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ABSTRACT 

Foam concrete has attracted attention worldwide because of its light weight and 

enhanced insulating properties as a building material. Pore features in foam concrete 

play an important role in affecting its compressive strength and insulation properties. 

Therefore, quantitative description of relationships between pore features heat 

conductivity and compressive strength is the main aims of this thesis. To accomplish 

the aims, theoretical method is employed to deduce the heat conductivity, and 

experimental method is used to justify its compressive. Further, Matlab and Python 

program are programmed to depict the random pore distribution, and then finite 

element method is employed to calculate its compressive based on the pore 

distribution. 

Initially, experimental testing of the compressive strength of foam concrete is 

carried out, in which Ø2.68 mm and Ø7 mm of EPS beads are adopted in order to 

study the influences of volume fraction and size. The results of this work showed 

that the compressive strength of EPS concrete at 28 days can be expressed as: 

                      and                  , in which   is the 

density of EPS concrete. By comparing the experimental results and the calculated 

results from simulation, it can be established that the smaller EPS beads size and the 

lower the EPS volume fraction, the smaller the difference between calculated and 

experimental data. Furthermore, Young’s modulus for specimens containing 

different EPS beads is measured with strain gauges during the compression process. 

Based on the stochastic of pore features of foam concrete, numerical method is 

employed to construct a pore feature function related to volume fraction. Then the 

relationship between pore features and compressive strength is correlated.  

Next, a theoretical model for idealized foam concrete with a uniform pores 

distribution is devised to describe compressive strength at 28 days         
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   , in which    is compressive strength of completely solid concrete, 

   is compressive strength under a certain volume fraction of pore,   is cubic 

sample size,   is the radius of pore size,    is the volume fraction, and     is a 
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round function. Additionally, compressive strength by mixing two sizes of pores is 

studied and the results indicated that the compressive strength is reduced when 

compared to that made by just one-size pores. Also the maximum compressive 

strength is achieved when the volume fraction ratio for the two sized pores is 50:50. 

A 2-D random pore distribution program is used to describe the pore (by EPS) 

distribution in real concrete. The pores distribution generated by the program in 2 

dimensions is compared with that from experimental images, and it is established 

that the random model can be used to describe the pores distribution in 2 dimensions. 

Following this, a 3-dimensional distribution program is written, and the 

3-dimensional model is imported into Abaqus software expressly to calculate stress 

distribution. The simulation results confirms that stress concentration is generated 

locally where the inter pores distances are minimal during loading pressure. Stress 

distribution in the sample with the smaller pores is more uniformly distributed than 

that for large pores. 

Finally, in this thesis, a heat conductivity model for foam concrete is built according 

to heat transference principles. A mixed heat transferring model by series and 

parallel mode is utilised:      

  √  
  
   (  √  

  
)

  ( √  
  
   )   (  √  

  
   )

, in which   is the 

effective heat conductivity,   is the heat conductivity of the solid concrete part,    

is the heat conductivity of air in the hollow pores, and    is the pore volume 

fraction. Compared with series, parallel, Maxwell-Eucken and the Carson heat 

transferring model, the heat conductivity calculated by the proposed model more 

closely matches the experimental results, and the relative error is less than 6%. 

Using this heat conductivity model, the temperature field of a building wall made of 

foam concrete is compared with that made of traditional concrete under simulating 

fire incident conditions. This temperature field simulation indicates that the foam 

concrete wall allows people longer period to escape from the fire. 

The highlight of this thesis is following:1) building a relationship between pore 

feature and compressive strength; 2) building a compressive strength model of two 

sizes EPS beads mixing model; 3) compiles a program code for random pore 
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distribution model and predicting the stress distribution; 3) building a heat 

conductivity model of foam concrete that fits experimental results well;  

 

Key words: Foam concrete; Heat conductivity; Compressive strength; EPS beads; 

Numerical simulation 
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CHAPTER 1 INTRODUCTION 

Foam concrete is a lightweight concrete that air-voids are entrapped or entrained in 

the solid concrete body [1], which has been used in the non-structural and structural 

construction since 1920s[2, 3]. In the last century, foam concrete developed quickly, 

especially for the present, energy saving spreads all over the world[2, 4]. Foam 

concrete with advantages of light weight, good insulation, sound absorption, fire 

resistance and low manufacturing cost is widely used in construction industries[4]. 

Using foam concrete to partly replace the traditional concrete as non-bearing walls 

or ceilings can not only reduce the buildings weight leading to reduced dead-loads 

on the foundation and make the buildings more energy-efficient, but also can reduce 

CO2 emission during the construction and the whole service life of building, 

therefore, it is regarded as an environmentally friendly material [2, 5, 6].  

Now most of foam concrete applications are related to its thermal insulation 

properties and mechanical properties[7, 8]. Generally, thermal insulation properties 

increase with decreasing the density of foam concrete, while the mechanical 

properties are in the same trend as the density variation. In fact, the low compressive 

strength of foam concrete limits its applications in thermal insulation field.  

Therefore, the application of foam concrete has to consider the balance between the 

thermal insulation properties and mechanical properties. The macroscopic thermal 

insulation properties and mechanical properties are directly influenced by the 

microscopic pore features, such as porosity, pore size, pore area fraction, pore 

distribution, pore shape factor, etc [8, 9]. 

Currently study on foam concrete focuses on the influence of the porosity on the 

compressive strength and heat conductivity [10-12], which neglects pore features’ 

influence, including pore size, pore shape factor, pore area fraction and pore size 

distribution, etc. Although the porosity of foam concrete is regarded as an primary 

role in determining the compressive strength and heat conductivity[13-15], knowing 

the pore features is helpfu3.l to understand how these microscale pore features affect 

the macro physical properties, which can also provide a theoretical tool to design, 

evaluate and optimize the foam concrete producing process[16]. 
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However, pore features of foam concrete are statistical data obtained from 

experimental specimens, which vary in different samples[15, 16], especially for the 

pore size, pore shape factor, pore area fraction, pore distribution et al. Besides the 

porosity of foam concrete, pore size is regarded as another important factors 

afftecting the compressive strength of foam concrete[2, 9], in which the smaller size 

of pores leads to higher compress strength. Moreover, the compressive strength 

model of foam concrete related with porosity and pore size is empirical model. 

Therefore it is necessary to study the pore features of foam concrete by quantitative 

method. 

Although, using EPS beads to replace foam is an effective way to study the 

influence of pore size on compressive strength, the ratio of EPS beads size to sample 

size and different size EPS beads mixing together are ignored before, and these 

research works have real significantly meaning for industrial production. Further, 

heat conductivity is an important index to evaluate energy saving efficiency of 

building, and a good model of heat conductivity can predict the heat conductivity of 

foam concrete more accurately that can reduce the experimental cost effectively. 

Finally, the comparison of temperature field between traditional concrete and foam 

concrete during fire accidence is studied to illustrate its well thermal insulation 

property. 

This thesis aims to determine the relationships between compressive strength/heat 

conductivity and pore features of foam concrete, which is helpful for engineers and 

researcher to design and manufacture foam concrete with a certain property. To 

accomplish this aim, experimental, theoretical and numerical simulation methods 

have been employed to investigate the influence of pore size on compressive 

strength, the reconstruction of the pores distribution in 2D and 3D, the stress 

distribution during loading process and heat conductivity as well as temperature 

field of foam concrete during fire accidence are studied. 

The thesis is divided into 8 chapters: Chapter 1 is a brief introduction of the thesis; 

Chapter 2 is the literature review; Chapter 3 is the compressive strength and 

Young’s modulus of EPS concrete at different volume fractions and sizes by 

experimental method; Chapter 4 presents theoretical model of compressive strength; 
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Chapter 5 is the EPS distribution that is carried by computer simulation and 

compared with real sample; Chapter 6 is a simulation of EPS concrete compressive 

strength under different volume fractions and sizes; Chapter 7 explores a heat 

conductivity model for foam concrete and the resultant temperature field during fire 

incident; Chapter 8 forms the summary.  
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CHAPTER 2 LITERATURE REVIEW 

2.1 Research background  

Concrete remains one of the most widely used manmade construction materials in 

the world. Traditional concrete is composed of Portland cement, sand, aggregates 

and water [17], and its density ranges from 2240 to 2600 kg/m
3 

[18] with a 

compressive strength in a range of 20 – 80 MPa [19]. Global cement consumption 

was about 41 billion tons in 2015 [20]. Generally, unreinforced concrete is used in a 

compressive condition whereas reinforced concrete can be subjected to tensile 

loading. The latter is used extensively in applications such as buildings, bridges, 

tunnels, reservoirs, marine structure and other infrastructural projects.  

Although concrete plays an important role in modern construction and buildings, its 

whole life negative impacts cannot be neglected. The cement production process 

releases great amount of CO2. Production of 1 kg cement generates 0.9 kg CO2 [21]. 

Overall concrete production contributes 8% of global CO2 emission [22], and is one 

of the biggest sources of global warming gas. The concrete industry also consumes 

40% of world energy, 12% of world water consumption and generates 40% of waste 

to landfill [23]. Therefore, there is an urgent demand to improve concrete industries 

to be more environmentally friendly and sustainable.  

Since the 1970s energy crisis, energy saving has become a common goal 

internationally. It then becomes important for the building/construction industry to 

develop improved materials to make buildings more energy efficient. Thermal 

insulation is one of the effective measures to achieve energy savings in buildings 

[24]. Foam concrete is a type of lightweight concrete with good thermal insulation 

properties that makes buildings more energy efficient than traditional fully solid 

Portland concrete. Due to its lower density, foam concrete is easier to transport from 

one location to another, and it is easier to cut than traditional concrete. Foam 

concrete also doesn’t contain any easily combustible substances and can be used as 

an excellent fire barrier in the construction of buildings [25]. In addition, due to air 

pores embedded into concrete, it has excellent sound absorbing properties [1, 26]. 

As energy efficient material with a relatively low production cost, a minimum 
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strength is required as well as insulation and sound absorption, it has attracted 

interest from both researchers and construction industry.  

2.1.1 What is foam concrete 

Generally speaking, foam concrete is made of cement, water and air bubbles(foam), 

and the volume of foam in concrete determines the density of foam concrete, which 

can range from 300kg/m
3
 to 1800kg/m

3 
[11], much lower than traditional solid 

Portland concrete.  

The first patent for foam concrete can be dated back to 1923 [1, 23]. Its construction 

applications as a lightweight non- and semi-structural material have increased 

significantly in the last decade. The first comprehensive review of foam concrete 

was presented by Valore in 1954 [1, 23, 27]. In 2000, Narayanan and Ramamurthy 

[11] reviewed the properties of foam concrete, including water absorption, 

capillarity properties, durability, thermal conductivity, fire resistance and acoustic 

properties. In 2007, Nambiar, Kunhanandan and Ramamurthy [15] focused their 

research on the characteristics of air voids in foam concrete. Barayanan and 

Ramamurthy [11] reviewed research developments on microstructure and properties 

of foam concrete, in which different models of volume fraction and strength are 

considered. To date, foam concrete has been widely accepted by industries and 

academics, and more and more different kinds of foam concrete have been 

developed, including higher compressive strength and environmental-friendly foam 

concrete [28, 29]. 

2.1.2 Classification of foam concrete 

Foam concrete can be broadly classified into three classes according to the method 

of pore formation [11] as listed as below:  

1) Gas concrete, where gas forming chemicals are mixed into lime or concrete 

mortar during the liquid or plastic stages and gas is generated by a chemical 

reaction;  
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2) Foam concrete in which the pre-formed foam is mixed with concrete and water. 

This method has the lowest production cost, but pore size and volume fraction in the 

concrete is difficult to control; 

3) A combination of the above methods.  

2.1.3 Advantages and limitations of foam concrete 

Due to the presence of a large volume of void pores, foam concrete has some special 

characteristics: 

 1) low self-weight means that it can save lots of cement, and can also be 

transported more easily [30];  

2) low heat conductivity makes it more suitable as thermal insulation material and 

fire-resistant material [31, 32];  

3) the large pore volume in the concrete results in lower production cost than 

traditional concrete [33];  

4) foam concrete has good sound absorption properties that can reduce noise impact 

on residential and commercial buildings [29, 30, 34].  

Despite the many advantages of foam concrete, low compressive strength is one of 

important factors limiting its wider application.  

2.1.4 Application of foam concrete 

With the advantages mentioned above, foam concrete has a wide spread of 

applications, such as roof decks, heat and sound insulation walls, and road sub-base 

etc [35, 36].  
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Figure 2. 1 Examples of Foam concrete applications a) insulation wall, b) 

running track sub-base [36] 

 

Two applications of foam concrete are depicted in Figure 2.1. In the first, it is used 

as an insulation wall, which can make the building more energy efficient. In the 

second, it is used as a sub-base of a running track, an application where minimized 

strength is required. These diverse applications indicate that foam concrete has a 

large market potential as the energy efficiency and lower production costs become 

more important for its market acceptance. It is predicted that the use of foam 

concrete in industrial and civil buildings will be greatly expanded.  

a b 
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2.2 Previous research on foam concrete 

Historically, researchers have paid much attention to chemical composition and 

physical properties [1, 37-40], mechanism of chemical reaction [41, 42], and 

relationships between pore volume fraction and mechanical/thermal insulation 

properties of foam concrete [43-47]. Other researchers investigated stress 

distribution, failure mechanism [48-50], creep and shrinkage, and cracking caused 

by shrinkage [51-54]. All the research can be summarized as either the relationship 

between chemical composition and properties or the relationship between 

micro-structure and properties.  

When the chemical composition is known, the final properties of foam concrete are 

dependent its structure. Most of previous models are related to the pore volume 

fraction, which means that if the pore volume fraction is known, thermal properties 

and mechanical properties can be deduced. This is based on the assumption that all 

void spaces are uniform in size and distribution and of a spherical shape. These 

models didn’t consider the influences of irregular pore shape and variable pore sizes 

on the final properties. 

 

Figure 2. 2 Actual pore structure image of foam concrete
1
 

 

A pore structural morphology of foam concrete is imaged in Figure 2.2, in which the 

white colour part represents for the porous regions and the black part represents for 

                                                           
1
 Images are provided by Dr Zuhua Zhang 

a b 
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the matrix binder regions. In Figure 2.2 a), volume fraction of 13% is depicted and 

in Figure 2.2 b) volume fraction of 20% is depicted. These images demonstrate that 

the pore size ranges from 0.1mm to several mm, and as the pore volume fraction 

increases, the average pore size also increases.   

It is also indicated in Figure 2.2 that the pore size is variable and the pore shape is 

not uniformly spherical. It is apparent that the volume fraction only doesn’t reflect 

the real pore structure of foam concrete, and that the roles of these irregular pores in 

affecting the properties need to be studied. 

It becomes very useful to quantitatively and accurately describe the internal pores 

structure and to establish a relationship between the irregular pore structure and 

properties. The ability to design and control pore structure for high efficiency and 

low cost by using modelling approach instead of relying solely on the experimental 

method has significant advantage. 

2.2.1Mechanical properties 

Compressive strength is one of the most important indexes for concrete materials. 

Foam concrete with high void space possesses much lower compressive strength 

than normal Portland concrete. The relationship between void ratio and compressive 

strength of foam concrete play a determined role in limiting the foam concrete 

application. A suitable model describing relationship between void ratio and 

compressive strength is thus highly desired during foam concrete mix design 

process. With the model, the balance between weights of foam concrete and 

compressive can be predicted. Over the past decades, researchers developed 

different models to describe the relationships between pore volume fraction and the 

compressive strength of foam concrete [10, 11, 13, 16, 55]. These models are listed 

in Table 2.1. 

Table 2. 1 Compressive strength model of foam concrete [10, 11, 13, 16, 39, 

56-59] 

Model name Mathematical model description 

Feret’s equation 
   *

 

  (
 

 
) (

 

 
)
+

 

; where w/c is water-cement ratio, a/c 



 

 

10 

 

is air-cement ratio, and K and n are constants. 

Schiller Equation                where Pcr is the critical volume 

fraction corresponding to zero strength, and    is the 

coefficient; 

Powers’ gel-space ratio        ; where g is the gel-space ratio, and K and n 

are constants; 

Strength-volume 

fraction 
                            ; where   is 

concrete density,    is the specific gravity of cement, 

   is the unit weight of water, k is water-cement ratio, 

and b is an empirical constant; 

Balshin expression           ,    is the strength at zero volume 

fraction, p is pore volume fraction, n is coefficient; 

Ryshkevitch      
    ; where    is zero volume fraction strength, 

k is constant, and p is pore volume fraction; 

Hasselmann         ; where     is zero volume fraction 

strength,    is constant, and p is pores volume fraction; 

Hoff   

  
 (

  

   
)
 

(
       

    
)
 

; where    compressive strength, 

k water/cement ratio, pc concrete density,    weight of 

water; 

Kearsley                           ; where t is time and p is 

pore volume fraction; 

Nambiar       ∑     
 
    ∑      

  
    ∑ ∑          ; where 

xi are quantitative variables, and b0 and bi are regression 

coefficients; 

Lian   √           ; where A, m and n are constants, 

and p is the volume fraction; 

Omkar Deo and 

Narayanan Neithalath   
       *

         

    ̅̅ ̅̅
+    (

  

  
*
  

        ; where 

  ,   ,   and    are coefficients,   
̅̅ ̅ is averaged pore 

diameter,      is averaged pore distance,    is shape 

factor,    is averaged pore area fraction, and     is 3d 

shape factor. 

 

It can be deduced from Table 2.1 that compressive strength models can be divided 

into three types. The first is based on water-cement and air-cement ratios including 

Feret’s model, strength-volume fraction model and Hoff model. The second type is 
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based on the gel-space ratio including Powers’ gel-space ratio, and the third type on 

the volume fraction including Balshin’s expression and Ryshkevitch and 

Hasselmann model. However, most volume fraction-related models regard the 

overall void space as the only factor affecting compressive strength. Compressive 

strength can be expressed as an exponent function of volume fraction, but these 

models neglect the influence of pore features. The model presented by Omkar Deo 

does relate pore features to compressive strength, but the pores in the model are 

confined to an average pore size ranging from 3-10mm, which is much bigger than 

that of foam concrete.  

Young’s modulus and the Poisson ratio are also important property indexes for foam 

concrete, some researchers have presented models, which consider volume fraction 

[60-62] and Young’s modulus. These are listed in Table 2.2. 

Table 2. 2 Models employing Young’s modulus of foam concrete [61, 62] 

Model name Mathematical description 

Gibson and 

Ashby 
 

    
  (

 

    
*

 

; where   is a constant, its value relied on the 

microstructure; n is exponent constant, and      and      are 

solid reference materials; 

Christensen 

model 

 

  
 

       

              

 

  
; where   is density of solid part, and   is 

the Poisson’s ratio of solid part; 

Hashin-Strikman   

  
 

 

         
; where    

               

        
; 

Simone and 

Gibson 

 

  
      (

 

  
)       (

 

  
)
 

; 

semi-empirical 

formulae 

 

  
   (

 

  
)
 

      
 

  
; where   is the solid mass fraction; 

In models incorporated Young’s modulus is a function of density and Poisson ratio. 

The density ratio and the solid mass fraction are all expressed as a volume fraction 

function.  
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In general, Poisson’s ratio is assumed as a constant for foam concrete except for 

Christensen model [62]:   
     

     
, in which    is Poisson ratio of the zero volume 

fraction. 

2.2.2 Thermal insulation property 

Thermal insulation is one of the main applications for foam concrete. The thermal 

insulation ability depends on three factors: the heat conductivity, the density and the 

specific heat. The density of foam concrete can be readily obtained from its volume 

and mass, but the heat conductivity and the specific heat properties require some 

special facilities for their determination, which involves high cost. Therefore, the 

ability to theoretically calculate heat conductivity and the specific heat for foam 

concrete is highly desirable. 

(1) Heat conductivity model 

Again, there are many different models to predict heat conductivity as listed in 

Table 2.3. 

Table 2. 3 Heat conductivity models [63-68] 

Model name Mathematical description of heat conductivity 

Series model    
 

    

  
 

  
  

 
     

(    )       
; where ks and kg are heat the 

conductivities of solid and gas, respectively, and vg is the air 

void pore volume fraction. 

Parallel model     (    )       ; variables are the same as series 

model. 

Carson     
 

 
                              [(     )   

[ (     )   ]   ]
 
         ; variables are the same as 

series model. 

Maxwell-Eucken I 
      

        (     )  

       (     )  
; variables are the same as series 

model. 

Maxwell-Eucken II 
     

        (     )      

       (     )      
; variables are the same as 

series model. 
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Kim  
   

(    )       

    
; where      is tortuosity factor, and the 

others are the same as series model. 

 

As for Table 2.3 various effective heat conductivity models can be divided into 

three classes. The first class is generally used for predicting the general heat 

conductivity of multiphase material, such as Series and Parallel models. The second 

class is used for predicting the effective heat conductivity for porous material, and 

includes the followings: Carson model, Maxwell-Eucken I and Maxwell-Eucken II, 

which can be applied to different porous materials. The third class is used for 

predicting effective heat conductivity of foam concrete, such as by Kim’s model 

[58]. The model presented by Kim requires an artificial coefficient to adjust its 

results.  

However, all above models neglect the influences of void pore features, as well as 

internal heat transferring in void pores. 

(2) Specific heat model 

Specific heat is heat capability related to material type and its structure. Bentz et al., 

[69] studied the thermal properties of fly ash mortar and concrete, in which the 

specific heat can be expressed as: 

     
        

            
         

          
            

        

(2.1) 

where m stands for mass fraction,    stands for specific heat; and subscripts conc, 

water, FA, cem, sand and cagg stand for concrete, water, fly ash, cement, sand and 

concrete aggregate, respectively.  

Zhou et al [70] presented a specific heat model of combined materials, which is 

expressed as: 

   
    

 
     

 

     
                             (2.2) 
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where    is specific heat; L is thickness of specimen, and the subscript a and b are 

different components of concrete, respectively; 

Equation 2.1 is accepted by most researchers, implying that the specific heat of 

foam concrete can be described as an averaged function of specific heats of the 

different phases [24] multiplied by their mass fractions.  

