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Current machine learning models for predicting geological conditions during earth pressure balance
(EPB) shield tunneling predominantly rely on accurate geological conditions as model label inputs. This
study introduces an innovative approach for the real-time prediction of geological conditions in EPB
shield tunneling by utilizing an unsupervised incremental learning model that integrates deep temporal
clustering (DTC) with elastic weight consolidation (EWC). The model was trained and tested using data
from an EPB shield tunneling project in Nanjing, China. Results demonstrate that the DTC model out-
performs nine comparison models by clustering the entire dataset into four distinct groups representing
various geological conditions without requiring labeled data. Additionally, integrating EWC into the DTC
model significantly enhances its continuous learning capabilities, enabling automatic parameter updates
with incoming data and facilitating the real-time recognition of geological conditions. Feature impor-
tance was evaluated using the feature elimination method and the Shapley additive explanations (SHAP)
method, underscoring the critical roles of earth chamber pressure and cutterhead rotation speed in
predicting geological conditions. The proposed EWC-DTC model demonstrates practical utility for EPB
shield tunneling in complex environments.
© 2025 Institute of Rock and Soil Mechanics, Chinese Academy of Sciences. Published by Elsevier B.V. This
is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/

4.0/).
1. Introduction

The earth pressure balance (EPB) machine has been widely
employed in metro tunnel construction due to its advantages of
automation, high-efficiency, and safe construction practices (Cheng
et al., 2021; Huang et al., 2023; Yan et al., 2023; Lu et al., 2024). It is
well established that the timely adjustment of shield operational
parameters is crucial because the shield cutterhead is highly sen-
sitive to changing geological conditions (Zhou et al., 2019a; Qian
et al., 2021a; Lu et al., 2023; Wang et al., 2023, 2024; Lai et al.,
2024; Liu et al., 2024a,b,c). Incorrect parameter adjustments can
lead to severe consequences such as tunnel misalignment, damage
to machinery, extended construction timelines, and substantial
economic losses (Liu et al., 2021, 2024; Chen et al., 2023).
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Consequently, the ability to accurately and promptly predict the
geological conditions during shield tunneling is essential to miti-
gate these risks and ensure smooth project execution.

The narrow gap between the cutterhead and the tunnel face
poses challenges for conventional exploration and in-situ testing
methods to effectively obtain surrounding geological condition
parameters. Borehole drilling, while an essential exploratory tool, is
constrained by the number and spacing of boreholes, which limits
the comprehensive understanding of geological formations (Cheng
et al., 2021; Yang et al., 2023; Liu et al., 2024a,b,c). Ground pene-
trating radar (GPR) and tunnel seismic prediction (TSP) methods,
which rely on reflected electromagnetic waves, offer valuable in-
sights but are often limited by cost, time requirements, and com-
plexities in data interpretation, particularly in complex geological
environments (Li et al., 2017; Zhou et al., 2022; Liu et al., 2023).
Therefore, there is a need for a more effective and economical so-
lution that enables the real-time prediction of geological conditions
during shield tunneling. Shield tunneling is inherently dynamic
and characterized by the complex interactions between the shield
tunneling machine and its surrounding geological environment
blished by Elsevier B.V. This is an open access article under the CC BY-NC-ND license
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Fig. 1. Flowchart illustrates the implementation procedure of the developed model.
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(Yang et al., 2016; Zhang et al., 2017; Xu et al., 2024). Recent ad-
vancements in artificial intelligence (AI) methods offer significant
potential to address these complex, nonlinear problems. AI models
have demonstrated success in predicting and classifying geological
conditions into various meaningful categories (Liu et al., 2020; Guo
et al., 2023). By understanding the surrounding soil mass, engineers
can make informed decisions to manage shield tunneling opera-
tions effectively.

Researchers have employed various machine learning (ML)
methods such as support vector regression (Liu et al., 2019), sup-
port vector classifiers (Zhang et al., 2019), AdaBoost (Liu et al.,
2020), deep neural networks (Wu et al., 2021), and long short-
term memory networks (Liu et al., 2021), to explore the underly-
ing relationships between shield machine monitoring data and
geological conditions (Guo et al., 2023; Lai et al., 2023; Jiang et al.,
2024). Recently, Yan et al. (2022) presented a framework for pre-
dicting geological conditions in shield tunneling by integrating a
stacking classification algorithm with grid search and K-fold cross-
validation. Xu et al. (2023) compared the performance of various
algorithms, including multi-objective random forest, single-
objective-AdaBoost, and suppressor chain-AdaBoost, for predict-
ing geological conditions in super-large diameter slurry pressure
balanced shield tunnels. These supervised ML models exhibit
strong capabilities in nonlinear mapping, leveraging vast amounts
of monitoring data to predict geological conditions accurately.
However, they face several limitations: (1) supervised ML models
require actual geological conditions as labeled inputs, which are
often difficult and resource-intensive to obtain in practice; (2)
conventional ML models lack the capability for continuous
learning, making them challenging to adapt to new input data. On
the one hand, manually assigning labels to raw data to develop a
learning base is typically time-consuming. Additionally, it can be
difficult to obtain accurate geological conditions for shield tunnel
projects in complex construction. Therefore, anMLmodel that does
not rely on labeled data to effectively predict the geological con-
ditions of shield tunnels is necessary. On the other hand, the trained
model typically only performswell for a specific boundary problem.
When applying ML model to the new, unseen data, it needs to be
retrained (Qian et al., 2021b). This is particularly the case for pre-
dicting geological conditions in shield tunneling. Consequently,
developing techniques that can minimize the cost associated with
retraining ML models is essential, enabling them to effectively
adapt to new data.

