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A pH-Based Pedotransfer Function for 
Scaling Saturated Hydraulic Conductivity 
Reduction: Improved Estimation of 
Hydraulic Dynamics in HYDRUS
Aram Ali,* Andrew J.W. Biggs, Jirka Šimůnek, 
and John McL. Bennett
Hydraulic conductivity is a key soil property governing agricultural production 
and is thus an important parameter in hydrologic modeling. The pH scaling fac-
tor for saturated hydraulic conductivity (Ks) reduction in the HYDRUS model was 
reviewed and evaluated for its ability to simulate Ks reduction. A limitation of the 
model is the generalization of Ks reduction at various levels of electrolyte con-
centration for different soil types, i.e., it is not soil specific. In this study, a new 
generalized linear regression model was developed to estimate Ks reduction for 
a larger set of Australian soils compared with three American soils. A nonlinear 
pedotransfer function was also produced, using the Levenberg–Marquardt opti-
mization algorithm, by considering the pH and electrolyte concentration of the 
applied solution as well as the soil clay content. This approach improved the esti-
mation of the pH scaling factor relating to Ks reduction for individual soils. The 
functions were based on Ks reduction in nine contrasting Australian soils using two 
sets of treatment solutions with Na adsorption ratios of 20 and 40; total electrolyte 
concentrations of 8, 15, 25, 50, 100, 250, and 500 mmolc L−1; and pH values of 6, 7, 
8, and 9. A comparison of the experimental data and model outputs indicates that 
the models performed objectively well and successfully described the Ks reduc-
tion due to the pH. Further, a nonlinear function provided greater accuracy than 
the generalized function for the individual soils of Australia and California. This 
indicates that the nonlinear model provides an improved estimation of the pH 
scaling factor for Ks reduction in specific soils in the HYDRUS model and should 
therefore be considered in future HYDRUS developments and applications.

Abbreviations: EC, electrolyte concentration; SAR, sodium adsorption ratio.

Soil hydraulic conductivity is a critically important soil physical property used 
in determining water and solute transport, infiltration rate, groundwater recharge, and 
other agricultural and hydrological processes (Ben-Hur et al., 2009; Smith et al., 1995). 
Soil hydraulic conductivity is strongly dependent on soil structural status and stability and 
the geometry of pore spaces in the soil (Assouline and Narkis, 2011). The use of marginal 
quality irrigation water is likely to cause deterioration in the soil structure; a change in 
the ratio of solids, water, and air within the soil; and reduced hydraulic conductivity due 
to clay disaggregation and dispersion processes (Bennett et al., 2019; Quirk and Schofield, 
1955; Rengasamy and Olsson, 1991). A reduction in hydraulic conductivity often occurs 
as a result of excess Na within the soil solution (measured as the sodium adsorption ratio, 
SAR), which can result in both intra- and inter-crystalline swelling, leading to clay disper-
sion (Dang et al., 2018b; Ezlit et al., 2013). The magnitude of the reduction in hydraulic 
conductivity depends on the electrolyte concentration (EC) in the soil solution (Quirk and 
Schofield, 1955; Shainberg and Letey, 1984). Furthermore, Suarez et al. (1984) showed 
that the pH of the solute percolating a soil, in combination with high SAR and low EC, 
was likely to lead to decreased hydraulic conductivity beyond the combined SAR and 
EC effect alone. The effects of pH, EC, and SAR of an applied solution on soil hydraulic 
conductivity have been broadly investigated, experimentally and mathematically, using 
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predictive models (Chorom et al., 1994; Ezlit et al., 2013; McNeal 
and Coleman, 1966; Suarez and Rubio, 2010).

Predictive models have become efficient tools to investigate 
water f low and solute movement in soils under irrigation. The 
performance of multiple simulations considering various equi-
librium and kinetic nonequilibrium chemical reactions between 
major ions allows industry and research to quickly interrogate 
the dynamics of systems. However, the development of models 
for the prediction of soil structural degradation and hydraulic 
conductivity dynamics will only be as good as the functions and 
assumptions that underlie them. Saturated hydraulic conductiv-
ity reduction remains a challenging task due to the combined 
effects of sodicity, salinity, pH, and alkalinity within the context 
of the soil being an inherently heterogeneous and complex mate-
rial that is non-rigid (Campbell and Paustian, 2015; Miller and 
White, 1998). Therefore, the effect of a given solution chemistry 
can lead to unique soil structural dynamics within soils of dif-
ferent origin (Bennett et al., 2019; Bennett and Warren, 2015; 
Menezes et al., 2014; Quirk and Schofield, 1955), soil clay con-
tent and mineral suite (Bell, 1996; Goldberg and Glaubig, 1987), 
soil organic matter (Oades, 1984), the pH of soil solution (Bolan 
et al., 1996; Suarez et al., 1984), and the ionicity of the soil aggre-
gate system (Bennett et al., 2019; Marchuk and Rengasamy, 2012; 
Zhu et al., 2019). Moreover, the magnitudes and the interrela-
tionship of these factors provide variable levels of resilience of 
soils to structural degradation for a given intervention. Therefore, 
soil hydraulic dynamics should not be expected to be simply pre-
dicted with a generalized model.

