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Abstract: Optimal crop emergence is an important trait in crop breeding for genotypic screening
and for achieving potential growth and yield. Emergence is conventionally quantified manually
by counting the sub-sections of field plots or scoring; these are less reliable, laborious and inef-
ficient. Remote sensing technology is being increasingly used for high-throughput estimation of
agronomic traits in field crops. This study developed a method for estimating wheat seedlings using
multispectral images captured from an unmanned aerial vehicle. A machine learning regression
(MLR) analysis was used by combining spectral and morphological information extracted from the
multispectral images. The approach was tested on diverse wheat genotypes varying in seedling
emergence. In this study, three supervised MLR models including regression trees, support vector
regression and Gaussian process regression (GPR) were evaluated for estimating wheat seedling
emergence. The GPR model was the most effective compared to the other methods, with R2 = 0.86,
RMSE = 4.07 and MAE = 3.21 when correlated to the manual seedling count. In addition, imagery
data collected at multiple flight altitudes and different wheat growth stages suggested that 10 m
altitude and 20 days after sowing were desirable for optimal spatial resolution and image analysis.
The method is deployable on larger field trials and other crops for effective and reliable seedling
emergence estimates.

Keywords: field trials; plant count; plant phenotyping; wheat

1. Introduction

Desired plant density is an important agronomic factor for optimal crop growth and
yield. Plant density is generally measured by the estimation of crop emergence at early
growth stages [1–3]. The timely and accurate estimation of emergence or stand count at
early growth stages could help farmers in making important field management decisions
(e.g., replanting) in order to reduce production loss [4]. Moreover, an accurate measure of
crop emergence estimate can be used to understand the impact of soil and environment on
crop emergence [5,6]. In crop breeding research for developing improved crop varieties,
emergence count is important to screen genotypes for comparative analysis, which is a
basis of yield formation in wheat [7]. Conventionally, emergence is assessed by manually
counting sub-section of field plots or visual scoring at early growth stages [8]. This is
time consuming, labour intensive, not suited to cover large field trials and a cumbersome
activity for farmers and plant scientists [4,7,9]. Furthermore, soil conditions, particularly
after rainfall or frost, may limit the available time slots when walking in the field for man-
ual observations without damaging the crop. Therefore, an automated high-throughput
method for the objective and precise estimation of wheat seedlings emergence will benefit
researchers and growers [10,11].
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Remote sensing technologies have evolved significantly in the recent past to aid
in high-throughput phenotyping for various crop traits including crop emergence. For
instance, a ground vehicle imaging systems was used to measure wheat stand count in
field conditions [2]. However, these ground-based vehicle systems have limited coverage
as they are slow and affected by ground conditions (e.g., wet soil or narrow-row cropping
systems), which is not ideal in the case of full-scale crop production or large experimental
trials. More recently, unmanned aerial vehicle (UAV)-based sensing technology has evolved
manifolds in conjunction with versatile, lightweight and low-cost portable sensors. Such
UAV based imaging systems are ideal remote sensing platforms for obtaining images with
high spatial resolution and flexibility of frequency in imaging. UAVs are increasingly
becoming a standard tool in crop production, monitoring and phenotyping research [12,13].
The technology has been tested as a high-throughput phenotyping tool for crop emergence
assessment in different crops [4].

Different image processing methods to measure or estimate crop emergence has been
proposed with a focus on stand count and uniformity. At early stages, seedling could be
segmented using morphological features (such as canopy area, leaf polygons and length of
major axis) from high-resolution images to estimate emergence in rows or over a defined
length or area, which is the overall most adopted technique [1–3,14]. A seedling template
matching approach based on the statistical analysis of seedling geometric shape is another
method to count seedlings [15,16]. However, the geometric shape size and overlap of
seedlings tend to vary with germination due to variation in soil conditions (moisture,
temperature and nutrients), crop management, planting depth and seed quality [3,17,18].
Therefore, simple image features or their combinations are not always sufficient to identify
seedlings emergence accurately. Methods based on machine learning or deep learning
artificial neural network (ANN) architectures are typically employed directly on images
to detect individual seedlings. A range of network architectures are employed for plant
emergence counting in different crop types such as CNN in Rapeseed [1], AlexNet in
Spinach [19], YOLOv3 in cotton [20] and corn [21], DL in cotton [4], YoloV3 and VGGNet
in ornamental plants [22], TasselNetV2+ in Shorgum [23] and TasselNetV3 in maize, wheat
and rice [24]. These methods have the inherent requirement of very high spatial resolu-
tion and computation resources. Other studies have used seedling clusters (overlapped
seedlings) as separate regions-of-interest (RoIs) to develop dedicated classification models
to estimate emergence in each RoI. Often these RoIs contain an unbalanced number of
seedlings [18], which can potentially affect estimation accuracy [25]. Regression based
models can be useful [26] and applied to estimate the emergence in various crops, including
maize [27] and cotton [4].

