 �see
Fig. 22�a��. This value was far enough from the limiting
value, which is 4.89 according to Eq. �39�. Therefore, the
hydrodynamic instability was not observed by Miyata.

A further laboratory study of strong solitons was carried
out by Grue et al.88 They used the same tank as in Ref. 63,
and the optical registration �PTV and PIV methods� was
again employed. Note that the Reynolds numbers in these
experiments were rather large, Re�104 and more �whereas,
e.g., in the experiments by Stamp and Jacka84 it was less than
100�. Stratification was more complex; namely, the upper
layer was stratified with an approximately constant buoyancy
frequency, and the solitons were always observed as excur-
sions into a lower layer with constant density, independently
of the layer depth ratio. The authors excited waves of up to
extremely strong nonlinearity and observed trapped cores
and complex breaking and broadening phenomena with a
vorticity generation. Some of the observed phenomena �but
not breaking� are well described by their fully nonlinear two-
layer model.

To conclude this section, the experiment by Melville and
Helfrich89 should be mentioned in which they modeled non-
steady internal waves in a two-layer fluid with a transcritical
flow over topography simulated by a body moving in the
upper layer �which was a rough two-dimensional analog of
the Nansen’s ship�. The tank length was 15 m; the layer
thicknesses �in our notations� were h1=3 cm and h2=12 cm;
and the corresponding densities were �1=0.8 g/cm3 and �2

=0.986 g/cm3. The experiments were compared with the
forced KdV and eKdV models �i.e., equations having exter-
nal terms on the right-hand sides, which model body mo-
tion�. Satisfactory agreement with the observations was
found for the depth ratio h1 /h2=1:2, and poor agreement
was found when the ratio was 1:4.

From the models discussed above, it is understandable
that the larger the depth ratio, the less applicable are the
long-wave models and the more nonlinear are the limiting-
amplitude solitons. Grue et al.90 performed a fully nonlinear
numerical simulation of the experiment described in Ref. 89

and found good agreement with the experiments at a depth
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ratio of 1:4, including the generation of soliton-like groups.
They also found that strong nonlinearity at the site of wave
generation affects the subsequent wave propagation, even at
the weakly nonlinear stage.

VI. CONCLUSIONS

Laboratory experiments with internal waves allow, on
the one hand, verification of the existing theoretical models
and, on the other, extrapolation of the results obtained in
controlled conditions, to the corresponding natural phenom-
ena. They have already provided us with a great deal of
valuable information regarding solitary waves in various
situations. The experiments have confirmed that existing the-
oretical models often describe properties of solitary waves
fairly satisfactorily, although different models are not equally
robust. Some of them, e.g., the KdV model, provide good
qualitative and even quantitative predictions, sometimes
even beyond their formal range of validity, whereas other
models, e.g., the JKKD, have narrower ranges of validity and
fail to make good predictions beyond these ranges.

Overall, the following can be concluded.

• When compared with experimental data for moderate-
amplitude solitons, the simple KdV model proves to be
surprisingly robust, sometimes well beyond the assumed
range of its formal validity. Meanwhile, experimental data
obtained by different authors show a fairly large variation
in the range of validity of this model. In some papers, good
agreement between theory and experiment was obtained up
to �0 /h�0.7, whereas in others the agreement was good
only when �0 /h0.2.

• The more advanced eKdV model provides better predic-
tion of solitary wave parameters in cases when the pycno-
cline is located close to the critical position. In these cases,
this model is quite relevant up to the waves of limiting
configuration, as described by Eq. �16�, with � close to
unity. In turn, the KdV model approximates experimental
data much better in the small-amplitude limit �see
Fig. 23�.

• The two-layer model is simple and attractive and it works
well in many realistic cases. However, for miscible fluids
when the pycnocline is relatively wide, it should be used
with a certain precaution. Apparently, even in the case of a
wide pycnocline, an effective two-layer model can be con-
structed which provides the same coefficients for the KdV
equation as the exact theory based on the boundary-value
problem for a continuously stratified fluid, Eq. �2�. How-
ever, the required parameters of the equation are not
known in advance; therefore, the two-layer models usually
used are not adjusted properly to the real hydrology in the
experiment. As a result, only more or less good approxi-
mate estimates for the soliton parameters are possible.

• The ranges of validity of both the JKKD and BO models
are not yet well verified in laboratory experiments. Hence,
these models should be applied to the interpretation of
ocean observations with caution.

• The shapes of small-amplitude solitary waves are not very
sensitive to the model chosen. Therefore, taking into ac-

count the errors in experimental measurements, it is not
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easy to use wave profiles for identification of the most
relevant theoretical model unless very precise experiments
are carried out.

• The fully nonlinear models typically agree very well in
many details with experimental observations of solitary
waves. On the other hand, the simplified long-wave,
strongly nonlinear models are also applicable in a rather
wide range of the parameters of strong solitons, although
they may need verification by comparison with numerical
solutions obtained within the framework of fully nonlinear
models.

• The dissipation of solitary waves in laboratory conditions
is usually relatively weak, so that the nonlinear and disper-
sive effects remain almost in balance during solitary wave
propagation. Therefore, in spite of energy dissipation, the
relationship between the amplitude and characteristic
wavelength of a weakly nonlinear solitary wave may re-
main close to that theoretically predicted for KdV solitons.

• The main mechanism of dissipation in the laboratory con-
ditions is apparently related to laminar boundary layers on
walls, bottom, and at the interface between layers of dif-
ferent density in the tanks. The theoretical results for this
case agree well with experimental and numerical data.

• The experiments in rotating tanks confirm the theoretical
prediction that the rotation can radically change the non-
linear internal wave evolution. Specifically, Coriolis dis-
persion caused by fluid rotation may play an important role
and, in particular, can prevent the formation of well-
defined solitons. Meanwhile, the existing models such as
the plane and cylindrical rKdV equations are capable of
adequately describing nonlinear processes observed in the
plane and cylindrical systems, respectively, with rotation.

The extrapolation of laboratory results to natural condi-
tions does, strictly speaking, need a similarity in basic di-
mensionless parameters such as Froude and Reynolds num-
bers. This is not always possible, especially with respect to
the Reynolds number �even the physical nature of dissipation
can be different�. Meanwhile, as usually occurs in physics,
the more we know, the more new questions arise. We believe
that new laboratory experiments with internal waves will be
conducted in the near future. As an example, special labora-
tory experiments in which turbulence is created can be rec-
ommended that could prove to be more relevant to internal
waves in the natural environment.

In this review we did not access and discuss all aspects
of solitary wave studies in laboratory conditions. For in-
stance, solitary wave generation by tidal flow �see, e.g., Ref.
91�, shoaling �see, e.g., Ref. 35� or interaction with bottom
topography �see, e.g., Ref. 92� remain beyond the scope of
our consideration. Here we focused on the experiments that
can be considered as a validation of known long-wave mod-
els. Some additional material regarding large-amplitude in-
ternal soliton generation and propagation both in laboratory
and natural conditions is discussed in the review paper by
Grue93 included in this focus issue of the journal.
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