The HYDRUS model is perhaps the most widely utilized 
soil hydraulic model (Šimůnek et al., 2016). The empirical and 
semiempirical equations for the adverse effects of SAR, EC, and 
pH of solutions are described within the HYDRUS program 
manual (Šimůnek et al., 2013). McNeal (1968) used a semiem-
pirical equation based on the experimental clay swelling function 
for montmorillonite clay treated with combined sodic and saline 
solutions to fit experimental curves related to the relative satu-
rated hydraulic conductivity (Ks). The effect of solution pH on 
the Ks is derived from Suarez et al. (1984), whereby the change in 
Ks is characterized by a negative effect of pH on the soil hydraulic 
conductivity, independent of EC and SAR, which is explained by 
an additional scaling factor. Suarez et al. (1984) investigated the 
effects of pH on the Ks of three soils from California for a combi-
nation of solution SAR and EC concentrations; i.e., pH cannot be 
thought of as completely independent of the SAR and EC, as this is 
not physically possible. The results of the Suarez et al. (1984) study, 
using a narrow range of soils, have become the main dataset for 
the prediction of Ks reduction due to the pH of the applied solu-
tion. Furthermore, this dataset was subsequently used to produce a 
linear function (see Eq. [4] below) to simulate rKs reduction due to 
pH in the UNSATCHEM and HYDRUS mathematical models 
of Suarez and Šimůnek (1997) and Šimůnek and Suarez (1997).

The use of this reduction model is likely to provide less accu-
rate prediction of Ks for different soils (Šimůnek and Suarez, 1997) 

but to some extent helps to identify the degree of Ks reduction due 
to the pH of applied solutions. Therefore, there is a global need to 
optimize and validate the model parameters for pH-induced Ks 
reduction within the HYDRUS model and more broadly for use as 
a pedotransfer function. However, the approaches to validate and 
calibrate the models vary depending on the complexity involved 
in parameterizing of the models. Šimůnek et al. (2012) indicated 
that model calibration and inverse parameter estimation can be 
performed using a relatively simple, gradient based, local opti-
mization approach based on the Marquardt–Levenberg method, 
which is directly implemented into the HYDRUS codes; it is also 
important that the estimated model is both efficient and robust. 
This study reviewed the HYDRUS model for Ks reduction due to 
the pH of the applied solution and developed modifications to the 
current reduction model and its parameters. This was achieved by 
combining Levenberg–Marquardt nonlinear parameter optimiza-
tion involving the EC and pH of the applied solution, as well as 
the soil clay content, to improve the accuracy of the modeled solute 
and water movement on a soil-specific basis.

66Theoretical Background
Within HYDRUS, the reduction of the hydraulic conductiv-

ity K is calculated by multiplying a scaling factor r with the initial 
saturated hydraulic conductivity Ks and the relative hydraulic con-
ductivity Kr. The scaling factor r is a function of the soil solution 
pH, SAR, and EC, and the relative hydraulic conductivity Kr is a 
function of the hydraulic pressure head:

( ) ( ) ( )s r, H, SAR, EC pH, SAR, EC  K h p r K K h=  	 [1]

where K is the hydraulic conductivity (cm d−1), h is the pressure 
head (cm), pH is the solution pH (−log[H+]), SAR is the sodium 
adsorption ratio, EC is the total electrolyte concentration of the 
solution (mmolc L−1), and r is a scaling factor (a function of pH, 
SAR, and EC). Subsequently, the scaling parameter, r, is divided 
into two sub-factors:

( ) ( ) ( )1 2pH, SAR, EC SAR, EC pHr r r=  	 [2]

where r1 is a function of SAR and EC, providing the disaggrega-
tion (inter- and intra-crystalline swelling) and dispersion effects 
on the hydraulic conductivity, as described by Quirk and Schofield 
(1955), Dang et al. (2018b), and Bennett et al. (2019), while r2 
represents the effects of solution pH on the hydraulic conductivity 
(Suarez et al., 1984). The assumption is that the scaling parameters 
r1 and r2 can be applied for the entire range of pressure heads under 
unsaturated conditions. Where the values of r1 and r2 equate to 1.0, 
the soil chemistry supports the maximum hydraulic conductivity.

The scaling parameter r1 is based on the clay-swelling model 
of McNeal (1968). This describes the reduction of Ks in terms of 
the exchangeable sodium percentage (ESP) and electrolyte con-
centration using a montmorillonite interlayer swelling factor. The 
relationship between r1 and the clay-swelling model (x) was calcu-
lated by McNeal (1968) and can be written as
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where c and n are empirical parameters for a given soil within a 
specified range of soil ESP, and x is the clay-swelling model calcu-
lated by McNeal (1968) based on the adjusted ESP and solution 
concentration. While beyond the scope of this study, it is noted 
here that the McNeal (1968) model was modified by Ezlit et al. 
(2013) to function on a soil-specific basis via a semiempirical dis-
aggregation approach. Dang et al. (2018c) validated the specificity 
and the disaggregation model for field soils, while Bennett et al. 
(2019) demonstrated the magnitude of soil variability, even for the 
same soil orders. Therefore, in seeking to improve the soil-water 
dynamics of HYDRUS, it is prudent to utilize the semiempirical 
approach of Ezlit et al. (2013) as well as to seek to improve the 
incorporation of pH effects.

