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Synopsis

This paper is concerned with the numerical modelling of a slow (creeping) flow using a particle-

based simulation technique, known as dissipative particle dynamics (DPD), in which the particles

mass is allowed to approach zero to simultaneously achieve a high sonic speed, a low Reynolds

number and a high Schmidt number. This leads to a system of stiff stochastic differential equations,

which are solved efficiently by an exponential time differencing (ETD) scheme. The ETD-DPD

method is first tested in viscometric flows, where the particle mass is reduced down to 0.001.

The method is then applied for the modelling of rigid spheres in a Newtonian fluid by means of

two species of DPD particles, one representing the solvent particles and the other, the suspended

particle. Calculations are carried out at particle mass of 0.01, with corresponding Mach number

of 0.08, Reynolds number of 0.05 and Schmidt number of 6.0 × 103. Stokes results are used

to determine the DPD parameters for the solvent-sphere interaction forces. The method obeys

equipartition and yields smooth flows around the sphere with quite uniform far-field velocities.

Keywords: DPD, low mass, stiff system, incompressible flow, low Reynolds number

1 Introduction

The Dissipative Particle Dynamics (DPD) method, introduced originally by Hoogerbrugge and

Koelman in 1992, is a relatively new simulation technique for fluid flow problems. The method can

be regarded as a particle-based flow solver, since the mean quantities extracted from the particles

configuration (density, linear momentum, stresses, etc.) satisfy the conservation of mass and

momentum, irrespective of the potentials chosen (and by implication, irrespective of the length

and time scales). The original DPD version of Hoogerbrugge and Koelman was considered as

an improvement over the molecular dynamics (MD) [Rapaport and Clementi (1986)] and lattice-

gas automata (LGA) [Frisch et al. (1986)] simulation methods. The DPD method incorporates

dissipation into an MDmodel to facilitate the simulation of hydrodynamic phenomena, and permits

the particles moving freely in continuous space to avoid problems faced by LGA (i.e., the absence

of isotropy and Galilean invariance). The DPD method is faster than MD and more flexible than
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LGA. Furthermore, in contrast to Brownian Dynamics Simulations (BDS) [Fan et al. (1999)],

the DPD method conserves both mass and momentum [Español (1995)]. Furthermore, both the

flow kinematics and the stress tensor can be found as parts of the solution procedure. Later on,

the original DPD model of Hoogerbrugge and Koelman was modified to possess a proper thermal

equilibrium state (i.e., satifying a fluctuation-dissipation theorem) [Español and Warren (1995)].

The DPD method can be thought of as a coarse grained version of MD, in addition of its being a

particle-based solver. Depending on the purposes of the investigation, we can take either view, or

both of DPD. Marsh et al. (1997) derived an estimate, based on kinetic theory, for the transport

and thermodynamic properties in terms of the model parameters. Useful ranges for the DPD

parameters (the repulsion parameter, time step and noise level) for simulations were found and

reported in the work of Groot and Warren (1997) and Groot (2004).

The DPD method has emerged as an attractive and powerful tool for the simulation of complex-

structure fluids. There have been various DPD applications, for examples, colloidal suspensions

[Koelman and Hoogerbrugge (1993); Boek et al. (1997); Chen et al. (2006); Pan et al. (2010)],

fluid mixtures [Novik and Coveney (1997); Laradji and Hore (2004)], polymer solutions [Kong et

al. (1997); Jiang et al. (2007)], polymer melts [Nikunen et al. (2007)], red blood cell modelling

[Pan et al. (2010b)] - this list is not meant to be exhaustive. By endowing DPD particles with

some forms of connector forces, complex-structure fluids can be handled in a very simple manner.

For example, in simulating colloidal suspensions, a colloidal particle can be simply modelled by

a set of standard but constrained DPD particles located on a rigid surface [Chen et al. (2006)],

or by a single DPD particle with a different set of DPD parameters [Pan et al. (2008)]. For the

former, it is possible to form a colloidal particle of any complex shape. For the latter, parameters

for the interaction between the colloidal particle and solvent particles can be determined using

Stokes results. As another example, a polymer chain may be simulated by connecting some DPD

particles [Kong et al. (1997)], in DPD simulations of polymer solutions or melts. In addition, there

have been modifications to the standard DPD method [Español (1998); Pan et al. (2008)], but we

feel that these modifications may not be absolutely necessary for our purposes here.

