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ABSTRACT

It is well known that in the presence of errors-in-variable the ordinary least squares
(OLS) estimator of the parameters of the regression model is inappropriate. This
is true even if the ratio of error variances (A} is known. Wald's grouping method
could deal with such problem but it lacks efficiency and is subject to identifi-
ability problem. The main aim of the paper is to introduce a reflection based
grouping method to improve the efficiency of the Wald's estimator under flexible
assumption on A. We compare the relative performance of the proposed reflection
grouping (RG) estimator with the OLS, ML, Wald's and Geary's estimators by
simulation studies under various conditions. The simulation results show that the
RG estimator is more consistent and efficient than the other estimators.
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1. Introduction

The error-in-variables problem in the simple linear regression model is also known as the
measurement error (ME) problem. The ME posecs a serious problem, as it directly impacts
on estimators and their standard error (see Fuller. 2006. p. 3). In practice. it is rare to
measure the variables precisely, for example, medical variables such as blood pressure and
blood chemistries. agricultural variables such as soil nitrogen and rainfall etc.

In the conventional notation. let = be the true explanatory variable which is called the
latent variable. Let m be the observable, or manifest explanatory variable. Similarly let n
be the true value of the response and y be the associated manifest variable.

If the latent variables x; and n; are measured without error then their linear relationship
is expressed as

?}szg-f'jlfrj j:l?n (ll}

If there is ME in both response and explanatory variables, the actual observed values, m
and y are not the true values, and we define

my=z;+u;; yy=n;+e j=12,....n, (1.2)
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where n; is the jth realisation of the latent response variable, x; is the jth value of the
latent explanatory variable, e; is the ME in the response variable and u; is the ME in
the explanatory variable. It is assumed that, e; ~ N(0,0,.). and u; ~ N(0,0,,). The
model with the fixed z is called the functional model, whereas, the model with independent
identically distributed random variable 2 is called structural model The simple regression
model with ME in both variables and without equation error is expressed as

yi= B+ Bm;+v;, j=12,....n (13)

where v; = e; — Biu;. Note in equation (1.3) m; and v; are not independent, and hence
least squares method is not valid for the above model.

Wald (1940) considered the problem of error in both explanatory and response variables.
He proposed an estimation method based on dividing the observations of both the response
and explanatory variables into two groups, G1 and G2. The G1 contains the first half of the
ordered observations and G2 contains the second half. He showed that the slope of the line
joining the group means provided consistent estimator for the slope parameter of the simple
linear regression model. Properties of this estimator can be found in Gupta and Amanullah
(1970). Similarly, Bartlett (1949) developed another grouping method where the available
observations were divided into three, instead of two, groups. Gibson and Jowett (1957)
investigated optimum ways of grouping the observations, and offered advice on how to place
the data into these three groups to obtain the most efficient estimate of the slope. Another
approach to deal with ME the instrumental variable (IV). Fundamentally, the IV method
involves finding a variable z; that is correlated with the manifest explanatory variable m;,
but is uncorrelated with the random error component. u;. It is difficult to obtain a good IV
which meets the above criteria. The disadvantage of Wald’s method is the loss of efficiency
(ef. Theil and Yzeren, 1956). The purpose of the present paper is to increase the efficiency
of Wald’s method using a different measure to find the instrumental variable.

2. Existing estimation methods

In this section we introduce estimators based on the principle of grouping of observations,
maximum likelihood, and cumulants.

2.1 Grouping method

In 1940 Wald pointed out that a consistent estimator of 5; may be calculated if the following
assumptions are met:

1. The random variables ey, ..., e, have the same distribution and they are uncorrelated,
that is, E(e;e;) =0 for i £ j. The variance of e; is finite.
2. The random variables uy. .. ..u, have the same distribution and they are uncorrelated.

that is, E(uju;) =0 for i ¢ j. The variance of u; is finite.
3. The random variables e; and u; are uncorrelated, that is, E(eju;) = 0.

4. The limit inferior of {Z:zl Ty — 3

" z;}/n| > 0, whereniseven (n =2,4,6.....00),
and k= 3.
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Then divide the observations into two groups based on the ranks of the manifest explanatory
variable m;, those above the median of m; into one group G, and those below the median
into another group G5. Wald considers the expression

_miA. A me) - (Megr + ..+ mn) by — (y1 + .+ ye) = (Yrs1 + -+ Yn)
n ] - n .