2.3 Challenges in current research  

Although foam concrete has been developed for nearly 90 years [11], many aspects 

remain to be investigated, such as light weight, thermal insulation and mechanical 

properties/weight ratio. New research needs to be based on appropriate 

understanding of the mechanisms of thermal, mechanical and physical/chemical 

behaviour of foam concrete from the micro-scale to macro-scale [28, 29, 71, 72].  

More broadly, the research on foam concrete includes chemical composition design, 

pore structure design, creep and shrinkage mechanism, process optimization, and 

failure mechanisms [1, 29].  

The two most important factors for foam concrete applications are thermal 

insulation and compressive strength. Therefore, the factors controlling these two 

properties and their interdependence are the primary focus of industries and 

researchers.  

Consequently, the main emphasis of this foam concrete research is listed below: 

1) How can the pore structure features be quantitatively and accurately 

described? 

2) Can a relationship between irregular pore structure features and properties be 

established? 

3) Can an effective numerical design method be developed to control the pore 

structure that has low cost and high efficiency instead of traditional 

experimental methods? 

Establishing relationships between void pore features and compressive 

strength/thermal insulation is a complex issue because pore features including pore 
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shape, pore size and pore size distribution must all be considered [9, 14-16, 25, 73]. 

Researchers have found it difficult even to quantitatively describe pore features.  

2.3.1 The status of heat transfer research 

The existing heat transfer models for foam concrete neglect the inner radiation 

within the void pore. It is a difficult process to find a model that quantitatively 

considers not only macro-pore features but also inner radiation. The influences of 

pore features on heat transfer including conductivity, convection and radiation still 

remain to be established or modified. While the heat conductivity of foam concrete 

is a key parameter related to heat transfer, features of the existing modelling 

methodologies are provided in Figure 2.3. 

 

Figure 2. 3 Shortcomings of current heat conductivity method 

 

As illustrated in Figure 2.3, the existing modelling methodology for the effective 

heat conductivity is based on pore volume fraction and heat conduction only, which 

neglects the impact of pore features, such as inner radiation and convection in void 

pore. 

2.3.2 Compressive strength 

Mechanical properties, especially compressive strength of foam concrete, decline as 

the void and pores volume fraction increases in general. However, there has been 

little quantitative relationship published to describe the influences of pore features 

on compressive strength as most of models focused on the relationship between pore 

volume fraction and compressive strength [1, 7, 13, 39]. This reflects the difficulty 
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in identifying and quantifying void pore features, such as pore size, size distribution, 

pore area fraction, and pore separation [15, 16]. 

(1) Experimental research  

Many previous researchers have used the experimental approaches to study 

compressive strength [7, 9, 13, 15, 39, 45]. The experimental method is a direct way 

to provide a relationship between pores features in foam concrete and compressive 

strength, but at a higher cost than theoretical analysis and numerical simulation 

methods. Furthermore, the experimental method takes long times to get result due to 

concrete inherit slow-hardening properties. Moreover, results are always affected by 

experimental conditions, such as temperature, moisture content, curing time etc, all 

of which affect the precision of experimental results. At present, most research on 

foam concrete continues to use the experimental approach to study the relationship.  

Because the pores in foam concrete are irregular shape and their size ranges from 

μm to mm [15, 74], the influence of pores size on compressive strength is difficult 

to quantify. Using EPS beads to replace the foam in foam concrete can directly 

study the size effect. Expanded polystyrene (EPS) has a spherical shape for which 

the radius can be selected by a sieving method, and it is easy to measure its size. 

Further, EPS has far lower strength compared with concrete, and consequently can 

be regarded as pores embedded into concrete matrix. Therefore, using EPS beads to 

substitute for the pores in concrete is an effective way to study the pore size impact 

on compressive strength. Hence it can be regarded as an idealized material of 

uniform size in concrete.  

EPS concrete is a kind of lightweight concrete in which EPS beads are embedded 

into cement paste to imitate void to reduce its density significantly. EPS concrete 

with low density and high thermal insulation properties arouses great interest from 

both industries and research institutes around the world for its potential wide 

applications. These include energy saving construction material, sub-base material 

for pavement and railway track beds, construction material for floating marine 

structures, energy absorbing material for the protection of buried military structures 

and fenders in offshore oil platforms [75-77].  
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Although there are lots of advantages and potential applications, the mechanical 

properties of EPS concrete are one of the weaknesses [78-80]. In general, 

mechanical properties of EPS concrete declines as its density decreases. In the past 

decade, there were many researchers investigating to EPS concrete [76, 78, 81-83] 

with many publications related to mechanical properties. The relationship between 

EPS beads and its mechanical properties would aid the design of EPS concrete to 

better fit these applications, especially density, heat insulation and mechanical 

properties. 

K.Miled et al [78, 79] studied the size effect of EPS beads on the compressive 

strength and failure of EPS concrete. In their model[78], EPS beads were assumed 

to be distributed uniformly within the concrete, and then the damage initiation and 

distribution in the specimen were calculated. Their research work indicated that 

there was no size effect on the compressive strength. However, their model was just 

a 2D model that couldn’t reflect the 3D dimensional situation. Uniform distribution 

of EPS beads does not reflect real illustration. In 2007, K.Miled [79] et al used the 

experimental method and numerical method to investigate the influences of size 

effect of EPS beads on compressive strength and reported that a difference of 

compressive strength between the big size and small size of EPS beads could reach 

40% with the same density. They concluded that the finer EPS beads produced the 

higher compressive strength. 

2014 Ning Liu et al [80] studied the impact of size on the compressive strength 

using numerical fitting method, in which they utilised an exponent equation to 

describe the relationship among the EPS volume fraction, EPS size and compressive 

strength. 

In 2005 A.Laukaitis et al [84] studied the effect of size on the compressive strength 

of EPS concrete. Their work demonstrated that the fine polystyrene yielded the 

highest compressive strength and that crumbled polystyrene had the lowest 

compressive strength. In their paper, compressive strength was expressed as a power 

function of density corresponding to the three kinds of polystyrene. However, all the 

samples’ compressive strengths were less than 1 MPa, and the difference for 
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compressive strength between the fine polystyrene and large polystyrene samples 

was about 0.1~0.2 MPa.  

In 2006 Daneti Saradhi Babu et al[75] investigated the effect of EPS on compressive 

strength, split tensile strength, moisture migration and absorption, for which they 

derived a fitting function between compressive strength and EPS concrete density. 

Their research didn’t explain from the influence of EPS bead size on the 

compressive strength.  

There was also others research on the EPS structure [83], fabrication and physical 

properties [81], and numerical simulation [85, 86].  

Although there has been some research focused on the effects of EPS bead size on 

compressive strength, both theoretical and numerical methods are still necessary for 

quantitative EPS concrete research. 

 (2) Theoretical analysis method 

Theoretical analysis is an economical means to research compressive strength. 

Many researchers have applied stress analysis method to the analyse of the failure 

models of concrete[87, 88]. Although the theoretical analysis method is based on 

physical model, it requires strong mathematical skills and this method still has 

problem in dealing with complex structures and multi-axis stress state or 

3-dimensional problems, which limits its application to simple structures.  

(3) Numerical simulation method  

Numerical simulation is a highly efficient and low cost researching method, which 

can also solve complex structural problems. Finite element method (FEM) is one of 

the most widely used numerical methods in the concrete field [83, 89-92]. Others 

adopted FEM to study the influence of aggregates on failure [91], and some 

researchers used FEM to study the impact of inner pore structures on the 

macro-scale stress-strain relationship [89, 93]. However, precise calculation by 

FEM depends on the meshed size of grid unit. Finer meshed size can make results 

more precise, but employs longer calculation time. 

Artificial neural network is another widely used method. Some researchers have 

adopted an artificial neural network method to investigate the influences of chemical 
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composition on compressive strength[94-96], others have adopted this method to 

study the shrinkage of concrete[97]. Additionally, there have been some researchers 

using this method to other aspects of concrete [98, 99]. However, there is less 

research with this method on the relationship between pore features and 

compressive strength. Although artificial neural network is a highly efficiency 

research method, it uses mathematical method to establish the correlation between 

each input parameter and output results, which lacks the physical meaning to 

explain the correlation mechanism.  

There are also other numerical simulation methods used in concrete field[100, 101], 

such as numerical fitting [101] and fractional factorial method[100]. All these 

numerical simulation methods present researchers with an economic and efficient 

tool to quantitatively describe concrete problems. Hence, using numerical 

simulation together with experimental verification can save the research costs and 

enhance research efficiency. 

 

2.4 Summary  

Foam concrete has great market demand for its attractive physical properties. 

Consequently, this thesis had two main aims:  

(1) To quantitatively describe pore features;  

(2) To establish the relationship between pores features and physical properties, 

which include two aspects– thermal insulation and compressive strength.  

The approaches employed to above these aims are theoretical deduction, numerical 

simulation and experimental method, which are utilized to determine quantitatively 

the impact of pore features on compressive strength and thermal insulation. To 

achieve the aims, EPS beads is employed to build the correlation between beads size 

and compressive, and the random distribution model is adopted to describe the EPS 

distribution in concrete matrix and then the FEM method is used to predict the 

compressive strength, and a theoretical model of heat conductivity model of foam 

concrete and its fire resistance is also compared with dense concrete. Because pore 
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volume fraction and pore size can be measured easily, therefore in the thesis, the 

impact of pore volume fraction and pore size are studied. 
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CHAPTER 3 COMPRESSIVE STRENGTH OF 
FOAM CONCRETE 

3.1 Experimental Design 

To minimize the influence caused by other factors, the water/cement (w/c) ratio is 

kept constant and the volume of EPS is varied. It is expected that the effect of w/c 

ratio will be similar in all samples. 

The flowchart (Figure 3.1) documents the steps used in making the EPS concrete 

sample. 

 

 

 

 

 

 

 

 

The procedure is followed to the manufacture of the EPS concrete samples for 

compressive strength testing. In order to investigate the influence of the EPS volume 

fraction on compressive strength of EPS concrete, 5 groups of EPS volume fractions 

are designed ranging from 10% to 50%. EPS bead radii are fixed at 1.3mm and 3.5 

mm.  

The following EPS beads and volume fraction are adopted in determination of 

compressive strength (Table 3.1).  

Table 3. 1 Experiment design 

Vf  

d                  

10% 20% 30% 40% 50% 

Curing 28 days 
Cut into 40×40×

40mm3 samples  

Weight and measure 

sample size 

Test its compressive 

strength 

Design composition 
Weigh the water, 

cement and EPS 

Mixed cement, water 

and EPS together 

Figure 3. 1 Flow chart of EPS concrete sample preparation 
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2.68mm √ √ √ √ √ 

7 mm √ √ √ √ √ 

Vf is volume fraction of EPS; d is the EPS diameter; √ sample employed. 

The volume fraction of EPS beads in EPS concrete is determined as: 

   
       

       
                                                         

 (3.1) 

where    is cement density, which is 3150kg/m
3
;      is EPS bead density, which 

is 18kg/m
3
; and      is EPS concrete density. 

According to Equation 3.1, if the volume fraction of EPS bead is known, the density 

of EPS concrete can be derived as: 

                                       (3.2) 

Equation 3.2 can be also rewritten as Equation 3.3 for a unit volume of EPS 

concrete. 

  (    )                               (3.3) 

Therefore, to mix a certain volume fraction of EPS concrete, the mass ratio for the 

EPS concrete can be expressed as: 

             (    )                          (3.4) 

A 40×40×40mm
3
 cubic sample is adopted to ensure a reasonable EPS distribution. 

The ratio of cement/water is set as 0.3, and the water lost during curing is 1/3 of 

total water weight, which is obtained by measuring the dried sample. So the weight 

of EPS beads can be determined. 

The different volume fractions of EPS in EPS concrete are listed in Table 3.2. 
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Table 3. 2 Component composition for different volume fraction of EPS concrete 

       （%） 

    

   

 (  

     )   

 

Cement 

density 

EPS 

density 

mass 

of 

cement 

(g) 

water  

(g) 
EPS(g) 

0 3150  3150 18 2423  727  0 

10 2837  3150 18 2181  654  2.08  

20 2524  3150 18 1938  582  4.15  

30 2210  3150 18 1696  509  6.23  

40 1897  3150 18 1454  436  8.31  

50 1584  3150 18 1212  363  10.38  

 

After casting, the samples are left in mould at an ambient temperature for 24 hours 

to ensure adequate strength for handling. After demoulding the samples are water 

submerged for 28 days. 

Compressive testing is carried out on a MTS Insight test machine with a maximum 

100 kN loading force as illustrated in Figure 3.2. 

 

Figure 3. 2 Compressive strength test machine 

 

The loading force and displacement are recorded during the test. When the cross 

area of the sample is input into the computer, compressive stress and strain can be 
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determined directly, and then Young’s modulus can be deduced by using the strain 

and stress data. 

As displayed in Figure 3.3, the strain during the compressing process may be 

contributed by the steel plates, the wood plate and the concrete sample. However, 

the test machine is unable to distinguish the strain contribution by each of these. In 

order to accurately measure concrete sample strain, strain is measured by a strain 

gauge (made by Tokyo Sokki Kenkeujo Co.Ltd), its type PFL-20-11-3LT. The 

strain gauges are attached to the both sides of specimen by glue as illustrated in 

Figure 3.3. 

The wireline is connected with a computer to record instantly strain data. In order to 

reduce the top and bottom faces friction with wooden plates, a pair of Teflon layers 

is laid on both the top and bottom sides of the concrete sample.  

  

Figure 3. 3 Strain gauge on the concrete sample, a) is the strain gauge position, 

b) concrete sample with strain gauge on the experimental platform 

 

In Figure 3.3 a), there are two centred strain gauges pasted to front and back face of 

the sample, and the two strain gauges are in the same direction. Using strain gauges, 

strain is measured directly both in vertical and horizontal dimensions. In our 

experiment, both horizontal and vertical directions of strain are measured during 

compression. The top punch dropping rate is set as 1mm/min.  

a) b) 
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Figure 3. 4 Strain gauges on the sample 

 

Since the horizontal direction strain is very small ranging from 0 to 5.00×10
-4

 

(experimental data) in contrast to vertical strain which ranged from 0 to 6.0×10
-3

. 

So the horizontal direction strain is neglected. In this thesis volume fraction ranged 

from 10% to 50% EPS beads are employed to view the strain during compressive 

strength test. 

3.1.1 Auxiliary device for measuring compressive strength  

During the initial experiments, it is discovered that if the top side of sample is not 

parallel to the bottom side of sample, then the measured compressive strength will 

be in error and much lower. Therefore, an improved method for measuring 

compressive strength is designed to avoid this. Details are shown in Figure 3.5. 
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Figure 3. 5 Assembly facility for compression testing 

 

Here in Figure 3.5 a schematic figure of facility is pictured on the left and the actual 

experimental facility on the right. Firstly, wooden plates are placed on both the top 

and bottom sides of samples to minimise potential influences of uneven faces. On 

the top wooden plate, a set of steel plates separated by a steel ball is placed centrally. 

To avoid the steel ball movement, a concave depression is machined in facing sides 

of the steel plate centre. Using the set of steel plates, the loading force is applied to 

the sample body uniformly, and the problem of nonparallel opposed faces resolved.  

 

3.1.2 EPS Beads Measurement 

Accurately measuring the size and density of EPS beads is crucial in order to 

precisely design the volume fraction of EPS concrete. To permit relatively precise 

results, 10 EPS beads are selected for an averaged diameter. Similarly, for the 

determination of density, 10 EPS beads are employed for total weight estimation. 

Then the density of EPS beads is calculated by  

         ∑ 
    

 

 
                          (3.5) 

where ri is the radius of the i
th

 EPS bead,         is the total weight of 10 EPS 

beads. 
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The ten EPS beads are depicted in Figure 3.6. 

 

Figure 3. 6 Image size of Ø 7mm EPS beads on A4 paper and magnified by 3.5 

times In order to accurately measure the size of each EPS bead, the image of these 

EPS beads is magnified and printed on A4 paper, and the ruler is employed to 

measure each EPS bead size. Image sizes of 7mm EPS beads on A4 paper are listed 

in Table 3.3. According to these measured values and the zoom ratio, the averaged 

diameter of EPS beads is obtained as  ̅  
∑  

 
     mm.  

The image of Ø2.68 mm EPS beads is illustrated in Figure 3.7. 

 

Figure 3. 7 Image size of Ø 2.68 mm EPS beads on A4 paper and magnified by 

6 times 

 

1 2 3 4 5 6 7 8 9 10 
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The similar method is also used to measure the Ø 2.68 mm EPS beads size, and the 

measured size on A4 paper is listed in Table 3.3. The zoom ratio is 1:6. According 

to these measured values and the zoom ratio, the averaged diameter of EPS beads is 

given as  ̅  
∑  

 
       . 

Accurately scaling the EPS weight is also an important step for density 

measurement, which is a key step for designing the EPS volume fraction. Therefore, 

a total of 10 EPS beads are used and weighted together so as to reduce any artificial 

error. Weights are determined with a MonoBloc AB204-S analytical balance, a 

brand of Mettler Toledo Company (the minimum weight unit is 0.1 mg, which 

matches the test requirement). The weights for both Φ7mm andΦ2.68 mm EPS 

beads is displayed in Figure 3.8.  

  

a) d=2.68 mm;                          b) d=7.04 mm 

Figure 3. 8 Real weight of 10 EPS beads of different size 
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Figure 3.8 shows the real weight of 10 EPS beads, in which a) is diameter Ø2.68 mm 

EPS beads, b) is diameter Ø7.04 mm EPS beads. The total weight of ten Ø2.68 mm 

EPS beads is 0.0030g, while the weight of Ø7.04 mm EPS beads is 0.0285 g. 

According to Equation 3.3, the densities of Ø2.68 mm and Ø7.04 mm EPS beads are 

calculated as 30.58 kg/m
3
 and 15.54kg/m

3
, respectively. The density of the small 

EPS beads is nearly twice of the large EPS beads. The measured data are listed in 

Table 3.3. 

Table 3. 3 Real diameter and density of Ø 7 mm and Ø 2.68 mm EPS beads 

 

Image 

of Ø7 

mm 

size 

(1:3.5) 

real 

size 

Ø7 mm 

Volume 

Image of 

Ø2.68 

mm 

size 

(1:6) 

Ø2.68 

mm 

real 

size 

Ø2.68 

mm 

Volume 

Ø7 mm 

density 

(kg/m
3
) 

Ø2.68 

mm 

density 

(kg/m
3
) 

1 26 7.43 214.64 15.5 2.58 9.02 15.54 30.58 

2 24 6.86 168.82 15 2.5 8.18 

  3 25 7.14 190.82 17 2.83 11.91 

  4 25.5 7.29 202.49 17.5 2.92 12.99 

  5 24.5 7 179.59 14.5 2.42 7.39 

  6 23.5 6.71 158.49 16 2.67 9.93 

  7 25 7.14 190.82 17.5 2.92 12.99 

  8 24 6.86 168.82 15.5 2.58 9.03 

  9 24.5 7 179.59 16.5 2.75 10.89 

  10 24.5 7 179.59 15.5 2.58 9.03 

  sum  

  

1833.68 

  

101.36 

   

3.2 Experimental Results and Analysis 

3.2.1 Experimental result 

Some of the experimental results are listed in Table 3.4. 

 

Table 3. 4 EPS concrete samples data 

Ø7mm 
Length 

 (mm) 

Width 

(mm) 

Height 

(mm) 

Weight 

(g) 

Density 

(kg/m3) 

Maximum 

 Force  

(KN) 

Compressive 

Strength 

 (MPa) 

1 0 % 41.92 42.83 40.06 129.81 1804.76 5 3 . 6 6  2 9 . 8 9 
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2 0 % 44.80 40.65 40.05 122.04 1673.27 4 7 . 8 7  2 6 . 2 8 

3 0 % 41.45 42.24 39.92 100.99 1444.95 3 2 . 9 9  1 8 . 8 4 

4 0 % 42.13 42.69 39.92 96.71 1346.96 2 0 . 1 9  1 1 . 2 2 

5 0 % 42.40 42.01 40.02 68.80 965.18 8 . 3 4  4 . 6 8 

2.68mm 
       

1 0 % 42.19 41.36 40.04 140.01 2003.96 9 3 . 0 1  5 3 . 3 0 

2 0 % 41.61 40.85 39.84 130.20 1922.70 8 4 . 5 8  4 9 . 7 6 

3 0 % 40.83 40.55 39.85 117.53 1781.37 6 3 . 0 3  3 8 . 0 7 

4 0 % 43.41 41.87 40.04 122.24 1679.65 5 6 . 2 5  3 0 . 9 5 

5 0 % 38.93 41.62 39.65 95.56 1487.51 3 9 . 9 4  2 4 . 6 5 

 

Using these experimental data, compressive strength under the different density and 

EPS beads size is illustrated in Figure 3.9. 
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Figure 3. 9 experimentally determined relationship between compressive 

strength and density of EPS concrete with different EPS beads diameter 

 

In Figure 3.9, compressive strength of EPS concrete at the different densities and 

diameters. The red circle points represent the compressive strength of EPS concrete 

containing Ø2.68 mm EPS beads at different volume fraction. The blue square points 

are the compressive strength of EPS concrete containing Ø7 mm EPS beads at 

different EPS volume fraction. As the concrete density increases, compressive 

strength increases in both EPS concretes. With the same concrete density, the EPS 

concrete containing smaller EPS beads has a higher compressive strength than that 

containing larger EPS beads.  
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The failure images of different size and volume fraction EPS concrete are depicted 

in Table 3.5. 

Table 3. 5 Compressing figure of EPS concrete sample 

Ø7mm (%) photo Ø2.68mm(%) photo 

10 

 

10 

 

20 

 

20 

 

30 

 

30 

 

40 

 

40 
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50 

 

50 

 

 

From Table 3.5 it can be seen that the concrete with 2.68mm EPS beads is easier to 

crack into small fragments, while the concrete with 7mm EPS beads breaks up into 

big fragments. Under the same volume fraction, there are more 2.68mm EPS beads 

than that containing 7mm EPS beads in concrete, and when failure occurs between 

EPS beads, the more EPS beads in a certain volume causes the smaller fragments. 