Incompressibility is a good approximation in many practical flows at low Mach numbers (M <

0.3). Many applications also involve flows that exhibit strongly-viscous behaviour at low fluid
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inertia (i.e., low Reynolds number). In a DPD simulation, the fluid is modelled by DPD particles

undergoing their Newtonian second law of motion, interacting with each other through a soft

repulsive, dissipative and random forces. In the limit of no conservative force, Marsh et al. (1997)

showed that, in the linearised solution to the first-order Fokker-Planck-Boltzmann equation, the

DPD fluid is a compressible Newtonian fluid

T = −nkBT I+
(
ζ − 2

3
η

)
∇.uI+ η

(
∇u+∇uT

)
, (1)

where T is the mean field stress tensor, u the mean field velocity vector, η the shear viscosity,

ζ the dilational viscosity, n the number density, kBT the Boltzmann temperature (mean kinetic

energy of the particles), and I the unit tensor.

Expressions for the speed of sound, the Reynolds number, and the Schmidt number of the DPD

fluid are respectively given by [Español (1995); Groot and Warren (1997)]

c2s =
kBT

m
+

λanr4c
m

, Re =
mnUL

η
, Sc =

η

mnD
, (2)

where m is the mass of the particle (mn is the density of the fluid), a the repulsion parameter,

rc some radius that limits the range of the conservative force, U and L the characteristic velocity

and length, λ a constant, and D the diffusivity. The Mach number, which is defined as M = U/cs,

may be used to determine whether a flow can be regarded as an incompressible flow. If M < 0.3,

compressibility effects may be ignored [Anderson (2010)]. Because of the soft interaction between

particles in a DPD system, the speed of momentum transfer is slow and has the same order of

particle diffusion, that is, the Schmidt number is about unity. For real fluids of physical properties

like those of water, the Schmidt number is O(103), and therefore there is the need to improve

on the dynamic behaviour of the DPD system. It was observed [Symeonidis et al. (2006)] that

increasing Sc in DPD simulation leads to a better agreement with experimental data.

This study is concerned with the computational modelling of low Reynolds number flows of a DPD

fluid. In regarding the DPD method as a particle-based solver, particles are artificial means of

producing fluid density, and linear momentum that satisfy conservation laws. We then need an

independent mean of controlling the Reynolds, the Schmidt and the Mach numbers. In published
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DPD literature, the particle mass was typically normalised to unity, (i.e., m = 1). Low values of

M and Re were obtained by reducing the velocity U . However, under such conditions, the random

forces can be relatively high and therefore may produce large fluctuations in the velocity field. It

will be shown later that the effects of compressibility on the flow field may not be negligible for

certain situations and can be a complication in the simulation. We propose to reduce the particle

mass as an alternative to achieve both low values of M and Re. Furthermore, a physical value

of Sc can be reached at the same time. When m is small, the resultant DPD system is stiff and

hence special care is needed in order to yield an accurate solution with computational efficiency.

A considerable effort has been devoted to developing numerical integrations for stiff problems

[Shampine and Gear (1979); Cox and Matthews (2002)]. Examples of such schemes include the

backward Euler, the integrating factor and the exponential time differencing (ETD) techniques.

They allow relatively-large time steps to be used and therefore provide some computational savings.

We adopt the ETD technique here, which is particularly suited to stiff semi-linear differential

problems, in the DPD algorithm to handle low mass systems. The present ETD-DPD method is

extensively verified through the simulations of Couette and Poiseuille flows with exact analytical

solutions and then applied for the modelling of rigid spheres in a Newtonian fluid using two species

of DPD particles, one representing the solvent and the other, the suspended particle.

The paper is organised as follows. Section 2 gives a brief review of ETD schemes. We then describe

DPD for low mass systems in Section 3. Numerical results are presented in Section 4 for Couette

and Poiseuille flows and in Section 5 for flow past a sphere. Section 6 gives some concluding

remarks.

