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A B S T R A C T   

Equivalent circuit model (ECM) parameters identification, which aims to identify the model parameters of ECM 
accurately is vital for assessing battery status and refining battery management systems (BMS), extensive 
research has been conducted in this field. However, most of the existing studies rely on global similarity criteria 
such as Root Mean Square Error (RMSE) and Sum of Squares due to Error (SSE), which are highly sensitive to 
non-Gaussian noise, so they may not perform effectively when faced with the non-Gaussian noise which is often 
encountered in battery working environments. This article presents a robust ECM parameter identification 
scheme termed the Maximum Correntropy Criterion-based Gradient Ascending scheme (MCCGA). The proposed 
MCCGA scheme adopts correntropy for similarity assessment and leverages a gradient ascent algorithm to 
optimize the model parameters iteratively. Through these methods, the MCCGA scheme not only identifies model 
parameters with precision but also remains robustness to non-Gaussian noise. Extensive experimental results 
based on public dataset are provided, which validate the effectiveness, robustness and convergence of the 
proposed MCCGA scheme.   

1. Introduction 

In recent years, the popularity of new energy vehicles has sky
rocketed due to their cost-effectiveness and eco-friendly features. As a 
crucial component in these vehicles, lithium-ion batteries have gained 
widespread usage. Despite their numerous advantages, such as high 
energy density, reusability, and long lifespan, lithium batteries can be 
susceptible to instability, including risks of explosion or fire, especially 
when exposed to extreme conditions like ultra-high/low temperatures 

or overcharge/discharge situations. Therefore, enhancing the safety and 
reliability of lithium-ion batteries becomes imperative. The Battery 
Management System (BMS) plays a pivotal role in maintaining the 
proper function of batteries and prolonging their lifespan and many 
research works [1–5] have been done to improve the performance of 
BMS. A well-designed and efficient BMS ensures that the battery oper
ates under optimal conditions and maximizes its service life. The most 
important function of the BMS is to detect various parameters of the 
battery while effectively controlling its operational status. 
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Among all the battery parameters, the State of Charge (SOC), which 
indicates the remaining available power within the battery, holds 
utmost significance and plays a pivotal role in BMS. However, the SOC 
information could not be measured directly and can only be estimated 
based on the battery’s voltage, current, ambient temperature, and other 
information. In this context, efficient and accurate estimation of the 
battery’s State of Charge (SOC) is particularly important. Currently, the 
SOC estimation methods can be divided into three categories: traditional 
methods [1,6], data-driven methods [2,7–10,11], and model-based 
methods [3,12–15,16]. The Coulomb Counting method is the most 
classic method for SOC estimation and has high accuracy in a short time. 
However, this method relies on the accuracy of initial values and suffers 
from accumulated errors. Another traditional method is the Open Circuit 
Voltage(OCV) based method, which utilizes the OCV-SOC curve to es
timate the SOC. Although this method is easy to understand, it requires a 
long time to ensure the accuracy of OCV, making it unsuitable for 
real-time applications. Data-driven methods mainly use various neural 
networks to obtain the nonlinear relationship between measurable data 
(current, voltage, ambient temperature, etc.) and SOC, and then use the 
trained neural network to predict SOC. [17] used a deep neural network 
(DNN) to map the battery measurements to SOC and achieved good 
performance. [18] developed a recurrent neural network (RNN) with 
long short-term memory (LSTM) to estimate the SOC, which got accu
rate estimation at different ambient temperature. [19] proposed a 
network which combined convolutional neural network (CNN) and 
LSTM network together to exploit the relationship between the 
measurable data and SOC. [2] presented the DAE-NN network which 
combined a denoising autoencoder neural network(DAE-NN) and a 
gated recurrent unit recurrent neural network (GRU-RNN) to estimate 
the SOC and get accurate estimation. Although data-driven methods can 
exploit the nonlinear relationship between measurable data and SOC, 
they often require a vast amount of training data and bring significant 
computational burdens. The model-based methods combine the equiv
alent circuit model (ECM) with various kinds of adaptive filters to esti
mate SOC, [20] proposed a method based on a nonlinear battery model 
and an extended Kalman filter (EKF) to accurately estimate SOC. [21] 
developed a co-estimation method which utilized the unscented Kalman 
filter(UKF) to estimate SOC. Also, some improved methods [22–24] 
based on EKF and UKF have been presented to improve estimation ac
curacy. The model based methods eliminate the need for extensive 
training data and can be executed in real-time, making them widely 
adopted in practical applications. However, the estimation accuracy of 
model-based methods heavily relies on the chosen equivalent circuit 
model and its associated parameters. Hence, it is vital to carefully select 
an appropriate ECM model and conduct accurate parameter 
identification. 