The r2 scaling factor, for the effect of pH on the hydraulic 
conductivity, was calculated from the experimental data of Suarez 
et al. (1984) after first seeking to correct Ks reduction for the 
adverse effects of low electrolyte concentration and high exchange-
able Na using r1 (Eq. [3])—an attempt to provide the pH effect as 
independent of the SAR and EC combined effects. The follow-
ing equation was developed by Suarez and Šimůnek (1997) and 
Šimůnek and Suarez (1997) based on the negative effects of the 
pH of the applied solution from the study of Suarez et al. (1984):

( )2

1.0, for pH 6.83
pH 3.46 0.36pH, for 6.83 pH 9.3

0.1, for pH 9.3
r

ìï £ïïï= - < <íïïï ³ïî

 	 [4]

The upper and lower pH limits are an assumption of no 
change in rKs or near-complete reduction for the specified pH 
ranges. We will refer to this model as the HYDRUS K–pH-depen-
dent function. Consequently, the final hydraulic conductivity 
reduction due to the pH, SAR, and EC of the applied solution is 
calculated (Šimůnek and Suarez, 1997) as

( ) ( ) ( )
( ) ( ) ( )

s

2 rs

r

1

, pH, SAR, EC pH, SAR, EC

SAR, EC pH

K h r K K h
r r K K h

=

=
         [5]

Equation [5] assumes that r1 and r2 have an equivalent 
weighted effect on the hydraulic reduction of the system, which 
allows the pH scaling factor to assert a large amount of control on 
the hydraulic system that may not necessarily be warranted.

66Materials and Methods
Soil Selection and Initial Characterization

Nine soils were collected from the 0- to 30-cm depth of soils 
located in Queensland and New South Wales states, Australia 
(Table 1). The selection of these soils was based on their differ-
ence in initial pH and alkalinity as the primary selection factor. A 
secondary selection factor was the soil clay mineralogy and texture. 
The soils were air dried and crushed with sufficient energy to break 

down the aggregates to pass through a 2-mm sieve; care was taken 
to not apply energy greater than that required in order to maintain 
the physical bonds of the aggregates <2 mm. Using standard meth-
ods from Rayment and Lyons (2011), the electrical conductivity 
(Method 3A1), pH (Method 4A1), and soluble and exchangeable 
cations (Method 15A2) were measured. The alkalinity was deter-
mined using a Radiometer Analytical Titrator (TIM845, Titration 
Manager). Published methodologies were used to determine the 
soil particle size distribution (Gee and Bauder, 1986), clay mineral-
ogy by X-ray diffraction (Jackson, 2005), and organic C (Walkley 
and Black, 1934). The soil characteristics are presented in Table 1.

 Solution Preparation
The desired levels of pH, EC, and SAR of the experimental 

treatment solutions were obtained by mixing NaHCO3, NaCl, and 
MgCl2×6H2O chemical compounds. Mixtures of Na and Mg salts 
rather than Na and Ca salts were used to prepare the solutions at 
each pH to prevent CaCO3 precipitation at high pH and low SAR. 
The Mg concentration was calculated based on the soil-specific 
flocculation power from cation flocculation concentration experi-
ments relative to Ca (Table 1) based on the modified method of 
Rengasamy and Oades (1977). The leaching solutions, SAR 20 
and 40, were prepared at total electrolyte concentrations of 8, 15, 
25, 50, and 100 mmolc L−1 for SAR 20 and 8, 15, 25, 50, 100, 250, 
and 500 mmolc L−1 for SAR 40 solutions. Both the SAR 20 and 
40 solutions were then prepared at a equilibrated pH values of 6, 
7, 8, and 9 according to the methodology of Suarez et al. (1984). 
The effective SAR (SAReff) values were calculated based on the 
effective flocculation power of Mg:

eff
Na

SAR  
Mg 2X

=  	 [6]

where X is the effective flocculation power of Mg exhibited for each 
soil (Table 1), and Na and Mg are concentrations (in mmolc L−1).

The desired pH was achieved by adjusting the HCO3
−/C1− 

ratio and CO2 partial pressure (PCO2) to ±0.05 units of the 
desired pH; the pH 9 and 6 solutions were the same except 
that the pH 9 solutions were equilibrated at atmospheric CO2 
(PCO2 » 35 Pa) and the pH 6 solution at PCO2 » 97 kPa using 
CO2 gas with 99.9% purity. This was consistent with the meth-
odology of Suarez et al. (1984) to allow direct comparison with 
their results. This approach was used, rather than the addition 
of other alkali or acidic compounds, for pH adjustment to avoid 
a change in ionic composition and electrolyte concentration of 
solutions. The pH 6 solutions were achieved by continuously 
bubbling CO2 gas into the 5.0-L solution container. The pH 
of the solution was measured in the solution container before 
degassing could occur.