A majority of the previous studies used RGB cameras to estimate plant count [3,9,11,14,19,27].
However, crop color is affected by background soil reflectance and is distorted when the
proportion of bare soil in the images is high [28]. The decrease in radiometric contrast
between crops and soil creates challenges for segmenting and identifying wheat seedlings.
High-resolution cameras with a 4K or 8K sensor size are often used to improve image
quality in emergence estimations [27,29]. A UAV mounted 20 M pixel RGB camera system
has been used for seedling detection [30,31]. However, previous research also indicated
that visible images were potentially affected by sunlight conditions [3,32] and are sensitive
to illumination variation, which are identified as challenges in segmenting seedlings [3].
Therefore, multispectral images with near-infrared (NIR) spectral bands could be more
effective for crop segmentation. Multispectral imaging has been used to estimate crop
emergence using vegetation indices (VIs), such as the normalized difference vegetation
index (NDVI) and green normalized difference vegetation index (GNDVI) [33,34]. How-
ever, compared to RGB cameras, most commercially available multispectral sensors have
a smaller sensor size of 1–2 M pixels, which limits the image resolution [35]. Modified
multispectral imaging systems made from high-resolution RGB cameras, by substituting
one of the bands filters with a near-infrared filter, are able to provide relatively higher
resolutions (e.g., 12 M pixel) at lower costs [33,34]. These modified multispectral imaging



Remote Sens. 2021, 13, 2918 3 of 18

systems have been used in high-throughput phenotyping for crop yield estimation [36] and
crop stress monitoring [37,38]. However, these sensors have broad spectral bands similar to
those of the original cameras, with issues of color distortion, susceptibility to illumination
changes, variation in focus with sensor movement and small dynamic range [36] that
limit their applicability for seedling emergence estimate. A selection of suitable multispec-
tral VIs was found to improve crop detection accuracies, e.g., green-red vegetation index
(GRVI) [39,40] and the wide-dynamic-range vegetation index (WDRVI) [41]. Characteristi-
cally, high-resolution RGB cameras use morphological or textural information, whereas
multispectral sensors emphasize spectral methods for seedling estimations.

In plant phenotyping, very high-resolution (>40 M pixel CMOS sensor) RGB imaging
systems such as DSLR cameras [14,42] currently require additional integration for image
geotagging and could be heavy in payload weight which limits the aerial acquisition time
for UAV operations. Fully-integrated high-resolution (<20 M pixel CMOS sensor) UAV
imaging systems such as the DJI Mavic Pro [24] and Phantom 4 [43] and high-end integrated
systems such as Zenmuse P1 [44] are commercially available, although these are yet to be
applied in phenotyping applications. On the contrary, off-the-shelf available multispectral
sensors for UAV operations are lightweight and integrated with geotagging and irradiance
sensor for seamless operation under varying illumination conditions, which are suitable
for phenotyping application [45]. Despite this, multispectral imaging systems remain to be
appropriately utilized for seedling emergence estimates. This is typically because moderate
resolution sensors suffer from the lack of necessary spatial resolution to neatly resolve the
geometries of emerged seedlings. Nevertheless, multispectral imaging brings secondary
benefits of spectral dimensionality needed to compute multiple VIs, which can then be used
to develop multivariate regression models for parametric estimation of plant phenotypic
traits [46]. Several approaches such as random forests (RFs) and support vector machines
(SVMs) have been developed for fast image processing, particularly for classification [47].
In such multivariate methods, spectral, morphological or textural information can be used
individually or in combination with one another [48]. Spectral and textural features have
been employed using the SVM model to classify wheat and to estimate seedling count
and density [14]. To this end, this study focused on developing an efficient imagery data
processing and analysis framework for timely evaluation of wheat emergence by using
UAV-based multispectral imagery. This research uniquely applies a machine learning
regression (MLR) analysis approach to estimate seedling emergence on combined spectral
and morphological data as being efficient and cost-effective. The approach was tested
on a diverse number of wheat genotypes with a variation in seedling growth in field
conditions. Three supervised MLR models including regression trees (RT), support vector
regression (SVR) and Gaussian process regression (GPR) were evaluated and the GPR
model was observed to be most effective compared to other MLR methods in estimating
seedling emergence.

2. Materials and Methods
2.1. Field Experiment and Data Collection

The wheat field experiment was conducted at the Agriculture Victoria’s Plant Breeding
Centre, Horsham, Victoria, Australia (Figure 1a). This location possesses temperate climate
with an annual average rainfall of 448 mm and has vertisol soil with predominant clay
content. The experiment consisted of 20 wheat genotypes planted in four replications.
The seeds for these genotypes were obtained from the Plant Phenomics’ Grains Accession
Storage Facility at the Grains Innovation Park, Horsham. The list of wheat genotypes is
provided in Supplementary Table S1. The experiment was sown in 5 m × 1 m plots with
5 rows at 25 cm apart (Figure 1b,d). The mechanical seeder places seeds in the row trenches
at 2–3 cm deep and covers up the trenches with soil. The normal distance between the
seeds was about 1 cm to 4 cm in one line. The seeding pattern was designed to explore
the implementation and the evaluation of the emergence estimation model under typical
sowing patterns experienced by grain growers.
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Figure 1. Location and layout of wheat field trial. (a) Location of the study area in Victoria, Australia;
(b) orthomosaic of the study area with row-plot boundaries; (c) an enlarged section of a patch to
depict the structural profile of wheat plants obtained at a moderate resolution of 0.69 cm ground
sampling distance when flying at 10 m above ground level (agl.); (d) an enlarged section showing a
single plot with five row-plots. All presented orthomosaics in figures (b–d) are true color composites
(RGBs) created from RedEdge Micasence sensor.