Currently, the main equivalent circuit models include Rint, Theve
nin, PNGV, and Second-order RC model, among others. [25,26]. The 
first three models have straightforward structures and are easy to 
deploy. However, they are not accurate enough. On the other hand, the 
Second-order RC model, depicted in Fig. 1, has moderate complexity and 
can accurately describe the polarization process of the battery, making it 
the most widely used equivalent circuit model at present. Within the 
Second-order RC model, five model parameters need to be identified, 

namely ohmic resistance R0, polarization resistances R1, R2, and polar
ization capacitances C1, C2. Accurately identifying these model param
eters is critical for characterizing battery status and optimizing BMS. In 
this context, numerous methods [27–30,31] for parameter identification 
have been proposed to accomplish accurate model parameter identifi
cation. However, most of them are based on global similarity criteria 
such as RMSE and SSE, which are highly sensitive to non-Gaussian noise. 
Consequently, these methods may lack robustness regarding parameter 
identification in environments with non-Gaussian noise, which is 
commonly encountered in battery working conditions. Therefore, when 
the battery measurement data is contaminated by non-Gaussian noise, 
these parameter identification methods may not yield reliable results. To 
address the challenges posed by non-Gaussian noise, this paper in
troduces a robust ECM parameter identification scheme MCCGA based 
on the maximum correntropy criterion (MCC) [32,33]. By utilizing the 
maximum correntropy as the similarity measurement criterion and 
employing the maximum gradient descent method, the MCCGA scheme 
enables accurate identification of ECM parameters while remaining 
robust to non-Gaussian noise. The effectiveness and robustness of the 
proposed MCCGA scheme are demonstrated through experimental re
sults using public datasets. The contributions of this article can be 
summarized as follows:  

1. We propose a robust ECM parameter identification scheme MCCGA 
based on the maximum correntropy criterion (MCC). The MCCGA 

Fig. 1. Second-order RC model.  

Fig. 2. Gaussian kernel function with varying σ.  

Fig. 3. Terminal voltage Ut during one cycle.  
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scheme not only identifies the model parameters with precision but 
also is robust to non-Gaussian noise.  

2. We give the object function of the proposed MCCGA scheme and 
derive the iterative optimization rules to identify the optimal model 
parameters;  

3. Extensive experimental results across various SOC states based on 
public datasets are provided, which demonstrate the effectiveness, 
robustness, and convergence of the proposed MCCGA scheme; 

The rest of this paper is organized as follows: Section 2 provides an 
overview of the relevant works. Section 3 gives a detailed description of 
the proposed MCCGA scheme. Extensive experimental results based on 
public datasets are presented in Section 4. Finally, Section 5 concludes 
the paper. 

Fig. 4. Effectiveness under different SOC.  
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2. Related works 

2.1. Maximum correntropy criterion (MCC) 

Correntropy [32–34], as a method for measuring similarity, is 
capable of describing the similarity between two random variables. 
Unlike global similarity criteria such as RMSE and SSE, which are sen
sitive to non-Gaussian noise, correntropy is a local similarity measure
ment criterion that exhibits robustness to non-Gaussian noise, 
particularly when it comes to impulse noise. Hence, correntropy proves 
to be reliable in a non-Gaussian environment.The correntropy of random 
variables X and Y can be expressed using Formula (1): 

