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Abstract: In this paper, we discuss hybrid decision support to monitor atrial fibrillation for stroke
prevention. Hybrid decision support takes the form of human experts and machine algorithms work-
ing cooperatively on a diagnosis. The link to stroke prevention comes from the fact that patients with
Atrial Fibrillation (AF) have a fivefold increased stroke risk. Early diagnosis, which leads to adequate
AF treatment, can decrease the stroke risk by 66% and thereby prevent stroke. The monitoring service
is based on Heart Rate (HR) measurements. The resulting signals are communicated and stored with
Internet of Things (IoT) technology. A Deep Learning (DL) algorithm automatically estimates the AF
probability. Based on this technology, we can offer four distinct services to healthcare providers:
(1) universal access to patient data; (2) automated AF detection and alarm; (3) physician support;
and (4) feedback channels. These four services create an environment where physicians can work
symbiotically with machine algorithms to establish and communicate a high quality AF diagnosis.

Keywords: human and AI collaboration; medical diagnosis support; deep learning; symbiotic
analysis process; human controlled machine work

1. Introduction

Cerebrovascular accidents, commonly known as strokes, are the second most deadly
disease and a leading cause of disability [1]. Ischemic stroke is the most common type
of stroke, which accounts for ≈80% of all strokes [2]. This type of stroke occurs when
the bloodstream, to any part of the brain, is blocked by blood clots [3]. When this occurs,
brain tissue might get damaged, because the oxygen supply is interrupted. That damage
can result in death or disability. Around 75% of all strokes happen in people aged 65 years
or older. A meta study from 2009 shows that, within one year, 20,000 U.K. citizens, aged
45 years and below, had a stroke [4]. Worldwide, stroke causes around 5.7 million deaths
annually, while in the U.K., around 150,000 people suffer a stroke per year, out of which
53,000 people die [5]. The incidence rate of stroke in males is about 9% of the overall
deaths in the U.K., and the same measure for women is around 13% [6]. The Framingham
Heart Study showed a connection between Atrial Fibrillation (AF) and ischemic stroke [7].
To be specific, the severity of strokes, in people with AF, is higher, and a stroke has a
worse outcome for people with AF when compared to people without AF. AF increases
the probability of having a stroke by fivefold, when compared to subjects without AF [7].
The link between AF and stroke is significant, because AF is the most common heart
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rhythm (arrhythmia) disorder, which affects about 1% of the population [8]. The prevalence
of AF increases with age [9,10]. NHS England estimates that only about 79% of all AF
cases are diagnosed [11]. One reason for this low detection rate comes from the fact that
AF is diagnosed based on heart rhythm irregularities, and these irregularities might be
intermittent (paroxysmal) [12], while some forms of AF are even asymptomatic [13]. If an
observation coincides with a symptom-free period, then the disease cannot be diagnosed.
Hence, a reliable AF diagnosis requires long-term monitoring of the human heart [14,15].

Long-term AF monitoring can be done by measuring the electrical activity of the hu-
man heart via a non-invasive Electrocardiogram (ECG). So-called Holter monitors are used
for this task, and the resulting ECG measurements are most often used for AF detection [16].
However, the measurement setup is complex because electrical signals are susceptible to
noise. Twelve electrodes are routinely deployed by specialized technicians during ECG
measurements [17]. Furthermore, ECG signals have a high data rate, which makes them
difficult and expensive to distribute and process in real time. Using Heart Rate (HR),
instead of ECG signals, can help to overcome these difficulties [18]. As such, HR signals
are composed of Beat-to-Beat (RR) intervals. Detecting only the R peak makes the mea-
surement setup less susceptible to noise and hence less complex. Furthermore, a heartbeat
occurs about once every second; hence, an HR signal communicates around one sample
per second. Compared to the 256 samples a second, used to represent ECG signals, HR
signals have a significantly lower data rate. Therefore, HR signals can be communicated
easily and inexpensively via mobile networks. There is a large body of literature that
establishes that HR signals can be used for AF detection [14,19–22]. However, the inter-
pretation of the noise-like HR signals is difficult. Even physicians struggle to detect AF
through visual inspection of the HR waveform. Furthermore, manual HR interpretation
results in inter- and intra-operator variability, which deteriorates the diagnosis quality.
Hence, computer-based diagnosis support systems are compulsory for long-term cardiac
monitoring [23]. Currently, the most promising approach for manual interpretation of HR
signals is to extract diagnostically relevant information, in the form of digital bio-markers,
from the waveform. Even with the support of digital bio-markers, physicians can only
analyse short HR traces, and the analysis can take longer than the heart takes to produce
the trace. That makes real-time assessment impossible in a practical setting.

In this paper, we propose hybrid decision support to monitor atrial fibrillation for
stroke prevention. The monitoring service offers universal access to patient HR data, auto-
mated AF detection and alarm, physician support and a feedback channel to the patients.
The service duration is not restricted. That means our service supports an arbitrarily
long observation duration, which might help to detect paroxysmal AF cases. The value
proposition for the healthcare providers is twofold. From the medical perspective, a long
observation duration has the potential to establish a higher AF detection rate in patients
who use the service. Furthermore, the unrestricted observation duration allows a physician
to monitor the AF treatment’s efficacy indefinitely. The second value proposition comes
from hybrid decision support, which leads to efficiency in terms of both time and cost.
The reading physician gets involved only if a Deep Learning (DL) algorithm detected a se-
quence of AF beats in the HR data; at all other times, human intervention is not required.
Hence, the AF detection service reduces the time a physician spends on routine screening
tasks. Once AF is detected, the service provides information extraction tools to analyse
critical sections of the HR trace effectively. The physician can combine the extracted infor-
mation with other information sources, such as patient records and personal interaction
with the patient, to reach a safe and reliable diagnosis. This diagnosis can be communicated
via a feedback channel to the patient. The combination of continuous machine analysis
and human oversight creates a cost-effective system for hybrid decision support. Execut-
ing the AF detection algorithm for real-time monitoring loads a current Central Process
Unit (CPU) core by about 50%. This translates into low processing cost if the algorithm
runs on a cloud server. Furthermore, the low data rate implies that the wireless heart
rate sensors have a low energy consumption, which keeps both the size and cost down.
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The value propositions focus on the healthcare provider. The patient benefits from the AF
detection service through patient-led signal acquisition, unobtrusive HR measurement
and peace of mind through real-time HR monitoring and diagnosis.

To support our value propositions, we structure the remainder of the paper as fol-
lows. The next section presents the design steps that led to the prototype implementation.
Specific emphasis is placed on the Internet of Things (IoT) and advanced Artificial Intelli-
gence (AI) techniques. The Results Section details the service prototype implementation.
The Discussion Section provides a comparison between the proposed service and existing
solutions on the market. The Conclusions Section summarizes our method and highlights
the major points of the discussion.