In situ field measurements for emergence counts were collected manually for all
experimental row-plots, i.e., 20 genotypes × 4 replications × 5 rows = 400 row-plots
(Figure 1b,d). The field measurements technique was exercised at the individual row-plot
level rather than at the plot level to increase the number of data points, which is important
for the herein used machine learning algorithms to develop robust models. Due diligence
was exercised to distinctly count closely placed seedlings with overlapping leaves. The
emergence counts were performed by two expert technical staffs and cross-verified for an
accurate measurement. The field data was collected at 25 days after sowing (DAS) when
seedlings in all field plots were completely germinated. The number of plants in individual
row plots ranged between 18 and 94, with a total of 27,892 emergence plant counts over the
entire field trial. The statistical average of plant counts per row plot was 60.6. A composite
RGB image from UAV multispectral imaging acquired at 20 DAS and operated from a
flying height of 10 m is shown in Figure 1c and portrays the level of detail captured in
multispectral imaging mode.

2.2. Aerial Data Acquisition

This research used a custom multispectral data acquisition system for phenotypic re-
search integrated at SmartSense iHub, Agriculture Victoria. The system consists of a MicaS-
ense RedEdge-M multispectral camera (MicaSense, Seattle, WA, USA) integrated with a DJI
Matrice 100 quadcopter. The complementary metal-oxide-semiconductor (CMOS) sensor
of the camera has a size of 4.8 mm × 3.6 mm and captures images with 1,280 × 960 pixels.
The multispectral sensor records the position values, i.e., latitude, longitude and altitude
onto the camera tags by using the included 3DR uBlox global positioning system (GPS)
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module. Additionally, the multispectral camera also logs dynamic changes in incident
irradiance levels by using a downwelling light sensor (DLS). A radiometric calibration
panel with known radiometric coefficients for individual multispectral bands was used.
Radiometric calibration measurements were recorded with the multispectral sensor before
individual flight missions for image correction.

Meticulous flight planning is important for proper UAV aerial data acquisition cam-
paign, which is critical in high-throughput phenotyping. The UAV trajectory was designed
using Ground Station Pro (DJI, Shenzhen, China) and the multispectral sensor was set
to trigger the acquisition of images at a specified forward and side overlap of 85%. The
UAV multispectral data were obtained on different DAS to identify the time of imaging
suitable for the estimation of seedling emergence with higher accuracy. Additionally, the
UAV-multispectral system was operated in different flying height configurations to test the
effect of different ground sampling distances GSDs useful for identifying the optimal flying
height required for emergence estimation. The details for UAV flights and imagery over the
experimental site are described in Table 1. The ground control points (GCPs) were installed
and the corresponding position was recorded using a multi-band global navigation satellite
system (GNSS) based real-time kinetic (RTK) positioning receiver (Reach RS2, Emlid Ltd.,
Hong Kong) with centimeter level precision, i.e., 2 cm in planimetry and 3 cm in altimetry.

Table 1. Details of UAV flight parameters.

Area
(m2)

Flying
Height

(m)

Days After Sowing (Zadock Scale) * Forward
and Side
Overlap

(%)

Time of
Flight
(min)

GSD (cm)10
(Z11)

15
(Z12)

20
(Z13)

30
(Z14)

40
(Z15)

2000 10 m X X X X X 85 6 0.69
2000 30 m X X X X X 85 2 2.08
2000 60 m X X X X X 85 1.5 4.17

* Plant growth stage is defined according to Zadocks scale [49].

2.3. Image Processing

The methodology of aerial image processing is included in the overall workflow,
shown in Figure 2. The images acquired from UAV aerial mission were processed using a
photogrammetry software, Pix4D Mapper (Pix4D SA, Lausanne, Switzerland) [50]. Digital
corrections were applied to resolve optical (filters and lenses) aberrations and vignetting
effects to maintain consistent spectral response [51,52]. The software used the Structure
from Motion (SfM) technique, which is well-suited for processing UAV data to generate
reflectance orthomosaic layers. The mosaicked layers were then exported to individual
(.tif) files with a spatial resolution as defined in Table 1. The GCPs’ locations collected
during the aerial survey were used to geometrically register the orthomosaic datasets. The
generated orthomosaic layers were referenced in the Universal Transverse Mercator (UTM)
coordinate system with World Geodetic System 1984 (WGS84) as the geodetic datum.