151

Then Wald's estimators of 31 and Sy are given by

B = M (it tye) = (e +- -+ yn) _ -0
b1 (mi+ ...+ me) = (Mes1 + ... +my) M2 —1m
By = g-5Bm.
n n
i=1 i i=1 M
where g = 29=1Y ang g 2=t

n n
Johnston (1972, p. 284) showed how Wald's grouping method is based an instrumental
variable. If the number of sample observations is even then define a z matrix as

A I R T U |
S (RS RS T T
where the second row included minus or plus one according to the value of the manifest
explanatory variable m; is below or above the median of m;. If we rewrite the model (2.1)
in matrix for m as

= z3,
, 1 1 1 ... 1 , . .
where 2’ = [ } .and 8 = (80.51)", then the instrumental variable
I Ie Iz A e
estimator of 3 is defined by
-1 _
3 - 0 nij fi
3: !IIF?:[H 7 (T T } |:n_ 1 }:[J—_J—.}I
ETE= 0 2@y | | - | T | 2
The estimator of the slope is
5 _ -
G = ——.
I — I

According to Johnston (1972, p. 284) 7 is the estimator of 55 + 5 E(z), and so
;ég =f}— 31 I.

It is suggested that one should omit the central observation before computations if n is odd.

Wald countered the problem of consistency, the groups are not independent of the error
terms if they did not base on the order of the true values. He proved that the grouping
by the observed values is the same as grouping with respect to the true values. However,
there are some criticisms in literature about Wald estimator, but these criticisms lacked
consensus. Neyman and Scott (1951) pointed out that the Wald estimator is consistent for
B in the structural relation situation if and only if

Pr[mp'__e{:mémp;_#]:Pr[ml—Pz_e'cx{mp'__nu]:D:
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where my, and m,_,, are the p; and (1 — p,) percentile points of F(m), the distribution of
m, and e — p is the range of u.

This condition means that we must know the range of the error in m. and in order to
satisfy the condition the range should be finite. otherwise the condition becomes Pr[—oc <
r < 00| = 0 which is never satisfied. Often relies on the central limit theorem and assumes
that w is normally distributed, where it has an infinite range. then the above condition
be unsatisfied when the errors u; are normally distributed (see Madansky, 1939). Wald
estimator is consistent under very specific conditions except that the errors are not normally
distributed (ef. Gupta and Amanullah, 1970). While Pakes (1982) claimed that the work
of Gupta and Amanullah (1970) is needless, where the Wald’s estimator is inconsistent.
However, according to Theil and Yzeren (1956) the Wald’s method is valuable, though
there is loss of efficiency. Johnston (1972, p. 284) stated ‘Under fairly general conditions
the Wald estimator is consistent but likely to have a large sampling variance’. Moreover,
Fuller (2006, p. 74) mentioned that the Wald’s method was often interpreted improperly.
In fact, there are many discussions on improving the efficiency of the grouping method by
dividing the observations to more than two groups and groups of unequal size (see Nair
and Banerjee, 1942, Bartlett, 1949, Dorff and Gurland, 1961, and Ware, 1972). Under
the normality assumption the grouping estimator is the maximum likelihood estimator (see
Chang and Huang, 1997). In practice, the grouping method is still important, and the
grouping estimator is the maximum likelihood estimator under the normality assumption
(Chang and Huang 1997, Cheng and Van Ness, 1999, p. 130).

2.2 Maximum likelihood method

The likelihood method ¢an have one or more solutions, and might be a saddle point, a local
maximum, or a local minimum of the likelihood function. Lindley (1947) mentioned that
the likelihood equations are consistent if the ratio of error variances A is known. The ML
estimator of 5y is given by

Bur = [(S2-282)+/(5] - ALY + 1S}, | /25,m.

The most common criticisms of this method is the misspecification of A. This method deals
only with models that do not include an equation error which means that all data should
fall exactly on a straight line, which is rare to happen in practice.