V(X,Y) = E[κ(X,Y)] (1)  

In Formula (1), the symbol E[ ⋅ ] represents the expected value, and κ(⋅) 
denotes the kernel function that maps variables from low-dimensional 
space to high-dimensional space. Among various kernel functions, the 
Gaussian kernel function is the most widely used kernel function.Its 
expression is illustrated by Formula (2) 

κ(X,Y) =
1̅̅̅
̅̅

2π
√

σ
exp
(
− ‖ X − Y‖2

2σ2

)

=
1̅̅̅
̅̅

2π
√

σ
exp
(

−
e2

2σ2

) (2) 

In Formula (2), e = X − Y represents the difference between X and Y, 
and σ corresponds to the kernel width, which influences the suppression 
strength on outliers(usually impulse noise). Fig. 1 displays the curves of 
Gaussian kernel functions for varying values of σ. From Fig. 1, we can 
deduce that:  

1. The function value exhibits an inverse relationship with the value of 
∣X − Y∣. As ∣X − Y∣ increases, the function value decreases. Conse
quently, this function possesses a strong ability to suppress outliers;  

2. The more similar X and Y are, the larger the function value is. When 
X = Y, the function value reaches its maximum. Thus, maximizing 
the function value is needed to minimize the difference between X 
and Y;  

3. The suppression effect of the function on outliers becomes more 
prominent as the value of σ decreases, and vice versa. 

The joint probability distribution of variables X and Y is typically 
unknown. Consequently, we usually approximate the correntropy of X 
= {x0, x1, x2, …, xM} and Y = {y0, y1, y2, …, yM} using Formula (3), 
where M denotes the number of samples of the variable X and YFig. 2. 

V(X,Y) =
1
M
∑M

i=1
κ(xi, yi) (3)  

2.2. Second-order RC model 

The Second-order RC model [25,26,30], depicted in Fig. 1, is the 

most widely used equivalent circuit model. In order to get the accurate 
model parameters (R0, R1, R2, C1, C2), we usually first charge the battery 
to the setting threshold using constant current and constant voltage, 
then discharge the battery for ten cycles. During each cycle, the elec
trical energy equivalent to 10% of SOC is discharged using constant 
current first, and then the battery is left standing for a period of time. 
The terminal voltage of each cycle is recorded to identify the model 
parameters. The terminal voltage Ut during one cycle is illustrated in 
Fig. 3. From Fig. 3 we can see that:  

1. When the battery starts to discharge at a constant current I, the 
terminal voltage jumps from U1 to U2, and When the battery stops 
discharging, the terminal voltage jumps from U3 to U4. These jumps 
are caused by the ohmic resistance R0, hence the model parameter R0 
can be calculated using Formula (4);  

R0 =
U1 − U2 + U4 − U3

2I
(4)    

2. When the battery stops discharging, the terminal voltage firstly 
jumps from U3 to U4 and then gradually increases to a fixed value, 
which can be considered as the open circuit voltage Uoc at this stage. 
The gradually increasing process of the terminal voltage Ut during 
this stage is caused by the second-order RC circuit and can be 
expressed using Formula (5);  

Ut = Uoc − URC1exp
(

−
t

R1C1

)

− URC2exp
(

−
t

R2C2

)

(5)  

In Formula (5), Uoc represents the open circuit voltage,while URC1 
and URC2 denote the voltages on the RC1 and RC2 branches, 
respectively.The values of URC1 and URC2 can be expressed by For
mula (6) and Formula (7);  

URC1 = IR1 (6)   

URC2 = IR2 (7)  

To identify the model parameters R1, R2, C1, C2, various kinds of 
curve fitting methods have been proposed. However, most of these 
methods rely on global similarity criteria such as RMSE, SSE, etc., 
which are sensitive to non-Gaussian noise. Hence, they are not robust 
to the non-Gaussian noise, especially impulse noise. In light of this, 
we introduce a robust parameter identification scheme MCCGA, 
based on the maximum correntropy criterion (MCC), in Section 2.1 
to improve the robustness of the parameters identification process. 
The MCCGA scheme will be described in detail in Section 3. 