Clustering algorithms present a promising alternative for pre-
dicting geological conditions during shield tunneling by classifying
unlabeled data into interpretable structures (Zhou et al., 2019b;Wu
et al., 2021; Pan et al., 2023). These algorithms may be more suit-
able for real-time applications where geological conditions are not
readily available (Ikotun et al., 2023; Pan et al., 2023). The nonlinear
relationship between shield tunneling machine monitoring data
and geological conditions using clustering algorithms has been
explored in several studies (Zhou et al., 2019b; Pan and Zhang,
2022; Yin et al., 2022). While significant progress has been made,
these efforts mainly focus on identifying natural groupings within
the data, with limited attention to temporal patterns in shield
machine monitoring data. Time series clustering algorithms hold
considerable potential for predicting geological conditions in shield
tunneling operations. The deep temporal clustering (DTC) model is
particularly well-suited for analyzing multivariate and complex
time series data, such as that generated by shield machine moni-
toring. This model effectively reduces data dimensionality and
learns temporal correlations between time series through the
integration of one-dimensional convolutional neural network (1D
CNN) and bidirectional long short-term memory (Bi-LSTM) layers,
enabling precise clustering of multivariate time series data.
2

Integrating incremental learning can significantly enhance a
clustering model's ability to learn from new data (Zhao et al., 2023).
The approach allows the model to update its parameters based on
new data inputs without requiring complete retraining, thereby
mitigating the risk of performance degradation and avoiding time-
consuming retraining processes. The elastic weight consolidation
(EWC) method can be flexibly applied to various types of ML
models and tasks without significant changes to the model struc-
ture. Additionally, EWC is designed to address the issue of cata-
strophic forgetting, a phenomenon where previously acquired
knowledge is lost after training on new data. Preventing cata-
strophic forgetting during the incremental learning process helps
maintain the model's performance stability during continuous
learning.

This study proposes a novel approach by developing a DTC
model combined with the EWC incremental learning method. First,
themodel employs the Boruta algorithm to select the most relevant
features for training. Second, the DTC model is trained on a shield
tunneling dataset from a metro project in Nanjing, China, and its
performance is compared with nine time-series clustering algo-
rithms (e.g., DTW-Kmeans, DTW-Kmedoids, and K-shape). Third,
the continuous learning capability of the model is enhanced by
integrating it with the EWC incremental learning method. Fourth,
detailed feature importance is conducted, using the feature elimi-
nation method and the Shapley additive explanations (SHAP)
method to determine the relative significance of each feature in
predicting geological conditions. Finally, the DTC model is applied
to the Xiamen metro shield tunnel dataset. In summary, the model
can accurately predict geological conditions in real-time during
shield tunneling without relying on actual geological data as input
and demonstrates robust continuous learning capabilities.

2. Methodology

In this study, the DTC model is employed to predict geological
conditions during shield tunneling. To enhance the model's
continuous learning capability and enable real-time prediction of
geological conditions, the parameters of the DTC model are upda-
ted using the EWC method. Fig. 1 presents the flowchart detailing
the model development process. This section provides an overview
of the Boruta feature selection algorithm, the DTC model, and the
EWC method.

2.1. Boruta algorithm

The Boruta algorithm is an extension of the random forest al-
gorithm (Kursa and Rudnicki, 2010). It enhances feature selection
by introducing additional randomness. The key steps of the algo-
rithm are: (1) Shuffling original features to create shadow features
and concatenating them with the original features to form the
training feature matrix; (2) Calculating the importance of each
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featurewithin the predictivemodel; (3) Computing Z-scores (Zscore)
for both original and shadow features and determining the
maximum Z-score (Zmax) among the shadow features; (4) Identify
“important features” as those with a Zscore greater than Zmax and
label features with a Zscore less than Zmax as “unimportant,” sub-
sequently removing them; and (5) Repeating the process until all
features are classified as either “important” or “unimportant.”
2.2. Deep temporal clustering (DTC)

The DTC model is a combination of deep learning and clustering
algorithms designed to enhance the capability of handling time-
series data (Sai Madiraju et al., 2018). The objective of the DTC
model is to integrate dimensionality reduction and time-series
clustering into a completely unsupervised end-to-end learning
framework. This framework includes an encoder, a decoder, and a
time-series clustering layer, as shown in Fig. 2.
2.2.1. Model training process
Consider n unlabeled instances, x1, …, xn, of a temporal

sequence x. The goal is to perform unsupervised clustering of these
n unlabeled sequences into k � n clusters, based on the latent high-
level features of x. The input sequences are passed through a one-
dimensional convolutional layer to capture short-range fluctua-
tions within the sequences. Subsequently, a max pooling layer with
a pool size of P is applied for dimensionality reduction. This pro-
cedure compresses the input time-series data into a compact vector
representation while maintaining the structural information
inherent in the sequences.