2.4. Vegetation Indices

The MicaSense RedEdge multispectral camera records reflectance in blue (475 nm),
green (560 nm), red (668 nm), red edge (717 nm) and near-infrared (840 nm) bands. These
surface reflectance values were used to compute a comprehensive list of 28 VIs that are
commonly used in agriculture plant phenotyping research (Supplementary Table S2). The
list includes VIs which are effective in enhancing the contribution of spectral properties
of vegetation to correct for confounding factors such as reflectance of soil background in
a crop, particularly during the early stages of the growth cycle [53]. VIs involving the
mathematical transformation of two or more bands are inherently immune to operator bias
or assumptions regarding land cover class, soil type or climatic conditions [45] and are,
therefore, promising for phenotyping of crop emergence. For each row-plot, the VI layers
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were summarized as the average (VImean) and summation (VIsum) of the entire pixel values
in the row-plot.
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Figure 2. Workflow for image processing and analysis. (a) Visual insights of intermediate steps
in the workflow showing reflectance, OSAVI image, segmented objects and extracted polygons
and morphological features; (b) overall workflow adopted in this study covering data acquisition,
orthomosaicking, vegetation index, morphological features, summarization of the image layers into
predictor variables and used machine learning regressors; (c) model generation and validation details
covering both cross-validation and dedicated testing.

2.5. Vegetation Morphological Features

The key to generating effective morphological features (MFs) for emergence estimation
is to separate the emerged plant objects from the background soil. VIs are widely used in
identifying crop area [54]. In this study, optimized soil adjusted vegetation index (OSAVI)
was selected to suppress background soil reflectance to enhance the detection of vegetation
(Figure 2a). The Otsu thresholding method was used to separate the emerged wheat
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seedlings from soil background because of its advantages of quick operation [55]. The
field scene was relatively simple, with brown bare soil and green wheat plants. Color-
based Otsu thresholding was previously found to achieve an optimal threshold to sperate
background and target with an overall classification accuracy of 99% for the same scene [45].
A watershed delineation algorithm was used to separate image regions into distinct objects
by assigning pixels into marked objects [56]. A total of 12 MFs related to the geometrical
properties of the delineated image objects were computed (Supplementary Table S3).
Although it is difficult to separate wheat plants using the segmentation techniques because
of the complex overlap of closely placed seedling canopies, the number of seedlings
contained in each object still influence its MFs. For instance, an object with more wheat
seedlings contains more pixels than an object with a single wheat seedling. Such differences
produce key variations in MFs between the two objects. This was the basis of using MFs
to estimate wheat seedling emergence count in addition to VIs. All the MF variables
(Supplementary Table S3) were summarized at the row-plot level.

2.6. Emergence Modelling Using Machine Learning Regression

Machine learning regression (MLR) based analysis was used to estimate emergence
counts of wheat seedlings. MLR analysis or non-parametric nonlinear regression algorithms
combines one or more predictor variables (or input parameter) to establish a significant
relationship with a certain response variable (or output parameter), i.e., seedling emer-
gence estimates over a training database. The underlying kernel method provides the
flexibility in transforming the original data into a higher dimensional space. The kernel
method also provides a dependable theoretical framework and involves few tunable hyper
parameters to develop a flexible nonlinear mapping between the predictor and response
variable, which is useful in the case of limited training data [57]. Although these methods
are widely recognized, some questions on model strength, dependency on training and
testing data distribution still remain open. In this study, three supervised MLR models
including regression tree (RT) [58], support vector regression (SVR) [59] and Gaussian
process regression (GPR) [60] were evaluated to identify the best performing model in
estimating wheat seedling emergence.

2.6.1. Regression Trees (RT)

RT is a decision tree based algorithm applied in predictive modeling used in statistics,
data mining and machine learning [61]. The models are obtained by recursively partitioning
the data space and fitting a simple prediction model within each partition, which helps
in dealing with data heterogeneity. It is an ensemble learning method based on multiple
decision trees that are widely popular in remote sensing studies [62–64]. The method
combines bagging and the random selection of features. The data are partitioned into
homogeneous subsets called the number of trees (n-trees) and each tree is developed to
its maximum extent by selecting random samples and variables from the training dataset.
The number of variables (x) and the number of n-trees are used to split the nodes (mtry)
by using the best split variable among randomly selected variables and the optimization
of both parameters (x and n-trees) is performed in the process [65]. The RT algorithm
measures the error for each variable by calculating the mean square error difference
between out of bag data against the data used to grow the tree. Unlike decision tree
models, RT is resistant to over fitting without losing information and always results in the
convergence of generalization error. As the rule of splitting using randomization improves
the performance [66], therefore, only three parameters, i.e., ntree, mtry and node size
requires optimization using k-fold cross validation to achieve good results [67].

2.6.2. Support Vector Regression (SVR)

SVR is an efficient machine learning algorithm for modeling; it is developed and
introduced for versatile-type structural identification [68]. It is widely used for fitting an
optimized hyperplane to a set of input features to develop a linear dependency between
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n-dimensional input variables and 1-dimesional response variable, which can be used
for classification, regression and outlier detection [51]. The algorithm achieves optimized
fitting of the hyperplane for SVR formulation by minimizing ε-insensitive loss function. The
training samples are mapped into a higher dimensional feature space that is non-linearly
related with the original feature space using kernel functions [69], which enables data
distribution to be fitted with a linear model [70–72].