3.2.2 Experimental results analysis  

(1) Compressive strength of EPS concrete containing Ø2.68 mm EPS beads 

Utilizing numerical method, the fitting curve for EPS concrete containing Ø2.68 mm 

EPS beads is drawn as Figure 3.4, and fitting parameters is listed in Table 3.4, in 

which a power function is employed. 
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Figure 3. 10 Fitting curve of compressive strength of diameter Ø 2.68mm EPS 

concrete 

 

Figure 3.10 shows the fitting curve of compressive strength based on the 

experimental results, in which the black squares represent experimental compressive 

strength, and the line stands for the fitting curve. The curve fits nicely to 

experimental results.  

For EPS concrete with Ø2.68 mm EPS, Table 3.6 presented parameters give the 

following relationship for compressive strength: 

                                  (3.6) 

where       is the compressive strength of EPS concrete containing Ø2.68 mm EPS 

beads,   is EPS concrete density, and coefficient a and b can be obtained from 

Table 3.6, so                      . 

Table 3. 6 Fitting parameter of diameter 2.68 mm EPS concrete 

 a b Statistic 

 Value Standard 

Error 

Value Standard 

error 

Reduced 

Chi-Sqr 

Adj.R-Squr 

Compressive 5.58E-8 9.83E-8 2.72 0. 023 3.31 0.98 
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strength 

  

The fitting parameters of the curve are listed in Table 3.6, and in the top row a and b 

represent the coefficient of power function. The curve fits the experimental results 

well, in which R-square value reaches 0.98, very close to 1. 

For EPS concrete with Ø2.68 mm EPS beads, Table 3.6 presented parameters give 

the following relationship for compressive strength: 

                               (3.5) 

Where       is the compressive strength of EPS concrete containing Ø2.68 mm EPS 

beads,   is EPS concrete density, and coefficient a and b can be obtained from 

Table 3.6, so                      . 

(2) Compressive strength of EPS concrete containing Ø7 mm EPS beads  

Similarly, with the compressive strength measured in samples containing Ø7mm 

EPS beads, the fitting curve and fitting parameter are displayed in Figure 3.11 and 

Table 3.7. 

 

Figure 3. 11 Fitting curve of compressive strength of diameter Ø 7mm EPS concrete 
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In Figure 3.11, the square dots represent for experimental compressive strength, and 

the line represents for the fitting curve. The fitting curve closely fits the 

experimental results. As the density of EPS concrete is increased, the compressive 

strength increases. When the density is lower than 1000 kg/m
3
, the compressive 

strength is less than 5 MPa. As the density of EPS increases to 1800 kg/m
3
, the 

compressive strength value increases to more than 30 MPa. 

When EPS beads diameter is Ø7mm, EPS concrete, compressive strength is given as 

following relationship: 

                                   (3.7) 

where    is compressive strength of EPS concrete containing diameter Ø7mm EPS 

beads,   is EPS concrete density, and coefficient a and b values are obtained from 

Table 3.7. So the compressive strength by the numerical method is given as 

                  . 

 

Table 3. 7 Fitting parameter of diameter Ø 7 mm EPS concrete 

 a b statistics 

value Standard 

error 

value value Standard 

error 

value 

Compressive 

strength 

3.20E-9 1.06E-8 3.07  0.45 5.17  0.95 

 

The fitting curve matches the experimental results well with R-square value of 0.95, 

very close to 1. 

When comparing the two different of EPS concretes compressive strength, the 

smaller size of EPS beads can result in higher compressive strengths than the 

coarser EPS beads EPS concrete at the same density. 
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3.3 Young’s modulus  

Young’s modulus is an important mechanical property, which is expressed as: 

  
 

 
                          (3.8) 

where E is Young’s modulus,   is stress,   is strain.  

Stress can be estimated by dividing the loading force over the loading area:  

  
 

 
                             (3.9) 

where F is loading force, S is the area of cross section that is perpendicular to the 

loading force. 

Strain is given by Equation 3.10  

  
  

  
                           (3.10) 

where    is the reduction of height, which can be recorded by the compressing test 

machine, and    is the initial height of the sample. 

3.3.1 Stress-strain relationship 

1. Stress-strain relationship and Young’s modulus of EPS concrete with Ø2.68mm 

EPS beads 

Stress determined from       (Equation 3.9). The loading force F is obtained 

from experimental data, and s is area of sample, which is assumed to be a constant. 

The stress-strain relationship of Ø2.68 mm EPS beads with 10% volume fraction is 

depicted in Figure 3.12. 
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Figure 3. 12 Stress-strain relationship of Ø 2.68 mm EPS beads with 10% volume 

fraction 

 

When the strain is less than 0.09, the relationship between stress and strain is 

nonlinear. When the strain exceeds 0.09 but less than 0.135, the strain and stress can 

be regarded as exhibiting a linear. The maximum stress is 47 MPa. The linearly 

fitting relationship between strain and stress is employed in Figure 3.11. Young’s 

modulus of the EPS concrete containing 10% Ø2.68 mm EPS beads is 577.23 MPa. 

The stress-strain relationship of Ø2.68mm EPS beads with 20% volume fraction is 

plotted in Figure 3.13. 
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Figure 3. 13 Stress-strain relationship of Ø 2.68 mm EPS beads with 20% volume 

fraction 

 

When strain is lower than 0.02, the stress increases slowly as the strain increasing. 

When the strain value exceeds 0.02, the relationship between stress-strain 

approximates linear relationship and the maximum stress is 40 MPa when the strain 

is 0.08. According to stress-strain relationship, Young’s modulus is   
  

  
 

       MPa. 

The stress-strain relationship of Ø2.68 mm EPS beads with 30% volume fraction is 

evident in Figure 3.14. 

 ε  
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Figure 3. 14 Stress-strain relationship of Ø2.68 mm EPS beads with 30% volume 

fraction, a) is displacement-force relationship; b) is stress-strain relationship 

 

With strains lower than 0.04, the stress increases slowly as strain increases. When 

the strain value exceeds 0.04, the relationship between stress-strain approximates a 

linear relationship, and the maximum stress is 37 MPa when the strain is 0.08. 

According to the strain-stress relationship, the linear section is regarded as elastic 

deformation with a Young’s modulus value of   
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0.00 0.05 0.10

0

10

20

s
tr

e
s
s
 (

M
P

a
)

strain

 2.68 mm EPS with 40 percent

 

Figure 3. 15 Stress-strain relationship of Ø2.68 mm EPS beads with 40% volume 

fraction  
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As the strain is less than 0.04, the stress increases slowly as strain increases. When 

the strain value exceeds 0.04, the relationship between stress-strain approximate a 

linear relationship, and the maximum stress is 20 MPa when the strain is 0.08. The 

linear section can be regarded as elastic deformation with a Young’s modulus value 

of   
  

  
        MPa. 

 

2. Stress-strain relationship and Young’s modulus of EPS concrete with Ø7.04 

mm EPS beads 
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Figure 3. 16 Stress-strain relationship of 14% EPS concrete with Ø7.04 mm EPS 

beads 

 

At lower strain than 0.05, the stress increases slowly as strain increases. When the 

strain value is above 0.05, the relationship between stress-strain is nearly linear, and 

the maximum stress is 32 MPa when the strain is lower than 0.1 with a Young’s 

modulus of   
  

  
     MPa. 
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Figure 3. 17  Stress-strain relationship of 25% EPS concrete with Ø7.04 mm EPS 

beads 

 

The stress-strain relationship of 25% EPS concrete with Ø7.04 mm EPS beads is 

plotted in Figure 3.17. As the strain is less than 0.01, the stress increases slowly as 

strain increases. When the strain value is above 0.01, the relationship between 

stress-strain is close to linear relationship, and the maximum stress is 27 MPa when 

the strain is 0.07 with a Young’s modulus of   
  

  
     MPa. 

 ε  
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Figure 3. 18  Stress-strain relationship of 34% EPS concrete with Ø7.04 mm EPS 

beads 

 

The stress-strain relationship of 34% EPS concrete with Ø7.04 mm EPS beads is 

depicted in Figure 3.18. With the strain values is less than 0.035, the stress increases 

slowly as strain increases. When the strain value exceeds 0.035, the relationship 

between strain and stress approximated a linear relationship. When the strain is 

0.065, the maximum stress reached 15 MPa with a Young’s modulus value of 

  
  

  
     MPa. 
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Figure 3. 19  Stress-strain relationship of 53% EPS concrete with 7.04 mm EPS 

beads 

The stress-strain relationship for 53% EPS concrete with Ø7.04 mm EPS beads is 

depicted in Figure 3.19. As the strain is lower than 0.03, the stress increases slowly. 

When the strain value is above 0.03, the relationship between stress-strain is nearly 

linear, and the maximum stress is 5 MPa when the strain is 0.04 with a Young’s 

modulus is given:   
  

  
     MPa. 

 ε  
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From Figures 3.10~3.19, it can be deduced that the strain of foam concrete is much 

larger than that of common concrete, and this is attributed to the auxiliary 

equipment. Firstly, the loading force is exerted on the auxiliary equipment, 

especially for the wooden plate. Due to its lower strength, the wooden plates 

contribute a majority part of the strain, which creates higher the strain values. When 

the strain values greatly exceed the true strain of concrete, the stress value 

approaches the former calculating value, and Young’s modulus is much lower than 

the real value. This is because the loading force is transferred directly to the sample 

and there is no loss of force during the pressing process. So, there is no deviation in 

stress applied on, and strain is the main reason for Young’s modulus deviation. 

3.4 Relationship between Volume Fraction and 

Compressive Strength 

Throughout the experimental measurements, compressive strength of foam cement 

is determined by different volume fractions as listed in Table 3.8. 

Table 3. 8 Different density of foam concrete 

Foam 

adding 

percent 

(mass %) 

Density 

(kg/m
3
) 

compressive 

strength 

(MPa) 

Foam 

Volume 

fraction 

0 1373 48.5 0 

1.3 1194 32.2 0.13 

3.3 1016 17.4 0.26 

5 902 12.6 0.34 

6.6 817 9.1 0.41 

10 761 8.3 0.45 

13 608 4.5 0.56 

16 580 3.5 0.58 

* The experimental results are provided by Dr Zuhua Zhang  
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From these data, a numerical fitting method is used and the relationship between the 

volume fraction and compressive strength for foam concrete established. This is 

portrayed in Figure 3.20. 

 

Figure 3. 20 Relationship between compressive strength and volume fraction 

 

The relationship between compressive strength and volume fraction is plotted in 

Figure 3.20. The squares represent the experimental results; the line is the 

relationship between the volume fraction and compressive strength from numerical 

analogue with the expression below: 

                                                    (3.11) 

where   is compressive strength,    is the volume fraction.  

The statistics of fitting curve can be seen in Table 3.9. 

Table 3. 9 Fitting parameter of compressive strength of foam concrete 

 Y0 A1 t1 Statistics 

 Value Value Value Reduced Chi-Sqr Adj.R-Square 

Compressive 

strength 

49.00 54.10 0.31 1.66 0.99 
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3.5 Model Deduced from Experimental Results for 

Compressive Strength Related to Pore Feature  

In order to reflect the influence of pore feature on the compressive strength of foam 

cement, pore size distribution, averaged pore size, pore shape factor and pore area 

fraction are investigated separately. 

Initially, the relationship between the mass of foam and the foam volume fraction is 

measured. Next the relationship between volume fraction and pore size distribution 

is constructed. Then the relationship between volume fraction and pore shape is 

constructed. This is then followed by the relationship between volume fraction and 

pore area fraction. Finally the relationship between pore features and compressive 

strength is formulated.  

When the specimen is made, the compressive strength with different volume 

fraction of foam mass can be measured by compressive strength test machine, and 

then specimens with different volume fraction of foam are picked and cut through. 

The cross section of the specimen can be observed and recorded by optical 

microscope. Then, the recorded images are counted by image statistics software to 

determine pore size distribution, pore area fraction, pore shape factor. 

According to the experimentally measured data, pore features with different pore 

volume fractions can be derived in Table 3.10. 

 

Table 3. 10 Pore features and compressive strength 

adding 

foam 

pore 

size 

pore size 

possibility pore shape pore area compressive strength 

%(mass) μm 

   

MPa 

0 100 0.88 0.83 0.022 48.5 

0 200 0.10 0.73 0.022 48.5 

0 400 0.02 0.7 0.013 48.5 

0 600 0 0 0 48.5 
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0 800 0 0.65 0.006 48.5 

0 1000 0 0 0 48.5 

0 1500 0 0 0 48.5 

0 2000 0 0 0 48.5 

1.3 100 0.83 0.82 0.034 32.2 

1.3 200 0.13 0.62 0.056 32.2 

1.3 400 0.03 0.44 0.050 32.2 

1.3 600 0.003 0.27 0.015 32.2 

1.3 800 0 0.41 0.005 32.2 

1.3 1000 0 0.42 0.004 32.2 

1.3 1500 0 0.32 0.005 32.2 

1.3 2000 0 0 0 32.2 

3.3 100 0.683 0.8 0.026 17.4 

3.3 200 0.223 0.65 0.075 17.4 

3.3 400 0.088 0.43 0.104 17.4 

3.3 600 0.005 0.27 0.017 17.4 

3.3 800 0.001 0.22 0.005 17.4 

3.3 1000 0 0.23 0.002 17.4 

3.3 1500 0 0 0 17.4 

3.3 2000 0 0 0 17.4 

5 100 0.615 0.79 0.015 12.6 

5 200 0.200 0.7 0.043 12.6 

5 400 0.132 0.52 0.109 12.6 

5 600 0.037 0.31 0.089 12.6 

5 800 0.013 0.22 0.058 12.6 

5 1000 0.002 0.17 0.019 12.6 

5 1500 0.001 0.09 0.009 12.6 

5 2000 0 0 0 12.6 
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6.6 100 0.629 0.79 0.010 9.1 

6.6 200 0.174 0.69 0.028 9.1 

6.6 400 0.118 0.52 0.076 9.1 

6.6 600 0.039 0.32 0.074 9.1 

6.6 800 0.021 0.21 0.079 9.1 

6.6 1000 0.008 0.14 0.052 9.1 

6.6 1500 0.008 0.1 0.0871 9.1 

6.6 2000 0.003 0.06 0.090 9.1 

10 100 0.674 0.8 0.006 8.3 

10 200 0.153 0.68 0.020 8.3 

10 400 0.089 0.51 0.047 8.3 

10 600 0.039 0.33 0.058 8.3 

10 800 0.019 0.18 0.059 8.3 

10 1000 0.008 0.14 0.041 8.3 

10 1500 0.010 0.08 0.099 8.3 

10 2000 0.007 0.05 0.207 8.3 

13 100 0.683 0.8 0.005 4.5 

13 200 0.131 0.69 0.014 4.5 

13 400 0.096 0.57 0.040 4.5 

13 600 0.035 0.4 0.040 4.5 

13 800 0.017 0.28 0.041 4.5 

13 1000 0.013 0.21 0.055 4.5 

13 1500 0.014 0.16 0.099 4.5 

13 2000 0.010 0.07 0.285 4.5 

16 100 0.734 0.8 0.004 3.5 

16 200 0.125 0.66 0.010 3.5 

16 400 0.077 0.56 0.023 3.5 

16 600 0.024 0.42 0.023 3.5 
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16 800 0.008 0.3 0.013 3.5 

16 1000 0.010 0.25 0.029 3.5 

16 1500 0.009 0.17 0.048 3.5 

16 2000 0.012 0.06 0.510 3.5 

*The experimental data are provided by Dr Zuhua Zhang at USQ 

 

3.5.1 Pore Size Distribution and Average Pore Size 

An exponential function is used to relate the added foam content to pore size 

distribution, as expressed below: 

                                 (3.12) 

where a and b are constant, y(x) is probability of pore size, x is pore size. 
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         e)                      f)                        

 

                    g)                         h)         

Figure 3. 21 Pore size distribution with different volume fraction 

 

The pore size distributions with different pore volume fractions are depicted in 

Figure 3.21. The squares represent the experimental results, and the line is the fitting 

curve, in which a)     , b)         , c)         , d)         , e) 

       , f)         , g)         , h)        . When no foam is 

introduced into the concrete, more than 98% of pores are less than 0.5mm, and 88% 

of pore sizes are approximately 100μm and 10% of the pore size are 200μm. As 

the pore volume fraction increases, the percent of 100μm pores decreases gradually 

from 83% at         to 62% at        , and then the percent of 100μm 

pores keeps nearly same. One the contrary, the percent of pore with over 600μm 

increases gradually as the pore volume fraction increases. In Figure 3.21, as the pore 
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volume fraction increases continuously, the percentage of pore size ranging from 

100μm to 400μm remains nearly constant, and the percentage of pore size over 

800μm shows little increase. Also, the numerical simulation curve and the 

experimental results for pore size distribution matches well. These with numerical 

fitting, pore size probabilities under different volume fractions are given in 

Table3.11.  

 

Table 3. 11 Pore size distributed function under different foam content 

Foam 

adding 

(mass 

weight) 

Pore size Possibility 

  (  )              

A value B value Adj.R-Square 

                   

           

0.69 -0.00814 0.85 

                        

           

0.65 -0.00839 0.90 

                        

           

0.40 -0.00784 0.98 

                      

           

0.04 -0.00528 0.90 

                        

           

0.04 -0.00509 0.85 

                       

           

0.16 -0.00569 0.83 

                       

           

0.20 -0.00595 0.82 

                       

           

0.32 -0.00645 0.82 

 

Following on Table 3.11, the pore size distribution with different pore volume 

fractions can be expressed as an exponential function, in which coefficient of A and 
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B in  (  )             varied under different volume fraction. Therefore, 

coefficient of A and B in  (  )              is correlated with the pore 

volume fraction; A is fitted by an exponential function and B is fitted by a cubic 

function related to volume fraction as follow: 

 (  )              (    ( 
       

    
)  

       

    
  )   (3.13) 

 (  )                        
        

        (3.14) 

where    is the pore volume fraction.  

3.5.2 Pore shape factor  

With regard to the experimental data, it is discovered that the pore shape factor is 

related to pore size, and pore size distribution depended on the volume fraction. 

Therefore, the pore shape factor is a function of volume fraction and size. In 

Table3.10 the data illustrated that when 0 and 3.3 mass percent of foam are added, 

there are more than two items of zero value, and therefore these data can be 

excluded from the model. 

For identical material, the pore shape is determined by the content of added foam 

and the pore size. Therefore, the development of model for the pore shape factor is 

based on two steps: in the first step, for each volume fraction, the relationship 

between pore size and pore shape factor is deduced; secondly combining these 

equations with the content of added foam, an equation is achieved. 

 

Table 3. 12 Coefficient of shape factor fitted by 5 order polynomial curve 

Volume 

fraction  

B0(  ) B1(  ) B2(    B3(    B4(    B5(    

0.13 1.020 0.00216 7.11E-7 3.15E-9 -3.00E-12 7.32E-16 

0.34 0.809 1.29E-4 -4.22E-6 6.31E-9 -3.54E-12 6.87E-16 

0.41 0.845 -4.16E-4 -2.07E-6 3.05E-9 -1.54E-12 2.65E-16 

0.45 0.872 -6.79E-4 -1.37E-6 2.25E-9 -1.13E-12 1.92E-16 
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0.56 0.88 -8.78E-4 2.09E-7 -2.98E-10 4.30E-13 -1.37E-16 

0.59 0.92 -1.55E-3 2.32E-6 -2.73E-9 1.62E-12 -3.50E-16 

Note: B0, B1, B2, B3, B4 and B5 are the coefficient of constant term, first order 

term, second order term, third order term, fourth order term and fifth order term.  

 

Employing a polynomial fitting function, the coefficients from B0(  ) to B5(    

under the different volume fraction conditions are obtained as follows: 

  (  )                      
         

              
     

        
  

  (  )                                  
              

 

             
              

  

  (  )                                     
           

   
              

               
  

  (  )                                      
            

   
               

               
  

  (  )                                        
      

         
               

               
  

  (  )                                         
      

         
               

                

So pore shape factor is depicted as:  

   (    )    (  )    (  )    (  ) 
    (  ) 

    (  ) 
    (  ) 

      

(3.15) 

where    is the volume fraction of foam concrete, s is pore size. 

According to Equation 3.15 the shape factor fitting curve of Vf=0.34 foam concrete 

is drawn in Figure 3.22, and the coefficient of determination is listed in Table 3.13. 
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Figure 3. 22 Five order polynomial fitting curve of shape factor for Vf=0.34 

foam concrete 

Figure 3.22 shows that the five order polynomial fitting curve fits the black squares 

well, which indicates that the fitting curve matches the pore shape factor well with 

different pore size and the pore shape factor decreases as the pore size increases. 

The coefficient of determination is shown in Table 3.13. 

Table 3. 13 Coefficient of determination for the regression of curve fitting  

 
B1 B2 B3 B4 B5 

Adj.R-Squar

e 

Pore 

shape  

factor 

0.809 1.29E-04 -4.22E-06 6.31E-09 -3.54E-12 0.9966 

 

3.5.3 Pore area model 

It is established that the pore area fraction corresponds to the pore size at different 

volume fractions, and each size pore area is determined by the pore size and pore 

shape factor. Therefore, the compressive strength of foam concrete can be fitted by 

the pore size and area fraction. 

With reference to Table 3.10, the averaged pore size, total pore area fraction and 

compressive strength value can be derived as appeared in Table 3.14. 
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Table 3. 14 Averaged pore size, total pore area fraction and compressive 

strength value with different volume fractions of foam concrete 

Volume 

fraction 

averaged pore size 

(um) 

Pore area 

fraction 

compressive 

strength (MPa) 

0 115.7 0.0623 48.5 

0.13 125.8 0.1703 32.2 

0.26 151.8 0.2291 17.4 

0.34 189.8 0.3397 12.6 

0.41 211.5 0.4958 9.1 

0.45 210 0.5384 8.3 

0.56 222 0.5797 4.5 

0.59 199 0.6613 3.5 

 

Using Table 3.14, the averaged pore size can be fitted by a 4
th

 order equation and 

related it to volume fraction as follows: 

  (  )
̅̅ ̅̅ ̅̅ ̅                        

           
           

   (3.16) 

where  (  )
̅̅ ̅̅ ̅̅ ̅is the averaged pore size under the volume fraction   .  