2. Materials and Methods

We used service design principles to analyse and structure the AF detection prob-
lem [24,25]. First, we considered the needs of all stakeholders affected by the proposed
service [26]. This understanding shapes the requirements for the AF detection service.
The next step is to translate the stakeholders’ requirements to system specification for
a successful implementation. The validity of this specification was tested with a prototype
implementation, which incorporated hybrid decision support. The following sections
provide further details on the individual steps that led to the AF detection service creation.

2.1. Need Definition

To establish a need definition, it is necessary to introduce the link between AF detection
and stroke prevention in more detail. A stroke occurs when there is a lack of oxygen
that causes brain tissue to die suddenly [27]. For ischemic stroke, the lack of oxygen is
due to a blockage of the arteries that supply oxygen-rich blood to the brain. In most
cases, that blockage is caused by plaque debris in the bloodstream. The heart pumps
blood, and indeed the debris, towards the brain tissue through arteries with a decreasing
diameter. At some point, the debris will block the artery, and that will prevent oxygen
supply to the connected brain tissue. The occurrence of plaque debris is linked to the fluid
dynamics of the blood flow, which is governed by the beat-to-beat variability of the human
heart. The Framingham Heart Study showed that rhythm irregularities, which change
the heartbeat variability, increase the stroke risk [28]. In particular, the study found that
a rhythm irregularity (arrhythmia) known as AF increases the stroke risk fivefold.

With that background, the first service design step was to identify the key stakehold-
ers and their needs. We found that there are four key stakeholders in the AF detection
service. The sole reason for creating the service is the fact that AF exists in patients. Hence,
this group has the primary need when it comes to AF detection for stroke prevention.
Healthcare providers aim to address that need by creating an appropriate infrastructure.
That infrastructure requires investment based on the cost and the expected benefits. From
an abstract point of view, physicians are part of the infrastructure. Their input is crucial
when it comes to establishing the benefits of a proposed service. Hence, innovators who
create AF detection services for stroke prevention must address the needs of physicians to
establish the benefits of their method. However, the effort spent in addressing these needs
must be balanced with the required profitability for a practical problem solution. Table 1
details the need definition results.
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Table 1. Stakeholders’ AF detection service with hybrid decision support.

Stakeholders Needs and Wants

Patients Reduced stroke risk, less clinical visits, mobility, safety

Physicians Improved clinical outcomes, high quality diagnosis, safety,
reduced workload

Healthcare providers High efficiency and quality, improved productivity and
outcomes, cost effectiveness

Stroke risk monitoring
service innovators Profitability, improved outcome

2.2. Requirements Analysis

Based on the need definition, we captured the required functionality and the associated
value proposition. Table 2 summarizes both the requirements and value propositions.
Cost efficiency and decision support quality are the two most important requirements,
because they determine if the proposed service can be used to improve and extend existing
infrastructure. All subsequent requirements are functional requirements that answer
the question: What service do we build? An alarm message should only be sent when
AF is detected. This requirement reflects the information refinement and management
nature of the service. An alarm message has a high information content, but a low data
rate. This functional specification addresses the requirement for reducing the physician
workload. To be specific, the work to establish a suspicion that AF is present has shifted
from humans to machines. The AF detection service is a diagnosis support tool, which
means all diagnostic decisions lie with the physician. To support that decision, the AF
detection service must provide evidence that leads to the suspicion that there is a disease
present. This can help to ensure both the functional safety and quality of the diagnosis. It
should be possible to provide evidence even if there is no alarm message. This can help
during root cause analysis and to improve the service. For example, the proposed service
failed to detect AF in a specific patient. Having the ability to retrieve evidence in the form
of raw signals might help to establish what caused that fault. That root cause analysis
result is the first step to improve the algorithms that provide hybrid decision support.
The proposed service should also provide a feedback channel that allows the service
provider to communicate with the patient. That channel can be used to disseminate
diagnosis results and send to messages that help with patient compliance.

Table 2. Service requirements and their associated value propositions.

Service Requirement Value Proposition

A Cost efficient and decision support quality More infrastructure to help a larger number of patients

B Raise an alarm when AF is detected Establishing and communicating a suspicion that AF is
present in real time

C Present the evidence for raising the alarm Providing an overview of the estimated AF probability;
this can be used to review the DL results that established
a suspicion and triggered an alarm message

D Allow selecting a time interval of interest; sub-
sequently, the corresponding HR trace can
be analysed

Download the HR trace that corresponds to the selected
time interval of interest, and calculate features from that
HR trace

E Provide a feedback channel to the patient Act on the diagnosis by providing appropriate and timely
feedback to the patient; act on meta data, such as data
stream interruptions, to ensure patient compliance
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To get a better understanding of the functional requirements of the proposed service,
we visualized the service requirements as a sequence of interrelated actions; see Figure 1.
These actions were orchestrated along a timeline to create a relatable structure that orders
the individual events. The timeline starts with the healthcare provider, represented by
a nurse, registering a patient with the AF detection service. Once registered, the patient
captures heart rate measurements, which are relayed via a smartphone to a cloud server [29].
In the cloud server, the data are stored and analysed by a DL model [30]. When the analysis
results indicate that symptoms of AF were found in the HR data, the cloud logic will
send an alarm message to the assigned physician. That message is sent within 5 min of
the AF event. In response to the alarm message, the physician will review the evidence
contained in the HR trace and fuse this information with further knowledge and experience
concerning the patient, in order to reach a diagnosis. If the diagnosis is negative, i.e., the
physician decides the patient does not have AF, monitoring for AF continues. Once AF
is diagnosed, treatment can be initiated. The treatment efficacy can now be monitored
with the same system setup. If AF is diagnosed again, treatment can be adjusted, and the
monitoring continues. The next section details the functional specification that was created
to meet the system requirements.

Figure 1. Required service functionality over time.

2.3. Specification Refinement

The specification establishes how the AF detection service is built. This is done by
refining the requirements and thereby increasing both the clarity and rigour of the docu-
mentation. The AF monitoring is done by detecting disease related changes in HR signals.
These signals are easy to measure, cost efficient to communicate, as well as resource effi-
cient to store and process. Hence, this refinement addresses the cost efficiency requirement
for the proposed service [31]. Using HR signals provides the foundation for the func-
tional specification. We structured the functional specification into six service components.
The following list details how to build these service components:

(i) Smart device activation:
The smart device activation service enables a patient’s device to activate and establish
an account with the healthcare provider. At the start of the service subscription,
the healthcare provider registers the patient with the database on a cloud server.
The unique account contains patient information. The necessary fields are: patient ID,
assigned physician, service start date, service end date. The registration will provide
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the cloud server login key. This login key is used for both user authentication and
data acquisition setup.

(ii) Cloud server storage:
The patient’s HR data and the DL classification results are stored in the cloud server.
This service allows the authorized users to retrieve the data anytime and anywhere.