2.3. Cumulants method

This method is closely related to the method of higher-order moments, and both methods
lead to similar estimators. Geary (1949) wrote a series of papers on the method of moments.
He introduced a treatment for the ME model under assumptions that the latent variable
is not normally distributed and all moments exist. Geary’s estimators (G,.Gp) or cumu-
lant method estimators do not work if (z;.7;) are jointly normally distributed, because all
cumulants of order > 3 are zero in normal systems. The Geary's estimators are given by

- k(1,3)

| = , d By =
31Gﬂ ff{?,?)' and fiq
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where k(-, ) represents an appropriate cumulant (see Fuller 2006, p. 72, for details). The
cumulant estimates deals only with the non-normal structural model (ef Cheng and Van
Ness, 1999, p. 127).

3. Proposed reflection method

The reflection grouping (RG) method is constructed based on the ranks of a new variable
d; which is located at the middle of the manifest explanatory variable m; and its reflection
m%. The difference from Wald’s original method is to use the ranks of the transformed
variable d; to dividing the observations into two groups instead of using the ranks of the
manifest explanatory variable. Moreover, assume the additional assumption that the ratio
of error variances A = ..o, is known as A < 1, A =1, or A > 1. To avoid the unwanted
and troublesome influence of the ME in the explanatory variable, the idea of reflection
of the manifest variable is used for all the values of explanatory variable. The reflection
of the points is taken about the fitted regression line of the manifest variables. This is
essentially done by a transformation of the observed values of the explanatory variable to
their reflection on the Euclidean plane. In the conventional notation, the reflection of the

explanatory variable m; = z; + u; (with ME w;) for j=1.2,...,n, can be defined as

where B is the least square estimate of the intercept parameter, ¢ is the angle measure
defined as ¢ = arctan 31,,l in which 31," is the least square estimate of the slope parameter
in the manifest model, and cos, and sin are the usual trigonometric cosine and sine functions
respectively. For the definition of reflection of points on the Euclidean plane (see Vaisman,
1997, p. 164-169).

The general idea of using the reflection is that the true value of the latent explanatory
variable = is located at the middle of the manifest variable m and its reflection m*, if the
ratio of error variances A = 1. The reflection group estimator takes different form depending
on the value of A. We consider the following three cases for A = 1, A < 1, and A > 1.
Therefore we suggest a new variable d; = (m; +m})/2 when A = 1, but if A < 1 we
use another variable di; = (d; + m})/2, and da; = (d; + m;)/2 if A > 1. The main
advantage of using the proposed variable d; for grouping is to reduce the sum squares of
error. We propose modifications to the Wald’s method to introduce three different forms of
the reflection grouping estimator for the slope 8; for varying values of A.

() When A=1

Let the instrumental variable T} be based on the ranks of the variable d; = (m;+m])/2.
The entries in the second row of T7 is —1 if the value of d; is less then the median of
d;s. and +1 otherwise. A typical representation of T7 is
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(b)

(c)
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The RG estimator of 3, and 5y is given by

-1
- 0
Brer = (Tim)"‘Tly=| * ... _ }[
ro1 = (Tim) 1y 0 §{m12—m11)
- U2 — ¥ a _ _
Bipe1 = = = Gore1 =T — Birc1

When A <1

Similarly, let the instrumental variable T2 be based on the ranks of the variable dy =
(ds +my)/2. The entries in the second row of T3 is —1 if the value of dj is less then
the median of djp, and +1 otherwise. The RG estimator of 3, and 3, becomes

-] —
- - 0 ny i
Braa = (Tm)"‘Thy=|" .. _ _ I =| gaem. |.and
re2 = (Tam)™ Toy 0 F(maz —ma1) (T2 — 721) A |7
Birge = M Borge = v— B1rgom
Maz — My
When A >1

Finally, let the instrumental variable T3 be based on the ranks of the variable d;; =
(z; +m?)/2. The entries in the second row of T§ is —1 if the value of d;; is less then
the median of d;1. and +1 otherwise. The RG estimator of 5 and 5 becomes

-1 —
5 - 0 ny 7]
= (Tm)'Ty=|" ... _ e 2 =| faZg. |.and
G =10 gim-ms) | | 5m-w) |~ | 2R |
5 Paz — U 5 _ oz _
Bipes = =221 Bipgs = ¥ — Bircsm
sz — M3l

We should omit the central observation before computations if n is odd. Although the
second row of T}, T3, T4 (that is the sequence of —1 and +1) appears to be similar, they
will be different when the method is applied to any real data set.