Preparation for, and Measurement of, 
Saturated Hydraulic Conductivity

An aliquot (300 g) of each soil was carefully packed into 
polyvinyl chloride columns (87.5-mm inner diameter)—mesh 
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bottoms and a fast filter paper were 
used to allow drainage—to attain the 
mean bulk density (1.4 g cm−3) for the 
nine soils. In a disturbed soil column, 
the bulk density is somewhat arbitrary, 
hence the mean value was considered an 
appropriate selection. The soil columns 
were initially saturated with the appro-
priate solution by capillary tension from 
the bottom of the core. Subsequently, 
the same solution was applied to the top 
of the column to measure the hydrau-
lic conductivity at a constant hydraulic 
head of 2.0 cm, in accordance with Klute 
(1965). Leaching commenced with the 
most concentrated solution of the desired 
pH and SAR (Fig. 1 and 2). When the Ks 
of the soil columns and pH of the efflu-
ent had stabilized, the sequentially lower 
EC concentration solution of the same 
SAR and pH was applied. This process 
was continued until the culmination 
of the final solution in the sequence. 
The leachate solutions were collected 
from each column at time intervals to 
calculate Ks using Darcy’s law. For the 
purposes of comparison, the Ks values 
were compared with the initial Ks values 
determined as the Ks occurring with the 
greatest electrolyte concentration (for 
SAR 20, the greatest EC was 100 mmolc 
L−1, and for SAR 40 it was 500 mmolc 
L−1). The Ks was calculated at sequential 
time intervals (t) using Darcy’s law:

s  
VLK

AHt
=  	 [7]

where V is the volume of solution (cm3), 
L is the length of the soil core (cm), A 
is the cross-sectional area of the soil 
column (cm2), and H is the water head 
extending from the top of the ponded 
solution to the depth of the soil core (cm). 
Three replicates for each treatment and 
soil were used to determine Ks, creating 
a total of 216 soil cores for all soils used 
in this study.

The changes in hydraulic conductiv-
ity between treatments were represented 
as a relative hydraulic conductivity (rKs):
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s
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where the initial Ks, denoted by i, was compared with the i + nj 
sequential Ks to provide a hydraulic conductivity reduction from 
the initial Ks, where nj is the jth sequential solution in the sequence 
of n solutions.

66Modification of the Hydraulic 
Reduction Scaling Factor for pH
Generalized Equation

An inverse empirical model for the prediction of the Ks reduc-
tion scaling factor, due to the adverse effects of irrigation water 
pH, was developed from the observed rKs data (Fig. 1 and 2). The 
r2 scaling factor in HYDRUS proposed by Šimůnek and Suarez 

(1997) (Eq. [8]) was recalculated using the experimental rKs values 
from the study of Suarez et al. (1984). Subsequently, these rKs 
values were compared with the rKs values for the current experi-
mental results observed at pH 6 [rKs(pH6)] for each EC value and 
SAR of 20 and 40. This provided an initial determination of the 
relative scaling factor (rSF) for comparison purposes:

( )

( )

s ,
SF

s

ii n

i

rK
r

rK
=  	 [9]

where rSF is the rKs reduction ratio compared with the rKs at pH 6 
[rKs(i)], and nj is the sequential solution pH in the solution sequence. 
After calculating the parameters from Eq. [9], a new r2 pH scaling 
factor was then calculated using a linear regression analysis. Linear 

Fig. 1. Relative hydraulic conductivity (rKs) vs. electrolyte concentration for soils at a Na adsorption ratio of 20 and pH of 6, 7, 8, and 9.
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regression was investigated in terms of the rKs for each pH and indi-
vidual soil using the statistical program Minitab V.17 (Fig. 3). From 
these data, a generalized r2 function was also formed using the same 
approach as Šimůnek and Suarez (1997), based on the results of rKs 
for the soils used in the study of Ali et al. (2019) and presented in 
(Fig. 1 and 2). This new generalized function is

( )2

1.0, for pH 7.2
2.242 0.172pH, for 7.2  pH 9.5
0.60 for pH 9.5

r pH

ìï <ïïï= - £ £íïïï >ïî

 	 [10]

and the statistical parameters are presented in Table 2. We will 
refer to this model as the new generalized model.

Nonlinear Regression Using the 
Levenberg–Marquardt Method

After calculating the parameters for Eq. [9] by comparison 
of the Ks reduction data, a stepwise regression was then per-
formed with solution pH, solution EC, soil pH and clay content 
included. As a result of this, soil pH was dropped from the 
model, with the remaining parameters significant and included 
in the model. Therefore, the solution pH, solution EC, and 
clay content were included in a nonlinear forecast model based 
on the observed training data using the statistical program 
Minitab V.17.

To find the coefficients of the nonlinear equation 
expressing the pH dependence of the soil Ks reduction, a 

Fig. 2. Relative hydraulic conductivity (rKs) vs. electrolyte concentration for soils at a Na adsorption ratio of 40 and pH of 6, 7, 8, and 9.
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Levenberg–Marquardt simulation optimization algorithm 
(Marquardt, 1963) was used, which served to iteratively solve 
an optimization problem of minimizing errors between the 
observed and computed values of the Ks reduction in relation to 
changes in the pH and EC of the solution and the clay content 
of the soils. This optimization was used to develop a predic-
tion model for forward solutions. This approach works well 
in modeling situations because it specifically simulates the Ks 
reduction due to the pH of irrigation water and is amenable to 
continuous and adaptive solution EC, solution pH, and soil clay 
content, which is extremely desirable in governing Ks temporal 
and spatial dynamics (Benson and Trast, 1995; Frenkel et al., 
1978). The r2 scaling factor model, based on the Levenberg–
Marquardt approach is 

( )
( )LM

1.25 pH ln EC
21.72 7.42 pH 28.8 ln EC 0.33 CC

r
- ´

=
- ´ + ´ + ´

      [11]

where rLM is the predicted scaling factor for Ks reduction due to the 
pH of the percolating solution (pH), in tandem with the solution EC 
and clay content (CC); EC is measured in mmoles of charge per liter, 
while CC is a percentage of the total soil particle size analysis. The 
model parameters and associated statistics are presented in Table 3. 
We will refer to this model as the nonlinear model.