3. MCC based parameters identification scheme MCCGA 

To address the challenges posed by non-Gaussian noise, we propose a 
parameter identification scheme MCCGA based on the maximum cor
rentropy criterion (MCC) in this section. In the MCCGA scheme, cor
rentropy is used as the similarity measurement standard, and a gradient 
ascending algorithm is employed to optimize the model parameters 
iteratively. By maximizing the correntropy, we can obtain the optimal 
model parameters. Here we give the MCC-based object function ac
cording to Formula (3) and Formula (2). 

OBJMCC =
1
M

∑M

t=1

1̅̅̅
̅̅

2π
√

σ
exp

(
−
(
Upred

t − Ut
)2

2σ2

)

(8) 

Table 1 
Performance metric results of MCCGA under different SOC.  

SOC MAE MSE RMSE 

SOC = 10% 0.0027 2.24E-05 0.0047 
SOC = 20% 7.10E-04 1.98E-06 0.0014 
SOC = 30% 4.50E-04 5.93E-07 7.7E-04 
SOC = 40% 4.27E-04 1.37E-06 0.0012 
SOC = 50% 5.54E-04 9.96E-07 9.98E-04 
SOC = 60% 4.13E-04 4.86E-06 0.0022 
SOC = 70% 7.64E-04 3.35E-06 0.0018 
SOC = 80% 5.7E-04 3.31E-06 0.0018 
SOC = 90% 6.7E-04 2.44E-06 0.0016 
SOC = 100% 5.99E-04 2.12E-06 0.0015  
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In Formula (8), Ut represents the actual measured terminal voltage at 
time point t, while Upred

t corresponds to the predicted terminal voltage by 
Formula (5) at time point t. Thus, the object function can be expressed in 
detail as Formula (9). 

So the optimization problem can be formulated as Formula (10):In 

Formula (10), θ1 = R1C1, θ2 = R2C2.To find the maximum value of the 
objective function OBJMCC, we employ the gradient ascent algorithm. 
Firstly, we compute the gradients of the objective function with respect 
to each variable(URC1, θ1, URC2, θ2), the gradients for each variable are 
expressed by Formula (11), (12), (13), (14) 

∂OBJMCC

∂URC1
= −

1
M
∑M

t=1

exp
(

−
f 2(URC1 ,θ1 ,URC2 ,θ2)

2σ2

)

exp(− t∕θ1)f (URC1,θ1,URC2,θ2)

̅̅̅̅̅
2π

√
σ3

(11)     

∂OBJMCC

∂URC2
= −

1
M
∑M

t=1

exp
(

−
f 2(URC1 ,θ1 ,URC2 ,θ2)

2σ2

)

exp(− t∕θ2)f (URC1,θ1,URC2,θ2)

̅̅̅̅̅
2π

√
σ3

(13)    

In the Formulas, function f(URC1, θ1, URC2) is defined as follows (15) 

f (URC1, θ1,URC2, θ2) = U + URC1exp( − t∕θ1) + URC2exp( − t∕θ2) − Uoc

(15)  

Consequently, we derive the iterative optimization rules for each vari
able based on the gradient ascent algorithm, as presented by Formula 
(16), (17), (18), (19) 

Ut+1
RC1 = Ut

RC1 + lr
∂OBJMCC

∂URC1
(16)  

θt+1
1 = θt

1 + lr
∂OBJMCC

∂θ1
(17)  

Ut+1
RC2 = Ut

RC2 + lr
∂OBJMCC

∂URC2
(18)  

θt+1
2 = θt

2 + lr
∂OBJMCC

∂θ2
(19) 

OBJMCC =
1
M
∑M

t=1

1̅̅̅
̅̅

2π
√

σ
exp

⎛

⎜
⎜
⎜
⎝

−

(

Uoc − URC1exp
(

− t
R1C1

)

− URC2exp
(

− t
R2C2

)

− Ut

)2

2σ2

⎞

⎟
⎟
⎟
⎠

(9)   