 (  )
̅̅ ̅̅ ̅̅ ̅                    

         
         

     (3.17) 

where  (  )
̅̅ ̅̅ ̅̅ ̅ is the pore area fraction. 

The averaged pore size and pore area fraction are two important parameters for 

determining the compressive strength of foam concrete, the compressive strength of 

foam concrete can be expressed as a function of these two variables as follow: 

      ̅  ̅                      (3.18) 

where     ̅  ̅  is an unknown function,   ̅ is averaged pore size, and  ̅ is pore area 

fraction. 
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According to Table 3.14 and Equation3.18, compressive strength can be described 

by an error function, which is given as:  

            (     (
  ̅         

          
)*  (     (

 ̅        

        
)*   (3.19) 

where   is the compressive strength of foam concrete, and     is an error function, 

which can be expressed :       
 

  
∫     

  
 

 
. 

 

Figure 3. 23 Compressive strength related to pore size and pore area fraction 

 

Figure 3.23, a diagram of the numerical fitting of compressive strength by pore size 

and pore area fraction, in which different colours stand for different compressive 

strength values. As pore size increases or pore area fraction increases, compressive 

strength of foam concrete declines, indicating that reduced pore size and pore area 

fraction are effective ways to enhance its compressive strength.  

Comparing the compressive strength model by volume fraction and pore features, it 

is found that the model by volume fraction is more closely approached to the 

experimental result. This phenomenon is explained by cumulative error in the pore 

feature model where in each step error is gradually accumulated leading to the 

relative error becoming bigger.  

 



 

 

57 

 

3.6 Summary 

In this chapter, EPS concrete is used to study the EPS size and volume effects on 

compressive strength, and its Young’s modulus is deduced according to the 

compression test, in which the strain gauge is used. In addition, a numerically fitting 

method is adopted to describe pore features of foam concrete. With a series of 

experiments, improved experiments and results analysis, it is established that: 

1) The compressive strength of EPS concrete containing 2.68mm EPS beads can be 

expressed as a density function:                      ; while the 

compressive strength of EPS concrete containing 7.04mm EPS beads can be 

expressed as                  . 

2) For the smaller size of EPS beads in EPS concrete, the experimental 

measurements are more closely approximate the theoretical calculation. 

Additionally, the lower the volume fraction of EPS beads in EPS concrete is, 

values tend to converge between the approaches.  

3) Through numerically fitting, both the pore volume fraction and compressive 

strength of foam concrete can be expressed as:                  

            ; 

4) Pores size distribution in foam concrete is described as:  (    )     (     

       (    ( 
       

    
)  

       

    
  )  (                 

       
         

 ) ); pore averaged sizes is  (̅    )  
 

   
∫  (    )  

 

 

    
 

 
∫    (            (    ( 

       

    
)  

       

    
  )  

 

 

(                     
        

 ) )  ; 

5) The Pore shape factor is described as:    (    )    (  )    (  )  

  (  ) 
    (  ) 

    (  ) 
    (  ) 

 , where    is the volume 

fraction of the foam cement, and s is the pore size. 
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6) Pore area fraction is described as:  (  )
̅̅ ̅̅ ̅̅ ̅                       

  

        
          

 ; 

7) The compressive strength of foam concrete is expressed as:  

            (     (
  ̅         

          
)*  (     (

 ̅        

        
)*, where erf is 

the error function.  
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CHAPTER 4 A THEORETICAL METHOD TO 
DEDUCE THE COMPRESSIVE STRENGTH OF 
EPS CONCRETE  

In this study, a theoretical method is employed to determine the influence of beads 

size of EPS concrete on the compressive strength of EPS concrete, and then 

compressive strength of two sizes mixing together model is built to predict the 

possible maximum compressive strength of EPS concrete.  

4.1 Physical Model for Uniformed EPS Beads 

To enable the study of EPS bead size and its impact of the ratio of EPS beads size to 

sample size on the compressive strength of concrete, following assumptions are 

made: 

1) All the EPS beads are spherical shape and that their radii are uniform; 

2) The EPS beads are distributed in the concrete body uniformly, which means 

that the distance between any neighbouring EPS beads is homogeneous; 

3) The shape and size of all the EPS beads do not change during the mixing, 

casting, curing and aging period. 

4) EPS beads have no strength, and that the compressive strength of EPS 

concrete is solely that of the solid concrete matrix.  

According to C.M.Song et al[102], the upper limitation of the volume fraction for 

randomly packing of equal radius spheres in a cubic container is 0.634. When the 

volume fraction exceeds 0.6, the EPS beads will be in contact with each other. 

Therefore, the upper limitation for EPS beads volume fraction is set at less than 0.6. 

In order to simplify the model, the EPS beads in concrete are regarded as regularly 

ordered as depicted in Figure 4.1, and a cubic shape for specimen with a size of 

      is adopted; the radius of EPS bead size is  . 
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Representable bead array is illustrated in Figure 4.1 in 2 dimensions, in which the 

maximum volume fraction of EPS will be where EPS beads are in mutual contact 

with each other. In order to simplify the model, EPS beads are assumed as rigid ball 

without any deformation during mixing and casting procedures.  

The volume fraction of EPS beads is expressed as: 

   
       

       
                      (4.1) 

where    is the volume fraction of EPS beads in the whole EPS concrete specimen,  

   is concrete density without any EPS beads,      is EPS bead density,      is 

EPS concrete density. 

To explain the model clearly, the EPS beads distribution is divided into two 

situations, one is loose packing condition where the EPS volume fraction is relative 

low and there is no overlapped layer between any two neighbour EPS bead layers; 

the other is high packing condition that there is overlapped layer between two 

neighbour EPS beads layers. The overlapped layer means that the distance of two 

neighbour EPS bead layers is less than 2r, and r is the EPS beads radius. 

4.1.1 Loose packing model of EPS beads  

When the volume fraction of EPS beads is very small, the total number of EPS 

beads can be expressed as: 

  
     

                                (4.2) 

Figure 4. 1 Schematic figure of EPS beads arrangement in concrete body 



 

 

61 

 

where n is the total number of EPS beads, r is the radius of EPS bead, a is the size 

of the specimen. 

When there is no overlap between two neighbouring layers of beads, the relationship 

between the EPS bead radius and the specimen size follows Equation4.3.  

    
 

                          (4.3) 

Put Equation4.3 into Equation4.2, yielding   
 

 
      . 

The compressive strength of EPS concrete is expressed as: 

     (   
 

  
  

  )                  (4.4) 

where    is the compressive strength of the concrete without any EPS beads, and 

   is the compressive strength of EPS concrete. 

Incorporating Equation 4.2 into Equation 4.4, provides: 

     (   
 

  
  

  )    (  (
    

 

  
*

 

 
+                (4.5) 

In Equation 4.5, the compressive strength of EPS concrete is determined singly by 

the EPS volume fraction, which means that the compressive strength in the 

uniformed distribution EPS concrete is only determined by the volume fraction of 

EPS beads. 

4.1.2 High density packing of EPS beads 

When there is overlap between the two neighbouring layers of EPS beads, the 

schematic figure of the EPS beads pile is depicted in Figure 4.2.  
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Figure 4. 2 Schematic figure of overlap between neighbouring EPS beads 

 

Figure 4.2 is a schematic figure of the maximum volume fraction for a packing 

mode for neighbouring layers of EPS bead. Figure 4.2(a) is the top view of EPS 

beads piled up, in which the bottom layer of EPS beads are arranged in triangle 

order, and the EPS bead in the upper layer is in contact with the three neighbouring 

EPS beads. Figure 4.2 (b) is the front view that shows the distance between the two 

layers’ centre h, which is less than 2r. Figure 4.2 (c) is a schematic figure of 

neighbouring layers, where are ABCD stands for centre of four EPS beads structure, 

in which point D is the upper layer, and A,B and C are bottom layers. Because all 

the EPS beads are in mutual contact with the each other, there is a relationship: 

                    . 

In the overlapping zone, the maximum cross section is located in the middle of DO 

position, and the distance of h is DO that can be expressed as: 

                                           (4.6) 

                                         (4.7) 

                                            (4.8) 

According to Equation 4.8, AO can be deduced as: 

                                          (4.9) 

Incorporating Equation 4.6 into Equation 4.9, Equation 4.10 can be derived: 

           (      )
 

         ×          
 

  
   (4.10) 

 

    

  

    

h 

E o 

C 

B 

A 
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(c) (a)  (b) 
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Therefore, h can be ascertained: 

           
   

 
                          (4.11) 

In the middle of DO, all the radii of circles are the same, and given by: 

    √   (
 

 
)
 

 
   

 
                      (4.12) 

where    is the cross-section radius of EPS beads in the middle of DO.  

The maximum area fraction of EPS beads will be:         
       , where    

is the total number of EPS beads in each layer,   is the maximum area of EPS 

beads. In the specimen, there is a relationship:       , where    is the total 

number of layers. And    and   can be deduced as Equation 4.13 and 4.14 as 

related in Figure 4.2. 

   
    

 
 

    

      
                          (4.13) 

   (
    

  
)  (

    

  
)  

       

      
 

       

                          (4.14) 

The maximum volume fraction of EPS beads in EPS concrete can be deduced as 

Equation 4.15 

   
        

 

   

    

    
 

 

       

         

    
        

      
 

   
(  

  

 
)
 

            (4.15) 

From Equation 4.15, the following can be assured: 
  

 
      

 

   
       . The 

maximum volume fraction of EPS beads is 0.6413, and this value is applicable only 

when all EPS beads are packed in an orderly array with all the neighbouring EPS 

beads in contact with each other. Therefore, the maximum area fraction of EPS 

beads can be expressed as: 

    
     

   

       

        

   
 

   
(  

  

 
)
 

                 (4.16) 

where    is the maximum area fraction of EPS beads in EPS concrete specimen. 
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When 
  

 
          

 

   
       ,    

 

   
       , which means that the 

maximum EPS beads surface fraction in EPS concrete is 0.9069. Meanwhile the 

compressive strength of EPS concrete is expressed as Equation 4.17. 

                                                 (4.17) 

where        is the minimum compressive strength of EPS concrete where the 

volume fraction of EPS beads reaches the maximum value 0.9069, and its 

compressive strength is nearly 1/10 of the dense concrete. This implies that for 

equal radius EPS beads that cast EPS concrete, the lowest compressive strength will 

be greater than 0.0931 times that of dense concrete. Here    is set as 40 MPa. 

According to Equation 4.17, the relationship between compressive strength and the 

ratio of EPS beads radius to specimen size can be drawn as Figure 4.3. 
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Figure 4. 3 Relationship between the ratio of EPS bead to specimen and 

compressive strength under the maximum volume fraction 

 

From Figure 4.3 it can be seen that the minimum compressive strength will be 

higher than 8.58MPa. As ratio r/a increases, the compressive strength increases too. 

Actually, when r/a>0.317, there is only one EPS bead in any cross section of the 

cubic specimen that is not satisfied with a maximum volume fraction of 0.7405. 
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However, when the r/a approaches to 0.5, there is only one EPS bead in the cubic 

specimen. At that time, the volume fraction of EPS is given by Equation 4.18: 

   
    

 

  
 

  

     
 

 

 
                          (4.18) 

 and its maximum area fraction of EPS beads is determined as: 

   
   

   
 

 
                            (4.19) 

Applying Equation 4.4 and Equation 4.19, the compressive strength is 8.58 MPa. 

4.1.3 Different situation of packing EPS beads 

In order to investigate the effect of r/a on compressive strength, r/a can be divided 

into the following situations.  

Condition 1               , (
 

      
 

 

 
 

 

 
), there is only one EPS bead 

in the cubic sample, and the volume fraction can be expressed as:  

   
    

                      
 

 
 (

  

  
)

 

 
                             

(4.20) 

The maximum area fraction of a single EPS bead in EPS concrete will be: 

   
   

    (
   

  
)

 

 
                       (4.21) 

For only one EPS bead, the maximum volume fraction is   
    

   
 

 

 
      . 

If follows that with a single EPS bead occupying the maximum volume fraction, 

the maximum area fraction can be deduced as:    
   

   
 

 
      where 

     , and the compressive strength is given as Equation 4.22. 

                                           (4.22) 
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When there is only one EPS bead in the concrete specimen and the radius of EPS 

bead gradually increases from very tiny value to half of the specimen size, the 

compressive strength will be expressed as: 

               (   
  

  )               (4. 23) 

According to Equation 4. 23, the relationship between compressive strength and the 

volume fraction for a specimen with a single 1 EPS bead in EPS concrete can be 

plotted as Figure 4.4. 
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Figure 4. 4 Relationship between ratio of EPS bead to specimen and compressive 

strength for a single EPS bead in concrete body 

 

In Figure 4.4 where there is only a single EPS bead in the specimen, and when r/a=0, 

the volume fraction of EPS is zero and EPS concrete has the maximum compressive 

strength, which is 40 MPa. When r/a increases, the volume fraction of EPS beads 

also increases and the compressive strength decreases gradually. As r/a reaches 0.5, 

the compressive strength drops down to 8MPa.  

Condition 2 The situation of two EPS beads 
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EPS concrete under a pressure condition, the cross A-A section along the diagonal of 

the top surface exists two EPS beads when (  
 

  
)     (    ) , 

(
 

    
 

 

 
 

 

      
) applied. The cubic specimen size is      , and the radius 

of EPS bead is r. The volume fraction of EPS beads is    
      

    (   ), and 

the total number of EPS beads is   
     

    . In this situation, EPS beads volume 

fraction has a volume between               .  

The maximum area fraction of EPS beads can be deduced as    
   

         

     , which means that the maximum cross section area must be the section across 

through one of the two beads centre, and the maximum EPS area fraction will be in 

the range of               . Therefore, the compressive strength of EPS 

concrete is the same as Equation 4.23. 

As Figure 4.5 indicates that even for the cube when there is more than one EPS bead 

present, there is overlap, but the maximum area fraction of EPS is only determined 

by one EPS bead. 

When the two kinds of r/a EPS concrete have the same volume fraction, one r/a is 

as stated in condition 1, and the other r/a is as stated in condition 2 where there are 

two EPS beads in EPS concrete.  

   
 

  

 
(
  

 
)
 

    
  

  

 
(
  

 
)
 

                  (4.24) 

Pressure 

𝑎 

  𝑎 

A 

A 

A-A 

Figure 4. 5 Schematic figure of packing mode of two EPS beads in a cubic specimen 
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where r1 and r2 are the radius of EPS bead in condition 1) and condition 2), 

respectively,    
 and    

 are the volume fraction of EPS bead in condition 1) and 

condition 2) respectively. 

And then Equation 4. 24 applies: 

  

 
  

 

 
  

 
                             (4.25)  

So the maximum EPS area fraction of situation 1) is: 

     (
  

 
)
 

  (
 

 
   

 
)

 

  
 

                     (4.26) 

From Equation 4.26, it can be established that if the volume fraction is the same, the 

maximum EPS area fraction of condition 1) is  
 

  times of condition 2), which 

means that one EPS bead has a higher area fraction than the EPS area fraction of 

two EPS beads embedded in concrete. 

Condition 3 when (    )   , 
 

 
 

 

    
, the volume fraction of EPS is 

   
      

   , and the total number of EPS beads are   
     

     (n<8).  

Similarly to condition 2), the maximum area fraction of EPS beads must be the cross 

section containing integer number of EPS beads, and the maximum area face must 

be the theoretical face through these EPS beads centre. In such a cross-section, the 

maximum number of EPS beads is deduced from Equation 4.27. 

          
 

                           (4.27) 

where ncs is the maximum EPS bead number,     is a round function, which 

transforms  
 

  into an integer and towards to the zero direction because in real 

samples, there are no divided EPS beads. 

According to Equation 4.27, the maximum EPS beads area fraction is expressed as 

Equation 4.28. 

                                  (4.28) 
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The compressive strength is deduced as: 

                 
   (

     

    )

 
 
   

               (4.29) 

When the volume fraction is set as a constant, the effect of EPS bead size can be 

rewritten as a function of the ratio of EPS beads to specimen. For this study, two 

different sizes of EPS beads are adopted, which are    
  

 
 and    

  

 
, 

respectively, and then the compressive strength is provided by Equation 4. 30: 
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(4.30) 

Where     and     are the maximum area fractions of EPS beads corresponding 

to    and   . 

4.1.3 Results and discussion 

When the volume fraction of EPS beads is determined, the total number of EPS 

beads can got as a function of r/a according to Equation 4.24. Using Equation 4.27 

the total number of EPS beads in the cross section can be obtained, then the EPS 

beads area fraction can be predicted by Equation 4.28. When the ESP beads area 

fraction is determined, the compressive strength can be got according to Equation 

4.29. Equation 4.24 and 4.29 are function of r/a. Based on Eq.4.24, 4.27 and 

Eq.4.29, the relationship between r/a and the possible maximum compressive 

strength can be plotted. 

Here the volume fraction of EPS bead is adopted as 5%, 20% and 40% to find the 

role of r/a on compressive strength, in which 5% volume fraction represents the 
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loose EPS bead distribution; 20% a middle level of EPS distribution, and 40% the 

upper level of EPS density distribution. The maximum r/a value can be deduced by 

using Equation 4.30. 

   

{
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For     , the ratio of EPS beads to specimen should be 
 

 
       . The 

relationship between r/a and compressive strength can be calculated as Figure 4.6 

according to Equation 4.30. 

The relationship between the r/a and compressive strength with the EPS volume 

fraction of 5% is plotted in Figure 4.6, where the number 1,2,3,4 and 5 represent the 

total number of EPS beads in one of direction of the maximum cross-section of the 

specimen. 
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Figure 4. 6 Relationship between r/a and compressive strength when   =5% 
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The compressive strength value oscillates from the initial value of 33.35MPa when 

the r/a approaches to zero, which means that the radius is very tiny compared with 

specimen size and there are large number of EPS beads in each direction in the 

cross-section of the specimen. When the r/a is less than 0.05, the specimen size is 

10 times of the EPS bead diameter, and in each direction of the maximum 

cross-section there are more than 5 EPS beads as shown in the left side of figure as 

marked 5, in which the amplitude of compressive strength from the averaged 

compressive strength is less than 1MPa. When the number of EPS beads in each 

direction of the specimen is less than 5, the amplitude of compressive strength 

varies greatly. From Figure 4.6, it can also be found that the maximum and the 

minimum compressive strength are 36.98MPa and 28.69MPa respectively, and the 

difference between the maximum and the minimum compressive strength reaches 

8.19MPa, nearly 25% of the maximum compressive strength.  

Neglecting the compressive strength of EPS beads, the compressive strength can be 

deduced theoretically by the method presented in Equation 4.29. A comparison the 

theoretical compressive strength with the experimental values of EPS concrete with 

Ø2.68mm EPS beads is provided in Figure 4.7. 

 

Figure 4. 7 A comparison between theoretically calculated and experimentally 

determined compressive strength values 

In Figure 4.7, the comparison between theoretically calculated values and 

experimentally determined compressive strength of EPS concrete with diameter of 

Ø2.68mm EPS beads is provided. The theoretically calculated compressive strength 
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is higher than the experimentally determined value. However, some experimental 

values are very close to theoretically calculated values. The difference between 

theoretically calculated value and experimentally determined value is less than 

15MPa. The difference is attributable to: 1) theoretical calculated values are based 

on the idealized EPS distribution model; 2) experimental condition may have 

generated handling and preparation error which have led to inaccuracies. 

Convergence but both methods are achieved by numerical means: 

   
       

        
     

                      (         

            )                                            (4.31) 

where    
  is the compressive strength of Ø2.68 mm EPS beads by Equation 4.30, 

   
  is the compressive strength by the experimental method; A is the difference 

between predicting and experimental results. Therefore, the real compressive 

strength at any EPS volume fraction can be expressed as the theoretically calculated 

value subtracting the difference:    
     

   . 

Table 4. 1 A comparison of compressive strength value for EPS concrete by the 

theoretical method and experimentally determined for Ø7.04 mm 

Real volume 

fraction 

Compressive strength by 

calculation (MPa) 

Compressive strength by 

experimental method (MPa) 

0.17 39.76 32.15 

0.25 32.82 26.23 

0.18 38.62 26.28 

0.32 28.46 11.19 

0.35 26.03 14.68 

0.30 29.64 18.84 

0.32 28.60 21.00 

0.34 26.53 11.22 

0.53 14.26 4.68 
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Figure 4. 8 Stress-strain relationship of EPS concrete with Ø 7.04mm EPS beads 

 

The comparison of theoretically calculated and experimentally determined 

compressive strength of EPS concrete with diameter of Ø7.04 mm EPS beads is 

given in Figure 4.8. The theoretically calculated compressive strength is 

significantly higher than these measured experimentally. The maximum difference 

between theoretically calculated value and experimental measured value may be as 

much as 20MPa. 

   
       

        
     

                 (              )  

                                                            (4.32) 

where    
  is the compressive strength of Ø2.68 mm EPS beads by the theoretical 

method,    
  is the compressive strength by experimental method; A is the 

difference between theoretical and experimental results. Therefore, the real 

compressive strength at any EPS volume fraction can be described as the 

theoretically calculated value subtracting the difference   
     

   . Knowledge of 

this relationship is helpful designing the EPS volume fraction. 

The relationship between EPS volume fraction and Young’s modulus is depicted in 

Figure 4.9, and a) for d=2.68 mm EPS beads and b) for d=7.04 mm EPS beads. 
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Figure 4. 9 Relationship between the EPS volume fraction and Young’s modulus, a) 

d=2.68mm EPS beads, b) d=7.04mm EPS beads 

 

Young’s modulus totally decreases from 874MPa as EPS volume fraction increases. 