2.6.3. Gaussian Process Regression (GPR)

GPR is a nonparametric kernel-based Bayesian probabilistic approach for solving
regression and classification problems. It is a stochastic process that results in good perfor-
mance in terms of the development of a calibration model for both linear and non-linear
datasets with the ability to provide uncertainty measurements on the predictions. The
Bayesian model, GPR, does not require any intermediate model parameters. The algorith-
mic execution is somewhat equivalent to neural networks (NN) without being a black-box.
Additionally, it alleviates some shortcomings of handling few sample points and feature
and sample rankings are based on predictive mean and variance. Another advantage
with GPR is the availability of modern kernel functions; therefore, hyperparameters can
be adapted efficiently by boosting the marginal likelihood in the training set [73]. Al-
though the approach poses large computational complexity [60,74], this could be easily
addressed with modern computational resource or by summarizing layers into a set of
input parameters, as is adopted in this study.

2.6.4. Hyperparameter Optimization, Accuracy Assessment and Evaluation

In order to evaluate the repeatability of the developed method, the prediction accuracy
for the MLR models (RT, SVR and GPR) was evaluated by implementing a k-fold CV, with
k = 5, where 80% of the data was included in the training population (i.e., for 320 plots)
and 20% of the remaining data (i.e., for 80 plots) was used as a dedicated testing set;
the data partitioning was performed randomly (Figure 2c). A Bayesian hyperparameter
optimization [75] approach was used with all the MLR models. The objective of Bayesian
optimization and optimization in general is to find a point (xi) in the bounded domain
for x such that it minimizes the objective function f (x). In the context of hyperparameter
tuning, a point (xi) is a set of hyperparameter values and the objective function is the loss
function or the mean squared error (MSE). In short, the algorithm selects the appropriate
kernel function from the pool, box constraints, sets the kernel scale, sigma (σ), epsilon
(ε) and standardizes the data for suitable MLR methods during the k-fold training and
cross-validation.

The cross-validation consisted of five iterations (five-folds) where the dataset was
split into five groups and a different testing set was used for each iteration (Figure 2c).
Instant accuracy was calculated where the coefficient of determination (R2), root mean
square error (RMSE) and mean absolute error (MAE) for each testing set was obtained
(Equations (1), (2) and (3), respectively) and an average of five iterations was reported.
For the best performing MLR model, a dedicated validation was adopted on the 20%
testing data (exclusive to any training data) with the calculation of R2, RMSE and MAE.
Additionally, residuals between the estimates and true emergence counts were measured
to generate plots of histogram of residuals and the normal probability of residuals:

R2 =
∑i(ŷi − y)
∑i(yi − y)

(1)

RMSE =

√
∑i(ŷi − yi)

2

N
(2)

MAE =
∑i|ŷi − yi|

N
(3)
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where yi is the true value for i-th observation, y is the mean of true value of observations,
ŷi is the predicted value for i-th observation and N is the number of observations.

Meanwhile, the total seedling emergence counts at the plot level was calculated using
the sum of corresponding row-plots emergence counts. The estimated count sum was
rounded to integers.

3. Results
3.1. Evaluation of Machine Learning Regression Techniques and Model Development

Rigorous experimentation was caried out to develop and investigate a suitable method
for estimating the emergence of wheat seedlings by using multispectral imaging. Detecting
individual seedling in moderate resolution multispectral imaging is challenging due to
complexity arising from closely emerged seedlings with overlapping leaves. Therefore,
multimodal explanatory variables such as VIs and MFs derived from aerially acquired
multispectral images were used to develop a MLR based emergence estimation model.
A comprehensive list of 28 VIs (Supplementary Table S2) and 12 MFs (Supplementary
Table S3) was used to produce a reliable and robust model. Furthermore, VIs were categori-
cally summarized as VImean and VIsum to further increase statistical dimensionality. The
rationale for this was to investigate the contribution of different summarizations, in partic-
ular, VIsum was identified to be potentially significant for quantifying the total emergence
in each field plot. Although it is difficult to separate wheat plants using the segmentation
techniques because of the complex overlap of closely placed seedling canopies, the number
of seedlings contained in each object still influence its MFs. For instance, an object with
more wheat seedlings contains more pixels than an object with a single wheat seedling.
Such differences produce the key variations in MFs between the two objects. This was the
basis of using MFs to estimate wheat seedling emergence count in addition to VIs. The
derived 28 VImean, 28 VIsum and 12 MFs were combined into a total set of 68 variables for
each of the 400 row-plots and used in MLR models.