Next, the output of the max pooling layer is input into a Bidi-
rectional LSTM (Bi-LSTM). The LSTM network captures sequence
patterns in both directions, compressing the input sequence into a
more compact latent representation. The encoder structure is
illustrated by the blue box in Fig. 2. The latent representation is
then subjected to UpSample and deconvolution operations,
reconstructing a time-series input while undergoing self-training
to ensure the effectiveness of the autoencoder layer, as shown in
the red box of Fig. 2.

Finally, the clustering layer assigns the Bi-LSTM latent represen-
tation of sequences xi, i ¼ 1… n, to clusters. Learning in the 1D CNN
Fig. 2. Structure of the DTC model.
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and Bi-LSTM involves minimizing two interleaved cost functions.
The first is the mean square error (MSE) of the input sequence
reconstruction from the Bi-LSTM's latent representation. The second
is a clustering metric (e.g. KL divergence), which adjusts the weights
in both the Bi-LSTM and CNN. This process enables the Bi-LSTM to
encode high-level features that optimally separate the sequences
into clusters, clarifying the spatiotemporal dynamics of x.

2.2.2. Temporal clustering layer
The temporal clustering layer consists of k centroids uj, j21:::k:

The input x is transformed into latent signals zi through the
encoder-decoder layer. zi is then used to perform hierarchical
clustering with complete linkage in the feature space Z through a
similarity metric. We perform k cut to obtain the clusters and then
average the elements in each cluster to get initial centroids esti-
mates uj, j21:::k.

After initializing the centroids, the first step is to calculate the
assignment probability of the input xi to cluster j. The assignment
probability of the input's latent representation zi to cluster j is
higher when zi is closer to the centroid uj of that cluster. The
calculation formula for the assignment probability is as follows:

qij¼ ð1þdÞ�
jþ1
2Pk

j¼1
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jþ1
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where zi is the signal in the latent space Z, obtained from the
temporal autoencoder after encoding the input signal xi2X, j is the
number of degrees of freedom of the student's t distribution, and
simlðzi;ujÞ is the similarity metric.

The DTC model provides four similarity measurement methods:
complexity invariant similarity (CID), correlation-based similarity
(COR), autocorrelation-based similarity (ACF), and Euclidean
(EUCL). To train the temporal clustering layer, the optimization
objective is set to minimize the KL divergence loss between the
assignment probability qij and the target distribution pij. p is used to
strengthen high-confidence predictions and normalize the losses to
prevent distortion of the latent representation, as shown in Eq. (2).
The formula for KL divergence loss is

pij¼
ljPk
j¼1lj

(2)

L¼
Xn
i¼1

Xk
j¼1

pij log
pij
qij

(3)

where fj ¼
Pn

i¼1qij, lj ¼ q2ij
.
fj
, n and k are the number of samples in

the dataset and the number of clusters respectively.
The optimization in the DTC model involves batch-wise joint

optimization of clustering and autoencoder tasks. First, the pa-
rameters of the autoencoder are pre-trained. After the pre-training
phase, the clustering centers are initialized using hierarchical
clustering. Subsequently, the autoencoder weights and cluster
centers are updated using the gradients dLc/ dzi and dLae/ dz,
respectively:
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where dLc is the loss of classification and dLae is the loss of
autoencoder.
2.3. Elastic weight consolidation (EWC)

EWC enables the model to retain its knowledge of old tasks
while learning new tasks, thus preventing catastrophic forgetting
from occurring (Kirkpatricka et al., 2017). During the learning of a
new task B, EWC constrains the important parameter q to remain

within a low-error region centered around the data distribution q*A
of the old task A, thereby preserving the performance of task A. The
conditional probability can be calculated based on the prior prob-
ability pðqÞ of the parameters and the probability pðqjDÞ of the data
as follows:

log pðqjDÞ¼ log pðqjDÞ þ log pðqÞ � logpðDÞ (6)

Assuming that the data is divided into two independent parts,
one defined as Task A (DA) and the other as task B (DB), the equation
can be rewritten as follows:

log pðqjDÞ¼ log pðqBjDÞþ log pðqjDAÞ � logpðDBÞ (7)

The posterior probability can be approximated as a Gaussian
distribution. The function L that we minimize in EWC is

LðqÞ¼ LBðqÞ þ
X

i

l

2
Fi
�
qi � q*A;i

�2
(8)

where LBðqÞ is the loss for task B only, l sets how important the old
task is compared with the new one, i labels each parameter, and F is
the Fisher information matrix.
3. Model development

3.1. Project description

This study utilizes data from an EPB shield tunneling project in
Nanjing, Southeast China, to develop the ML model. The shield
tunnel features both double-bore and single-lane designs. The
construction area spans a total length of 1.9 km from
DK65þ 866.421 to DK67þ 759.653, with a maximum buried depth
of 21.38 m. The diameter of the shield cutterhead is 6500 mm,
operating with an opening rate of 32%. The cutterhead rotation
speed ranged from 0 to 3.05 rpm, with a torque of 5631 kN m. The
maximum thrust force applied is 41,600 kN, and the maximum
advance speed is set at 80 mm/min.