In Figure 4.9 b), the Young’s modulus displays the similar trend that its value 

dropped from 648MPa as EPS volume fraction increases. Comparing Figure 4.9 a) 

and b), it can be deduced that the specimen containing Ø2.68 mm EPS beads has a 

higher Young’s modulus than that containing 7.04 mm EPS beads. In addition, since 

the EPS beads are distributed unevenly in concrete, compressive strength and 

Young’s modulus might vary even when the volume fraction is the same. There is a 

a) 

b) 
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big dispersion in compressive strength and Young’s modulus values under 

experimental conditions due to unspecified variable. 
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Figure 4. 10 Comparison of compressive strength values derived from the 

theoretical calculations and the experimental method 

 

a) 

b) 
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Compressive strength of both Ø2.68 mm and Ø7.04 mm EPS beads by the 

theoretical and experimental methods is presented in Figure 4.10. Circles represent 

the compressive strength calculated theoretically, while the squares are measured 

experimentally. Compressive strength decreases as EPS volume fraction increased 

in both theoretical and experimental methods (Figure 4.10 a), and experimentally 

compressive strength is generally lower than that by theoretical calculation. 

Compared both figures, the compressive strength of EPS concrete containing Ø 7.04 

mm EPS beads has a lower compressive strength than that containing Ø 2.68 mm 

EPS beads. Furthermore, the difference between the theoretical and experimental 

approaches is smaller for the 2.68 mm EPS beads than that containing the 7.04 mm 

EPS beads. This may be experimented by the finer EPS beads having a more regular 

and uniform distribution in concrete than the coarser EPS beads.  

Because EPS beads distribution is not uniform vertically in the tested sample, this 

meant that the EPS area fraction is not the same, and the maximum possible 

compressive strength of EPS concrete is limited by the maximum EPS beads area 

fraction. In the assumed model, EPS beads are distributed uniformly within EPS 

concrete sample. If EPS beads are distributed unevenly, there are some positions 

where the EPS beads area fraction is higher than the averaged area fraction. 

Therefore, the experimental compressive strength of EPS concrete is lower than the 

theoretical calculated value for these zones with large area fraction. For the lower 

volume fraction of EPS beads in EPS concrete, EPS beads distribution is closer to 

the idealized distribution than that higher volume fraction of EPS beads in EPS 

concrete. This minimizes compressive strength difference between the 

experimentally measured and theoretically calculated values can be obtained. 

4.2 Mathematical Model for Two Sizes EPS Mixed Model 

The compressive strength model for mono-size EPS beads is easy to build, and the 

upper limited volume fraction for closely packing EPS beads is 0.74 (
 

   
) 

correspond to a tetrahedral structure. When there are two sizes of EPS beads, EPS 

volume fraction can reach: 0.93(  (  
 

   
)
 

  [103]. Therefore, adopting two or 

more size EPS beads mixed together can reduce its density greatly, providing a way 
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to manufacture lower density EPS concrete. However, as EPS volume fraction 

increases, the role of maximum area fraction plays in influencing its final 

compressive strength requires precise investigation. This is especially true for how 

the area fraction can be controlled by adjusting ratio of the volume fraction so that 

the compressive strength/density can be optimized.  

With real construction, there is a great demand for light weight EPS concrete with 

high compressive strength. If relationship between the compressive strength and the 

ratio/volume fraction is known in two size EPS bead mixed model, the product will 

be more competitive. 

4.2.1 Physical model for two-size-EPS beads mixed EPS concrete 

In order to build a two-size-EPS bead mixed model, it is also assumed that the 

compressive strength only relies on the maximum area fraction of EPS beads in EPS 

concrete, and that all the EPS beads are distributed uniformly. The cubic sample size 

is      , and radius of EPS are r1 and r2 corresponding to the volume fraction 

v1 and v2, then the following equation applies. 

                                  (4.33) 

where S is the area fraction of EPS beads (which includes two parts contributed by 

r1 and r2 EPS beads).  

                                  (4.34) 

where    is the area fraction of r1 EPS bead, and    is the area fraction of r2 EPS 

beads. 

The volume fraction is         , where   is the total volume fraction of EPS 

bead,    is the volume fraction of r1 EPS beads, and    is the volume fraction of 

r2 EPS beads. 

   
      

 

   
 

    
 

  
 

   

  
                         (4.35) 
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                         (4.36) 

         
      

 

    
      

 

                       (4.37) 

where    and   are total number of EPS beads corresponding to r1 and r2 EPS 

beads. 

If the total volume fraction of EPS beads is constant,            , the maximum 

compressive strength can be calculated only after the minimum area fraction of EPS 

beads. 

         
      

 

    
      

 

                          (4.38) 

Rewriting Equation 4.38 yields Equation 4.39: 

            
      

 

    
      

 

                  (4.39) 

Equation 4.39 can be rewritten as: 

    
 

   
   

  
 

    
 

                          (4.40) 

That is: 

  

 
   

 
 (

   

  
 

    
 

  
)

 

 
                        (4.41) 

If the minimum EPS area fraction is determined by the ratio of r1 and r2 EPS beads, 

the maximum compressive strength of EPS can be calculated. Therefore, when the 

total volume fraction of EPS beads is determined, the ratio of two sizes EPS volume 

fraction plays the mainly decisive role in affecting the compressive strength. The 

total EPS area fraction is given as Equation 4. 42. 
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)      (4.42) 

The minimum EPS area fraction can be obtained only when the partial derivative for 

   is equal to zero, which is given as Equation 4.43. 
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Equation 4.43 can be simplified as Equation 4.44: 

(
   

  
)
 

 

 
 

 (
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                    (4.44) 

From Equation 4.44, Equation 4.45 can be deduced directly. 

   
 

 
  , and    

 

 
                       (4.45) 

According to Equation 4.45, it is evident that the minimum area fraction can be 

obtained only when       
 

 
  , and the minimum area fraction is expressed as: 
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             (4.46) 

The maximum compressive strength of mixed EPS beads is: 

             (    (
   

  
)

 

 
)                      (4.47) 

According to Equation 4.47, the highest possibility of maximum compressive 

strength can be achieved only when the two size EPS beads have the same volume 

fraction.  

4.2.2 Compressive strength by two sizes EPS beads model 

Employing Equation 4.41 with only one single sized EPS bead, compressive 

strength can be expressed as:                   
   (

     

    )

 
 
   

  
 . If the 

r/a<<0.05, the size effect can be neglected, and the compressive strength can be 

expressed as               (   (
   

  
)

 

 
). Holding the volume fraction to 

the same, adoption of two sizes of EPS bead causes its compressive strength to 

decrease a little. The compressive strength of ESP concrete comparison between 

only one kind of EPS beads and two kinds of EPS is depicted in Figure 4.11.  
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Figure 4. 11 Compressive strength comparisons between EPS concrete containing 

one size EPS and two sizes EPS beads 

 

As the volume fraction of EPS beads increases, the compressive strength drops 

gradually, but the EPS concrete containing two kinds of EPS beads declines more 

quickly than that containing only one size EPS beads under the same volume 

fraction condition. Moreover, if the EPS concrete contains a certain volume fraction 

of both EPS beads, as the volume fraction of EPS beads increases, the difference 

between that the single EPS bead size to that with both increases. Therefore, for a 

given volume fraction, higher compressive strength can be achieved by using 

uniformed size of EPS beads rather than by employing two sizes of EPS beads. 

4.3 Summary 

By evaluating the suitability of one size and two sizes mixed together in models, the 

following conclusions can be described: 

1) If there is only one size of EPS beads in the concrete matrix, the ratio of r/a 

plays an important role in determining the volume fraction and the compressive 
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strength. When r/a<<0.05, the compressive strength can be regarded as a 

function of EPS volume fraction only.  

2) For EPS concrete contained single sizes of EPS beads, the compressive strength 

can be expressed as:                  
   (

     

    )   

  
 , where    is the 

initial compressive strength without EPS beads,     is a round function,    is 

EPS volume fraction;  

3) If EPS concrete contains two sizes EPS beads, the maximum compressive 

strength can be obtained only when the volume fraction ratio is 50:50, and at 

that time the compressive strength of EPS concrete is:           

  (    (
   

  
)

 

 
). 

4) If the EPS concrete contains two sizes of EPS beads, its compressive strength is 

inherently lower than that containing single size EPS beads with the same 

volume fraction.  
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CHAPTER 5 SIMULATION OF EPS BEADS 
DISTRIBUTION IN EPS CONCRETE 

With traditional concrete, the shape and distribution of aggregates directly affect the 

final compressive strength and its failure mode [104-107]. However, there is less 

research work focused on EPS beads distribution and its impact on the compressive 

strength. In 2004 K.Miled et al studied the compressive strength and failure mode 

assuming an idealized EPS beads distribution [78]. However, EPS beads are 

distributed randomly in a real EPS concrete specimen meaning that the inter-bead 

distance between neighbouring EPS beads is not uniform. Therefore, further study 

the EPS distribution will advance understanding of the failure mode of EPS 

concrete. 

  

5.1 A 2D EPS Beads Distribution Model 

Knowledge of the distribution of EPS beads is crucial for predicting the 

compressive strength of EPS concrete. The EPS beads occupy a greater area fraction, 

and the solid concrete matrix occupies less area fraction decreasing compressive 

strength. However, the distribution of EPS beads is influenced by many factors, 

including concrete mixing time, the mixing processes, ratio of cement to water etc. 

Although it is difficult to predict the EPS beads distribution, a probability model can 

provide a plausible approximated description for the random distribution of EPS 

beads in EPS concrete. 

EPS beads are essentially distributed randomly throughout concrete matrix, and 

each idealised cross-section will be different. However, the averaged area fraction of 

the EPS beads is related to its volume fraction. Therefore, there is an approximated 

relationship between EPS beads volume fraction and averaged area fraction. 

In a 2D model, the volume fraction can be transformed into an area fraction firstly, 

and this can be expressed as:  

   ∑
    

 

                             (5.1) 
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where    is EPS beads volume fraction in EPS concrete,    is radius of the i
th

 EPS 

bead, and a is size of a theoretical cubic sample. If the radius of each EPS bead is 

the same, Equation 5.1 can be rewritten as: 

     
    

 

                              (5.2) 

where n is the total number of EPS beads in the EPS concrete. The area fraction of 

EPS beads in any cross-section is expressed as: 

  ∑
   

 

                               (5.3) 

where S is EPS area fraction in an idealised cross-section of EPS concrete. 

Employing Equation 5.2, the ratio of 
 

 
 can be deduced directly by:  

 

 
 (

   

   
)

 

 
                           (5.4) 

Combining Equation 5.4 with Equation 5.3, the following relationship can be 

formulated: 

   (
   

  
)

 

 
                           (5.5) 

Hence the area fraction can be determined by   . For a given volume fraction, the 

area fraction is determined based on Equation 5.5. However, if the ratio 
 

 
 is larger 

than 0.05, it cannot be neglected, and the area fraction of EPS beads will be affected 

by the selected position (see Chapter 4 page 74). To simplify the problem, the ratio 

of 
 

 
 is assumed to be lower than 0.05. Area fractions corresponding to the volume 

fractions from 10% to 50% are listed in Table 5.1 based on the assumption of a 

random distribution of EPS beads embedded within the concrete body. 
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Randomly distributed EPS beads within a cubic sample are illustrated in Figure 5.1. 

Area fraction increases with increasing the volume fraction of EPS beads.  

As previously stated, the EPS area fraction is affected by many factors. Since the 

EPS beads are randomly distributed in the EPS concrete sample, each EPS bead has 

the same probability of appearing in any position within the sample. There is a 

general relationship between the volume fraction and averaged area fraction by 

Equation 5.5. The different averaged area fractions corresponding to the different 

volume fractions are listed in Table 5.1. 

Table 5. 1 Area fraction corresponding to volume fraction 

Volume 

fraction 

Area 

fraction 

0.1 0.26 

0.15 0.34 

0.2 0.41 

0.25 0.48 

0.3 0.54 

0.35 0.60 

0.4 0.66 

0.45 0.71 

0.5 0.76 

Two radii of EPS beads are adopted in the following modelling process with 1.35 

mm and 3.5 mm, respectively, and the volume fraction ranges from 10% to 50%. 

The cubic shape experimental samples are employed and its size is 40×40×

40mm
3
. 

(a) 
(b) 

Figure 5. 1 Schematic of EPS area fraction in EPS concrete 
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In order to simulate EPS beads distribution, Matlab®
2
 software is employed and a 

m file is compiled based on the following assumptions: 

1) All EPS beads are rigid solid spheres, and that they experience no deformation 

during mixing or curing process; 

2) All EPS beads have the same possibility appearing in any position within cubic 

sample; 

3) All EPS beads are separated from each other, implying that any two EPS beads 

do not contacting with each other; 

The m file for EPS beads distribution is compiled, and it is reported in appendix 1.  

5.1.1 2D EPS beads distribution of r=3.5mm 

For a certain volume fraction, the EPS beads are distributed randomly in three 

dimensions, and in any arbitrarily cross section not all EPS beads are cut through the 

spherical centre and not all circles has the same radius, but the maximum radius of 

these circles is the 3.5mm. For a certain volume fraction, the total number of EPS 

beads can be deduced from Equation 5.2, and the total number of EPS beads is 

given by: 

         
  

    
  

 

                          (5.6)  

where fix is a round function. According to Equation 5.6, the total number of EPS 

beads can be calculated and are listed in Table 5.2 together with related area 

fraction.  

 

Table 5. 2 Relationship among volume fraction, total number and area fraction 

volume 

fraction 
total 

number 

area 

fraction 

0.05 18 0.16 

0.1 36 0.26 

                                                           
2
 Matlab is a software trade mark developed by MathWorks. 

http://en.wikipedia.org/wiki/MathWorks
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0.15 53 0.34 

0.2 71 0.41 

0.25 89 0.48 

0.3 107 0.54 

0.35 125 0.60 

0.4 143 0.66 

0.45 160 0.71 

0.5 178 0.76 

 

During the experimental determination, all the EPS beads distribution images are for 

cross section of the cubic samples taken in 2 dimensions to facilitate comparison 

with the simulated results. To optimise the calculating times, when volume fraction 

exceeds 0.3, the EPS beads distribution is not calculated.  
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Figure 5. 2 Representation of EPS beads distribution of r=3.5mm,      , 

s=16%; a) simulated EPS beads distribution; b) experimental images 

 

Images of both experimental and simulated EPS bead distribution are predicted in 

Figure 5.2 with r=3.5mm and volume fraction of 5% and area fraction of 14% EPS 

beads, in which the circle zones represent EPS beads in Figure 5.2. In Figure 5.2 a), 

all the EPS beads are randomly distributed in this cross-section and the area fraction 

occupied by EPS beads is 14%. For the reason of random distribution, the cut EPS 

beads may have the different radii. The actual images of EPS beads distribution in 

an arbitrary cross-section (Figure 5.2 b) exhibit the some variation in EPS bead radii. 

Comparing Figure 5.2 a) and b), the simulated area fractions of EPS beads is very 

close to the experimental image, which proves the validity of random distribution 

model to describe EPS bead distribution. In addition, the total number of EPS beads 

in simulated image is a very similar to that for the experimental images despite EPS 

beads being randomly distributed in the cubic sample.  

A further example of the comparison of experimental and simulated EPS bead 

distribution at a volume fraction of 20% is provided in Figure 5.3. 

b) 
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Figure 5. 3 EPS beads distribution of r=3.5mm,       , S=34%; a) simulated 

EPS beads distribution; b) real experimental image 

 

Figure 5.3 a) is for EPS beads randomly distributed by simulation, and Figure 5.3 b) 

is an image of a sawn section through a cubic EPS sample real experimental image. 

In Figure 5.3 a), EPS beads occupies 34% area fraction of the whole cross section. 

The increment of the area fraction leads to the averaged distance between any two 

neighbouring EPS beads less than that in Figure 5.2 a). Comparing Figure 5.3 with 
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Figure 5.2, it is evident that while the volume fraction of EPS beads increases from 

5% to 20%, there are more EPS beads than that in Figure 5.2 b). 

 

 

Figure 5. 4 EPS beads distribution of r=3.5mm,       , S=41%; a) simulated 

EPS beads distribution; b) real experimental image 

 

Similarly, Figure 5.4 is comparison of r=3.5mm EPS beads distributions with volume 

fraction of 30%. Figure 5.4 a) is EPS distribution by numerical simulating, and in 

Figure 5.4 b) EPS beads distribution is derived from experimental laboratory 
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procedures. As the EPS bead volume fraction increases, the EPS beads area fraction 

increases. For Figure 5.4 a), the area fraction reaches 41%, but experimentally the 

EPS beads distribution is affected by random factors during mixing process, and 

appears different (Figure 5.4 b). The area fraction of EPS beads in the different 

cross section will vary , so on average there will be a little difference between 

Figure 5.4a) and 5.4 b). However, the trend for both random model and 

experimental method is the same that as the EPS beads volume fraction increases, 

there are more EPS beads appearing in the cross section.  

When the volume fraction exceeds 30%, more EPS beads are appeared in the cross 

section of sample leading to more computing time. Therefore, EPS beads random 

distribution is not simulated when the volume fraction exceeds 30%. 

Based on evidence from Figures 5.2, 5.3 and Figure 5.4, the EPS beads distribution 

model can simulate the random distribution of EPS beads in concrete, and the 

simulated EPS beads distributions closely approximate the real EPS distribution 

established experimentally.  

5.1.2 2D EPS beads distribution of r=1.35mm 

Applying Equation 5.6, when the radius of EPS beads is 1.35mm, r=1.35mm, the 

total number of EPS beads in EPS concrete along with the area fraction is listed in 

Table 5.3. 

Table 5. 3 Relationship among volume fraction, total number and area fraction 

 

 

volume 

fraction 
total 

number 

area 

fraction 

0.05 310 0.16 

0.1 621 0.26 

0.15 931 0.34 

0.2 1242 0.41 

0.25 1552 0.48 

0.3 1863 0.54 

0.35 2173 0.60 

0.4 2484 0.65 

0.45 2794 0.71 

0.5 3105 0.76 
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From Table 5.3, it is evident that total number of EPS beads varied from 310 to 

3105 while the volume fraction is from 5% to 50%. To economise on computing 

time, only 5% and 10% volume fractions of EPS bead distribution are simulated.  

 

 

Figure 5. 5 EPS beads distribution while r=1.35mm, and volume fraction is 5%; 

a) is simulated EPS beads distribution; b) is the experimental image 

 

The r=1.35mm EPS beads distribution by simulated and experimental method with 

volume fraction of 5% are imaged in Figure 5.5. In Figure 5.5 a) the EPS area 

fraction is 16% while EPS beads volume fraction is 5%. In Figure 5.5 b), 

Experimental image of r=1.35mm EPS bead distribution in an arbitrary 

cross-section is depicted in Figure5.5 b). Comparing Figure 5.5 a) with 5.5 b), the 
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EPS area fraction of the experimental image is little different from the simulated 

results. 

 

  

Figure 5. 6 EPS beads distribution while r=1.35mm, and volume fraction is 10%; a) 

is simulated EPS beads distribution, b) is the experimental image. 

 

Similar images are presented in Figure 5.6 for r=1.35mm EPS beads distribution but 

for a volume fraction of 10%, in which the circles represent EPS beads, and the 

blank space for concrete matrix; Figure5.6 b) reveals the experimental images of 

EPS beads distribution and the white solid circles are EPS beads and remainder 

concrete. When the volume fraction is 10% and the averaged area fraction was 
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26%(Figure 5.6 a), there are many EPS beads appearing in the experimentally solid 

concrete cross section. Comparing Figure 5.6 a) with Figure 5.5 b), there are more 

EPS beads appearing in cross sections when volume fraction is 10%. 

Figure 5.2 to 5.6 confirm that the simulated distribution of EPS beads by Matlab 

program closely matches those obtained by experimental method.  

5.2 3D EPS Beads Distribution Model 

To generate the randomly distributed EPS beads configuration in 3 dimensions, the 

Python language is utilized, and this program has the advantage that the geometrical 

figure generated by this program can be imported directly into the Abaqus software, 

a necessary important step for simulating stress distribution.  

It is necessary to assume that the positions of EPS beads centre are generated 

randomly without overlapping; and the distances between any two EPS beads 

centres are greater than the sum of the two radii of EPS beads. The above 

assumption is expressed as Equations 5.7 and 5.8. 

                                                   (5.7) 

where p is the coordinate position of the EPS bead centre, r is the radius of EPS 

bead, a is the length of each edge of the cubic sample, and rand is a random 

function to generate random decimal. In Equation 5.7, it is implied that all the EPS 

beads are within the cubic sample. 

    √(     )
 
 (     )

 
 (     )

 
                        (5.8)  

where     is the distance between the i
th

 EPS bead centre and the j
th

 EPS bead 

centre, x,y,z are the coordinate position, subscript i and j are the i
th 

and the j
th

 EPS 

beads, and r is radius of the EPS bead. In Equation 5.8, the distance between any 

two EPS beads is greater than the sum of the radii of both EPS beads, and all the 

EPS beads are separated by each other. 

Initially, the first two positions of EPS beads are selected according to Equation 5.7 

and their centre marked as a series number. Next, the distance between the two 
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beads is calculated according to Equation 5.8. If the distance matches Equation 5.8, 

these positions are valid, or else, the second position would be relocated according 

to Equation 5.7. And then, repeating the above steps until the volume fraction 

reaches the planned volume fraction. 

According to Table 5.2 and Table 5.3, the total number of EPS beads for r=3.5mm 

and 1.35mm are calculated for different volume fractions; and then these EPS beads 

are randomly placed in the concrete sample. The EPS concrete samples’ size is 

           .  

5.2.1 3D r=3.5mm EPS beads distribution 

 

Figure 5. 7 3-dimensional         EPS beads distribution, a) is       ; b) 

is        ; c) is        

 

a) 
b) 

c) 
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Figure 5.7 represent a three-dimensional         EPS beads random 

distribution in concrete by using numerical method. Figure 5.7 a) for 10%, Figure 

5.7 b) for 20%, and Figure 5.7 c) for 30% volume fraction of EPS beads. The black 

spheres in Figure 5.7are the EPS beads and the remainder concrete. The central 

positions of the EPS beads are placed randomly, so the EPS beads can be placed in 

any internal position of sample. When the volume fraction is 10%, the total number 

of          EPS beads of is 36. These EPS beads are laid sparsely in the cubic 

sample. When the volume fraction increases from 10% to 20%, (Figure 5.7 b), the 

total number of EPS also increases from 36 to 71, and the average distance between 

neighbouring EPS beads became less than in Figure 5.7 a). When the EPS beads 

volume fraction increases from 20% to 30%, (Figure 5.7 c), the total number of EPS 

beads rises to 107, and the averaged distance between neighbouring EPS beads 

becomes even less than that for both 10% and 20% volume fractions.  