{URC1, θ1,URC2, θ2} = argmaxURC1 ,θ1 ,URC2 ,θ2
OBJMCC

= argmaxURC1 ,θ1 ,URC2 ,θ2

1
M

∑M

t=1

1̅̅̅
̅̅

2π
√

σ
exp

⎛

⎜
⎜
⎜
⎝

−

(

Uoc − URC1exp
(

− t
θ1

)

− URC2exp
(

− t
θ2

)

− Ut

)2

2σ2

⎞

⎟
⎟
⎟
⎠

(10)   

∂OBJMCC

∂θ1
= −

1
M
∑M

t=1

URC1texp
(

−
f 2(URC1 ,θ1 ,URC2 ,θ2)

2σ2

)

exp(− t∕θ1)f (URC1, θ1,URC2, θ2)

̅̅̅̅̅
2π

√
θ2

1σ3
(12)   

∂OBJMCC

∂θ2
= −

1
M
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t=1

URC2texp
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−
f 2(URC1 ,θ1 ,URC2 ,θ2)
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Fig. 5. Robustness under different SOC.  
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In Formula (16), (17), (18), (19),lr denotes the learning rate which 
controls the learning speed. After a certain number of iterations, we can 
obtain the optimal values of the variables(URC1, θ1, URC2, θ2) and sub
sequently calculate the corresponding battery model parameters(R1, R2, 
C1, C2). The MCCGA scheme is summarized in Algorithm 1. 

Algorithm 1. MCCGA  

Detailed experimental results are provided in Section 4. 

4. Experiment result 

In this section, we used the public dataset of INR 18650–20R battery9 

for our experiment. The battery was initially charged to its maximum 
capacity of 100% SOC and then discharged at every 10% SOC using a 
negative pulse current of 1A for ten cycles. In each cycle, after the 
discharge process, the battery was left standing for a period of time. At 
this stage, the terminal voltage Ut gradually increased to a fixed value. 
Usually, the better we fit the gradually increasing process of the terminal 
voltage Ut in each cycle by Formula (5), the more accurate the model 
parameters identification will be. Here, the kernel width σ was set to be 
1, MAE(Mean absolute error) [36], MSE(Mean square error) [36,37], 
and RMSE(Root MSE) [36] which are described in Equations (20), (21), 
(22) respectively were utilized as the performance evaluation metrics to 
test the fitting errors, in the equations, N is the number of sample points, 
Ym is the ground truth value, Y*m is the predicted value. 

MAE =
1
N
∑N

m=1

⃒
⃒
⃒
⃒
⃒
Ym − Y*m

⃒
⃒
⃒
⃒
⃒

(20)  

MSE =
1
N
∑N

m=1
(Ym − Y*m)

2 (21)  

RMSE =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

1
N

∑N

m=1
(Ym − Y*m)

2

√
√
√
√ (22) 

The experimental results based on Algorithm 1 are provided from 
three aspects: 1)Effectiveness, the experimental results under the orig
inal terminal voltage data are given, which demonstrate the effective
ness of the MCCGA scheme; 2)Robustness, the experimental results 
under the terminal voltage data contaminated by non-Gaussian noise are 

provided to illustrate the robustness of MCCGA scheme.3)Convergence, 
the values of objection function OBJMCC are given to prove the conver
gence of the MCCGA scheme. Here, the SSE [36] based gradient descent 
(SSEGD) algorithm and MSE [36,37] based gradient descent(MSEGD) 
algorithm are used as the baselines for comparison. 