During the construction of tunnel segments 297e309, incorrect
geological conditions assessments resulted in spoil buildup due to
inadequate adjustments in conveyor speed and water flow, causing
significant progress delays. The geological conditions were initially
reported as moderately weathered muddy sandstone, but the
actual soil was primarily silty clay. This discrepancy is expected,
given that the spatial limitations of borehole drilling often hinder a
comprehensive assessment of the actual geological conditions.
Since supervised learning relies heavily on the quality and accuracy
of labeled data, it may result in poor performance and unreliable
predictions. Therefore, this study aims to use an unsupervised
clustering algorithm to predict geological conditions. The proposed
algorithm can group similar data sequences into clusters without
requiring actual geological conditions as labeled input.
4

To reduce the impact of inaccurate geological conditions on the
unsupervised clustering model's evaluation, excavation segments
where the actual geological conditions differed from those reported
in the geotechnical investigation were excluded. Instead, excava-
tion segments with accurately reported geotechnical conditions
were selected for the study dataset. The shield tunnel data includes
silty clay (SC), plasticized silty clay (PSC), moderately weathered
muddy sandstone (MWMS), and strongly weathered muddy
sandstone (SWMS), as shown in Table 1.

3.2. Data collection and feature selection

Various parameters are monitored and recorded by sensors
during the shield tunneling construction process. In this study, over
60,000 samples were collected as the dataset. Given the substantial
variability in recorded data across different dimensions, the data
was normalized using the minimum-maximum scaling method.

The selection of input features is critical for improving the
predictive accuracy and reducing the computational complexity of
the model. Firstly, based on previous studies (Liu et al., 2019, 2020;
Chen et al., 2021), seventeen parameters with high relevance to
predict geological conditions were selected. These include the total
thrust (TT), cutterhead torque (CT), cutterhead rotational speed
(CRS), earth chamber pressure (CP), advance speed (AS), thrust jack
pressure (TJP), screw conveyer pressure (SCP), screw conveyer
rotational speed (SCRS), horizontal deviation of the shield machine
head (HDSH), horizontal deviation of the shield machine tail
(HDST), vertical deviation of the shield machine head (VDSH),
vertical deviation of the shield machine tail (VDST), rotation angle
of the shield machine (RA), average water flow (AWF), grouting
volume (GV), the helix angle of the shield machine (HA), and
average bubble flow (ABF).

Next, the Boruta algorithm was used to refine the selection of
input features. The results are illustrated in Fig. 3. The RA, AWF, GV,
HA, and ABFwere found to have aminimal impact on the predictive
results, with Zscore values lower than the shadow feature (ShaMax).
Like most feature selection algorithms, the Boruta algorithm eval-
uates feature importance based primarily on the correlation be-
tween data. GV, AWF, and ABF exhibit more outliers and missing
values, often due to sensor failures, which can obscure the true
relationship between features and target variables. Although the
Boruta algorithm is effective for feature selection, it may not cap-
ture all significant nonlinear relationships and can be sensitive to
noise in the data. The final model input is X ¼ [CP, VDST, CRS, HDST,
VDSH, TT, HDST, AS, TJP, SCRS, SCP, CT]T. A statistical overview of the
model input features is depicted in Fig. 4.

3.3. Hyperparameter selection and evaluation metrics

The dataset was divided into two distinct parts: 70% of the data
is used for training, validation, and testing of the DTC model, while
the remaining 30% is reserved for evaluating the EWC incremental
learning method. The hyperparameters search space for the DTC
model is clearly defined, and the optimal set of hyperparameters
was determined using a grid search approach, as detailed in Table 2.
Additionally, the influence of the input sequence length and the
number of clusters on the model's performance will be analyzed in
detail in the subsequent section. The experiments were conducted
on a platform equipped with an NVIDIA Tesla P100 GPU and 64 GB
DDR4 RAM, utilizing a PyTorch 1.8 and Python 3.8 environment.

The evaluation metrics used in this study are the adjusted Rand
index (ARI), normalized mutual information (NMI), and accuracy
rate (ACC) (Aghabozorgi et al., 2015; Pan et al., 2023). These metrics
compare the clustering results with the actual geological conditions
to assess the quality of the discovered clusters. The ARI is employed



Table 1
Geological conditions in the study area.

Ring number 12e238 259e287 345e623 652e771 853e956

Length (m) 226 28 278 119 103
Stratum Silty clay (SC) Plasticized silty clay (PSC) Moderately weathered muddy sandstone (MWMS) Strongly weathered muddy sandstone (SWMS) MWMS

Fig. 3. Results of the Boruta algorithm.
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to assess the similarity between two clusters, with values ranging
from �1 to 1:

ARI¼ RI � RI

RIMax � RI
(9)

where RI represents the Rand index, calculated as RI. RI is the ex-
pected value of the Rand index under random clustering condi-
tions, and RIMax denotes the maximum value of the Rand index:

RI¼ TP þ TN
TP þ FP þ FN þ TN

(10)

where a true positive (TP) is an instance where the algorithm's
prediction aligns with the actual positive cluster. A true negative
(TN) is an instance where the prediction and the actual cluster are
both negative. A false positive (FP) arises when the algorithm
incorrectly predicts an actual negative instance to a positive cluster.
A false negative (FN) arises when the algorithm incorrectly predicts
a positive instance to a negative cluster.