(iii) Real-time HR monitoring service:
The patient wears a breast strap with an embedded HR sensor. The sensor picks
up the HR signals. These real-time data are displayed on patient smart devices.
The patient co-creates value by providing and integrating the data into the AF
detection service.

(iv) Automated AF detection and alarm service:
The DL algorithm analyses patient real-time HR data and classifies the data as AF or
non-AF. Once an AF sequence is detected, the system will send an alarm message to
the assigned physician. The DL algorithm creates the core value for the system.

(v) Physician diagnosis support service:
The physician support service incorporates algorithm support in the form of DL
results and diagnosis support tools. It helps the physician to verify the DL results
and to reach a diagnosis. The value of this diagnosis is twofold. First and foremost,
it helps to initiate treatment, which might improve the outcomes for the patient.
A secondary use for an established diagnosis arises when we consider improving
the DL algorithm. To be specific, a diagnosis becomes the ground truth, which
can be used to continuously retrain the DL model. That continued retraining has
the potential to improve the detection quality of the algorithm.

(vi) Feedback and intervention service:
Once the physician has reached a diagnosis, the feedback service can be used to
communicate the result to the patient. Social media, email and personal phone
calls can be used to provide feedback. Timely appropriate intervention can be
carried out to boost the outcomes for patients. Another use for the feedback service
is the dissemination of patient compliance messages. For example, through data
analytics, it is possible to establish if there is a signal interruption. A compliance
message over the feedback channel might help to re-establish the data flow.

3. Results

This section describes how we translated the specification into an implementation.
The service components were translated into software processes, executed by standard
machine architectures and communicated over available infrastructure. Figure 2 visualizes
the data flow between different functional entities of the service. The arrangement of
the data flow diagram indicates the central role of the cloud storage. The HealthCare
app relays the sensor data to the cloud storage. The cluster computing sources the data
from the cloud server and, once the data are analysed, puts the result back. The processes
are managed based on information from the real-time database. This information is
particularly useful to establish the conditions when and to whom an alarm message is
sent. This functionality is essential to create the hybrid decision support, which allows
medical experts to work efficiently with smart machines. The following sections introduce
the functional entities in more detail.

3.1. Real-Time Database

The patient information management is based on real-time database entries. During
the initial registration process, a representative of the healthcare provider creates a patient
record. That record contains patient-specific information, such as the username and
password, as well as system-specific information like a cloud server key, which unlocks
dedicated data channels. After the initial registration, a patient can use the username
and password to login to the HeartCare app. This authentication ensures that the HR
measurements are relayed to the patient-specific cloud server channels. The controller
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node in the cluster uses the patient records to set up the patient monitors, which analyse
the HR data in real time. The patient information is also used to manage the alarm message
distribution.

Figure 2. Architecture of the AF detection system for hybrid decision support.

3.2. HeartCare Mobile App

The AF detection service facilitates patient-led data acquisition. Figure 3 shows
a screenshot of the HeartCare app. The graph depicts an averaged HR trace measured
with a polar H10 sensor. In that state, the app transfers the HR data to the Thingspeak
cloud server [32]. Each patient has a unique API key. Once logged in, the HeartCare app
relays the HR data from the sensor to the patient-specific RR_interval_data channel on
the cloud server. Both the patient and authorized physicians can access the patient’s data
anywhere using the same API key.

Figure 3. HeartCare app login screenshot.
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3.3. Cloud Storage

Each patient account has two cloud storage channels. The first channel, called
RR_interval_data, holds the HR measurements. The content is updated when the Heart-
Care app relays HR signals to the cloud server. The second channel, called AF_detection_
result, holds the DL classification results. The result channel content is updated when
the patient monitor produces a new result. Figure 4 shows a patient’s HR data on
the Thingspeak cloud server.

Figure 4. Thingspeak data visualization.

Once an AF episode is detected by the DL algorithm, the cloud logic will send an alert
to the assigned physician. Sending the alert message can be facilitated with a range of
communication channels, such as email, Twitter and instant messages. The message alerts
the physician that a dangerous condition has occurred, i.e., AF was detected. The physician
decision support and diagnosis service can be used to review the available evidence and to
reach a diagnosis.

3.4. Patient HR Data Processing in the Cluster

The cluster executes a patient monitor process for each patient. That process net-
work facilitates a real-time data analysis [33]. To accomplish that task, each patient
monitor consists of three processes. The first process checks if there is new HR data
in the RR_interval_data channel on the cloud. The new data are passed on to the second
node, which executes a DL model. The DL results are passed to the third process, which
relays them to the AF_detection_result channel on the cloud server.

Processes 1 and 2 of the patient monitor handle the data exchange between the cluster
and the cloud server. The main task for the patient monitor and indeed for the AF detection
service is real-time HR analysis. We realized this functionality with an Long Short-Term
Memory (LSTM) Recurrent Neural Network (RNN) DL model. The model was trained
with benchmark data from 20 patients. The data are available from PhysioNet’s [34] Atrial
Fibrillation Database (AFDB) [35]. Ten-fold cross-validation established an accuracy of
98.51%, a specificity of 98.67% and a sensitivity of 98.32%, as reported by Faust et al. [14].
A hold-out [36] accuracy of 99% was established with data from three patients. Further
hold-out tests established that the DL model could detect AF in unknown HR data with
92% and 94% accuracy for data from LTAFDBand NDSDB, respectively [37]. The physician
support module makes the DL results available for physicians in the form of a value
ranging from zero to one, which indicates the estimated AF probability. Figure 5 shows
the design structure of the proposed DL system. The DL algorithm is composed of three
layers, namely bidirectional LSTM, global max pooling and fully connected; for more
information about the algorithm, see Faust et al. [14]. The simple structure leaves little
space for design errors [38]. Furthermore, the implemented DL algorithm does not require
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feature engineering. Hence, there is no information reduction due to feature selection,
which improves both the accuracy and robustness of the performance results [16].

Figure 5. Flowchart of the classification system.

3.5. Physician Support

Physician diagnosis support is a major service component, which was specified
in Section 2.3. The implementation of this service component manages the data avail-
able on the cloud server. The service component establishes an interface that allows
a physician to verify the automated diagnosis results. In other words, the physician
can analyse the data and either accept or reject the decision reached by the AI system.
We implemented that service component by extending an existing HR analysis and vi-
sualization tool. The tool is called the Heart Rate Variability Analysis Software (HRVAS)
program, originally developed by Ramshur [39] and published under the GNU public li-
cense (https://github.com/jramshur/HRVAS). We extended the program with the ability
to download both HR data and the estimated AF probability from the cloud server. Hav-
ing both, the raw data and the DL results, allows a reading physician to review the available
evidence either through visual inspection or through the use of digital biomarkers. For ex-
ample, visual inspection might reveal fundamental data problems, such as all RR samples
having the same value. Digital biomarkers can help to confirm the DL decision result.
The ability to establish independent human verification of the machine learning results is
a main component for the proposed hybrid decision making process [40].

