Nature Publishing Group, publisher of Nature, and other science journals and reference works
Nature
my account e-alerts subscribe register
SEARCH JOURNAL     advanced search
Journal Home
Current Issue
AOP
Archive
Download PDF
References
Export citation
Export references
Send to a friend
More articles like this

Letters to Nature
Nature 384, 252 - 255 (21 November 1996); doi:10.1038/384252a0

Prediction of global rainfall probabilities using phases of the Southern Oscillation Index

Roger C. Stone, Graeme L. Hammer & Torben Marcussen

Agricultural Production Systems Research Unit, Queensland Department of Primary Industries and Commonwealth Scientific, Industrial and Research Organisation, PO Box 102, Toowoomba, Queensland, Australia 4350

THE El Niño/Southern Oscillation (ENSO) is a quasi-periodic interannual variation in global atmospheric and oceanic circulation patterns, known to be correlated with variations in the global pattern of rainfall1−3. Good predictive models for ENSO, if they existed, would allow accurate prediction of global rainfall variations, thus leading to better management of world agricultural production4,5, as well as improving profits and reducing risks for farmers6,7. But our current ability to predict ENSO variation is limited. Here we describe a probabilistic rainfall 'forecasting' system that does not require ENSO predictive ability, but is instead based on the identification of lag-relationships between values of the Southern Oscillation Index, which provides a quantitative measure of the phase of the ENSO cycle, and future rainfall. The system provides rainfall probability distributions three to six months in advance for regions worldwide, and is simple enough to be incorporated into management systems now.

  1. Ropelewski, C. F. & Halpert, M. S. Mon. Weath. Rev. 115, 1606−1626 (1987). | Article |
  2. Ropelewski, C. F. & Halpert, M. S. J. Clim. 9, 1043−1059 (1996). | Article |
  3. Kiladis, G. N. & Diaz, H. F. J. Clim. 2, 1069−1090 (1989). | Article |
  4. Nicholls, N. J. Climatol. 5, 553−560 (1985).
  5. Cane, M. A., Eshel, G. & Buckland, R. W. Nature 370, 204−205 (1994). | Article | ISI |
  6. Hammer, G. L., McKeon, G. M., Clewett, J. F. & Woodruff, D. R. in Proc. Conf. Agricultural Meteorology 15−23 (Bureau of Meteorology, Melbourne, Australia, 1991).
  7. Hammer, G. L., Holzworth, D. P. & Stone, R. C. Aust. J. Agric. Res. 47, 717−737 (1996). | Article |
  8. Troup, A. J. Q. J. R. Meteorol. Soc. 91, 490−506 (1965).
  9. McBride, J. L. & Nicholls, N. Mon. Weath. Rev. 111, 1998−2004 (1983). | Article |
  10. Chu, P. S. Int. J. Climatol. 9, 619−632 (1989).
  11. Gordon, N. D. Mon. Weath. Rev. 114, 371−387 (1986). | Article |
  12. Stone, R. C. & Auliciems, A. Int. J. Climatol. 12, 625−636 (1992).
  13. Madden, R. A. & Julian, P. R. J. Atmos. Sci. 29, 1109−1123 (1972). | Article | ISI |
  14. Williams, M. Relations between the Southern Oscillation and the Troposphere over Australia (Res. Rep. No. 6, Bureau of Meteorology Res. Centre, Melbourne, Australia, 1987).
  15. Stone, R. C., Nicholls, N. & Hammer, G. L. J. Clim. 9, 1896−1909 (1996). | Article |
  16. Meinke, H., Stone, R. C. & Hammer, G. L. Int. J. Climatol. 16, 783−789 (1996). | Article |
  17. The Global Historical Climatology Network: Long-Term Monthly Precipitation, Sea-Level Pressure, and Station Pressure Data (Environ. Sci. Div. Publ. No. 3912, Oak Ridge Natl Lab., Oak Ridge, Tennessee, 1992).
  18. Fraedrich, K. Tellus 46A, 541−552 (1994).
  19. Clewett, J. F., Clarkson, N. M., Owens, D. T. & Arbrecht, D. G. Australian Rainman: Rainfall Information for Better Management (Dep of Primary Industries, Brisbane, Australia, 1994).



© 1996 Nature Publishing Group
Privacy Policy