66Evaluation of the Developed Models
The models were trained and evaluated against the measured 

Ks reduction data obtained for nine contrasting Australian soils at 
four different pH levels (Fig. 1 and 2). The observed rKs values were 
compared with the predicted rKs of the corresponding HYDRUS 
K–pH-dependent function, the new generalized model, and the 
nonlinear model developed by using the Levenberg–Marquardt 
optimization approach; rKs values were calculated using Eq. [8].

For the nonlinear model, the standard error, the root mean 
square error (RMSE), and the coefficient of determination (R2) of 
both predicted and measured results were compared and slightly 
diverged from each other, showing a higher coefficient of determi-
nation (R2 = 0.82 and t-test = 2.45) between the observed values 
and model-simulated rKs than the current HYDRUS and new gen-
eralized functions. Conversely, the HYDRUS K–pH-dependent 
model produced the highest standard error and RMSE and the 
lowest coefficient of determination (R2 = 0.51 and t-test = 8.45) 
compared with the new generalized and nonlinear models for 
observed and simulated rKs values (Table 4).

The statistical analysis was also conducted among predicted 
rKs values for the HYDRUS K–pH-dependent function, the new 
generalized model, and the nonlinear function. A significant dif-
ference was observed (P < 0.001) for the new generalized model 

Fig. 3. The new generalized function and 
HYDRUS K–pH-dependent function to cal-
culate the hydraulic conductivity scaling factor 
(r2) due to the pH of the solution. The shaded 
region represents the range of variations for r2 
= 1.0 and r2 = 0.1 for nine soils compared with 
the HYDRUS K–pH-reduction function; the 
central dotted line represents the r1 and r2 con-
ditions for the generalized equation of these 
same nine soils.

Table 2. Statistical parameters for the HYDRUS K–pH-dependent function and the new generalized function calculated in this study using linear 
regression analysis, including the standard error of the regression (SE), Durbin–Watson statistic to detect the presence of autocorrelation (DWS), the 
root mean square error (RMSE), the coefficient of determination (R2), adjusted coefficient of determination (R2

ADJ), and predicted coefficient of 
determination (R2

PRED); F value and P value are statistical tests to determine whether the term is associated with the response.

Equation SE DWS RMSE R2 R2
ADJ R2

PRED F value P value

HYDRUS K–pH-dependent function 0.53 2.14 0.78 0.36 0.33 0.22 14.3 0.001

New generalized function 0.17 2.14 0.2 0.56 0.55 0.52 59.2 <0.001
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and the nonlinear equation compared with the HYDRUS K–pH-
dependent function, while no significant difference was detected 
(P = 0.71) between predicted rKs for the generalized and nonlinear 
equations. These statistics indicate that there was a better fit by 
the nonlinear model to the observed rKs data.

66Validation of the New Scaling Factors
The two new regression models were validated against the 

experimentally observed rKs values of the California soils from the 
study of Suarez et al. (1984). Additionally, the HYDRUS K–pH-
dependent model (Šimůnek and Suarez, 1997)—developed from 
the Suarez et al. (1984) data—was evaluated against the same 
California dataset to determine the magnitude of improvement that 
the new models provided. Statistical parameters for the observed vs. 
predicted values for each model are presented in Table 5.

Using the t-test and analysis of variance for the null hypoth-
esis of no difference, the statistical tests showed that there was 
a significant difference between predicted and measured values 
of rKs using the HYDRUS K–pH-dependent model (t-test = 5.1, 
P < 0.001, R2 = 0.45). A comparison was also made between 

the newly proposed generalized and nonlinear models and the 
observed rKs values of Suarez et al. (1984), providing t-test = 2.15, 
P < 0.034, R2 = 0.67 and t-test = 2.13, P < 0.035, R2 = 0.75, 
respectively. The tests indicated that there was a higher correlation 
between predicted and observed rKs values for these models than 
the HYDRUS K–pH-dependent function at the 0.05 probability 
level (Table 5). The statistics also showed a significant difference 
(P < 0.001) for the proposed generalized and nonlinear equations 
for the data from the Suarez et al. (1984) soils compared with the 
HYDRUS K–pH-dependent model; no significant difference was 
detected (P = 0.93) between the predicted rKs values of the general-
ized and nonlinear models.

Figures 4 and 5 indicate that the rKs data points are consis-
tently better predicted using the new nonlinear equation, although 
the new generalized linear equation performs reasonably well 
in comparison. Interestingly, the HYDRUS K–pH-dependent 
model does not perform well on the data from which it was cre-
ated. We propose that the better performance of the nonlinear 
equation suggests that soil-specific attributes of soils will be 
important in explaining the reduction in hydraulic dynamics. 
This result is not surprising, given the literature indicating that soil 

Table 3. Statistical characteristics pertaining to Eq. [11] from the non-
linear regression analysis using the Levenberg–Marquardt algorithm.