 

5.2.2 3D r=1.35 mm EPS beads distribution 

With the reduction of radius to 1.35mm EPS bead, there are more EPS beads with 

the same volume fraction than with r=3.5mm EPS beads. Hence, in order to 

efficiently use the calculation time, only 5% and 10% volume fraction EPS beads 

distributions are calculated. 

 

Figure 5. 8 3-dimensional          EPS beads distribution, a) is      ; b) 

is        

 

a) b) 
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Finally, a three-dimensional          EPS beads randomly distributed in 

concrete is given in Figure 5.8. Figure 5.8 a) is for a 5% volume fraction of EPS 

bead and total EPS bead number of 310, and Figure 5.8 b) is for a 10% volume 

fraction of EPS beads, and the total EPS beads number is 621. As volume fraction of 

EPS beads increases, the more EPS beads are placed in sample. Comparing Figure 

5.8 with Figure 5.7, it can be found that the smaller radius of EPS beads led to the 

EPS distribution more homogeneous. 

 

5.3 Summary 

Employing numerical simulation mythology, 2-dimensional EPS beads distribution 

and 3-dimensional EPS beads distribution can be simulated, and the simulated EPS 

beads distributions for different volume fraction are compared with experimental 

images. The following conclusions are obtained: 

1) The program compiled by Matlab is applied to random 2-dimensional of EPS 

beads distribution, and the simulated EPS distributions closely matched these 

obtained by actual experiments. 

2) The program coded by Python is developed to describe the random distribution 

EPS beads in 3 dimensions. The EPS beads distribution generated by the 

program can be imported into Abaqus software, which provides crucial 

geometry information to calculate the stress distribution within EPS concrete. 
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CHAPTER 6 SIMULATION OF THE STRESS 
DISTRIBUTION WITHIN FOAM CONCRETE 

The compressive strength of EPS concrete is determined by the EPS volume 

fraction and EPS particle size [79, 108]. The EPS beads distribution in a concrete 

body directly affects the interface area fraction of EPS beads, which in turn exerts 

influence on the compressive strength. Reflecting the manufacturing process, the 

EPS beads were randomly distributed throughout the concrete. Likewise, the 

compressive strength of foam concrete was also determined by pore volume fraction 

as noted by others researchers [7, 9, 13]. However, the quantitative impact of pore 

size on compressive strength remains to be solved. Employing EPS concrete to 

investigate the pore size effect on the compressive strength provided a method to 

calculate the compressive strength of foam concrete. The proposed approach of this 

study is summarised in the following Figure 6.1. 

 

Devising random distribution geometric figure is the initial step for the simulation. 

In this thesis a program is compiled by using the Python language to generate 

random distribution pores in EPS concrete as described in Chapter 5. The program 

is imported into Abaqus software by subscript mode. After the geometric figure is 

imported into Abaqus software, material properties are input, and boundary 

conditions and initial conditions are selected. For single direction loading, the 

loading force can be set as experimental value. A tetrahedral grid is applied to 

Generate randomly distributed 

pores 3D figure 

Put randomly distributed 

pores in concrete solid 

Import foam concrete geometric 

figure into Abaqus software 

Setting the basic mechanical 

properties of foam concrete and 

initial and boundary conditions 

Meshing the foam concrete and 

calculating 

Results analysis 

Figure 6. 1 Flow chart of the research strategy 
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meshed pores based on spherical shape of pores embedded in concrete sample. 

Finally, simulated results are displayed, analysed and discussed. 

 

6.1 Physical Model 

Since concrete is a brittle material, there is little plastic deformation during the 

loading process, so deformation can be regarded as an elastic process. 

Applied Mises equivalent stress under the static stress condition [113], at 

equilibrium, the effective stress on each unit during the loading process is expressed 

as: 

   √
 

 
 (     )

 
 (     )

 
           (   

     
     

 )     (6.1) 

where    is effective stress,    is the main stress in the x direction,    is the main 

stress in the y direction,    is the main stress in the z direction,    is the shear 

stress in the xy face,     is the shear stress in the yz face, and     is the shear 

stress in the zx face. According to Equation 6.1, the effective stress distribution of 

concrete under any loading process can be calculated. 

When the effective stress reaches or exceeds the compressive strength of concrete, 

the concrete fails: 

     
                           (6.2) 

where   
  is the compressive strength of concrete.   

Due to the random distribution of pores in the concrete solid, some pores experience 

higher stress than others. When the mounting stress in the sample reaches the 

compressive strength of foam concrete, it begins to break and fail at the pore level. 

Therefore, the effective stress distribution can be used to predict the weakest 

position within foam concrete. 
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6.2 Simulation Parameters 

For the simulation to approach to the experimental situation, the physical properties 

play a fundamental role in affecting the simulated results. The physical properties of 

foam concrete are regarded as consisting of two phases mixed together: one solid 

(i.e. concrete) and the other void space (i.e. pores). While the concrete matrix bears 

the main strength, the strength of pores is regarded as negligible. 

Similarly, the boundary and initial conditions have a direct impact on the stress and 

its distribution. Therefore, boundary and initial conditions are fixed based on the 

experimentally determined condition. 

6.2.1 Physical properties  

The mechanical properties of foam concrete are measured experimentally using 

dense concrete sample. The testing results on the key properties of concrete are 

listed in Table 6.1. 

Table 6. 1 Mechanical properties of concrete 

 Density 

(kg/m
3
) 

Young’s 

modulus 

(GPa) 

Poisson ratio Compressive 

strength (MPa) 

concrete 2240 2.1 0.25 60.6 

* mechanical properties of concrete are measured experimentally. 

 

6.2.2 Boundary and initial condition 

1. Initial condition 

Initially, the foam concrete sample is placed free between pressing heads. Once 

loading commences, loading pressure increases continuously along with loading 

time. The loading pressure is set as a linear function of time given by: 

                                         (6.3) 
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where t is time (s), and      is loading pressure (MPa). The maximum loading 

pressure is set as 60 MPa, equivalent to that for the experimentally measured 

concrete. 

2. Boundary condition 

The bottom face of the sample is set as the anchored condition, the top face as the 

loading surface, which is the same as the actual testing situation, and the other 

surfaces as free boundary conditions. 

6.2.3 Meshed grid 

Within the foam concrete sample, there are many spherical shaped pores, so a 

theoretical tetrahedral meshed grid is applied to represent their distribution. The 

finer meshed size, the more meshing and computing time required. This enforces a 

compromise between computing efficiency and precision of generated data. In order 

to save meshing yet give reasonable prediction and reliable precision, 2 mm meshed 

size is employed for r=1.35 mm pores in the foam concrete, and 4 mm meshed size 

is employed for r=3.5 mm pores in the foam concrete, the. These meshed arrays are 

depicted in Figure 6.2.  

 

a) b) 
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Figure 6. 2 Meshed grid for a)       mm,      ; b)       mm,    

   ; c)      mm,       ; d)      mm,       . 

The meshed grids of different radii and different volume fractions of pores in foam 

concrete samples are shown in Figure 6.2, in which a) is        mm and pore 

volume fraction is 5%; b) is        mm and pore volume fraction is 10%; c) is 

      mm and pore volume fraction is 10%; d) is      mm and pore volume 

fraction is 30%. As the pores volume is embedded in the concrete, the total number 

of meshed unit increases accordingly.  

6.3 3-dimensional Stress Distribution Simulation 

6.3.1 3D Random distribution of pores 

The first step is to generate 3D pores random distribution model in cubic solid 

concrete, and then the work of simulating of influences of pore size and volume 

fraction of pores on compressive strength can be completed. 3D randomly 

distributed pores are generated with a short program written in Python code, in 

which different sizes and volume fractions of pores are employed to show 

3-dimensional random distribution. In all the models size of pore is assumed as a 

constant during the mixing and solidification process, i.e. the pores are rigid. The 

diagrammatic representation of the 3D pore random distribution in concrete are 

depicted in Figures 5.7 and 5.8 in the 5
th

 Chapter. 

c) d) 
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6.3.2 3D stress distributions  

Stress distribution can locate the position of the maximum stress and determine of 

the initial failure position in foam concrete sample. Since there is very small plastic 

deformation during loading (fibre reinforced concrete can have plastic deformation), 

deformation process is regarded as completely elastic in this study. When local 

stress reaches the compressive strength of plain concrete, a foam concrete sample 

can be regarded as failure. 

1. Stress distribution with      mm pores 

(1)         stress distribution 

Stress distribution during loading process and the maximum stress in one 

cross-section is calculated in Figure 6.3. Different colours represent different stress 

values, and which vary as loading time changes. 
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b) 

a) 
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Figure 6. 3 Stress distribution of foam concrete with a 10% volume fraction and 

 =3.5mm pores; a) t=0s; b) t=95s on surface; c) t=95s on the maximum compressive 

strength cross-section. 

 

At commencement of the loading process, the stress value is zero in the sample. 

When t=95s, in Figure 6.3 b), the stress distribution on the surface of the sample is 

plotted and the maximum stress value is 47 MPa. Viewing the different 

cross-sections of the sample, the maximum stress position is obtained in Figure 6.3 c) 

and its value is 60MPa when the position failures. Because the force is loading 

linearly, the effective compressive strength is given by:       
  

   
         

Since the maximum stress position is located close to the pores, especially as 

repeated in Figure 6.3 c), the maximum stress position is also located between a 

pore and surface of the sample. The distance between the pores or pore and surfaces 

has a direct impact on the stress concentration. The smaller the inter pore distance is, 

the greater stress concentration will be. 

c) 
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(2) Stress distribution for        foam concrete  

Stress distributions for 20% volume fraction pores foam concrete is depicted in 

Figure 6.4, in which different colour represents the different stress values. 

 

 

b) 

a) 
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c) 
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Figure 6. 4 Stress distributions for foam concrete with 20% volume fraction and 

 =3.5mm pores; a) t=0s; b) t=38s; c) t=38 and d) t=57s at different cross section 

stress distributions. 

 

Figure 6.4 a) is the initial stress distribution at the stress value of 0 MPa. As the 

loading time increased to 38s, in Figure 6.4 b), the maximum stress value on the 

sample surfaces reaches 50 MPa. Considering the stress distribution in different 

cross-sections, the maximum stress position is located with a red arrow in Figure 6.4 

c). When t=57s, the maximum stress rises to 76MPa, in Figure 6.4 d). In Figure 6.4 

c) the maximum stress in sample is 49.7 MPa, but by t=57s the maximum stress 

reaches 76MPa. Using a linear fitting method, the time when the maximum stress 

reaches 60 MPa is              
     

     
    . The effective compressive 

strength of the foam concrete sample is determined to be       
  

   
        . 

d) 
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Comparing Figure 6.4 with Figure 6.3, it is established that for the same loading 

force the maximum stress value is higher as the volume fraction increases, 

indicating that the higher volume fraction leads to a higher stress concentration, and 

the more readily failure sample . 

(3)        stress distribution 

The stress distribution with 30% volume fraction pores in foam concrete is 

calculated in Abaqus and depicted in Figure 6.5. 

 

a) 
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b) 
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c) 
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Figure 6. 5 Stress distributions for foam concrete with 30% volume fraction and 

 =3.5mm pores; a) t=0s; b) t=38s; c) and d) are the maximum stress cross-section at 

t=38 and t=57s, respectively.  

 

Figure 6.5 a) is the initial state of the foam concrete sample, the stress distribution is 

uniformed at 0MPa. At 38s, in Figure 6.5 b), the maximum stress value in the 

sample reaches 53.5 MPa as marked on the top of the sample. This value approaches 

to the compressive strength of concrete. Viewing the cross section, the maximum 

stress place at t=38s is located in Figure 6.5 c). For the next calculating step, the 

loading time is 57s, and the maximum compressive strength rises to 81MPa on the 

right upper corner of Figure 6.5 d). This significantly exceeds the threshold strength 

of 60 MPa for dense concrete sample and eventually the sample failures. Using a 

linear fitting method, the time when the maximum stress reaches 60 MPa is given by 

d) 
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      . At 42.5s, the effective compressive 

strength of the foam concrete sample is determined to be       
    

   
      . 

2. Stress distribution with       mm pores 

(1) Volume fraction is 5% 

 

 

a) 

b) 
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Figure 6. 6 Stress distributions for foam concrete with 5% volume fraction and 

 =1.35 mm pores; a) t=0s; b) t=120s; c) is the cross-section of stress distribution at 

53s with the maximum stress value in the plane. 

 

Stress distribution with 5% volume fraction and r=1.35mm pores in foam concrete 

is calculated in Figure 6.6. Figure 6.6 a) is initial state of foam concrete sample with 

stress value of 0 MPa. When it is 53s, in Figure 6.6 c) the maximum stress reaches 

60.1 MPa located red arrows. At this point, these parts of the concrete sample failure 

because the compressive strength of a dense concrete sample is limited to 60 MPa. 

At 53s, the compressive strength at the red node reached 60 MPa, and for the whole 

sample, the effective compressive strength of foam concrete sample is given 

c) 
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by      
  

   
         . Hence simulated compressive strength of foam 

concrete with radius 1.35mm and 5% volume fraction is 26.5 MPa. 

(2) Volume fraction is 10% 

 

 

a) 

b) 
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c) 
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Figure 6. 7 Stress distribution for foam concrete with 10% volume fraction and 

 =1.35mm pores; a) t=0s; b) t=120s; c)-d) are the maximum stress in the cross 

sections at 38s and 57s. 

 

Stress distributions of foam concrete consists of 10% volume fraction pores is 

shown in Figure 6.7. At beginning of test and the stress value is 0 MPa (Figure 6.7 

a). When the time is 57s, as shown in figure 6.7 b), the maximum stress is 74MPa, 

which exceeds the dense concrete compressive strength. Figure 6.7 c) and d) are 

stress distributions in the maximum stress cross-section at 38s and 57s. When t=38s, 

the maximum stress in the sample is 49MPa, while at t=57s, the maximum stress 

rises to 74MPa. The maximum stress reaches 60MPa, corresponding time can be 

calculated by              
     

     
      , and the effective compressive 

strength of the sample is given by       
    

   
        . 

Comparing Figure 6.7 with Figure 6.6, as the volume fraction increases, the 

averaged distance of neighbouring pores becomes less, which leads to a higher 

d) 
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possibility of stress concentration in these regions. Secondly, as the pore volume 

fraction increases, the maximum stress concentration value also increases. The 

maximum stress concentration is the position of fracturing. Furthermore, the 

maximum stress position in Figure 6.3-6.7 is located on the pores surface. 

Comparing Figure 6.7 with Figure 6.3, it reveals that as the radius of pores 

decreases, the effective compressive strength of the foam concrete increases. 

Therefore, reducing the pore size is an effective way to enhance the compressive 

strength under the same volume fraction conditions. This gives a very important and 

quantitative principle for the manufacturing of foam concrete. 

6.3 Summary 

Through simulating stress distribution of foam concrete with the various volume 

fraction and pore sizes, the following conclusions are deduced: 

1) The higher the volume fraction of pores in foam concrete, the more concentrated 

stress develops during loading process, thereby decreasing the effective 

compressive strength of foam concrete.  

2) The smaller the pore size, the more uniformed the stress distributions. For the 

foam concrete smaller pores result in higher compressive strength than concrete 

containing coarser pores. 

3) The inter-pore distance plays an important role in localizing the stress 

concentration. Smaller distance resulting in higher stress concentrations. This 

requires the mixing of pores or lightweight beads in foam concrete 

manufacturing to be homogeneous. 
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CHAPTER 7 THERMAL PROPERTIES OF FOAM 

CONCRETE 

One of the advantages of foam concrete is its superior thermal insulation properties 

compared to normal dense concrete, which leads to its wide use in energy efficient 

buildings [29]. The insulation properties have raised wide researcher interests 

[109-111]. 

Thermal properties of foam concrete include heat conductivity, specific heat and the 

heat diffusing coefficient. The last can be expressed as a function relating heat 

conductivity and specific heat. As the specific heat for foam concrete is well 

established, the heat conductivity is the focus of research enabling an understanding 

of the heat transfer in foam concrete.  

In this chapter, a hybrid model consisting of the mixed parallel and series concepts 

are used to define the heat conductivity model. Then the heat conductivity of foam 

concrete under the conditions of different volume fraction is predicted by the model, 

and its results are compared to experimentally determined heat conductivity. 

One of the most serious situations leading to serious loss of life and properties is 

firing of building. Many researchers have investigated the fire resistance properties 

of building materials [112, 113]. Therefore, the developed heat conductivity model 

is utilized to calculate the temperature field evolution of foam concrete as a wall 

material and subsequently the temperature field is compared with that in dense 

concrete walls. 

7.1 Heat Conductivity Model 

Heat conductivity is an important parameter controlling heat transfer, and its 

determination is an important step in evaluating thermal insulation of foam concrete. 

In order to simulate the heat conductivity of foam concrete, the following 

assumptions are made: 
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1) Each pore is separated from others by concrete matrix, and there are no 

inter-connected pores in the foam concrete; 

2) The pores are distributed uniformly throughout the foam concrete sample, and 

all pores are of the same size; 

3) The pore space is fulfilled of air, in this way,the foam concrete can be regarded 

as an air-concrete two phases mix; 

4) When the pore size is very small compared to the sample size, pores can be 

regarded as possessing cubic shape, an assumption that acts generation of the heat 

conductivity model; 

Employing these assumptions, the effective heat conductivity of foam concrete can 

be regarded as both a mixed series heat transferring model and a parallel heat 

transferring model. The schematic figure of mixed heat conductivity model is 

depicted in Figure 7.1.  

 

 

Figure 7. 1 Schematic figures for heat conductivity models, a) series model; b) 

parallel model; c) and d) series-parallel mixed model 

 

In Figure 7.1, a) is a series model of heat transfer and b) is a parallel model of heat 

transfer; Figure 7.1 c) represents the schematic figure of cubic pores embedded in 

the concrete; the sample size of heat conductivity model in Figure 7.1 c) - d) is a 

unit cubic element (     ). Figure 7.1c) represents cubic figure of air pores in 

solid concrete matrix. Figure 7.1 d) Phase 1 is solid phase, as marked in orange 

colour part, and Phase 2 is the solid/air pores one by one mixed together, in which 

blue colour represents air cave, and orange colour strip represents for the solid 

concrete body. For each Phase 2 it is regarded as a parallel heat conductivity model. 

a) 

b) c) 

Phase 1 Phase 2 

d) 
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Therefore, the whole sample can be regarded as a serial heat conductivity model 

made up by Phase 1 and Phase 2 serially mixed together. In each Phase 2, the 

effective heat conductivity is calculated by the parallel heat transferring model. 

Then the effective heat conductivity for the whole sample can be calculated by using 

serial heat conductivity model combined the effective heat conductivity of Phase 2 

and heat conductivity of Phase 1. 

There are    pores in the whole simulated zone and there is a relationship: 

     
 

                         (7.1) 

where    is air pore volume fraction,   
 
 is each air pore element volume,  

According to Equation 7.1 each air pore volume can be expressed as: 

   
  

  

                             (7.2) 

For each length of the cubic, each pore size is expressed as: 

  
 

 
√  
 

 
                             (7.3) 

 The width of Phase 1 is   , which is expressed as: 

    
  √  

 

   
                             (7.4) 

For Figure 7.1), series heat conductivity is adopted where the Phase 1 is completely 

solid phase and its heat conductivity is   . In Phase 1, each slice area is deduced as: 

                                 (7.5) 

 The height of A1 is 

   
  √  

 

   
                         (7.6) 

In Phase 2, the area of air phase is expressed as: 

   
 

      
     

     
√  
 

 

√  
 

 
 √   

 
           (7.7) 
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The area of solid phase in the Phase 2: 

   
      

 
   √   

 
                    (7.8) 

The height of Phase 2 is: 

   
  

√  
 

 
                              (7.9) 

In the series model, the heat flux in Phase 1 and Phase 2 are the same, which is  

   
    

   
         

    

   
           

    

   
              

(7.10) 

where q is the heat flux, T(n) is the temperature of the n
th

 unit, 

   (
                      
                     

,    is the area of the n
th

 unit,    is the heat 

conductivity with mixed phases in Phase 2; due to the same width and length, 

            ,     is the thickness of the n
th

 unit, which is expressed as: 

     (
   

  √  
 

   
                  

  
  

√  
 

 
                  

. 

Therefore, Equation 7.10 can be written as: 

  

   
        

  

   
          

  

   
             

  

 
        

 

  
   (7.11) 

where    is the effective heat conductivity of foam concrete; 

In the Phase 2, regardless of solid or gas phase, temperature gradient under 

equilibrium status between each input side and output side is the same. 

                   
    

    
  

   
 

    
  

 

  

√  
 

 
           (7.12) 

In each Phase 2, there are    air pores, which can be regarded as parallel mode of 

heat transfer: 
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                     (7.13) 

Equation 7.13 can be simplified as: 

 
      

 
  

  
     

        
 

  
           

     
 

  
         

    

  
        (7.14) 

Equation 7.14 is simplified as: 

      √   
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       √   

     

(7.15)  

According to Equation 7.11 and Equation 7.12, following relationship is obtained: 

{
                   

 

  
  

                   
 

  
  
              (7.16) 

Equation 7.16 can be transformed into: 

                               

 
 

  
         

 

  
  
           

 

  
            (7.17) 

Equation 7.17 can be rewritten as: 

 

  
 

   √  
  

  
 

√  
 

  
.                               (7.18) 

Incorporating Equation 7.15 into Equation 7.18, the effective heat conductivity by 

series model is obtained: 

   
    

(  √  
 )   √  

   
   

  √  
  
   (  √  
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  ( √  
  
   )   (  √  

  
   )

                (7.19) 

According to Equation 7.19, the effective heat conductivity is obtained by means of 

series dominated model, and the results of the effective heat conductivity by the 

model and experimental method are listed in Table 7.1. Note that the heat 

conductivity of air is 0.024 W/m K at room temperature[46]. 
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Table 7. 1 Experimental and calculated effective heat conductivity of foam 
concrete* 

Group  

No. 