Figure 6 shows a screenshot of the extended HRVAS program. A drop-down menu
allows the user to select the HR signal from a specific patient. The screenshot shows that
the signal from Patient 08455 was selected. As such, the signal from that patient was
originally downloaded from the AFDB on PhysioNet, and subsequently, it was uploaded
to the cloud server [34,35]. The benchmark data allowed us to test the physician diagnosis
support service component implementation. The HRVAS Graphical User Interface (GUI)
displays the DL results in the upper graph on the left. Displaying the DL results gives an
overview of the estimated AF probability, i.e., the reading physician can determine at what
time the patient had an increased AF probability. Based on that reading, the physician
can select a region of interest and view the HR signal, which corresponds to that region,

https://github.com/jramshur/HRVAS
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in the second window. The HR signals trace is coloured in accordance with the estimated
AF probability.

Apart from visual signal inspection, the main purpose of the HRVAS program is to
visualize digital biomarkers. The workflow unfolds as follows. The physician selects
a region of interest on the estimated AF probability graph. Once the region is selected,
the corresponding HR trace is displayed, and the digital biomarkers for this region are
calculated. The biomarker values are displayed in the right part of the HRVAS GUI.
The screenshot in Figure 6 shows time domain biomarkers. The HRVAS documentation
provides more details on the available digital biomarkers [39]. These biomarkers are
designed to help physicians during the process of validating the DL results and establishing
a diagnosis.

Figure 6. Screenshot of the modified HRVAS program.

3.6. Feedback and Intervention

Once the physician has reached a diagnosis, the feedback and intervention service
communicates with the concerned patient. Social media, email and personal phone calls
can be used to provide feedback. One way to structure the feedback content is a simple
traffic light system: green, all is well; orange, take predetermined precautionary action; red,
see your physician immediately.

4. Discussion

The system reaches a diagnosis through a hybrid decision making process [41]. The hy-
brid process offers three main advantages: (1) safety through human checks and balances,
(2) significantly reduced physician workload, and (3) increased efficiency, which enables
real-time diagnosis. The hybrid decision making process is based on analysis results, which
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are condensed to an independent first opinion on the data [42]. To be specific, we propose
a system where an AI algorithm analyses the available data in real time, and a human prac-
titioner only becomes involved if a suspicion is established. However, that design choice is
only valid if the AI algorithm is very sensitive when it comes to the detection of AF in HR
signals. Another central requirement is cost efficiency. Furthermore, unspecific decision
making is not cost effective, because a human expert receives an alarm often, and the ma-
chine decisions are routinely overruled. Such unnecessary involvement of human expertise
would be inefficient, and indeed, it would be wasteful in terms of time spent rejecting
the machine decision, which translates into additional cost for the healthcare provider.
Hence, we require the decision support algorithm to have both high Specificity (SPE) and
high Sensitivity (SEN). In effect, that leads to a high Accuracy (ACC). Table 3 summarizes
research work for the automated detection of AF in ECG and HR signals. The performance
measures, reported in the three columns on the right of the table, indicate two points:
(1) there is no performance difference between studies based on ECG and HR signals;
(2) both the SEN and SPE values are very high. Hence, these algorithms are sufficiently
potent to justify large-scale AF detection in a practical service environment.

The proposed AF detection service is based on hybrid decision support, which uses
advanced AI for automated AF detection. The high accuracy of this algorithm sets it apart
from other solutions currently on the market. The following paragraphs provide some
background on current solutions.

An Apple Watch and iPhone combination can be used to detect an irregular pulse.
The Apple Watch measures the pulse. Once the signal is captured, an algorithm chain
analyses the data. The user receives an alarm message if an irregular pulse is detected.
During hold-out validation with benchmark data, that system achieved a positive pre-
dictive value of 71% (i.e., only 71% of AF detections by the Apple Watch were actual AF
detections; the remaining 28% were not). Based on the same measurements, researchers
found that 84% of the participants that received irregular pulse messages had AF. In a
subsequent open study, four-hundred thousand users were enrolled. Zero-point-five per-
cent of the participants received irregular pulse messages. Apart from those pulse-based
studies, the Apple Watch also features a finger ECG sensor with an AF detection function.
However, this only works for as long as the user holds their fingers on the sensor. This may
not be long enough to detect AF.

All Apple Watch-based health applications are consumer gadgets, which can establish
a suspicion that AF might be present. This suspicion would need to be confirmed by
a physician using a heart rate monitoring system.

KardiaMobile with KardiaPro can be used to detect AF at home. The system is based
on two electrodes that measure finger ECG. Based on these signals, the device decides if
AF is present. In a study with 51 participants, the device had an 8% AF yield, i.e., four
people were subsequently diagnosed with AF.

Like the Apple Watch and iPhone combination, KardiaMobile is a gadget that estab-
lishes a suspicion that AF is present. For a subscription fee of £58/mo, it is possible to
store the ECG data on a cloud service. However, the measurement is not continuous: 30 s
ECG snippets are acquired whenever a patient activates the device. Based on such ad hoc
measurements, the AF detection algorithm might miss an AF period. If an AF period is
detected, the device raises an alarm, and it is up to the patient to interpret that information.
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Table 3. Selected arrhythmia detection studies using HR and ECG. Database (DB) were: MIT-BIH Atrial Fibrillation Database
(afdb), MIT-BIH Arrhythmia Database (mitdb), MIT-BIH Malignant Ventricular Arrhythmia Database (vfdb), Creighton University
Ventricular Tachyarrhythmia Database (cudb), MIT-BIH Normal Sinus Rhythm Database (nsrdb), MIT-BIH Long Term Database
(ltafdb), European ST-T Database (edb) and ecgdb. Hospital data come from non-publicly accessible databases.

Author Year Method Data Performance

Type DB Rhythm ACC SPE SEN

Faust et al. 2020 [43] Detrending,
ResNet HR ecgdb

AF Atrial
Flutter (AFL)
Normal Sinus
Rhythm (NSR)

99.98 100.00 99.94

Ivanovic et al., 2019 [44] CNN, LSTM HR Hospital NSR, AF AFL 88 87.09

Fujita and Cimr, 2019 [45] CNN with
normalization ECG afdb, mitdb,

vfdb
AF, AFL, VFDB,
NSR 98.45 99.87 99.27

Faust et al., 2018 [14] LSTM HR afdb AF NSR 98.39 98.32 98.51

Acharya et al., 2017 [46] CNN with Z-score ECG afdb, mitdb,
vfdb

AF, AFL, VFIB,
NSR 92.50 98.09 93.13

Henzel et al., 2017 [47]
Statistical features
with generalized
linear model

HR afdb AF NSR 93 95 90

Desai et al., 2016 [48]
RQAwith decision
tree, random forest,
rotation forest

ECG afdb, mitdb,
vfdb

AF, AFL, VFIB,
NSR 98.37

Acharya et al., 2016 [49]