Parameter† Eq. [11]

Summary

Iterations 24

Final SSE 5.64

DFE 427

MSE 0.013

SE 0.11

Lack of fit

df 211

SS 2.759

MS 0.013

F value 0.98

P value 0.56

Parameter estimates

Coefficient Estimate SE estimate

95% Confidence interval

Lower limit Upper limit

  a1
1.25 0.033 1.196 1.31

  a2
21.72 9.63 6.91 40.1

  a3
−7.42 1.58 −10.76 −4.95

  a4
28.76 2.96 24.0 34.54

  a5
0.33 0.056 0.23 0.45

† �SSE, sum of squared errors; DFE, error degrees of freedom; MSE, mean square 
error; SE, standard error; df, degrees of freedom; SS, sum of squared devia-
tions; F value and P value are statistical tests to determine whether the term is 
associated with the response that includes the predictors in the current model; 
a1–a5, coefficient estimates to describe the relationship between the response 
(rLM) and the predictors (pH, electrical conductivity, and clay content).

Table 4. Summary statistical characteristics of the observed relative 
hydraulic conductivity (rKs) and predicted rKs using the HYDRUS K–
pH-dependent model, the new generalized model, and the nonlinear 
model, which are shown in Fig. 4, using the analysis of variance and the 
t-test methods.

Statistic
HYDRUS K–pH-
dependent function

New generalized 
function Nonlinear function

SE 0.25 0.17 0.14

RMSE 0.32 0.18 0.16

R2 0.51 0.77 0.81

R 0.72 0.88 0.90

t-test 8.45 2.86 2.45

F value 71.35 8.16 6.01

P value <0.001 0.005 0.015

Table 5. Summary statistical characteristics of the observed relative 
hydraulic conductivity (rKs) from the study of Suarez et al. (1984) and 
predicted rKs using the HYDRUS K–pH-dependent model, the newly 
developed generalized equation, and the nonlinear equation, which are 
shown in Fig. 5, using the analysis of variance and the t-test methods.

Statistic
HYDRUS K–pH-
dependent function

New generalized 
function Nonlinear function

SE 0.30 0.24 0.20

RMSE 0.37 0.25 0.22

R2 0.45 0.67 0.75

R 0.67 0.82 0.86

t-test 5.1 2.15 2.13

F value 25.77 4.5 4.4

P value <0.001 0.034 0.035
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hydraulic reduction is soil specific (Bennett et al., 2019; Marchuk 
and Rengasamy, 2011), but it does reinforce the need to update 
such parameters within soil-water models.

Observed vs. Predicted Reduction 
in Hydraulic Conductivity

The statistical analysis showed the accuracy of the predicted 
rKs for each model for each dataset (Tables 4 and 5). For r2 optimi-
zation, the new generalized and nonlinear models demonstrated 
better performance, as indicated by their lower RMSE and t-test 
values and higher coefficients of determination for the Australian 
and California soils. For both datasets, when the nonlinear model 
was used, the predicted outcomes were generally in closer agree-
ment with the observations of rKs than the other two models.

Naturally, the observed rKs values are dependent on the EC, 
SAR, and pH of the solution, as well as the soil clay content and 
mineralogy (Bennett et al., 2019; McNeal and Coleman, 1966; 

Suarez et al., 1984). The relatively high accuracy and performance 
of the nonlinear model was mainly due to its capability of pre-
dicting pH effects more specifically by considering electrolyte 
concentration and clay content. The r2 scaling factor for the non-
linear model (r2LM) is mainly controlled by the pH and EC of the 
solution and the clay content of the soil, as shown by

( )
( ) ( )

LM

LM s r

, pH, SAR, EC, CC

pH, SAR, EC, CC

K h
r K K h

=
 	 [12]

Comparatively, the r2 scaling factor for the generalized models 
is simply based on the pH of the solution (Eq. [2]). Accordingly, 
the predicted rKs values were calculated using Eq. [5] and Eq. [13] 
to calculate the rKs of the generalized models and nonlinear model, 
respectively:

( )
( ) ( )

LM

1 2LM pH,EC,CC

 pH, SAR, EC, CC  

SAR,EC  

r
r r

=
 	 [13]

Fig. 4. The relation between the observed relative hydraulic conductivity (rKs) and rKs predicted using (A) the HYDRUS K–pH-dependent model, (B) 
the new generalized model, and (C) the nonlinear function (Levenberg–Marquardt algorithm). The diagonal dotted line is the 1:1 line, and the solid 
line is the regression fit for the observed data.
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where KLM is the hydraulic conductivity based on the Levenberg–
Marquardt nonlinear model (r2LM; Eq. [11]), rLM is the saturated 
hydraulic conductivity reduction as a result of adverse effects of 
EC, SAR, and pH (using the nonlinear function), and CC is the 
clay content (%).