Three MLR models RT, SVR and GPR were evaluated in the process to identify the
best model (Figure 3). A k-fold (k = 5) cross-validation strategy was used wherein 80% of
the available number of observations were used in model training, i.e., the training data
were sub-divided into 5-folds (Figure 2c). Each of the iteration data from four folds was
used in model training and the data from the remaining one fold were used in testing. With
k = 5, the iterations were repeated five times such that a different fold is always selected as
a testing set each time. The RT based modelling achieved the lowest accuracy in predicting
emergence counts with R2 = 0.66, the SVR based modelling achieved a reasonable accuracy
with R2 = 0.76. The GPR based modelling outperformed both RT and SVR with R2 = 0.81,
RMSE = 4.97 and MAE = 3.90. Therefore, GPR was selected as the optimal regressor for
further testing and analysis in this study.
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were applied on the training dataset. True counts are manually measured seedling emergences and
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3.2. Estimation of Wheat Seedling Emergence

The best performing estimation model was GPR. GPR was tested on 20% of the
exclusive data, which was originally kept aside from model development. This provides a
basis to undertake dedicated testing using the exclusive set of data, which is important to
determine the repeatability of the developed GPR model on new data potentially collected
from different environments. The selected trained model employed a Matern5/2 Gaussian
kernel [60] with a constant basis function and sigma (σ) of 4.613. As the input predictors
contained widely different scales variable, scaling or normalization was applied to improve
the model fitting. The results of dedicated validation on exclusive data portion demonstrate
agreement with the k-fold cross-validation, with R2 = 0.86, RMSE = 4.07 and MAE = 3.21
(Figure 4a). The histogram of the residual plot was used to verify the variance of residual
error around zero, i.e., no error (Figure 4b). The histogram shows that the residuals are
slightly skewed towards the right (Figure 4b). The histogram of the residual is a frequency
plot obtained by placing the error residuals in regularly spaced cells and plotting each cell
frequency versus the center of the cell. In this case, the bin width for display was set to three.
Furthermore, the normal probability plot of the residuals was used to determine whether it
is reasonable to assume that the error terms are normally distributed for the GPR model
(Figure 4c). Small departures from the characteristic straight line in the normal probability
plot are common, with a coherent unimodal distribution of residuals. The breaks near the
ends of this graph are also indications of minor abnormalities in the residual distribution,
which in this case is due to slight non-uniform distribution of emergence count observations
more towards the center compared to the edges. However, a little variability in residuals
was possible due to genotypic variability in the seedling estimation process.
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Figure 4. Dedicated validation of Gaussian processed regression (GPR) model results: (a) GPR model
relationship, (b) Histogram of residuals plot and (c) Normal probability of residuals. True counts are
manually measured seedling emergences and predicted counts use a given model.

3.3. Effect of Time of Aerial Survey and Flying Altitude on Performance

The timing of aerial imaging is critical in acquiring suitable data for emergence
modelling using image processing and MLR based methods. The effect of time of aerial
imaging on the accuracy of the GPR model in predicting emergence counts is shown in
Figure 5a. The accuracy term is represented with R2 in k-fold cross-validation testing
during model development. The model accuracy at 10 DAS was critically low, which
increased at 15 and peaked at 20 DAS, and then started reducing with further growth of
plants from 30 DAS onwards (Figure 5a). The best time point of imaging with the highest
R2 was at 20 DAS, which was selected in this study for all other analysis. A higher number
of leaves corresponding to these later vegetative stages in wheat makes more overlap with
adjacent plants, resulting in the decrease in seedling emergence estimation accuracy.
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3.4. Genotypic Screening for Wheat Seedling Emergence 

Figure 5. Cross-validation accuracy in GPR model development in terms of the coefficient of
determination (R2). (a) R2 at different timing of aerial survey; (b) flying altitude of UAV. Note: the
x-axis of bar graph plots is not linear.

The altitude of aerial surveying governs the resolution of captured images, which
tends to influence the modelling approach and accuracy in estimation of emergence. A
comparison of the R2 in the k-fold cross-validation testing support that the performance
of GPR based estimator decreases with flying altitude, i.e., finer GSD (Figure 5b). The
R2 = 0.81 was the highest at a flying height of 10 m and produced a resolution of 0.69 cm
GSD, which slightly decreased at 30 m to R2 = 0.72 and substantially reduced to R2 = 0.43 at
60 m with a resolution of 4.17 cm. The accuracy of the regression model was consistently
penalized when the spatial resolution reduced.

3.4. Genotypic Screening for Wheat Seedling Emergence

In plant breeding research, genotypic screening and the selection of better performing
genotypes for growth and yield are key objectives. Where seedling emergence estimates in
field plots comprise several genotypes, it is important to have similar or known numbers of
plant density in order to obtain yield comparisons of genotypes. The aim of this study was
to develop an accurate, non-invasive and UAV-multispectral based analytical framework
to estimate variation amongst wheat genotypes. The seedling emergence counts across
20 genotypes showed a variation between 250 and 475 plants per field plot (Figure 6a). The
error bar plot also represents the uncertainty of variation within each genotype among four
replications (Figure 6). There are substantial variations in the spread of seedling emergence
values around the mean for a few wheat genotypes, including Bolac, Carnamah, Derrimut,
EGA Gregory, Ellison, Gladius, Peake and Sunzell; this could be due to variation in the
germination rate governed by genotypic performance and seed quality, as well as localized
soil moisture characteristics in field conditions. Nevertheless, the predicted values from the
proposed UAV-based sensing workflow correlated with ground truth observed values at
the plot level (Figure 4a). Overall, the genotype Ellison achieved the highest and Crusader
achieved the lowest average emergence.