Density 

(kg/m
3
) 

Experimental heat 

conductivity (W/m K) 

Calculated value 

 (W/m K) 

relative 

error(%) 

1 1373 0.369 0.369 0 

2 1194 0.325 0.318 2.2 

3 902 0.239 0.232 3.1 

4 817 0.217 0.208 4.3 

5 761 0.185 0.192 4.0 

6 608 0.162 0.152 6.0 

7 580 0.142 0.145 2.3 

*Experimental data is provided by Zuhua Zhang 
93

   

 

The heat conductivity are reported in Table 7.1, together with calculated volume 

fraction and the proposed method for different densities, for which there are seven 

density groups of foam concrete ranging from 580 kg/m
3
 to 1373 kg/m

3
. The first 

group density 1373 kg/m
3
 is used as the initial value, for which no foam is added 

into concrete. Comparison of the calculated results with the experimental results 

reveals that the maximum relative error for heat conductivity is less than 6%. 
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Figure 7. 2 A comparison of the calculated and experimentally measured heat 

conductivities 

 

Theoretically calculated and experimentally measured heat conductivities for foam 

concrete with different densities is evident in Figure 7.2. Here the black squares 

represent experimentally measured heat conductivity and red circles represent 

theoretically calculated heat conductivities. The difference between the theoretically 

calculated heat conductivity and experimentally measured heat conductivity is very 

small. 
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Figure 7. 3 Comparison among the heat conductivity by different models 
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In contrast, Figure 7.3 is a plot of the heat conductivity values predicted by different 

theoretical models and the obtained experimentally. The effective heat conductivity 

by our proposed model closer to the experimental results than that by series model, 

parallel model, Maxwell-Eucken I model and Carson model models. It proves that 

the proposed effective heat conductivity model is more reliable for predicting the 

effective heat conductivity of foam concrete.  

7.2 Temperature Evolution during A Fire Incident 

Building fire incidents are the most threat to the human lives in buildings, and the 

fire-resistance material in building walls and other parts are very important to 

protect human from life threat [114, 115]. As a kind of light weight thermal 

insulation material, foam concrete is regarded as an ideal fire resistance construction 

material for its lower heat conductivity and non-combustible properties [1, 3]. 

In this part, temperature fields in a traditional concrete wall and a foam concrete 

wall during a fire incident are simulated and compared. The temperature field 

evolution is used to quantitatively describe the thermal insulation properties of foam 

concrete.  

According to Ref [116], the effective specific heat of foamed concrete is expressed 

as: 

     
      

                           (7.20) 

where    is the mass fraction of the foam, which can be calculated as       

                    . For 580 kg/m
3
 foamed concrete,   = 0.0012.   

  is 

the specific heat of air, which is 1005 J/kg·K [117].   
  is specific heat of the 

concrete matrix, which is 967 J/kg·K. So the effective specific heat of the foamed 

concrete is:            J/kg·K. Comparing with the experimental value 920 

J/kg·K of foam concrete, the relative error is only 5.1%. 

                                       (7.21) 
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where    is the concrete density,    is the air density in the pores. 

The heat transfer in foamed concrete wall is expressed as: 

  

  
                        (7.22) 

where T is temperature (ºC); t is time (s);   is thermal diffusivity (m
2
/s), which can 

be expressed as   
  

   
, where    is the thermal conductivity from Equation 7.19, 

  is the density from Equation 7.21 and Cp is derived from Equation 7.20. 

When there is a fire outside the wall, the temperature rising curve for such a fire 

incident is given as a function of firing time[118]:  

                                        (7.23) 

At the beginning of a fire incident, the initial temperature of the wall (both external 

and internal) is set       
ºC. A typical fire temperature rising curve is drawn in 

Figure 7.4. 

 

Figure 7. 4 A typical fire temperature versus time curve 
111
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On the external of the wall, convection is applied: 

 
  

  
                               (7.24) 

where    is the interface heat transfer coefficient between the fire surroundings and 

the outside wall surface;    and    are fire surrounding temperature and outside 

wall surface temperature, respectively.  

On the internal of the wall, the same convection and radiation heat transfer equation 

is applied: 

  

  
                            

    
            (7.25) 

where    is the interface heat transfer coefficient between the inside wall surface 

and inside of the room surrounding;    and    are the temperature inside the room 

surrounding (20ºC) and inside wall surface, respectively;    is grey body emission 

coefficient, and its value is 0.63 [117];   is Stefan-Boltzmann constant, which is 

5.669×10
-8 

W/m
2
·K; and    is the area of emissive zone (m

2
). 

In order to enhance calculation efficiency and to reduce computing time, a 30 mm 

wall thickness is adopted and the wall section has a length and width of 10 mm. The 

length and width directions are set as periodic boundary conditions, which indicates 

that there is no heat transference except inside and outside directions of the wall 

(Refer to Figure 7.5). The temperature field for a dense concrete wall under the 

same conditions is also calculated. The density, heat conductivity and specific heat 

of the dense concrete are 2300 kg/m
3
, 1.8 W/m·K and 912 J/kg·K respectively. The 

meshed size is 1mm, and the wall is meshed into 3000 cubic units. The schematic 

figure and meshed shape are depicted in Figure 7.5. 
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Figure 7. 5 Schematic figure of wall and its meshed figure 

 

 

 

Figure 7. 6 Simulated temperature field of foamed concrete at different times, 

(a) 0.03 s; (b) 100 s; (c) 200 s and (d) 360 s 

 

The temperature field in the foamed concrete wall at 0.03 s, 99 s, 200 s and 360 s 

are calculated and showed in Figure 7.6. The colours in each Figure 7.6 are 

indicating different temperature values. At 0.03 s, in Figure 7.6a, only the end 

touching fire rises temperature from initial 20ºC to 22ºC. When it is 100 s, in Figure 

7.6b, the temperature of the outside wall surface rises rapidly to 1045ºC, and 
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temperature elevated zone extends to the 11
th

 meshed grid. And there are still 19 

mm of the wall keeping its temperature at 20ºC. After 200 s, the fire stops as shown 

in Figure 7.6c), and the maximum temperature is 1058ºC. In Figure 7.6 d, the 

highest temperature drops to 1039ºC at 360 s and 7 mm of wall still remains at 

temperature of 20ºC. 

 

Figure 7. 7 Simulated temperature evolution curves for selected units during a fire 

incident 

 

The simulated temperature rising curve for the 10 selected units of foamed concrete 

are shown in Figure 7.7. From the left side of wall, the temperature evolution curve 

of the first unit is drawn in the top two curves, one is adjacent to fire face, the other 

is far from the fire face. The temperature rises quickly from 0 to 50 s, and then rises 

slowly. The final temperature difference between the two curves is less than 50ºC. 

As the unit is 1 mm in size, therefore the temperature gradient is 50 ºC/mm at 360 s 

for the first unit. For other units further away from the external fire, their 
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temperature difference decreases gradually. For the last selected unit, the 

temperature difference between the two sides of the unit is 20ºC at 360 s.  

 

Figure 7. 8 Calculated temperature field for a solid concrete wall at varying time 

periods; a) t=100s;b) t=360s 

 

The temperature field of traditional dense concrete wall at 100 s and 360 s are 

calculated in Figure 7.8. At 100 s (Figure 7.8 a), the highest temperature and the 

lowest temperature are 948ºC and 30ºC, respectively, located adjacent to the wall 

surface of the fire side wall and the other end. At 360 s (Figure 7.8b), the highest 

and lowest temperature are 987ºC and 102ºC, respectively, which means that the 

entire wall temperature exceeds 100ºC. Comparing with foamed concrete (in Figure 

7.8d), the temperature field of the conventional concrete wall rises more rapidly.  

The temperature evolution curves for different positions within a normal dense 

concrete structure are shown in Figure 7.9, in which six nodes along the wall 

thickness are chosen to viewing their temperature evolution during a fire accident. 

From the left face, the temperature of node 1 rises quickly up to 700℃ in less than 

50s, follows by a gradually rise to 800℃ at 100s; beyond 100s the temperature 

increases more slowly than before, and at 360s the first node temperature reaches 

900℃. The temperature of the second node rises quickly before 100s and up to 700℃ 

at 360s. The last node is only 3mm from the right side face of wall and its 

temperature rises gradually and reaches 180℃ at 360s. 

 

a b 

Fire Fire 
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Figure 7. 9 Temperature evolution curve of the marked point 

 

7.3 Summary  

By establishing the relationships between volume fraction, heat conductivity and 

the specific heat model, temperatures field of foam concrete during a simulated fire 

accident can be simulated, the following conclusions are achieved:  

1. The effective heat conductivity of foam concrete 

is:      

  √  
  
   (  √  

  
)

  ( √  
  
  )   (  √  

  
   )

 ; with a relative error of less than 6%. 

2.  The effective specific heat of foam concrete is   
    

      
       ; 

the specific heat for   580kg/m
3
 is   

         J/kg•K while 

experimental value is 920 J/kg•K, and the relative error is less than 5.1%. 

1 2 3 4 5 6 
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3. For a 30mm thickness foam concrete wall, temperature is maintained at 20℃

on the opposite side for 360s of firing on one side. The wall thickness of 7 

mm maintains at this temperature. In contrast, temperature for a simulated 

dense concrete wall rises to more than 150℃after the same period of firing. 

Therefore, foam concrete can allow people to have more time to escape from 

a fire incident than a traditional dense concrete wall. 
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CHAPTER 8 CONCLUSIONS 

In this thesis, the main two physical properties—compressive strength and heat 

conductivity of foam concrete are studied by experimental, theoretical and 

numerical simulation methods, which provides a tool to design foam concrete and 

predict the final product properties. Firstly, the aims of this research are presented in 

introduction chapter. Then, research progress of foam concrete is reviewed in 

chapter 2. In chapter 3, experimental method is employed to build the relationship 

between pore features and compressive strength. In chapter 4, theoretical method is 

employed to deduce compressive strength with single size and two sizes of EPS 

concretes. In chapter 5, EPS beads distribution in 2D and 3D is simulated by using 

Matlab and Python program. Following, finite element method is employed to 

simulate the compressive strength. Finally, the heat conductivity of foam concrete is 

deduced by theoretical method, and the fire resistance of foam concrete wall is 

simulated by using this theoretically calculated heat conductivity.  

By completing the research work designed in this thesis, the following important 

conclusions are drawn: 

1) The compressive strength of EPS concrete containing 2.68 mm diameter EPS is 

                           (MPa). The compressive strength of EPS 

concrete with 7.04mm diameter EPS is                         (MPa); 

2) The smaller the size of EPS beads in EPS concrete is, the smaller difference 

between the experimental measurement and theoretical calculation. Low the 

volume fraction of EPS beads in EPS concrete leads to consistence between the 

experimental measurement and theoretical calculation\; 

3) Through numerically fitting, the relationship between compressive strength and 

pore volume fraction of foam concrete can be expressed as:            

                           ; 

4) Pores size distribution in foam concrete is described as:  (    )          

      (            (    ( 
       

    
)  

       

    
  )  (        
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 ) ) ; pore averaged sizes are 

 (  )
̅̅ ̅̅ ̅̅ ̅                        

           
           

 ; the pores 

area fraction is expressed as:  (  )
̅̅ ̅̅ ̅̅ ̅                     

         
  

       
 ; the compressive strength of foam concrete is deduced to be: 

            (     (
  ̅      

       
)*  (     (

 ̅     

      
)* ; 

5) Theoretically, for the EPS concrete containing only single sized EPS beads, the 

compressive strength can be expressed as:         
   (

     

    )   

   ; if two 

sizes of EPS beads are mixed in the concrete matrix, the maximum compressive 

strength can be achieved when the volume fraction of two sizes EPS beads is 

50:50. The maximum compressive strength of two sized EPS beads mixed in 

EPS concrete is             (    (
   

  
)

 

 
). Comparing with only 

single size EPS beads embedded in concrete, the maximum compressive 

strength with the two sizes of EPS beads is lower; 

6) A Matlab program is compiled to describe the EPS distribution in a concrete 

matrix, and the EPS beads distribution is compared with experimental samples, 

the results confirms that the program can be adopted for description the EPS 

beads distribution;  

7) Through the numerical simulation, it is established that the distance between the 

neighbouring pores plays an important role in determining the local maximum 

stress. In addition, the smaller the diameter of pores reduces the stress 

concentration; 

8) The heat conductivity of foam concrete is expressed as: 

     

  √  
  
   (  √  

  
)

  ( √  
  
   )   (  √  

  
   )

. A comparison of the calculated results with 

experimental measured results, the relative error is less than 6%. By using this 

model, the temperature field during a fire incident is further compared with 
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traditional dense concrete, and the simulation results confirm the superior 

thermal insulation property. 
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Future Research Plan 

After completing the work in this thesis, the author finds that there are still lots of 

work remains to be done in the future. 

First of all, optimizing the foam concrete pore features so as to get the premium 

thermal insulation and compressive strength is the most important thing for the 

future study, which includes balance between the heat conductivity and compressive 

strength to match the engineering requirement. 

Secondly, in this thesis only the influences of volume fraction and pore size on 

compressive strength are studied. In the future, the pore shape factor and pores’ 

average distance can be studied, which is helpful to deeply understand its effect on 

the compressive strength of foam concrete. 

Finally, by controlling pore features during the foam concrete making process, the 

idealized pore features can be obtained, which will be directly beneficial to the 

industries. 

 

  



 

 

137 

 

 References  

1. Ramamurthy, K., E.K. Kunhanandan Nambiar, and G. Indu Siva Ranjani, A 
classification of studies on properties of foam concrete. Cement and Concrete 
Composites, 2009. 31(6): p. 388-396. 

2. Qu, X. and X. Zhao, Previous and present investigations on the components, 
microstructure and main properties of autoclaved aerated concrete – A review. 
Construction and Building Materials, 2017. 135: p. 505-516. 

3. Hlaváček, P., et al., Inorganic foams made from alkali-activated fly ash: Mechanical, 
chemical and physical properties. Journal of the European Ceramic Society, 2015. 
35(2): p. 703-709. 

4. Amran, Y.H.M., N. Farzadnia, and A.A. Abang Ali, Properties and applications of 
foamed concrete; a review. Construction and Building Materials, 2015. 101: p. 
990-1005. 

5. Zhang, Z., et al., Mechanical, thermal insulation, thermal resistance and acoustic 
absorption properties of geopolymer foam concrete. Cement and Concrete 
Composites, 2015. 62: p. 97-105. 

6. Huang, Z., T. Zhang, and Z. Wen, Proportioning and characterization of Portland 
cement-based ultra-lightweight foam concretes. Construction and Building 
Materials, 2015. 79: p. 390-396. 

7. Nambiar, E.K.K. and K. Ramamurthy, Models for strength prediction of foam 
concrete. Materials and Structures, 2007. 41(2): p. 247-254. 

8. Batool, F. and V. Bindiganavile, Air-void size distribution of cement based foam and 
its effect on thermal conductivity. Construction and Building Materials, 2017. 149: 
p. 17-28. 

9. Kumar, R. and B. Bhattacharjee, Porosity, pore size distribution and in situ strength 
of concrete. Cement and Concrete Research, 2003. 33(1): p. 155-164. 

10. Kearsley, E.P. and P.J. Wainwright, The effect of porosity on the strength of foamed 
concrete. Cement and Concrete Research, 2002. 32(2): p. 233-239. 

11. Narayanan, N. and K. Ramamurthy, Structure and properties of aerated concrete: a 
review. Cement and Concrete Composites, 2000. 22(5): p. 321-329. 

12. Miled, K. and O. Limam, Effective thermal conductivity of foam concretes: 
Homogenization schemes vs experimental data and FEM simulations. Mechanics 
Research Communications, 2016. 76: p. 96-100. 

13. Lian, C., Y. Zhuge, and S. Beecham, The relationship between porosity and strength 
for porous concrete. Construction and Building Materials, 2011. 25(11): p. 
4294-4298. 

14. Sumanasooriya, M.S. and N. Neithalath, Pore structure features of pervious 
concretes proportioned for desired porosities and their performance prediction. 
Cement and Concrete Composites, 2011. 33(8): p. 778-787. 

15. Nambiar, E.K.K. and K. Ramamurthy, Air‐void characterisation of foam concrete. 
Cement and Concrete Research, 2007. 37(2): p. 221-230. 

16. Deo, O. and N. Neithalath, Compressive behavior of pervious concretes and a 
quantification of the influence of random pore structure features. Materials 
Science and Engineering: A, 2010. 528(1): p. 402-412. 

17. Wikipedia. Concrete. 2012; Available from: http://en.wikipedia.org/wiki/Concrete. 
18. Arellano Aguilar, R., O. Burciaga Díaz, and J.I. Escalante García, Lightweight 

concretes of activated metakaolin-fly ash binders, with blast furnace slag 
aggregates. Construction and Building Materials, 2010. 24(7): p. 1166-1175. 

http://en.wikipedia.org/wiki/Concrete


 

 

138 

 

19. Concrete Properties--Properties of normal strength Portland cement concrete. 2012; 
Available from: 
http://www.engineeringtoolbox.com/concrete-properties-d_1223.html. 

20. Roberts, B. Global cement consumption up to 9.9% last year. 2011; Available from: 
http://www.constructionweekonline.com/article-11772-global-cement-consumpti
on-up-99-last-year/. 

21. Vanderley M.John, E.P., On the sustainability of concrete. UNEP Industry and 
Environment, 2003: p. 1-7. 

22. Pade, C. and M. Guimaraes, The CO2 uptake of concrete in a 100 year perspective. 
Cement and Concrete Research, 2007. 37(9): p. 1348-1356. 

23. Ramli, A.O.R.M.B., A Qualitative Study of Green Building Indexes Rating of 
Lightweight Foam Concrete. Journal of Sustainable Development, 2011. 4(5): p. 
188-195. 

24. Saber, H.H., et al., 3D heat and air transport model for predicting the thermal 
resistances of insulated wall assemblies. Journal of Building Performance 
Simulation, 2011. 5(2): p. 75-91. 

25. Wei, S., et al., Characterization and simulation of microstructure and thermal 
properties of foamed concrete. Construction and Building Materials, 2013. 47(0): p. 
1278-1291. 

26. Hung, T.-C., et al., Inorganic polymeric foam as a sound absorbing and insulating 
material. Construction and Building Materials, 2014. 50(0): p. 328-334. 

27. Wikipedia. Autoclaved aerated concrete. 2012; Available from: 
http://en.wikipedia.org/wiki/Autoclaved_aerated_concrete. 

28. Just, A. and B. Middendorf, Microstructure of high-strength foam concrete. 
Materials Characterization, 2009. 60(7): p. 741-748. 

29. Zhang, Z., et al., Geopolymer foam concrete: An emerging material for sustainable 
construction. Construction and Building Materials, 2014. 56(0): p. 113-127. 

30. Petersen, A.K. and B. Solberg, Environmental and economic impacts of substitution 
between wood products and alternative materials: a review of micro-level analyses 
from Norway and Sweden. Forest Policy and Economics, 2005. 7(3): p. 249-259. 

31. Nooraini Mohd Zahari, I.A.R.a.A.M.A.Z., foam concrete potential application in 
thermal insulation, in Proceedings of MUCEET2009. 2009: MS Garden, Kuantan, 
Pahang, Malaysia. p. 47-52. 

32. Al-Jabri, K.S., et al., Concrete blocks for thermal insulation in hot climate. Cement 
and Concrete Research, 2005. 35(8): p. 1472-1479. 

33. Liu, M.Y.J., et al., Evaluation of thermal conductivity, mechanical and transport 
properties of lightweight aggregate foamed geopolymer concrete. Energy and 
Buildings, 2014. 72(0): p. 238-245. 

34. Ortiz, O., F. Castells, and G. Sonnemann, Sustainability in the construction industry: 
A review of recent developments based on LCA. Construction and Building 
Materials, 2009. 23(1): p. 28-39. 

35. Pisello, A.L., et al., Effect of dynamic characteristics of building envelope on 
thermal-energy performance in winter conditions: In field experiment. Energy and 
Buildings, 2014. 80(0): p. 218-230. 

36. Huber, P., et al., Conditions for cost-efficient reuse of biological sludge for paper 
and board manufacturing. Journal of Cleaner Production, 2014. 66(0): p. 65-74. 

37. Demirboğa, R. and R. Gül, The effects of expanded perlite aggregate, silica fume 
and fly ash on the thermal conductivity of lightweight concrete. Cement and 
Concrete Research, 2003. 33(5): p. 723-727. 

http://www.engineeringtoolbox.com/concrete-properties-d_1223.html
http://www.constructionweekonline.com/article-11772-global-cement-consumption-up-99-last-year/
http://www.constructionweekonline.com/article-11772-global-cement-consumption-up-99-last-year/
http://en.wikipedia.org/wiki/Autoclaved_aerated_concrete


 

 

139 

 

38. Ahmaruzzaman, M., A review on the utilization of fly ash. Progress in Energy and 
Combustion Science, 2010. 36(3): p. 327-363. 

39. Nambiar, E.K.K. and K. Ramamurthy, Models relating mixture composition to the 
density and strength of foam concrete using response surface methodology. 
Cement and Concrete Composites, 2006. 28(9): p. 752-760. 

40. Limbachiya, M., M.S. Meddah, and Y. Ouchagour, Use of recycled concrete 
aggregate in fly-ash concrete. Construction and Building Materials, 2012. 27(1): p. 
439-449. 

41. Duxson, P., et al., The role of inorganic polymer technology in the development of 
‘green concrete’. Cement and Concrete Research, 2007. 37(12): p. 1590-1597. 

42. Bernal, S.A., et al., Evolution of binder structure in sodium silicate-activated 
slag-metakaolin blends. Cement and Concrete Composites, 2011. 33(1): p. 46-54. 