Another limitation of the predicted hydraulic conductivity 
is that the final rKs is also dependent on the degradative effects 
of EC and SAR (r1; Eq. [3]). The r1 scaling factor has been gen-
eralized and determined empirically and its parameter values 
developed using only a narrow range of soils. In that matter, the 
use of generalized parameters would increase errors related to the 
uncertainty in the weighted scaling factors and result in reducing 
the accuracy of rKs prediction. The extent of uncertainty of the 
pH scaling factor (r2LM) is somewhat reduced by including EC 
and clay content in the calculation of the scaling factor for the 
hydraulic dynamic reduction (Eq. [13]). This is a clear indication 
of the improvement of rKs prediction using the nonlinear function, 

although it could be further improved by combining r1 and r2 in a 
single nonlinear equation.

66Discussion
Improvement of HYDRUS

The literature demonstrates that the HYDRUS models 
have been effectively applied to laboratory and field experiments 
(Ramos et al., 2011, 2012; Rasouli et al., 2013) using soil hydraulic 
conductivity and solute transport model parameters. Šimůnek et 
al. (2012) argued that the HYDRUS codes are physically based 
models and may require little or no calibration when all required 
input parameters are experimentally determined. However, in 
terms of hydraulic conductivity dynamic decline, there is no physi-
cal parameter that can be measured, and the functions describing 
reduction do not allow for soil-specific nuances. This is an 
important limitation of the current HYDRUS model family and 

Fig. 5. The relation between the observed relative hydraulic conductivity (rKs) from the study of Suarez et al. (1984) and predicted rKs using (A) the 
HYDRUS K–pH-dependent model, (B) the new generalized model, and (C) the nonlinear model (Levenberg–Marquardt algorithm). The diagonal 
dotted line is the 1:1 line, and the solid line is the regression fit for the observed data.
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modules. Our work suggests that an updated generalized equation 
could be utilized, but it also further suggests that the inclusion of 
soil-specific attributes could provide a consistently better relation 
between observed and predicted results, which supports the use of 
and further development of the nonlinear function.

Using a broad range of soils, the principal goal of this cur-
rent study was to evaluate the existing scaling factor (r2) and 
its applicability, with the intent of improving on the existing 
HYDRUS reduction function to include soil-specific attributes. 
We have demonstrated that the generalized equation for the r2 
scaling factor of the HYDRUS model leads to a unique solution 
and can be updated using a broader range of soils. This allows the 
formation of soil-specific equations, in which the predicted rKs 
values are compared with observed rKs values for the 12 examined 
soils of Australia and California (Fig. 4 and 5). While the new 
generalized equation provided reasonable results over the exist-
ing linear HYDRUS equation, the nonlinear validated approach 
for Ks reduction will provide more confidence in the ability of 
the HYDRUS model to estimate dynamic Ks reduction. Soils are 
inherently heterogeneous in their properties and their resiliency 
to retain soil structure under conditions such as alkaline pH, low 
solution salinity, and adverse monovalent cation concentrations 
(dispersive potential varies). The Levenberg–Marquardt optimi-
zation allows the inclusion of multiple factors in a manner that 
provides a better fit to the complex nonlinear dynamics of soil 
hydraulic reduction.

Nonlinear Performance and Future Directions
The nonlinear inverse modeling included additional param-

eters, such as solution EC and soil clay content, which are critical 
governing factors in the management of the extent of Ks reduc-
tion (Agassi et al., 1981; Cook et al., 2006; Dang et al., 2018a, 
2018c; Zhu et al., 2016). An increase in EC generates the osmotic 
pressure that compresses the diffuse double layer repulsive effect 
on the clay domains (Quirk, 2001), subsequently diminishing the 
contribution of pH and SAR on the diffuse double layer expan-
sion (Sumner, 1993). The clay content is also an important factor 
in determining the extent of the hydraulic conductivity reduc-
tion and subsequently the resilience of the soil structure stability 
(Bennett et al., 2019). Concomitantly, the clay content of a soil 
has also been documented to affect the resilience of soil structure 
to the pH of the applied solution (Lieffering and McLay, 1996; 
Nyamangara et al., 2007). For lower clay content soils, the absolute 
decrease in Ks is greater than for clay soils, indicating the poten-
tial for negative effects of pH on Ks (Lieffering and McLay, 1996; 
Suarez et al., 1984). A similar trend was observed for Ks reduction 
in this study. Furthermore, in terms of the relative hydraulic reduc-
tion percentage, clay content will have an effect whereby highly 
sandy soils may require complete dispersion of the existing clay to 
cause a reduction percentage in Ks equivalent to the disaggregation 
properties in highly clay-dominant soils. This is considered as a 
function of the greater frequency of pores with smaller pore diam-
eter and clay domain swelling without dispersion where sufficient 

clay exists. However, the agreement between the observed and pre-
dicted results for the nonlinear equation suggests that there is still 
a need for improvement in predictive capability.

Bennett et al. (2019) suggested that soil-specific hydraulic 
conductivity reduction functions require the consideration of clay 
properties, especially the quantification of clay mineral type, size, 
and surface charge, which reinforces the assertions of Quirk (2001). 
Additionally, and related to the clay specificity, the concept of ion-
icity affecting the net negative charge (Marchuk and Rengasamy, 
2011) is also required to be incorporated into a soil-specific struc-
tural model (Bennett et al., 2019). Heterogeneous properties and 
the soil-specific behavior under the pH of applied solutions are 
known to affect the net negative charge (Chorom et al., 1994) and 
thereby provide a means of improving the prediction of hydraulic 
conductivity reduction.