Thirteen nonlinear
features with
ANOVA with KNN
and DT

ECG afdb, mitdb,
vfdb

AF, AFL, VFIB,
NSR 97.78 99.76 98.82

Hamed and Owis,
2016 [50]

DWT, PCA and
SVM ECG afdb AF, AFL, NSR 98.43 96.89 98.96

Xia et al., 2018 [51] STFT/SWTwith
CNN ECG afdb AF 98.63 98.79 97.87

Petrėnas et al., 2015 [52] Median filter with
threshold HR nsrdb, afdb AF NSR 98.3 97.1

Zhou et al., 2014 [53]
Median filter and
Shannon entropy
with threshold

HR ltafdb, afdb,
nsrdb AF NSR 96.05 95.07 96.72

Muthuchudar and Baboo,
2013 [54] UWT NN ECG afdb AF, VFIB, NSR 96

Yuanet al., 2016 [55]
Unsupervised
autoencoder NN
Softmax regression

ECG afdb, nsrdb,
ltdb, hospital AF 98.18 98.22 98.11

Pudukotai Dinakarrao
and Jantsch, 2018 [56]

Daubechies-6 with
counters Anomaly
detector

ECG mitdb AF, VFIB 99.19 98.25 78.70

Salem et al., 2018 [57] Spectrogram with
CNN ECG afdb, nsrdb,

vfdb and edb
AF, AFL VFIB
NSR 97.23
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A Holter monitor with software, such as CardioScan, is the gold standard for AF
diagnosis and is the standard measurement device used by clinicians. Before a Holter
monitor is used, a suspicion is established through the experience of a physician or a gad-
get. In response to this suspicion, a trained technician will set up the Holter-monitor
(place electrodes on the patient’s chest, etc.). Once the setup is completed, the patient wears
the device for up to 48 h. The recorded ECG signal is analysed once the device is returned
to the issuing clinic. The Holter service costs £50 for a 10 h recording. Apart from the cost,
Holter monitors have significant drawbacks. The AF detection rate is positively correlated
with the observation interval, i.e., a longer observation interval increases the probability
of detecting AF. The data analysis can only start once the Holter monitor is returned;
this lack of real-time responsiveness becomes a problem should one choose to increase
the observation interval significantly. Wearing a Holter monitor restricts patients’ mobility.
If the electrodes detach, the patient must visit the clinic.

Our AF detection service offers long observation intervals and real-time computer-
aided diagnosis. The data handling cost is about £30/mo. We envisage that it would replace
the Holter system as the clinical gold standard for AF diagnosis. With a positive predictive
value of 95.40%, our system achieved a higher AF detection quality when compared to
the competitors. The physician support module helps physicians to reach a diagnosis. Es-
tablishing a diagnosis and not only a suspicion makes timely intervention possible. Table 4
summarizes the comparison of the AF detection service with three main competitors.

Table 4. Comparison of the AF detection service with three main competitors.

Service Apple Watch
and iPhone

KardiaMobile
with KardiaPro

Holter Monitor
with CardioScan

Performance evaluation

Quality PPV: 95.40% PPV: 71% (pulse) 8% AF yield N/R
No. of patients 82 N/R 50 N/R

Dataset AFDB and LTAFDB Measurement data Measurement data Measurement
data

System properties

Signal Heart rate ECG Finger ECG ECG
Processing Cloud server Local Cloud server Local
Real-time Yes Yes Yes No

Diagnosis Symbiosis between
physician and DL None None Feature support

Data storage Unlimited None Snippets Limited

Model update Retraining the DL model
with cloud data None None None

Use case scenario

Customer Healthcare provider Patient Patient Healthcare
provider

Physical
equipment

Heart rate sensor and
Android phone

Apple Watch and
iPhone KardiaMobile device Holter monitor

Measurement Patient led Patient led Patient led Expert led

Result Diagnosis DL decision
validated by a physician

Suspicion black box
decision; follow-up
with Holter recording
for diagnosis

Suspicion black box
decision; no clear
follow-up

Diagnosis
established by
a physician with
analysis support
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Table 4. Cont.

Service Apple Watch and iPhone KardiaMobile
with KardiaPro

Holter Monitor
with CardioScan

Limitations

Diagnosis HR for diagnosis support is
a new paradigm

No diagnosis; diagnosis is
established through Holter
recordings

No diagnosis

Inter- and
intra-observer
variability; labour
intensive

Safety Human and machine Not critical Not critical Human

Cost

Hardware £ 300 £ 1000 £ 99 and mobile cost £ 1885.00
Service £ 30/month Free £ 9.99/month £ 50 for 10 h

4.1. Limitations

In this paper, we outline the design process for a proof of concept AF detection
service that incorporates hybrid decision support. As such, this does not yet meet all
the stakeholder needs. Before we can offer a complete service monitoring service to
patients, the following problems need to be addressed:

(i) An alarm message is sent when a dangerous situation arises. Initially, what constitutes
a dangerous condition could follow Holter monitoring protocols. For example, an AF
event is detected when the estimated AF probability is above 0.5 for at least 30 s [58].
However, it is not known if such an approach is sensitive and indeed specific enough
to capture the stroke risk for patients.

(ii) Obtaining necessary regulatory approvals (not just the U.K. and EU) especially as
regulatory requirements are increasing significantly with the transition to the much
more demanding Medical Device Regulations; this can be a long and iterative process.

(iii) Negotiating and executing mutually beneficial and sustainable agreements with
appropriate commercial partners.

(iv) Speed to market; alternative less sophisticated solutions are already available, and
new solutions are in development.

4.2. Future Work

Addressing the limitations should start with formulating research questions for future
work. The proposed hybrid decision support to monitor AF for stroke prevention can help
to manage and indeed utilize the real-time information flow that results from extending
the observation duration. The prolonged observation duration might lead to new insights
about the way in which AF develops in the human body. These new insights should be
used to improve and adjust the service functionality. It might be possible to learn and
indeed to formulate how human experts interpret the results that lead to a diagnosis.
For example, the process generating the alarm message might take into consideration
patient age, disease history and severity, as well as the duration of the AF event.

For future work, we propose two clinical studies. The first clinical study is designed
to build trust in the technologies that enable the service functionality. We plan to measure
HR and ECG from 20 patients at the same time. These measurements will be stored
in buffers within the sensors. The ECG analysis results will be considered as the ground
truth with which the automated HR analysis results are compared. That will allow us to
establish accuracy, sensitivity, and specificity in a practical setting. During the second study,
we will focus on fine tuning the clinical processes necessary to deal with real-time HR data.
We plan to involve three clinical sites with 20 patients each. We will recruit participants
with both known and unknown aetiology to get deeper insights into the link between
HR and the nature of embolisms, which might lead to stroke [59]. During that study,
a patient is only fitted with one sensor, which communicates HR with a wireless uplink.
The wireless uplink will generate a real-time data stream, which is analysed automatically
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with a DL algorithm. That implies that data are transmitted from the patient environment
to a medical cloud server. This will require considerable planning to safeguard the medical
infrastructure.