4.1. Effectiveness 

Here, we first utilized the MCCGA scheme to derive the model pa
rameters of the Second-order RC model based on the original terminal 
voltage data. Specifically, we only used the data in the first 30 min, as 
after standing for 30 min, the terminal voltage had already been stable. 
Subsequently, we employed the second-order RC model with the model 
parameters identified using Algorithm 1 to predict the terminal voltage. 
The predicted results under different SOC using MCCGA are depicted in 
Fig. 4a, c, e, g, i, k, m, o, q, s, also the predicted results based on SSEGD 
and MSEGD, the original terminal voltage curve are shown in the same 
figures, it can be observed that the predicted results based on MCCGA, 
SSEGD and MSEGD all fit well with the original data curves. Further
more, the absolute error curves for MCCGA, SSEGD and MSEGD are 
shown in Fig. 4b, d, f, h, j, l, n, p, r, t, showing that the absolute errors 
based on MCCGA, SSEGD and MSEGD are very small, particularly, the 
performance metric results of MCCGA under different SOC are given in 
Table 1. All of these demonstrate the effectiveness of the MCCGA 
scheme. 

4.2. Robustness 

In order to demonstrate the robustness of the MCCGA scheme, we 
conducted experiments using terminal voltage data contaminated by 
non-Gaussian noise. The noise is composed of Gaussian noise and shot 
noise [35]. Here, we adopt the same experimental steps as when veri
fying the effectiveness of the MCCGA scheme. The predicted results for 
different SOC using MCCGA scheme are presented in Fig. 5a, c, e, g, i, k, 
m, o, q, s, also the predicted results based on SSEGD and MSEGD, the 
original terminal voltage curve are shown in the same figures. The ab
solute error curves for MCCGA, SSEGD and MSEGD are shown in Fig. 5b, 
d, f, h, j, l, n, p, r, t. From Fig. 5, it can be observed that the proposed 
MCCGA algorithm performs well even when the terminal voltage data is 
contaminated by non-Gaussian noise, with the predicted error still very 
small. On the other hand, the SSEGD and MSEGD algorithms both fail to 
work correctly on datasets contaminated by non-Gaussian noise. In 
particular, the performance metric results of MCCGA across various SOC 
on datasets contaminated by non-Gaussian noise are given in Table 2, 
which demonstrate the robustness of the proposed MCCGA scheme. This 
is attributed to the fact that the MCCGA scheme adopts correntropy as 9 https://calce.umd.edu/battery-data 
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the similarity measurement standard, which has a strong ability to 
suppress outliers. 

4.3. Convergence 

The convergence curves are presented in Fig. 6. In the figure, the x- 
axis represents the number of iterations, and y-axis represents the value 
of OBJMCC, which is the object function of the MCCGA scheme. From 
Fig. 6, it can be observed that the value of the OBJMCC is monotonically 
nondecreasing under rules (16), (17), (18), (19), which prove that the 
object function OBJMCC is convergent under the update rules (16), (17), 
(18), (19). 

5. Conclusion 

In this paper, we propose the MCCGA scheme, a robust parameter 
identification scheme for ECM based on MCC. The proposed MCCGA is 
capable of accurately identifying model parameters while also robust to 
non-Gaussian noise. The MCCGA scheme adopts correntropy for simi
larity assessment and leverages a gradient ascent algorithm to optimize 
the model parameters iteratively. Extensive experimental results based 
on public datasets are presented to demonstrate the effectiveness, 
robustness, and convergence of the proposed MCCGA scheme. In the 
future, our research will focus on developing more accurate and robust 
ECM parameter identification scheme. 
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Table 2 
Performance metric results of MCCGA on datasets contaminated by non- 
Gaussian noise under different SOC.  

SOC MAE MSE RMSE 

SOC = 10% 0.0027 2.24E-05 0.0047 
SOC = 20% 8.2E-04 1.82E-06 0.0013 
SOC = 30% 4.89E-04 6.33E-07 7.95E-04 
SOC = 40% 5.24E-04 1.61E-06 0.0013 
SOC = 50% 5.19E-04 9.43E-07 9.71E-04 
SOC = 60% 4.19E-04 4.64E-06 0.0022 
SOC = 70% 8.13E-04 3.72E-06 0.0019 
SOC = 80% 5.98E-04 3.09E-06 0.0018 
SOC = 90% 6.33E-04 2.29E-06 0.0015 
SOC = 100% 5.8E-04 1.93E-06 0.0014  

Fig. 6. Convergence under different SOC.  
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