The NMI is an evaluation metric based on information theory,
that measures the level of information shared between the clus-
tering results and the true labels. Its values range from 0 to 1:

NMIðU;VÞ¼ 2MIðU;VÞ
HðUÞ þ HðVÞ (11)

whereU represents the true clustering labels, and V is the clustering
labels generated by the algorithm; MIðU;VÞ is the mutual infor-
mation between U and V; HðUÞ represents the entropy of U, and
HðVÞ represents the entropy of V. The ACC is defined as the ratio of
correctly predicted instances to the total number of instances, with
values ranging from 0 to 1.

The dataset in this study contains four types of geological con-
ditions, as shown in Table 1. If the model can classify the dataset
into four clusters corresponding to these geological conditions, the
model can be considered to be effective in identifying geological
conditions. Each input sequence is associated with a corresponding
ring number (Table 1), which determines the true geological con-
dition of that input sequence. A comparison of the model's
5

predicted results with the actual geological conditions will verify
whether the input sequences have been correctly clustered.
4. Results and discussion

4.1. Performance of the clustering models

4.1.1. Influence of input sequence length
Preliminary experiments were conducted to determine the

optimal sequence length that maximizes predictive accuracy. These
experiments indicated that the model performs best with input
sequence lengths in the range of 24e104. Therefore, input sequence
lengths of 24, 44, 64, 84, and 104 were further evaluated, as shown
in Fig. 5. It can be found that the model achieves optimal clustering
performance at an input sequence length of 64, with the highest
values of ACC, NMI, and ARI. Choosing an input sequence length of
64 is reasonable, as it does not exceed the typical number of data
points recorded for one ring of segments. The dataset was recorded
at a frequency of 60 s per trip, with an average of 67 data points
collected per ring of a tunnel segment. Using model input se-
quences longer than 67 data points may result in sequences con-
taining data points from two successive rings of tunnel segments.
This is suboptimal, as the two successive rings are not continuous in
time due to the intervening segment assembly stage.
4.1.2. Influence of the number of clusters
The number of clusters refers to the groups identified or selected

during a cluster analysis. According to Table 3, the DTC model
demonstrates optimal performance for the case with four clusters,
achieving a prediction accuracy of ACC ¼ 75.1%. The accuracy de-
clines to 69.9% with three clusters and further declines to 57.5%
with five clusters. Similarly, other performance metrics, such as
NMI and ARI, exhibit the same trend.

The clustering results for AS and TJP are shown in Figs. 6 and 7,
respectively. The color of the line represents the true geological
condition associated with each input sequence. For example, Fig. 6a
and 7a show all input sequences classified by the model as SC.
When all the lines are red, indicating that the model achieved 100%
accuracy in predicting the SC stratum.



Fig. 4. Data distribution: (a) TT, (b) CT, (c) CRS, (d) CP, (e) AS and JTP, (f) SCP and SCRS, (g) HDSH and HDST, and (h) VDSH and VDST.
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The main diagonal elements in Fig. 8 indicate the number of
input sequences that were correctly clustered. For instance, 251 out
of 261 input sequences from the SC stratum were accurately
6

identified, resulting in an accuracy rate of 96.16%. Among the 465
input sequences from the MWMS stratum, 372 were correctly
identified, resulting in an accuracy rate of 80%. However, all 18



Table 2
Hyperparameter search space and optimal settings for the DTC model.

Hyperparameter Search space Optimal hyperparameter

Number of clusters [2, 3, 4, 5, 6] 4
Number of layersa [6, 8, 10] 8
Batch size [64, 128, 256] 256
Learning rate [0.01, 0.1] 0.01
Epoch [25, 50, 100] 50
Input sequence lengths [24, 44, 64, 84, 104] 64

Note: a is the number of units in the BiLSTM layers.

Fig. 5. Model performance with different input sequence lengths (number of
clusters ¼ 4).

Table 3
DTC model clustering results.

Model Evaluation Number of clusters

2 3 4 5 6

DTC ACC 0.619 0.699 0.751 0.575 0.55
NMI 0.182 0.495 0.577 0.352 0.018
ARI 0.134 0.391 0.512 0.312 0.05

Note: The text in bold indicates optimal performance.
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input sequences from the PSC stratum were incorrectly identified
as SC. Additionally, out of the 103 inputs sequences from the SWMS
stratum, 85 were misclassified as MWMS. These misidentifications
can be attributed to the similarities in soil parameters between the
PSC and SC strata, as well as between the MWMS and SWMS strata.
This similarity leads to an almost identical distribution of shield
control data across these strata. As shown in Fig. 9, the distribution
of the four shield tunneling control parameters, namely CT, TT, SCP,
and JTP reveals significant overlap and considerable similarity.
4.1.3. Comparison with the nine clustering models
To validate the effectiveness of the DTC model, nine widely used

time series clustering algorithmswere selected for comparison. The
performance of these comparison models was evaluated with
different numbers of clusters, as shown in Table 4. The results
indicate that the DTC model is optimal with four clusters, achieving
an ACC of 0.751, NMI of 0.577, and ARI of 0.512.