Another aspect for future work is reviewing and potentially influencing the regulatory
framework that governs medical decision support systems. Currently, the U.K. (https://as
sets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/f
ile/890025/Software_flow_chart_Ed_1-06_FINAL.pdf) classifies diagnosis support algo-
rithms as medical devices for which certification is required. More work is needed to
capture the learning nature of AI algorithms. To be specific, it is not clear how to estab-
lish device safety when the functionality changes based on the availability of more data.
This is a challenge, not only for the medical device regulation agencies, because retraining
the algorithm means changing the decision support model, and hence, the device is not
the same as the one that was approved. Initially, a service provider might train new models
and have them certified when they show a measurable improvement over the deployed
decision support models. In the future, it might be possible to certify the method that
retrains the learning algorithm. That would shorten the time for patients to benefit from
new decision support models, and it would reduce the administrative effort.

Using the proposed AF detection service for many patients over long time periods
leads to big data with reliable labels. With these datasets, it might be possible to gain
knowledge about deeper structural properties of AF, such as the relationship with long-
term beat patterns and arrhythmias. These structural properties can help to predict and
eventually prevent AF for many patients. One prerequisite for this ambitious vision is to
create an environment that allows for a continuous retraining of the DL network. Retraining
will gradually improve the DL models in terms of detection performance. This will lead
to earlier detection of less severe forms of AF. During the retraining process, it might
be possible to identify the beat irregularities that indicate AF onset. We might discover
something that can be called AF background, because it indicates that the disease is present
even when rhythm irregularities are not observed.

The AF detection service’s success depends on the hybrid decision support func-
tionality, which establishes the cooperation among human experts and machines. For
the proposed setup, the human expert is firmly in control. Digital biomarkers allow us to
establish the validity of the DL result. However, as we move from inference, i.e., detect-
ing AF, to predicting AF, these digital biomarkers and indeed human expertise are less
able to carry out that validation task. There might be no human detectable patterns that
foreshadow the onset of AF. Hence, the responsibility for the diagnosis shifts towards
the machine results. This might be ethically acceptable, because predicting AF implies that
we are dealing with a mild form of the disease, which requires only a gentle intervention
that causes mild or no side effects. Hence, the role of human oversight might vary de-
pending on the severity of the intervention. For example, a decision to initiate a treatment
through anticoagulation should be supported by evidence in the form of physiological
signal measurements together with adequate human analysis, because the intervention
carries the risk of death. If the intervention consists of a suggestion to change lifestyle
choices, such that AF can be avoided, then the requirement for human verification might
be minimal. We predict that future hybrid decision support structures will offer such
a nuanced validation approach.

5. Conclusions

In this paper, we propose a hybrid decision support for stroke prevention based
on automated AF detection in HR signals. Commercial HR sensors are used for data
acquisition. The sensor data are relayed via a mobile phone to a cloud server for data
storage. A DL model evaluates the HR data in real time. The real-time evaluation results
take the form of an estimated AF probability. The physician can use that result as a second
opinion, which might improve the AF diagnosis, which ultimately leads to a stroke risk
stratification. To support physicians during the diagnosis, we incorporate DL results

https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/890025/Software_flow_chart_Ed_1-06_FINAL.pdf
https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/890025/Software_flow_chart_Ed_1-06_FINAL.pdf
https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/890025/Software_flow_chart_Ed_1-06_FINAL.pdf
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and digital biomarkers in the proposed GUI to provide two independent analysis results.
Having two independent results has the advantage that there is no single point of failure,
and the digital biomarkers can be used to validate the DL results.

Real-time AF monitoring and diagnosis systems are of great interest because they allow
an early diagnosis, which might improve patient quality of life and provide a promising
alternative to current healthcare processes. The value propositions focus on the healthcare
provider. The patient benefits from the stroke risk monitoring service through patient-led
signal acquisition, unobtrusive HR measurement and peace of mind through real-time HR
monitoring and diagnosis.

The proposed real-time stroke risk monitoring service has the potential to provide
benefits for patients who suffer from heart conditions via accurate automated diagnosis, as
well as non-intrusive and uninterrupted treatment monitoring. It also reduces the health-
care cost by replacing expert with machine work. Furthermore, the number of visits to
specialized care facilities is kept to a minimum, which benefits the patient and keeps
costs low.
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NSR Normal Sinus Rhythm
RNN Recurrent Neural Network
SEN Sensitivity
SPE Specificity

References
1. Callow, A.D. Cardiovascular disease 2005—The global picture. Vasc. Pharmacol. 2006, 45, 302–307. [CrossRef] [PubMed]
2. O’donnell, M.J.; Xavier, D.; Liu, L.; Zhang, H.; Chin, S.L.; Rao-Melacini, P.; Rangarajan, S.; Islam, S.; Pais, P.; McQueen, M.J.; et al.

Risk factors for ischaemic and intracerebral haemorrhagic stroke in 22 countries (the INTERSTROKE study): A case-control study.
Lancet 2010, 376, 112–123. [CrossRef]

3. Adams, H.P., Jr.; Bendixen, B.H.; Kappelle, L.J.; Biller, J.; Love, B.B.; Gordon, D.L.; Marsh, E., III. Classification of subtype of acute
ischemic stroke. Definitions for use in a multicenter clinical trial. TOAST. Trial of Org 10172 in Acute Stroke Treatment. Stroke
1993, 24, 35–41. [CrossRef] [PubMed]

http://doi.org/10.1016/j.vph.2006.08.010
http://www.ncbi.nlm.nih.gov/pubmed/17074537
http://dx.doi.org/10.1016/S0140-6736(10)60834-3
http://dx.doi.org/10.1161/01.STR.24.1.35
http://www.ncbi.nlm.nih.gov/pubmed/7678184


Int. J. Environ. Res. Public Health 2021, 18, 813 17 of 19

4. Daniel, K.; Wolfe, C.D.; Busch, M.A.; McKevitt, C. What are the social consequences of stroke for working-aged adults?
A systematic review. Stroke 2009, 40, e431–e440. [CrossRef] [PubMed]

5. Carroll, K.; Murad, S.; Eliahoo, J.; Majeed, A. Stroke incidence and risk factors in a population-based prospective cohort study.
Health Stat. Q. 2001, 12, 18–26.