It is also important to reflect on the fact that this study, and the 
study of Suarez et al. (1984)—the existing pH hydraulic reduction 
function within HYDRUS—examined repacked soil cores rather 
than undisturbed soils. This was to avoid heterogeneity factors that 
potentially mask the process effect of the mechanisms controlling 
hydraulic reduction. Importantly, we contend that the mechanisms 
controlling hydraulic conductivity reduction dynamics within a pore 
are consistent across all pore size ranges under both saturated and 
unsaturated conditions. This means that the scaling factor would 
apply uniformly to all pore sizes but that the absolute differences 
in hydraulic conductivity would depend on the pore size, inferring 
that the results in this study are applicable to both saturated and 
unsaturated conditions. However, the effect of pH on the hydraulic 
dynamics in an unsaturated soil was outside the scope of the current 
study and would be prudent to validate in future work.

Furthermore, there is merit in moving away from a scaling 
factor model that seeks to separate the cation and pH effects. 
Even with the improvement of the nonlinear model by including 
EC, it still fails to include the effects of cations on the dispersive, 
and thus hydraulic conductivity reductive, effects of SAR. The 
current dataset is insufficient to achieve this, with only two 
SAR levels; however, it does indicate that such a model can be 
achieved with reasonable confidence, given sufficient data. The 
level of confidence is an important topic to consider also. Bennett 
et al. (2019) demonstrated that a generalized equation for the 
soil-specific threshold electrolyte concentration (CTH) varied by 
approximately ±7.5 SAR units within one standard deviation, 
concluding that this level of variation within a generalized equa-
tion was not reliable and was environmentally unsound. However, 
the current scaling factor within HYDRUS is worse. The Ezlit et 
al. (2013) disaggregation model, which the Bennett et al. (2019) 
work is based on, was an improvement on the HYDRUS EC and 
SAR based reduction model (i.e., McNeal, 1968). On this basis, the 
first step would be to improve the current nonlinear approach to 
include the SAR effects within it and then incorporate this into 
HYDRUS, with a level of confidence surrounding the output for 
the user. Simultaneously, there is a requirement to improve the 
predictive capability from a fundamental point of view.
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Soil Initial pH and 
Hydraulic Conductivity Reduction

The soil initial pH was dropped from the stepwise regression 
process, which led us to not include it within our models. This 
may suggest that the initial soil pH is not important in predicting 
the hydraulic conductivity decline. However, we caution that this 
assumption is on the basis of the study of Ali et al. (2019), who 
demonstrated that the initial soil pH and the clay content were 
both important in controlling the extent of the hydraulic conduc-
tivity reduction. The same nine soils were used in this work. It 
was observed by Ali et al. (2019) that while there was a significant 
reduction in soil structural characteristics for alkaline soils as pH 
increased, the concomitant extent of the Ks reduction was not sig-
nificant, although it consistently decreased as pH increased. That 
is, the size of the reduction effect appeared to be controlled by the 
initial soil pH. The contrasting situation for an acidic initial soil 
pH interacted with lower clay content and, as this current work 
shows, outweighed in terms of the effect of clay content. For this 
reason, and the fact that the updated models were still developed 
on only 12 soils, it would be prudent to extend these studies to a 
broader range of soils that have varying pH and varying clay con-
tent within each pH subclass. As far as we are aware, combining 
the nine Australian soils and three California soils constitutes the 
most comprehensive dataset to determine the pH effect on soil 
hydraulic conductivity, which clearly identifies the requirement to 
increase the dataset such that the soil specificity is better captured 
within the nonlinear coefficients. This should further improve the 
nonlinear approach.

66Conclusion
This research identified the limitation of the HYDRUS 

scaling factor (r2) model and developed and validated two new 
models to optimize saturated hydraulic conductivity prediction. 
The proposed models were produced using a similar approach as 
in the HYDRUS model, with a nonlinear regression method fur-
ther implemented. The nonlinear equation developed using the 
Levenberg–Marquardt algorithm considers the pH and EC of the 
solution, as well as the soil clay content, which is an important 
improvement toward soil-specific pedotransfer functions that may 
be incorporated into HYDRUS. The overall performance of the 
new models was significantly better than that of the existing linear 
HYDRUS hydraulic reduction scaling model. This was the case for 
both the current Australian dataset and for the California dataset 
on which the HYDRUS model was based.

Even though the prediction of the reduction in the hydraulic 
conductivity still has room for improvement in terms of the size 
of the dataset and soil types that control hydraulic conductivity 
reduction scaling factors and coefficients within the nonlinear 
model, the results significantly build on the existing circumstance. 
The nonlinear model, developed using the Levenberg–Marquardt 
approach to substitute the r2 scaling factor in the HYDRUS 
program, provides a consistently more accurate estimate of the 

hydraulic conductivity than the current HYDRUS r2 reduction 
model. Furthermore, the nonlinear equation is put forward as the 
basis for further improvement for the incorporation of identified 
soil properties suggested to govern soil structural dynamics.
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