The DTW-Kspectral, SoftDTW-Kmeans, and SoftDTW-Kspectral
7

models perform optimally with only two clusters. This suggests
that these models tend to divide the dataset into two clusters and
are unable to effectively distinguish the four geological conditions.
The DTC model demonstrates superior performance compared to
the other models for both three and four clusters, showing that the
DTC model is more capable of identifying similar strata and can
effectively identify the third and fourth strata within the dataset.
This is because the DTC model can explore potential correlations
within the input data through its integrated LSTM layer, thereby
enabling it to more accurately identify subtle differences between
various input sequences. This capability significantly enhances the
DTC model's performance compared to those of conventional
clustering methods, such as DTW-Kmeans and DTW-Kmedoids.
However, high similarity among geological conditions can lead to
inaccurate identification by the DTC model. In addition, compared
to supervised machine learning models, clustering models, which
lack explicit goals or labeled data to guide learning, may exhibit
reduced reduction in prediction accuracy.

4.2. Performance of incremental learning

The DTC model was initially trained on 70% of the dataset
referred to as the “old task”, as described in the previous section. In
this section, the results of training the DTC model on the remaining
30% of the data using an incremental learning method, referred to
as the “new task” is presented. The new task was divided into 39
inputs, signifying that the DTC model's parameters were updated
39 times through the EWC method. A significant challenge in in-
cremental learning is the phenomenon known as “catastrophic
forgetting,” where the introduction of new task data can signifi-
cantly degrade the model's performance on previously learned
tasks. To mitigate this issue, the performance of the updated DTC
model on the old tasks is evaluated after undergoing incremental
learning updates.

Three incremental learning strategies are applied to the DTC
model: global fine-tuning, local fine-tuning, and EWC. The global
fine-tuning method allows the model to update all its parameters
for the new task, while the local fine-tuning method locks all pa-
rameters except those in the updated clustering layer. Fig. 10aec
demonstrated the improved performance of the DTC model with
increasing input sequences, indicating its capability for continual
updates with new data. Furthermore, Fig. 10d is a violin plot that
illustrates the performance of the DTC model following 39 updates,
demonstrating that the EWC method achieves the highest predic-
tion accuracy.

The DTCmodel, after being updated using the three incremental
learning strategies, was retrained on the old task to check for signs
of catastrophic forgetting. Fig. 11aec presents the improved per-
formance of the DTC model on the old task. Fig. 11b shows that the
local fine-tuning method results in a gradual decline in perfor-
mance on the old task as the number of model updates increases,
indicating the occurrence of catastrophic forgetting. Both the global
fine-tuning (Fig. 11a) and the EWC (Fig. 11c) methods show fluc-
tuations in model performance as the number of updates increases.
However, the global fine-tuning method exhibits a significant
decline in performance on old tasks, with accuracy fluctuating
between 36.8% and 59.4%. In contrast, the EWC method maintains
more stable performance across updates, with accuracy ranging
from 68.9% to 80.5%. Notably, the accuracy of the DTC model
updated with the EWC method performs best. Therefore, it can be
concluded that the EWC method effectively mitigates catastrophic
forgetting.

The lack of model parameter updates can lead to a significant
decline in model performance when the model encounters previ-
ously unseen data, such as novel geological conditions encountered



Fig. 6. DTC model clustering results for AS: model recognized as (a) SC stratum, (b) PSC stratum, (c) MWMS stratum, and (d) SWMS stratum.

Fig. 7. DTC model clustering results for TJP: model recognized as (a) SC stratum, (b) PSC stratum, (c) MWMS stratum, and (d) SWMS stratum.
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in practice. However, when training a model on new data, the old
data typically needs to be integrated with the new data into a
combined dataset and the model needs to be retrained. This pro-
cess usually requires extended training time. In contrast, incre-
mental learning methods allow an already trained model to be
updated solely with new data, eliminating the need for complete
retraining. This approach significantly reduces the time required for
8

model training and is better suited to real-time geological condition
prediction during shield tunneling.

The EWC method determines the relative importance of each
feature in relation to the task being learned during the training
process. By incorporating a regularization term into the loss func-
tion, EWC penalizes excessive changes to these crucial features,
effectively preventing significant changes in model parameters



Fig. 8. Confusion matrix about the DTC model clustering results.
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when new data is introduced. This reduces the risk of the model
forgetting previously learned information. However, as the model
expands, the computational burden associated with calculating the
Fisher information matrix and applying constraint terms increases
considerably.
4.3. Importance analysis of input features

Understanding how the 12 input features influence prediction
outcomes is inherently challenging due to the semi-transparent
nature of ML models. To assess the effect of each input feature on
the model's performance, a feature elimination method was
applied, where one feature was excluded in each combination. The
results of this process are presented in Fig. 12. The results show a
decline in performance when key features such as CP, CRS, VDST,
HDST, VDSH, and HDSH are excluded. However, removing features
like TT, CT, SCP, TJP, and SCRS has minimal effect on performance.
Fig. 9. Scatter plot of model input features: (a) TT and CT in the SC and PSC stratum, (b) SCP
(d) SCP and JTP in the MWMS and SWMS stratum.