The aims of the proposed RG method are to deal with the situation of misspecification
A which makes the maximum likelihood estimator biased, and increasing the efficiency
of the Wald’s method.

4. Simulation studies

perform large scale simulation study to compare between the proposed (RG) estimator

and other existing estimators for both normal model when 0.1 < A < 9, and non-normal
model when A =1, < 1, and > 1.
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4.1 Normal structural model

This study compares between the proposed RG estimator, ML, and OLS estimators of the
dope parameter 81 of the normal structural model for sample size n = 40, and when A is
correct and misspecified. The data is based on 10,000 replications, & ~ N(0, 49), and the
parameters settings are 51 = 1, 8y = 0, when 0.1 < A < 9.

It is clear from Figure 1 that the ML estimator does not work well when A is misspecified.

Estimated B, = 1, when 0.1< A <9

RG1 ML oLs

Figure 1: Graph of the estimated slope for three different estimators when 0.1 < A < 9.

That means without selecting the correct value of A the ML method overestimates the true
slope. The proposed method is better than both the ME and OLS estimators when the
ratio of error variances A is incorrect.

4.2 Non normal structural model

This study provides comparison between the proposed RG estimator and Wald's (W),
Geary's (G), and OLS estimators of the slope parameter 3, of the non-normal structural
model for different sample sizes, and when A = 1, < 1, and > 1. Also it provides the
comparison in terms of the mean absolute error (MAE) of these estimators.

(a) When A =1 (d; is used for Bre ). The data is based on 100,000 replications, z ~
uniform on [—5,5], u ~ N(D,1), e ~ N{0,1), and the parameters settings are 3 = 1,
By =0 (see Fig. 2).

(b) When A < 1 (d,; is used for Bree ). The data is based on 100,000 replications, = ~
uniform on [—5, 5], u ~ N(0,1), e ~ N(0,2.25), and the parameters settings are 5; = 1,
By =0 (sec Fig. 3).

(¢) When A > 1 (dsy is used for Sras ). The data is based on 100,000 replications, # ~
uniform on [-5,5], u ~ N(0,2.25), e ~ N(0,1), and the parameters settings are 51 = 1,
Bo =0 (sec Fig. 4).
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Figure 2: Graph of the estimated slope for five different estimators when A = 1.
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Figure 3: Graph of the estimated slope and MAE for five different estimators when A < 1.
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(a) Estimated ﬂ‘ =1
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Figure 4: Graph of the estimated slope and MAE for five different estimators when A < 1.

In Figures 2a, 3a, and 4a the values of Wald's estimator are away from the true value of
51, but they appear to be slightly better than those of OLS. The values of the OLS are the
lowest and far below the true value of 5 = 1. Obviously, the proposed estimator are much
closer to the true value of 3 than the Geary’s estimators. Figures 2a, 3a, and 4a show that
if the sample size is large then the two estimators of Geary are close to the true value of the
slope, but they fluctuate significantly if n is small.

Figures 2b, 3b, and 4b reveal that the MAE of the OLS estimator is the highest. The
MAE of Geary's estimators or cumulant method estimators are better and smaller than that
of Wald's and OLS. Whereas the MAE of the Wald’s estimator appears to be better than
that of the OLS, though it is not small. Clearly, the MAE of the RG estimator is better
and the smallest compared to the other estimators.

5. Concluding Remarks

The proposed RG method is constructed based on a specific modifications to two grouping
method. It works under a fixable and realistic assumption that the ratio of error variances
equal, less, or grater than one. The proposed method is straightforward, easy to implement,
and handles the ME in both normal and non-normal structural models. The simulated
results show that the proposed RG method is appropriate to the normal structural model
more than both the ML, and OLS methods even when A i misspecified. Based on the
forgoing discussion it is evident that the proposed RG method significantly increases the
cfficiency of Wald's grouping method. Moreover, it performs better than the ML method
when A is misspecified, and sample size is small.
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