43. Henon, J., et al., Porosity control of cold consolidated geomaterial foam: 
Temperature effect. Ceramics International, 2012. 38(1): p. 77-84. 

44. Al-Sibahy, A. and R. Edwards, Thermal behaviour of novel lightweight concrete at 
ambient and elevated temperatures: Experimental, modelling and parametric 
studies. Construction and Building Materials, 2012. 31: p. 174-187. 

45. Al-Sibahy, A. and R. Edwards, Mechanical and thermal properties of novel 
lightweight concrete mixtures containing recycled glass and metakaolin. 
Construction and Building Materials, 2012. 31: p. 157-167. 

46. Wongkeo, W., et al., Compressive strength, flexural strength and thermal 
conductivity of autoclaved concrete block made using bottom ash as cement 
replacement materials. Materials and Design, 2012. 35(0): p. 434-439. 

47. Ünal, O., T. Uygunoğlu, and A. Yildiz, Investigation of properties of low-strength 
lightweight concrete for thermal insulation. Building and Environment, 2007. 42(2): 
p. 584-590. 

48. Mo, L.T., et al., 2D and 3D meso-scale finite element models for ravelling analysis 
of porous asphalt concrete. Finite Elements in Analysis and Design, 2008. 44(4): p. 
186-196. 

49. Brocca, M., Z.P. Bažant, and I.M. Daniel, Microplane model for stiff foams and 
finite element analysis of sandwich failure by core indentation. International 
Journal of Solids and Structures, 2001. 38(44–45): p. 8111-8132. 

50. Ehlers, W. and W. Volk, On theoretical and numerical methods in the theory of 
porous media based on polar and non-polar elasto-plastic solid materials. 
International Journal of Solids and Structures, 1998. 35(34–35): p. 4597-4617. 

51. Benboudjema, F., F. Meftah, and J.M. Torrenti, Interaction between drying, 
shrinkage, creep and cracking phenomena in concrete. Engineering Structures, 
2005. 27(2): p. 239-250. 

52. Ranaivomanana, N., S. Multon, and A. Turatsinze, Basic creep of concrete under 
compression, tension and bending. Construction and Building Materials, 2013. 
38(0): p. 173-180. 

53. Chindaprasirt, P. and U. Rattanasak, Shrinkage behavior of structural foam 
lightweight concrete containing glycol compounds and fly ash. Materials &amp; 
Design, 2011. 32(2): p. 723-727. 

54. Duxson, P., G.C. Lukey, and J.S.J. van Deventer, Thermal evolution of metakaolin 
geopolymers: Part 1 – Physical evolution. Journal of Non-Crystalline Solids, 2006. 
352(52-54): p. 5541-5555. 

55. S.M.Abd, M.F.M.Z., R.Abdul Hamid, Modeling the prediction of compressive 
strength for cements and foam concrete. 2008. p. 343-354. 



 

 

140 

 

56. Nambiar, E.K.K. and K. Ramamurthy, Models for strength prediction of foam 
concrete. Materials and Structures, 2008. 41(2): p. 247-254. 

57. Narayanan, K.R.a.N., Factors influencing the density and compressive strength of 
aerated concrete. Magazine of Concrete Research, 2000. 52(3): p. 6. 

58. Hoff, G.C., Porosity-strength considerations for cellular concrete. Cement and 
Concrete Research, 1972. 2(1): p. 91-100. 

59. Ashby, L.J.G.a.M.F., The Mechanics of Three-Dimensional Cellular Materials. Proc. 
R. Soc. Lond, 1982. 382: p. 43-59. 

60. Kadashevich, I. and D. Stoyan, A beam-network model for autoclaved aerated 
concrete and its use for the investigation of relationships between Young’s 
modulus and microstructure. Computational Materials Science, 2008. 43(2): p. 
293-300. 

61. Roberts, A.P. and E.J. Garboczi, Elastic properties of model random 
three-dimensional open-cell solids. Journal of the Mechanics and Physics of Solids, 
2002. 50(1): p. 33-55. 

62. Roberts, A.P. and E.J. Garboczi, Elastic moduli of model random three-dimensional 
closed-cell cellular solids. Acta Materialia, 2001. 49(2): p. 189-197. 

63. Carson, J.K., et al., Thermal conductivity bounds for isotropic, porous materials. 
International Journal of Heat and Mass Transfer, 2005. 48(11): p. 2150-2158. 

64. Holman, J.P., Heat transfer. 1989: McGraw-Hill. 
65. Wang, J., et al., A new structural model of effective thermal conductivity for 

heterogeneous materials with co-continuous phases. International Journal of Heat 
and Mass Transfer, 2008. 51(9-10): p. 2389-2397. 

66. Qiang Li , H.W., Zuhua Zhang and Andrew Reid, Numerical simulation of porosity 
on thermal properties and fire resistance of foamed concrete. Journal of 
Sustainable Cement-Based Materials, 2013. 2(1): p. 1-7. 

67. Maxwell, J.C., A treatise on electricity and magnetism, ed. t. ed. 1954, New York 
Dover Publications Inc. 

68. Kim, H.K., J.H. Jeon, and H.K. Lee, Workability, and mechanical, acoustic and 
thermal properties of lightweight aggregate concrete with a high volume of 
entrained air. Construction and Building Materials, 2012. 29(0): p. 193-200. 

69. Bentz, D.P., et al., Thermal properties of high-volume fly ash mortars and concretes. 
Journal of Building Physics, 2011. 34(3): p. 263-275. 

70. Zhou, Z., S.W. Rees, and H.R. Thomas, A numerical and experimental investigation 
of ground heat transfer including edge insulation effects. Building and Environment, 
2002. 37(1): p. 67-78. 

71. Ke, Y., et al., Identification of microstructural characteristics in lightweight 
aggregate concretes by micromechanical modelling including the interfacial 
transition zone (ITZ). Cement and Concrete Research, 2010. 40(11): p. 1590-1600. 

72. Nguyen, V.P., M. Stroeven, and L.J. Sluys, Multiscale failure modeling of concrete: 
Micromechanical modeling, discontinuous homogenization and parallel 
computations. Computer Methods in Applied Mechanics and Engineering, 2012. 
201-204: p. 139-156. 

73. Chindaprasirt, P., C. Jaturapitakkul, and T. Sinsiri, Effect of fly ash fineness on 
compressive strength and pore size of blended cement paste. Cement and 
Concrete Composites, 2005. 27(4): p. 425-428. 

74. Zhang, Z., et al., Geopolymer foam concrete: An emerging material for sustainable 
construction. Construction and Building Materials, 2014. 56: p. 113-127. 



 

 

141 

 

75. Babu, D.S., K. Ganesh Babu, and W. Tiong-Huan, Effect of polystyrene aggregate 
size on strength and moisture migration characteristics of lightweight concrete. 
Cement and Concrete Composites, 2006. 28(6): p. 520-527. 

76. Babu, K.G. and D.S. Babu, Behaviour of lightweight expanded polystyrene concrete 
containing silica fume. Cement and Concrete Research, 2003. 33(5): p. 755-762. 

77. Duškov, M. and A. Scarpas, Three-dimensional finite element analysis of flexible 
pavements with an (open joint in the) EPS sub-base. Geotextiles and 
Geomembranes, 1997. 15(1–3): p. 29-38. 

78. Miled, K., et al., Compressive behavior of an idealized EPS lightweight concrete: 
size effects and failure mode. Mechanics of Materials, 2004. 36(11): p. 1031-1046. 

79. Miled, K., K. Sab, and R. Le Roy, Particle size effect on EPS lightweight concrete 
compressive strength: Experimental investigation and modelling. Mechanics of 
Materials, 2007. 39(3): p. 222-240. 

80. Liu, N. and B. Chen, Experimental study of the influence of EPS particle size on the 
mechanical properties of EPS lightweight concrete. Construction and Building 
Materials, 2014. 68: p. 227-232. 

81. Chen, B. and N. Liu, A novel lightweight concrete-fabrication and its thermal and 
mechanical properties. Construction and Building Materials, 2013. 44: p. 691-698. 

82. Ling, I.H. and D.C.L. Teo, Properties of EPS RHA lightweight concrete bricks under 
different curing conditions. Construction and Building Materials, 2011. 25(8): p. 
3648-3655. 

83. Bouvard, D., et al., Characterization and simulation of microstructure and 
properties of EPS lightweight concrete. Cement and Concrete Research, 2007. 
37(12): p. 1666-1673. 

84. Laukaitis, A., R. Žurauskas, and J. Kerien≐, The effect of foam polystyrene granules 
on cement composite properties. Cement and Concrete Composites, 2005. 27(1): p. 
41-47. 

85. Fu, G. and W. Dekelbab, 3-D random packing of polydisperse particles and concrete 
aggregate grading. Powder Technology, 2003. 133(1–3): p. 147-155. 

86. Liu, Y., Z. You, and Y. Zhao, Three-dimensional discrete element modeling of 
asphalt concrete: Size effects of elements. Construction and Building Materials, 
2012. 37(0): p. 775-782. 

87. Farghal Maree, A. and K. Hilal Riad, Analytical and experimental investigation for 
bond behaviour of newly developed polystyrene foam particles’ lightweight 
concrete. Engineering Structures, 2014. 58(0): p. 1-11. 

88. Wang, Y., J.Y.R. Liew, and S.C. Lee, Theoretical models for axially restrained 
steel-concrete-steel sandwich panels under blast loading. International Journal of 
Impact Engineering, 2015. 76(0): p. 221-231. 

89. Bardella, L., et al., A micromechanical model for quasi-brittle compressive failure of 
glass-microballoons/thermoset-matrix syntactic foams. Journal of the European 
Ceramic Society, 2014. 34(11): p. 2605-2616. 

90. Scerrato, D., et al., A simple non-linear model for internal friction in modified 
concrete. International Journal of Engineering Science, 2014. 80(0): p. 136-152. 

91. Shigang, A., et al., Effect of aggregate distribution and shape on failure behavior of 
polyurethane polymer concrete under tension. Computational Materials Science, 
2013. 67(0): p. 133-139. 

92. She, W., Y. Zhang, and M.R. Jones, Three-dimensional numerical modeling and 
simulation of the thermal properties of foamed concrete. Construction and Building 
Materials, 2014. 50(0): p. 421-431. 



 

 

142 

 

93. Bardella, L., et al., A critical evaluation of micromechanical models for syntactic 
foams. Mechanics of Materials, 2012. 50: p. 53-69. 

94. Yeh, I.C., Computer-aided design for optimum concrete mixtures. Cement and 
Concrete Composites, 2007. 29(3): p. 193-202. 

95. Sobhani, J. and M. Najimi, Numerical study on the feasibility of dynamic evolving 
neural-fuzzy inference system for approximation of compressive strength of 
dry-cast concrete. Applied Soft Computing, 2014. 24(0): p. 572-584. 

96. Alshihri, M.M., A.M. Azmy, and M.S. El-Bisy, Neural networks for predicting 
compressive strength of structural light weight concrete. Construction and Building 
Materials, 2009. 23(6): p. 2214-2219. 

97. Bal, L. and F. Buyle-Bodin, Artificial neural network for predicting drying shrinkage 
of concrete. Construction and Building Materials, 2013. 38(0): p. 248-254. 

98. Chandwani, V., V. Agrawal, and R. Nagar, Modeling slump of ready mix concrete 
using genetic algorithms assisted training of Artificial Neural Networks. Expert 
Systems with Applications, 2015. 42(2): p. 885-893. 

99. Ghafoori, N., et al., Predicting rapid chloride permeability of self-consolidating 
concrete: A comparative study on statistical and neural network models. 
Construction and Building Materials, 2013. 44(0): p. 381-390. 

100. Cihan, M.T., A. Güner, and N. Yüzer, Response surfaces for compressive strength of 
concrete. Construction and Building Materials, 2013. 40(0): p. 763-774. 

101. del Coz Díaz, J.J., et al., Hygrothermal properties of lightweight concrete: 
Experiments and numerical fitting study. Construction and Building Materials, 2013. 
40(0): p. 543-555. 

102. Chaoming Song, P.W.H.A.M., A phase diagram for jammed matter. Nature, 2008. 
453: p. 629-632. 

103. Miyauchi, S.Y.J.K.M., Multi-Sized Sphere Packing. 2009: p. 1-45. 
104. Huang, Q., et al., Numerical analysis of the effect of coarse aggregate distribution 

on concrete carbonation. Construction and Building Materials, 2012. 37(0): p. 
27-35. 

105. Ozen, M. and M. Guler, Assessment of optimum threshold and particle shape 
parameter for the image analysis of aggregate size distribution of concrete 
sections. Optics and Lasers in Engineering, 2014. 53(0): p. 122-132. 

106. Xu, W.X., Z. Lv, and H.S. Chen, Effects of particle size distribution, shape and 
volume fraction of aggregates on the wall effect of concrete via random sequential 
packing of polydispersed ellipsoidal particles. Physica A: Statistical Mechanics and 
its Applications, 2013. 392(3): p. 416-426. 

107. Shuguang, L. and L. Qingbin, Method of meshing ITZ structure in 3D meso-level 
finite element analysis for concrete. Finite Elements in Analysis and Design, 2015. 
93(0): p. 96-106. 

108. Ganesh Babu, K. and D. Saradhi Babu, Performance of fly ash concretes containing 
lightweight EPS aggregates. Cement and Concrete Composites, 2004. 26(6): p. 
605-611. 

109. Anastaselos, D., S. Oxizidis, and A.M. Papadopoulos, Energy, environmental and 
economic optimization of thermal insulation solutions by means of an integrated 
decision support system. Energy and Buildings, 2011. 43(2–3): p. 686-694. 

110. Kolaitis, D.I., et al., Comparative assessment of internal and external thermal 
insulation systems for energy efficient retrofitting of residential buildings. Energy 
and Buildings, 2013. 64(0): p. 123-131. 



 

 

143 

 

111. Yew, M.C., et al., Integration of thermal insulation coating and moving-air-cavity in 
a cool roof system for attic temperature reduction. Energy Conversion and 
Management, 2013. 75(0): p. 241-248. 

112. Yu, M., et al., A unified method for calculating fire resistance of solid and hollow 
concrete-filled steel tube columns based on average temperature. Engineering 
Structures, 2014. 71(0): p. 12-22. 

113. Marquis, D.M., G. Auguin, and P. Barabinot, Poster abstracts-Fire Resistance of 
Sandwich Composite Materials. Procedia Engineering, 2013. 62(0): p. 1121-1127. 

114. Porcari, G.-L.F., E. Zalok, and W. Mekky, Fire induced progressive collapse of steel 
building structures: A review of the mechanisms. Engineering Structures, 2015. 
82(0): p. 261-267. 

115. Chow, W.K. and Y.Y. Chan, Computer simulation of the thermal fire resistance of 
building materials and structural elements. Construction and Building Materials, 
1996. 10(2): p. 131-140. 
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Appendix  

Appendix 1 Program for 2D pore structure model 

1. clear all 

2. depth=100; 

3.   

4. n=0; 

5. N=0; 

6. V=0; 

7. V1=0.5; % V1?????V?????????? 

8.   

9. while V<=V1 

10. n=n+1 

11. r(n)=rand*20+5; 

12. xc(n)=rand*(depth-2*r(n))+r(n);yc(n)=rand*(depth-2*r(n))+r(n); 

13.   

14. if n==1 % First circle center 

15. N=N+1; 

16. r(N)=r(n); 

17. xc(N)=xc(n);yc(N)=yc(n);  

18. V=V+pi*r(N)^2/depth^2; 

19. end 

20.   

21. if n>=2 

22. for i=1:N  

23. d(i)=sqrt((xc(n)-xc(i))^2+(yc(n)-yc(i))^2); 

24. rr(i)=r(i)+r(n); 

25. d_rr(i)=d(i)-rr(i); 

26. end 

27. if min(d_rr)>0 

28. N=N+1; 

29. r(N)=r(n); 

30. xc(N)=xc(n); 

31. yc(N)=yc(n);  

32. V=V+pi*r(N)^2/depth^2;  

33. end  

34. clear d rr d_rr 

35. end 

36.   

37. end  

38.   

39. % Plot 

40.   

41. d=pi/20;  

42. t=0:d:2*pi; 

43. xx=cos(t);yy=sin(t); 

44.   
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45. for i =1 : N 

46. x=xx*r(i)+xc(i); 

47. y=yy*r(i)+yc(i); 

48. plot(x,y) 

49. axis([0 100 0 100]); 

50. hold on 

51. end 

52. hold off 

 

 

Appendix 2 python program for generating 3D pore structure  

from part import * 

from material import * 

from section import * 

from assembly import * 

from step import * 

from interaction import * 

from load import * 

from mesh import * 

from job import * 

from sketch import * 

from visualization import * 

from connectorBehavior import * 

import random 

import math 

  

#Euclidean Distance Measure 

def euclidean_py(x, y): 

    # lightly modified from implementation by Thomas Sicheritz-Ponten. 

    # This works faster than the Numeric implementation on shorter 

    # vectors. 

    if len(x) != len(y): 

        raise ValueError, "vectors must be same length" 

    sum = 0 

    for i in range(len(x)): 

        sum += (x[i]-y[i])**2 

    return math.sqrt(sum) 

  

#Create Cube 

mdb.models['Model-1'].ConstrainedSketch(name='__profile__', sheetSize=200.0) 

mdb.models['Model-1'].sketches['__profile__'].rectangle(point1=(0.0, 0.0), 

point2=(1.0, 1.0)) 

mdb.models['Model-1'].Part(dimensionality=THREE_D, name='Part-1', 

type=DEFORMABLE_BODY) 

mdb.models['Model-1'].parts['Part-1'].BaseSolidExtrude(depth=1.0, 

sketch=mdb.models['Model-1'].sketches['__profile__']) 

del mdb.models['Model-1'].sketches['__profile__'] 



 

 

146 

 

  

#Instantiate cube 

mdb.models['Model-1'].rootAssembly.Instance(dependent=ON, name='tmpCube', 

part=mdb.models['Model-1'].parts['Part-1']) 

  

#File Output 

text_file = open("c:\Sphere_Positions.txt", "w") 

 

#Radius of one sphere 

#r = (3*0.30)/(4*math.pi*n) 

#r = r**(1.0/3.0) 

#print "Sphere Radius is " + str(r) 

#text_file.write("Sphere Radius is " + str(r) + "\n")  

#Number of Spheres 

#define the radius of EPS beads 

r=3.5 

print "Sphere Radius is " + str(r) 

text_file.write("Sphere Radius is " + str(r) + "\n") 

 

#define the total number of EPS beads   

n=round(3*40*40*40*0.2/(4*math.pi*r*r*r)) 

print "Total sphere number is " + str(n) 

#n=108 

text_file.write("Number of Spheres: " + str(n) + "\n") 

  

  

#Create Sphere 

mdb.models['Model-1'].ConstrainedSketch(name='__profile__', sheetSize=200.0) 

mdb.models['Model-1'].sketches['__profile__'].ConstructionLine(point1=(0.0, 

-100.0), point2=(0.0, 100.0)) 

mdb.models['Model-1'].sketches['__profile__'].FixedConstraint(entity=mdb.models[

'Model-1'].sketches['__profile__'].geometry[2]) 

mdb.models['Model-1'].sketches['__profile__'].ArcByCenterEnds(center=(0.0, 0.0), 

direction=CLOCKWISE, point1=(0.0, -r), point2=(0.0, r)) 

mdb.models['Model-1'].sketches['__profile__'].Line(point1=(0.0, -r), point2=(0.0, 

r)) 

mdb.models['Model-1'].sketches['__profile__'].VerticalConstraint(entity=mdb.mode

ls['Model-1'].sketches['__profile__'].geometry[4]) 

mdb.models['Model-1'].Part(dimensionality=THREE_D, name='Part-2', 

type=DEFORMABLE_BODY) 

mdb.models['Model-1'].parts['Part-2'].BaseSolidRevolve(angle=360.0, 

flipRevolveDirection=OFF, sketch=mdb.models['Model-1'].sketches['__profile__']) 

del mdb.models['Model-1'].sketches['__profile__'] 

  

#List of Spheres 

sphereList = [] 

sphereInstancesList = [] 

  

#Create n instances of the sphere 
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for i in range(1, n+1): 

    InstanceName = 'Sphere_' + str(i) 

    print InstanceName 

    text_file.write(InstanceName) 

  

    #Maximum tries to distribute sphere 

    maxTries = 1000 

  

    while len(sphereList) < i: 

        maxTries -= 1 

        if maxTries < 1: 

            print "Maximum Distribution tries exceded. Error! Restart the 

Script!" 

            break; 

  

        #Make sure Spheres dont cut cube sides 

        vecPosition = 

[r+(random.random()*(1.0-r-r)),r+(random.random()*(1.0-r-r)),r+(random.random()

*(1.0-r-r))] 

        for pos in sphereList: 

            if euclidean_py(pos, vecPosition) < 2*r: 

                break 

        else: 

            sphereList.append(vecPosition) 

            print vecPosition 

            text_file.write("\t" + str(vecPosition) + "\n") 

            #Instantiate Sphere 

            mdb.models['Model-1'].rootAssembly.Instance(dependent=ON, 

name=InstanceName, part=mdb.models['Model-1'].parts['Part-2']) 

            #Translate Instance of Sphere 

            

mdb.models['Model-1'].rootAssembly.translate(instanceList=(InstanceName, ), 

vector=vecPosition) 

            

sphereInstancesList.append(mdb.models['Model-1'].rootAssembly.instances[Instanc

eName]) 

  

print "Sphere Radius is " + str(r) 

  

#Cut all spheres with cube 

mdb.models['Model-1'].rootAssembly.PartFromBooleanCut(cuttingInstances=( 

sphereInstancesList ), 

instanceToBeCut=mdb.models['Model-1'].rootAssembly.instances['tmpCube'], 

name='Part-3') 

  

#Intantiate Cut Object 

mdb.models['Model-1'].rootAssembly.Instance(dependent=ON, name='Cube', 

part=mdb.models['Model-1'].parts['Part-3']) 
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#Delete temporary cube 

del mdb.models['Model-1'].rootAssembly.instances['tmpCube'] 

  

text_file.close() 

 
 