9

The SHAP method is also used to evaluate the importance of
features. It is worth noting that the SHAPmethod cannot be directly
applied to time-series clustering models. Accordingly, we con-
structed an LSTM model as a predictor for the SHAP method. The
LSTM model, a supervised machine learning algorithm, achieved a
prediction accuracy of approximately 88.2%. This approach enables
an investigation of the influence of different input features on the
model's prediction of geological conditions from both supervised
and unsupervised ML perspectives. Fig. 13 shows that CRS has the
largest influence on the prediction results, and it is followed by
other significant features such as CP, VDST, HDST, VDSH, and HDSH.
The findings support the outcome of the previous analysis of the
feature elimination method.

The influence of individual input features on the model's output
is presented in Fig. 14, where SHAP values are plotted on the x-axis
and the input features on the y-axis. A higher SHAP value indicates
a stronger positive impact on the prediction outcomes. The color
coding of the points reflects themagnitude of the original values for
each sample. The graph reveals that smaller CRS values promote
the model's prediction results for SC and PSC strata. Conversely,
larger CRS values improve the prediction results for MWMS and
SWMS strata, which are rock strata requiring a higher cutterhead
rotational speed for effective cutting compared to the clay forma-
tions. Larger CP values promote the model's prediction results for
SC and PSC strata, while smaller CP values promote the prediction
results for MWMS and SWMS strata. This is because clay strata have
poorer face stability, requiring higher CP values for stability.
5. Generalization

The validity and generalization of the DTC model were further
verified using the EPB shield tunnelingmonitoring dataset from the
Xiamen metro line 3 project in China. The geology of the Xiamen
project consists mainly of residual gravelly clayey soil, silty clay and
mediumweathered granite. Data processing ensures that the types
and numbers of input features in the DTC model for the Xiamen
and TJP in the SC and PSC stratum, (c) TT and CT in the MWMS and SWMS stratum, and



Table 4
Evaluation of clustering performance among different time series clustering algorithms.

Model Metric Number of clusters Model Metric Number of clusters

2 3 4 5 6 2 3 4 5 6

DTC ACC 0.619 0.699 0.751 0.575 0.55 K-shape ACC 0.342 0.472 0.242 0.481 0.621
NMI 0.382 0.455 0.577 0.352 0.018 NMI 0.012 0.019 0.014 0.017 0.122
ARI 0.234 0.391 0.512 0.312 0.05 ARI 0.002 0.009 0.005 0.020 0.123

DTW-Agglomerative ACC 0.6 0.612 0.603 0.535 0.421 SoftDTW-Agglomerative ACC 0.614 0.619 0.591 0.553 0.542
NMI 0.123 0.232 0.226 0.212 0.192 NMI 0.132 0.243 0.252 0.255 0.259
ARI 0.092 0.266 0.245 0.239 0.155 ARI 0.102 0.252 0.242 0.212 0.208

DTW-Kmeans ACC 0.632 0.642 0.613 0.543 0.512 SoftDTW-Kmeans ACC 0.653 0.452 0.582 0.572 0.569
NMI 0.157 0.264 0.262 0.261 0.263 NMI 0.266 0.090 0.251 0.242 0.232
ARI 0.154 0.291 0.280 0.216 0.211 ARI 0.287 0.073 0.254 0.224 0.212

DTW-Kmedoids ACC 0.532 0.633 0.452 0.451 0.352 SoftDTW-Kmedoids ACC 0.523 0.543 0.525 0.492 0.509
NMI 0.051 0.227 0.153 0.150 0.201 NMI 0.002 0.026 0.018 0.009 0.008
ARI 0.043 0.241 0.143 0.141 0.139 ARI 0.003 0.012 0.009 0.008 0.013

DTW-Kspectral ACC 0.450 0.352 0.282 0.241 0.221 SoftDTW-Kspectral ACC 0.602 0.521 0.572 0.582 0.382
NMI 0.003 0.001 0.002 0.002 0.003 NMI 0.448 0.403 0.441 0.423 0.432
ARI 0.011 0.004 0.003 0.021 0.022 ARI 0.553 0.462 0.459 0.342 0.272

Note: The text in bold indicates optimal performance.

Fig. 10. Performance of DTC models based on incremental learning: (a) global fine-tuning method, (b) local fine-tuning method, (c) EWCmethod, and (d) violin charts for evaluation
metrics.
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dataset are consistent with those for the Nanjing dataset. Statistical
information on the input features is shown in Table 5. Additionally,
the model's hyperparameters are kept consistent with those in
Table 2. While this may not provide globally optimal hyper-
parameters for the Xiamen dataset, it ensures a univariate com-
parison experiment.