2 Exponential time differencing (ETD) schemes

The following ordinary differential equation (ODE)

dϕ(t)

dt
= cϕ(t) + A(t), (3)
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where the parameter c is either large and negative or large and imaginary, with A representing

forcing terms, is said to be stiff. This equation may have a solution that evolves on vastly different

time scales, all occurring simultaneously. It is known that classical integration methods do not

handle stiff problems very effectively. They require many small time steps that produce significant

roundoff errors, which may invalidate the solution [Shampine and Gear (1979)].

We multiply (3) by the integrating factor e−ct, and then integrate the equation over a single time

step from t to t+∆t to get

ϕ(t+∆t) = ϕ(t)ec∆t + ec∆t

∫ ∆t

0

e−cτA(t+ τ)dτ. (4)

This result is exact, and the basis of the ETD method lies in the derivation of approximations to

the integral on the right side of (4). In the simplest approximation (A is treated a constant within

this time step), one arrives at the first-order ETD scheme

ϕ(t+∆t) = ϕ(t)ec∆t +
1

c

(
ec∆t − 1

)
A(t). (5)

If we apply the following higher-order approximation

A (t+ τ) = A(t) +
τ(A(t)− A(t−∆t))

∆t
, (6)

then the second-order ETD scheme is obtained

ϕ(t+∆t) = ϕ(t)ec∆t +
1

c2∆t

[(
(c∆t+ 1)ec∆t − 2c∆t− 1

)
A(t) +

(
−ec∆t + c∆t+ 1

)
A(t−∆t)

]
.

(7)

It should be emphasised that the above scheme is designed for a deterministic system so that the

approximate solutions do not contain unwanted fast time scales.
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3 DPD for low mass systems

The DPD system consists of a set of N particles that can move freely; its evolution algorithm can

be written as

dri
dt

= vi, (8)

mi
dvi

dt
= Fi, (9)

where mi, ri and vi represent the mass, position and velocity vector of a particle i, respectively;

and Fi is the total force vector exerted on it, containing three parts

Fi =
N∑

j=1,j ̸=i

(Fij,C + Fij,D + Fij,R) , (10)

in which the sum runs over all other particles, denoted by j, within a certain cutoff radius rc. The

first term on the right is referred to as conservative force (subscript C), the second dissipative

force (subscript D) and the third random force (subscript R). These forces are usually given in

the forms

Fij,C = aijwCeij, (11)

Fij,D = −γwD (eij · vij) eij, (12)

Fij,R = σwRθijeij, (13)

where aij, γ and σ are constants reflecting the strength of the forces; wC , wD and wR the distance-

dependent weighting functions; eij = rij/rij a unit vector from particle j to particle i (rij = ri−rj,

rij = |rij|); vij = vi − vj the relative velocity vector, and θij a Gaussian white noise (θij = θji)

with stochastic properties

⟨θij⟩ = 0, (14)

⟨θij(t)θkl(t′)⟩ = (δikδjl + δilδjk) δ (t− t′) ,with i ̸= k and j ̸= l. (15)
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It is noted that the cutoff radius rc can be different for different types of forces. In incremental

form, the random force takes the form

∆Fij,R = σwR(rij)∆ξijeij
√
∆t, (16)

where ∆ξij is a random number with zero mean and unit variance, chosen independently for each

pair of particles and each time step in the numerical integration process. All forces act along the

line joining the pair of particles and the DPD method thus conserves momentum.

It was shown [Español and Warren (1995)] that the equilibrium and detailed balance of the system

lead to the following constraints

wD(rij) = (wR(rij))
2 , (17)

kBT =
σ2

2γ
, (18)

which relate the strength of the dissipative force to the strength of the random force through the

definition of the thermodynamic temperature (the equipartition principle or fluctuation-dissipation

theorem).

The standard form of the weighting functions is [Groot and Warren (1997)]

wC(rij) = 1− rij
rc

, (19)

wD(rij) =

(
1− rij

rc

)2

. (20)

To increase the Schmidt number, which governs the dynamic response of a fluid, Fan et al. (2006)

proposed a generalised form for the dissipative weighting function

wD(rij) =

(
1− rij

rc

)s

, (21)

where s is a constant - typically s = 1/2 is used. In this work, we consider reducing the particle

mass to further increase the Schmidt number. Using the approximate analysis of Marsh et al.