6. Feigin, V.L.; Forouzanfar, M.H.; Krishnamurthi, R.; Mensah, G.A.; Connor, M.; Bennett, D.A.; Moran, A.E.; Sacco, R.L.; Anderson,
L.; Truelsen, T.; et al. Global and regional burden of stroke during 1990–2010: Findings from the Global Burden of Disease Study
2010. Lancet 2014, 383, 245–255. [CrossRef]

7. Wolf, P.A.; Abbott, R.D.; Kannel, W.B. Atrial fibrillation as an independent risk factor for stroke: The Framingham Study. Stroke
1991, 22, 983–988. [CrossRef]

8. Jamil-Copley, S.; Kanagaratnam, P. Stroke in atrial fibrillation—Hope on the horizon? J. R. Soc. Interface 2010, 7, S765–S769.
[CrossRef]

9. Fitzmaurice, D.A.; Hobbs, F.R.; Jowett, S.; Mant, J.; Murray, E.T.; Holder, R.; Raftery, J.; Bryan, S.; Davies, M.; Lip, G.Y.; et al.
Screening versus routine practice in detection of atrial fibrillation in patients aged 65 or over: Cluster randomised controlled trial.
BMJ 2007, 335, 383. [CrossRef]

10. Cadilhac, D.A. The economics of atrial fibrillation: A time for review and prioritization. Int. J. Stroke 2012, 7, 477–479. [CrossRef]
11. Public Health England. Atrial Fibrillation Prevalence Estimates in England: Application of Recent Population Estimates of AF in Sweden;

Technical Report; National Health Service: London, UK, 2017.
12. Kearley, K.; Selwood, M.; Van den Bruel, A.; Thompson, M.; Mant, D.; Hobbs, F.R.; Fitzmaurice, D.; Heneghan, C. Triage tests for

identifying atrial fibrillation in primary care: A diagnostic accuracy study comparing single-lead ECG and modified BP monitors.
BMJ Open 2014, 4, e004565. [CrossRef] [PubMed]

13. Humphries, K.H.; Kerr, C.R.; Connolly, S.J.; Klein, G.; Boone, J.A.; Green, M.; Sheldon, R.; Talajic, M.; Dorian, P.; Newman, D.
New-onset atrial fibrillation: Sex differences in presentation, treatment, and outcome. Circulation 2001, 103, 2365–2370. [CrossRef]
[PubMed]

14. Faust, O.; Shenfield, A.; Kareem, M.; San, T.R.; Fujita, H.; Acharya, U.R. Automated detection of atrial fibrillation using long
short-term memory network with RR interval signals. Comput. Biol. Med. 2018, 102, 327–335. [CrossRef] [PubMed]

15. Acharya, U.R.; Faust, O.; Ciaccio, E.J.; Koh, J.E.W.; Oh, S.L.; San Tan, R.; Garan, H. Application of nonlinear methods to
discriminate fractionated electrograms in paroxysmal versus persistent atrial fibrillation. Comput. Methods Programs Biomed.
2019, 175, 163–178. [CrossRef]

16. Faust, O.; Hagiwara, Y.; Hong, T.J.; Lih, O.S.; Acharya, U.R. Deep learning for healthcare applications based on physiological
signals: A review. Comput. Methods Programs Biomed. 2018, 161, 1–13. [CrossRef]

17. Rajaganeshan, R.; Ludlam, C.; Francis, D.; Parasramka, S.; Sutton, R. Accuracy in ECG lead placement among technicians, nurses,
general physicians and cardiologists. Int. J. Clin. Pract. 2008, 62, 65–70. [CrossRef]

18. Acharya, U.R.; Ghista, D.N.; KuanYi, Z.; Min, L.C.; Ng, E.; Sree, S.V.; Faust, O.; Weidong, L.; Alvin, A. Integrated index for
cardiac arrythmias diagnosis using entropies as features of heart rate variability signal. In Proceedings of the 2011 1st Middle
East Conference on Biomedical Engineering, Sharjah, UAE, 22–25 February 2011; pp. 371–374.

19. Nguyen, T.T.; Yuldashev, Z.; Sadykova, E. A remote cardiac rhythm monitoring system for detecting episodes of atrial fibrillation.
Biomed. Eng. 2017, 51, 189–194. [CrossRef]

20. Asgari, S.; Mehrnia, A.; Moussavi, M. Automatic detection of atrial fibrillation using stationary wavelet transform and support
vector machine. Comput. Biol. Med. 2015, 60, 132–142. [CrossRef]

21. Koivisto, T.; Pänkäälä, M.; Hurnanen, T.; Vasankari, T.; Kiviniemi, T.; Saraste, A.; Airaksinen, J. Automatic detection of atrial
fibrillation using MEMS accelerometer. In Proceedings of the Computing in Cardiology Conference (CinC), Nice, France,
6–9 September 2015; pp. 829–832.

22. Harju, J.; Tarniceriu, A.; Parak, J.; Vehkaoja, A.; Yli-Hankala, A.; Korhonen, I. Monitoring of heart rate and inter-beat intervals
with wrist plethysmography in patients with atrial fibrillation. Physiol. Meas. 2018, 39, 065007. [CrossRef]

23. Larburu, N.; Lopetegi, T.; Romero, I. Comparative study of algorithms for atrial fibrillation detection. In Proceedings of the
Computing in Cardiology, Hangzhou, China, 18–21 September 2011; pp. 265–268.

24. Erl, T. SOA Principles of Service Design (Paperback); Prentice Hall Press: Upper Saddle River, NJ, USA, 2016.
25. Faust, O.; Lei, N.; Chew, E.; Ciaccio, E.J.; Acharya, U.R. A Smart Service Platform for Cost Efficient Cardiac Health Monitoring.

Int. J. Environ. Res. Public Health 2020, 17, 6313. [CrossRef]
26. Stickdorn, M.; Hormess, M.E.; Lawrence, A.; Schneider, J. This Is Service Design Doing: Applying Service Design Thinking in the Real

World; O’Reilly Media, Inc.: Newton, MA, USA, 2018.
27. Ali, A.N.; Abdelhafiz, A. Clinical and economic implications of AF related stroke. J. Atr. Fibrillation 2016, 8, 1279. [PubMed]
28. Romero, J.R.; Wolf, P.A. Epidemiology of stroke: Legacy of the Framingham Heart Study. Glob. Heart 2013, 8, 67–75. [CrossRef]

[PubMed]
29. Paszkiel, S. Using BCI in IoT Implementation. In Analysis and Classification of EEG Signals for Brain—Computer Interfaces; Springer:

Berlin/Heidelberg, Germany, 2020; pp. 111–128.
30. Paszkiel, S. Using Neural Networks for Classification of the Changes in the EEG Signal Based on Facial Expressions. In Analysis

and Classification of EEG Signals for Brain–Computer Interfaces; Springer: Berlin/Heidelberg, Germany, 2020; pp. 41–69.