The ACC of the DTC model on the Xiamen dataset is 81.13%, with
NMI and ARI values of 0.6399 and 0.6242, respectively, further
verifying the model's generalizability in different shield tunneling
10
projects. Fig. 15 shows the confusion matrix of the DTC model's
prediction results. The model achieves higher accuracy in predict-
ing the RGCS and MWG strata, with 97.65% and 90.48%, respec-
tively. However, the accuracy decreases to 60.27% and 75.31% for
predicting the SC-FWG and SC strata, respectively.

The DTC model incorrectly predicted only two input sequences,
SC-FWG and SC strata, when predicting RGCS. It incorrectly pre-
dicted five input sequences as SC-FWG strata and one sequence as
SC strata when predicting MWG strata. This may be attributed to



Fig. 11. Catastrophic forgetting evaluation of incremental learning methods: (a) global fine-tuning, (b) local fine-tuning, and (c) EWC.

Fig. 12. Performance of the DTC model for different combinations of input parameters.

Fig. 13. Results of feature importance based on the SHAP method.
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the uneven distribution of FWG in the tunnel face within the SC-
FWG mixed strata, which closely resembles the MWG stratum.
When predicting SC-FWG mixed strata, the model incorrectly
classified 19 input sequences as SC strata and 10 as MWG strata.
Additionally, the model incorrectly predicted 19 input sequences as
SC-FWG mixed strata when predicting SC strata. These results
highlight the limitations of the DTC model in distinguishing be-
tween similar and composite strata.
11
6. Conclusions

An unsupervised incremental learning model, combining deep
temporal clustering (DTC) with elastic weight consolidation (EWC),
has been developed in this study. The EWC-DTC model facilitated
real-time prediction of geological conditions during EPB shield
tunneling without needing labeled data. The main conclusions of
this study are summarized as follows:



Fig. 14. Results of feature importance based on the SHAP method: (a) SC, (b) PSC, (c) MWMS, and (d) SWMS.

Table 5
Statistics of Xiamen project study area dataset.

Parameter Unit Max Min Average Median

Advance speed (AS) mm/min 38.12 6.72 25.33 27.98
Total thrust (TT) kN 26259.71 6278.26 13424.16 12373.67
Cutterhead torque (CT) kN$m 3736.34 953.40 2265.28 2422.89
Screw conveyer pressure (SCP) Mpa 16.82 1.54 5.46 5.16
Total jack pressure (TJP) Mpa 17.58 0 7.58 7.34
Screw conveyer rotation speed (SCRS) r$min�1 22.52 0 3.37 2.55
Chamber pressure (CP) kPa 638.21 0 197.03 121.37
Cutterhead rotation speed (CRS) r$min�1 2.16 1.01 1.73 1.98
Horizontal deviation of the shield head (HDSH) mm 219.72 �206.51 3.64 4.34
Vertical deviation of the shield head (VDSH) mm 87.81 �212.74 �18.83 �23.13
Horizontal deviation of the shield tail (HDST) mm 88.72 �89.22 �3.27 �2.82
Vertical deviation of the shield tail (VDST) mm 112.12 �76.03 �16.45 �21.81
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(1) The DTC model achieves a higher accuracy of 75.1% for the
case study considered, outperforming the nine popular time
series clustering models under the four clusters scenario.
Additionally, the DTC model demonstrates excellent perfor-
mance when applied to another project with an accuracy of
81.1%, highlighting the feasibility of employing an unsuper-
vised clustering model for predicting the geological condi-
tions during shield tunneling.

(2) The DTC model demonstrates an excellent ability to distin-
guish between widely differing geological conditions. How-
ever, a notable decrease in accuracy occurs when predicting
similar geological conditions and composite strata. The DTC
model demonstrates an accuracy of 96.16% in predicting the
SC stratum, but most of the SWMS stratumwas misclassified
12
as MWMS. Additionally, the model achieves an accuracy of
97.65% for the RGCS stratum and 90.48% for the MWG stra-
tum. The accuracy declines to 75.31% and 60.27% for pre-
dicting the SC and SC-FWG strata, respectively.

(3) The EWC method significantly enhances the continuous
learning capability of the DTC model. By allowing the DTC
model to learn from a continuous stream of data, EWC en-
ables the DTC model to adaptively perceive geological con-
ditions and update parameters ring by ring as tunneling
progresses. Additionally, the ACC of the EWC-DTC model on
old tasks ranges from 68.9% to 80.5%, indicating that the
EWC-DTC model's ability to effectively mitigate catastrophic
forgetting.



Fig. 15. Confusion matrix of the DTC model clustering results in the Xiamen dataset.
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Despite potential reductions in prediction accuracy compared to
supervised ML models due to the absence of labeled data, unsu-
pervised learning offers a significant advantage in scenarios where
accurate labels are unavailable. Future research can focus on two
main areas: (1) improving the interpretability of ML models to
better understand the complex interactions between shield
tunneling parameters and geological conditions, and (2) enhancing
clustering algorithms to improve model accuracy, especially in
scenarios with high similarity among geological conditions.
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