The genotypes with better seedling emergence rate have the potential of faster crop
establishment with higher biomass at early growth stages. The harvested biomass mea-
sured at an early vegetative stage of 50 DAS showed an R2 of 0.56 with seedling emergence
(Figure 6b). On the other hand, the harvested biomass measured at maturity produced a
low R2 of 0.37 with seedling emergence (Figure 6c).
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Figure 6. Seedling emergence profile of wheat genotypes and its effects on biomass in terms of the
coefficient of determination (R2). (a) Variation of emergence between different genotypes of wheat
as estimated from the method. Each of the floating column summarizes the variability among four
replications; maxima and minima are represented by the top and bottom whiskers, respectively, 25th
and 75th quartile represented by the second lower and second upper whiskers, respectively, and
the average is represented by the middle whisker; (b) R2 of seedling emergence with the harvested
biomass at vegetative growth stage of 50 DAS shown using a linear regression plot; (c) R2 of seedling
emergence on harvested biomass at 50 DAS and maturity.

4. Discussion

High-throughput plant phenotyping enables faster measurement of various crop
traits during the development. Among these traits, the timely and accurate estimations
of emergence are critical for farmers to make informed field management decisions and
plant scientists for genotypic and treatment comparisons [4]. Additionally, seedling emer-
gence estimate is useful for understanding the impact of soil and environment on crop
emergence [5,6]. Therefore, emergence is an important agronomic parameter for devel-
oping improved crop varieties in plant breeding. Manual seedling emergence counting
under field conditions is tedious and time-consuming [4,7,9]. Therefore, in-field emergence
counting is often operationally impractical for large breeding trials. This is conducted
by visually estimating or scoring the number of seedling emergence, which is quicker
but less accurate. Imaging based methods on field system are operationally practical and
suitable for larger field trials. Employing UAV-based multispectral imaging in seedling
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emergence counting is appealing, as the technology is being widely used in plant breeding
research and precision agriculture. Multispectral sensor systems are relatively lightweight
compared to high-resolution RGB imaging systems, which otherwise necessitates a much
larger UAV with heavier payload lifting capabilities and poses operational constraints.

The estimation of seedling emergence using UAV multispectral imaging system in
field conditions is challenging, especially when a wide range of genotypes are present
with varying emergence rates and densities. Complexities arising due to the emergence
of closely placed seeds resulting in overlapping leaves and this poses further problems in
separating seedlings. Furthermore, the limited resolution of a multispectral imaging system
renders it very difficult to distinguish individual wheat seedlings. Therefore, previous
studies have recommended that the accurate extraction of seedlings should combine color
indices and mathematical morphology operation [11]. In this study, an MLR analysis on a
multi-variable dataset including VImean, VIsum and MFs was a suitable, robust and compu-
tationally efficient method for seedling emergence counting in wheat. A comprehensive
number of 28 VIs was used to implement a robust MLR model for emergence estimation
(Supplementary Table S2) to avoid omitted variable bias, which occurs when a model leaves
out confounding variables [76]. Additionally, two sets of summarized VI variables—VImean
and VIsum—were used, as both add dimensional modalities which assist in improving the
estimation accuracy of the MLR models. The VIsum variables, in particular representing
the algebraic sum of the VI pixel values within each plot, provided a conceptual basis for
linearly predicting the emergence counts. At the early emergence stage with the seedlings
being significantly small, the value of VIs for each pixel is typically low corresponding to
distinct seedlings where a linear addition is more explanatory for counting seedlings. The
plot variables summarized as VIsum, such as NDVIsum, have been effective in investigating
the emergence of wheat seedlings [34]. The complementary information provided by the
MFs against VIs is essential for a reliable assessment of emergence counts. Previous studies
have also shown MF assisted counts suitable in wheat seedlings, while including more MFs
and training data in the future is suggested for improving the estimation performance [29].
In this line, this study aimed to use a set of 12 MFs for counting seedlings emergence
for 20 wheat genotypes with a large total of 400 individual row-plot measurements in
model training and evaluation. Furthermore, the accuracy of MFs could be subjected to
low imaging sensor resolution affecting the extraction of fine plant features. In order to
compensate, the UAV was operated at multiple altitudes, with the flight at the lowest
altitude of 10 m being found most suitable.

The MLR technique used here was trained repeatedly by using the five-fold cross-
validation. This provides the best performances because it considers the genotypic variabil-
ity influencing the plant structure as well as the possible influence of the environmental
conditions, especially in rain and wind. The method was tested on a dedicated dataset to
validate the performance of the selected GPR based machine learning model. This ensures
promising deployment in other field trials. However, for operational deployment of the
method, it is better to re-calibrate the model over the new experimental site. With the
passage of time, further training datasets would provide sufficient training encompassing
all the possible situations and further variability of genotypes; this is deemed as the future
scope of this study. Nevertheless, existing studies have demonstrated continued interest in
employing modelling for seedling emergence estimation [2,11,14,33,34]. The method and
selected GPR model could be potentially applied to cereal crop species.