(1997), for any value of s, one can arrive at approximate expressions for the viscosity, diffusivity
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and Schmidt number in terms of the system parameters. For s = 1/2, which is used in this study,

we obtain

η =
315mkBT

128πγr3c
+

512πγn2r5c
51975

, (22)

D =
315kBT

64πnγr3c
, (23)

Sc =
1

2
+

32768

16372125

π2γ2n2r8c
mkBT

. (24)

The equation of state for the pressure has been shown to be [Groot and Warren (1997)]

p = nkBT +
2π

3
n2

∫ rc

0

rFC(r)g(r)r
2dr, (25)

where g(r) is the radial distribution function. If one assumes g(r) ∼ 1, the above expression

reduces to

p = nkBT +
π

30
an2r4c , (26)

from which the speed of sound is computed as

c2s =
∂p

∂ρ
=

kBT

m
+

π

15

anr4c
m

, (27)

where ρ = mn is the mass density of the DPD fluid.

In the case of low mass, we recast the velocity equation of particle i (9) as

d (vi)α
dt

= (ci)α (vi)α + (Ai)α + (Bi)α θij, (28)

where the subscript α(= 1, 2, 3) is used to denote the αth component of the vectors in parentheses,

(ci)α = − 1

mi

∑
j ̸=i

γwD

(
(ri)α − (rj)α

rij

)2

, (29)
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(Ai)α =− 1

mi

3∑
β=1,β ̸=α

∑
j ̸=i

γwD

(
(ri)β − (rj)β

rij

)(
(ri)α − (rj)α

rij

)
(vi)β

+
1

mi

∑
j ̸=i

γwD (eij · vj)

(
(ri)α − (rj)α

rij

)
+

1

mi

∑
j ̸=i

Fij,C

(
(ri)α − (rj)α

rij

)
,

and

(Bi)α =
1

mi

∑
j ̸=i

γwD

(
(ri)α − (rj)α

rij

)
. (30)

Here, the value of (ci)α is always large and negative, when m is small, leading to stiff stochastic

differential equations. An efficient numerical solution to (28) can be found using the first-order

ETD scheme in which (Ai)α and (Bi)α are regarded as constants in the interval (t, t+∆t)

(vi)α (t+∆t) = (vi)α (t)e
(ci)α∆t +

(
e(ci)α∆t − 1

) [
(Ai)α (t) + (∆ξij/

√
∆t) (Bi)α (t)

]
(ci)α

, (31)

where the fluctuating part is handled according to the Ornstein-Uhlenbech process [Uhlenbeck and

Ornstein (1930)], with a slight modification of its autocorrelation.

For each time step, the solution procedure can be summarised as follows

• (ri)α ← (ri)α + (vi)α ∆t;

• Apply the boundary conditions;

• Calculate the conservative force Fij,C , the random force Fij,R, the dissipative part involving vi

(i.e., γwD (eij)1 (vi)1, γwD (eij)2 (vi)2 and γwD (eij)3 (vi)3), and the dissipative part involving

vj (i.e., γwDeij · vj);

• Calculate the x, y and z components of ci, Ai and Bi;

• (vi)α ← (vi)α e
(ci)α∆t +

(
e(ci)α∆t − 1

) [
(Ai)α (t) + (∆ξij/

√
∆t) (Bi)α (t)

]
/ (ci)α ;

• Evaluate physical properties of the DPD fluid.

Hereafter, we assume identical mass mi = m.
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4 Viscometric flow verifications

We simulate Couette and Poiseuille flows on the domain Lx×Ly×Lz = 40×10×30 for four values

of m, namely 1.0, 0.1, 0.01 and 0.001. Other parameters used are rc = 1.0, n = 4, aij = 18.75,

σ = 3.0, s = 1/2 and kBT = 1.0. Using (22), the viscosity is estimated as η = 2.4059 for m = 1,

η = 2.2494 for m = 0.1, η = 2.2337 for m = 0.01 and η = 2.2322 for m = 0.001. We impose

U = (7.5, 0, 0)T on the two walls z = −15 and z = 15 (to simulate Couette flow) and apply a

body force F = (0.1, 0, 0)T to each particle (to simulate Poiseuille flow). For the latter, a parabolic

velocity profile is expected to be

ux =
nFx

2η

(
Lz

2
− z

)(
Lz

2
+ z

)
. (32)

In our simulation, the wall boundary is constructed using three layers of frozen particles. In

addition, we assume that there is a thin layer near the wall, in which a random velocity distribution

with zero mean corresponding to a given temperature is generated to maintain the no-slip boundary

condition [Fan et al. (2003)]. In order to prevent particles from penetrating the walls, we further

require that the particles in this layer always leave the wall according to the reflection law reported

in [Revenga et al. (1998)].