http://dx.doi.org/10.1161/STROKEAHA.108.534487
http://www.ncbi.nlm.nih.gov/pubmed/19390074
http://dx.doi.org/10.1016/S0140-6736(13)61953-4
http://dx.doi.org/10.1161/01.STR.22.8.983
http://dx.doi.org/10.1098/rsif.2010.0344.focus
http://dx.doi.org/10.1136/bmj.39280.660567.55
http://dx.doi.org/10.1111/j.1747-4949.2012.00831.x
http://dx.doi.org/10.1136/bmjopen-2013-004565
http://www.ncbi.nlm.nih.gov/pubmed/24793250
http://dx.doi.org/10.1161/01.CIR.103.19.2365
http://www.ncbi.nlm.nih.gov/pubmed/11352885
http://dx.doi.org/10.1016/j.compbiomed.2018.07.001
http://www.ncbi.nlm.nih.gov/pubmed/30031535
http://dx.doi.org/10.1016/j.cmpb.2019.04.018
http://dx.doi.org/10.1016/j.cmpb.2018.04.005
http://dx.doi.org/10.1111/j.1742-1241.2007.01390..x
http://dx.doi.org/10.1007/s10527-017-9712-9
http://dx.doi.org/10.1016/j.compbiomed.2015.03.005
http://dx.doi.org/10.1088/1361-6579/aac9a9
http://dx.doi.org/10.3390/ijerph17176313
http://www.ncbi.nlm.nih.gov/pubmed/27909470
http://dx.doi.org/10.1016/j.gheart.2012.12.007
http://www.ncbi.nlm.nih.gov/pubmed/23527318


Int. J. Environ. Res. Public Health 2021, 18, 813 18 of 19

31. Faust, O.; Ciaccio, E.J.; Acharya, U.R. A Review of Atrial Fibrillation Detection Methods as a Service. Int. J. Environ. Res.
Public Health 2020, 17, 3093. [CrossRef] [PubMed]

32. Pasha, S. ThingSpeak based sensing and monitoring system for IoT with Matlab Analysis. Int. J. New Technol. Res. 2016, 2, 19–23.
33. Faust, O.; Yu, W.; Acharya, U.R. The role of real-time in biomedical science: A meta-analysis on computational complexity,

delay and speedup. Comput. Biol. Med. 2015, 58, 73–84. [CrossRef]
34. Goldberger, A.L.; Amaral, L.A.; Glass, L.; Hausdorff, J.M.; Ivanov, P.C.; Mark, R.G.; Mietus, J.E.; Moody, G.B.; Peng, C.K.; Stanley,

H.E. PhysioBank, PhysioToolkit, and PhysioNet: Components of a new research resource for complex physiologic signals.
Circulation 2000, 101, e215–e220. [CrossRef]

35. Moody, G.B.; Mark, R.G. A new method for detecting atrial fibrillation using R-R intervals. Comput. Cardiol. 1983, 10, 227–230.
36. Yadav, S.; Shukla, S. Analysis of k-fold cross-validation over hold-out validation on colossal datasets for quality classifica-

tion. In Proceedings of the 2016 IEEE 6th International Conference on Advanced Computing (IACC), Bhimavaram, India,
27–28 February 2016; pp. 78–83.

37. Faust, O.; Kareem, M.; Shenfield, A.; Ali, A.; Acharya, U.R. Validating the robustness of an internet of things based atrial
fibrillation detection system. Pattern Recognit. Lett. 2020, 133, 55–61. [CrossRef]

38. Lih, O.S.; Jahmunah, V.; San, T.R.; Ciaccio, E.J.; Yamakawa, T.; Tanabe, M.; Kobayashi, M.; Faust, O.; Acharya, U.R. Comprehensive
electrocardiographic diagnosis based on deep learning. Artif. Intell. Med. 2020, 103, 101789. [CrossRef]

39. Ramshur, J.T. Design, Evaluation, and Applicaion of Heart Rate Variability Analysis Software (HRVAS). Master’s Thesis,
The University of Memphis, Memphis, TN, USA, 2010.

40. Faust, O. Improving the safety of atrial fibrillation monitoring systems through human verification. Biomed. Signal Process.
Control. 2014, 13, 295–305. [CrossRef]

41. Faust, O.; Ciaccio, E.J.; Majid, A.; Acharya, U.R. Improving the safety of atrial fibrillation monitoring systems through human
verification. Saf. Sci. 2019, 118, 881–886. [CrossRef]

42. Kareem, M.; Faust, O. Establishing the safety of a smart heart health monitoring service through validation. In Proceedings
of the 2019 IEEE International Conference on Big Data (Big Data), Los Angeles, CA, USA, 9–12 December 2019; pp. 6089–6091.

43. Faust, O.; Kareem, M.; Ali, A.; Ciaccio, E.J.; Acharya, U.R. Automated arrhythmia detection based on RR-intervals. Knowl. Based
Syst. 2020, under review.

44. Ivanovic, M.D.; Atanasoski, V.; Shvilkin, A.; Hadzievski, L.; Maluckov, A. Deep Learning Approach for Highly Specific Atrial
Fibrillation and Flutter Detection based on RR Intervals. In Proceedings of the 2019 41st Annual International Conference of
the IEEE Engineering in Medicine and Biology Society (EMBC), Berlin, Germany, 23–27 July 2019; pp. 1780–1783.

45. Fujita, H.; Cimr, D. Computer aided detection for fibrillations and flutters using deep convolutional neural network. Inf. Sci.
2019, 486, 231–239. [CrossRef]

46. Acharya, U.R.; Fujita, H.; Lih, O.S.; Hagiwara, Y.; Tan, J.H.; Adam, M. Automated detection of arrhythmias using different
intervals of tachycardia ECG segments with convolutional neural network. Inf. Sci. 2017, 405, 81–90. [CrossRef]

47. Henzel, N.; Wróbel, J.; Horoba, K. Atrial fibrillation episodes detection based on classification of heart rate derived features.
In Proceedings of the 2017 MIXDES-24th International Conference Mixed Design of Integrated Circuits and Systems, Bydgoszcz,
Poland, 22–24 June 2017; pp. 571–576.

48. Desai, U.; Martis, R.J.; Acharya, U.R.; Nayak, C.G.; Seshikala, G.; SHETTY K, R. Diagnosis of multiclass tachycardia beats using
recurrence quantification analysis and ensemble classifiers. J. Mech. Med. Biol. 2016, 16, 1640005. [CrossRef]

49. Acharya, U.R.; Fujita, H.; Adam, M.; Lih, O.S.; Hong, T.J.; Sudarshan, V.K.; Koh, J.E. Automated characterization of arrhythmias
using nonlinear features from tachycardia ECG beats. In Proceedings of the 2016 IEEE International Conference on Systems, Man,
and Cybernetics (SMC), Budapest, Hungary, 9–12 October 2016; pp. 533–538.

50. Hamed, I.; Owis, M.I. Automatic arrhythmia detection using support vector machine based on discrete wavelet transform. J. Med.
Imaging Health Inform. 2016, 6, 204–209. [CrossRef]

51. Xia, Y.; Wulan, N.; Wang, K.; Zhang, H. Detecting atrial fibrillation by deep convolutional neural networks. Comput. Biol. Med.
2018, 93, 84–92. [CrossRef]
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