Seedling growth is a dynamic process [34,77]. Identifying the suitable time of aerial
imaging is an essential prerequisite in image processing for computing spectral VIs and
structural MFs have an explanatory association with seedling emergence counts. Compared
to a few wheat seedling estimation studies based on single dates of imaging [14,78], this
study used the images captured at five time points during the early stages of plant growth.
The results indicate that there were significant differences among the estimation models at
different time-points with the development of complex leaf architectures. The plant growth
stage at the time of imaging is critical for obtaining an accurate estimation of seedling
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numbers [2,14]. Other methods involving direct seedling recognition have also reported a
strong influence of growth stages in revealing the relationship between the count and the
number of leaves per seedling and the eventual estimation of seedling stand count [1,77].

By examining the modelling results, data collected at 20 DAS (Z13) were optimal
imaging timepoints whereas earlier and later time points were less suitable. This is justified
since wheat seedling emergence differs between genotypes and, in the field experiment,
there were certain genotypes which had not emerged fully at earlier timepoints, i.e., at
10 to 15 DAS (Z11 to Z12). Additionally, wheat plants are too small at early emergence
stages making it difficult to measure quantifiable VIs and MFs. On the other hand, at later
vegetative stages of 30 and 40 DAS (Z14 and Z15), canopies of the wheat plant started to
significantly overlap, which lowers the effective VI value sensed by the multispectral sensor
and prevents the extraction of MFs since plants tend to remain in a single large cluster.
These results are in line with previous findings, where R2 estimation accuracy reached
a peak at a certain timepoint and declined with an increase in density or plant growth
in wheat [11]. The timing of seed germination could be delayed due to environmental
factors such as soil moisture status and temperature. Therefore, the germination of seedling
needs to be considered under the influence of the environmental condition affecting seed
germination. Fundamentally, a timepoint with plots achieving maximum germination
and wheat seedlings canopies that are not significantly overlapping each other is ideal for
multispectral imaging.

The ground resolution obtained by using UAV-multispectral imaging decreased with
flying height. A lower resolution reduced the accuracy in estimating seedling emergence.
A flying height of 10 m tested in this study was most suitable compared to flying heights
of 30 m and 60 m. This observation is consistent with previous studies advising acquiring
data from a lower altitude to improve image quality [79]. However, a lower imaging
height is deemed to invariably increase the flight time. Furthermore, small and irregular
spacing makes wheat seedlings clustered in low spatial resolutions [3]. As a result, it is
hard to detect and estimate wheat seedling counts. A low spatial resolution increases
GSD, meaning that a larger area on the ground is sensed per unit pixel. Thus, it becomes
difficult to precisely delineate the transitional line between the green wheat seedling and
grey background soil due to mixed pixels. Shaky leaves due to wind during the time of
imaging perhaps add to the mixed pixel noise in multispectral images, which also reduce
delineation of seedlings. Additionally, the existence of in-field weed should be given
attention as this may potentially add noise in the computed VIs and confuse the crop
segmentation operator that is relied on for generating MFs. The weeds were well-managed
in this study with the timely application of herbicides and manual control. Incorporating
a weed detection algorithm could potentially apply as a backup solution to mask weed
cover before extracting VIs or MFs.

5. Conclusions

A high-throughput phenotyping method to estimate seedling emergence is needed to
simplify the otherwise tedious and time-consuming in-field manual counting. The main
contribution of this study is to develop a simple procedure to estimate wheat seedling
emergence that is important for farmers and plant scientists. The foundation of the method
relies on combining spectral and morphological information from multispectral imaging
by using UAVs. An MLR based estimator was used to predict the number of seedling
emergence at early growth stages of crop. A variety of spectral and morphological pa-
rameters were generated from the UAV data to add to dimensional modalities and to
best examine the efficacy of tested MLR approaches. Additionally, the research design
incorporates investigation of multiple attributes of a UAV mission and analytics, including
identifying an optimal flying height and time of imaging to suit wheat seedling emergence.
The approach was tested on diverse wheat genotypes with variation in seedling emergence
under field conditions. Multispectral imagery with the application of GPR model analytics
was identified as a potential alternative to in-field manual emergence counting in wheat. In
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addition, the desirable options for optimal flight altitude and suitable wheat growth stage
were identified, with higher resolution or low flying height providing benefits in estimating
wheat germination counts. Early growth stage where germination was complete in all
genotypes, but minimal canopy overlap was present was also beneficial. The method is
simple to adopt for large research trials and farmers field in wheat and it can be deployed
in other crop species.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/rs13152918/s1, Table S1: Wheat genotypes used in the field trial, Table S2: List of vegetation
indices relating to physiology and canopy structure used in this study, Table S3: List of vegetation
morphological features used in this study.
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