Initially, a FCC arrangement of particles is formed and is allowed to equilibrate before the sim-

ulation is started. The central flow region across the z direction is divided into 300 bins (for the

averaging purpose), and the averaging is done in each bin over every 10,000 time steps.

Variations of the diffusivity and the Schmidt number versus the particle mass are given in Table

1. The former is numerically estimated using the mean square displacement (MSD) approach

D =
1

6
lim
t→∞

d

dt
⟨|ri(t)− ri(0)|2⟩, (33)

and the velocity autocorrelation function (VACF) through the Green-Kubo integral

D =
1

3

∫ ∞

0

⟨vi(t) · vi(0)⟩dt. (34)
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Table 1: DPD fluid, rc = 1.0, n = 4, aij = 18.75, σ = 3.0, s = 1/2 and kBT = 1.0: the diffusivity
and the Schmidt number for several values of m using the mean square displacement (MSD) and
velocity autocorrelation function (VACF) approaches.

m D Sc
1.0 0.10 (MSD) 6.0

0.12 (VACF) 5.0
0.1 0.12 (MSD) 46.9

0.13 (VACF) 43.3
0.01 0.15 (MSD) 372.3

0.14 (VACF) 398.9
0.001 0.15 (MSD) 3720.3

0.14 (VACF) 3986.1

It can be seen from the table that both approaches produce similar numerical results. When m

is reduced from 1.0 to 0.001, there are a slight variation in the self-diffusion coefficient and a

significant increase in the Schmidt number. It is noted that the present numerical values for D,

D = 0.10 − 0.15, are somewhat larger than the kinetic estimate (23), D = 0.09, and a Schmidt

number of O(103) is achieved at m = 0.001.

Table 2: Couette flow: Comparison of the mean equilibrium temperature of the ETD and velocity-
Verlet algorithms for the case of m = 0.1. The velocity-Verlet algorithm fails to converge at
∆t ' 0.009.

kBT
∆t ETD velocity-Verlet
0.01 1.003 -
0.009 1.002 -
0.007 1.002 0.9538
0.005 1.002 0.9386
0.003 1.002 0.9607
0.001 1.002 0.9869
0.0009 1.002 0.9884

The equilibrium temperature is measured from the calculated velocity field

kBT =
1

3
mV 2. (35)
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Table 3: Couette flow: Comparison of the mean equilibrium temperature of the ETD and velocity-
Verlet algorithms for the case of m = 0.01. The velocity-Verlet algorithm fails to converge at
∆t ' 0.0009.

ETD velocity-Verlet

∆t kBT Error(%) kBT Error(%)
0.007 0.5680 43.19 - -
0.005 0.7633 23.66 - -
0.003 0.9356 6.44 - -
0.001 0.9835 1.64 - -
0.0009 0.9863 1.36 - -
0.0007 0.9916 0.83 0.9187 8.12
0.0005 0.9958 0.41 0.9322 6.77
0.0003 0.9987 0.12 0.9576 4.23
0.0001 0.9992 0.07 0.9840 1.60

where V is the peculiar velocity (i.e., the fluctuation of the velocity of particle with respect to

the mean field velocity). Tables 2, 3 and 4 show the behaviour of the temperature against the

time step for m = 0.1, m = 0.01 and m = 0.001, respectively. Results by the velocity-Verlet

algorithm [Groot and Warren (1997)] are also included. It can be seen that the ETD algorithm

works effectively for relatively-large time steps. Furthermore, for a given small time step, the ETD

algorithm is much more accurate than the velocity-Verlet algorithm. In the case of m = 0.1, the

ETD algorithm produces the equilibrium temperature that is accurate up to 3 significant digits.

In the case of m = 0.01 and m = 0.001, equipartition is consistently improved as the time step

is reduced. The velocity-Verlet algorithm fails to converge except at small time steps, and the

associated errors are much larger than those produced by the ETD algorithm.

Since the random force has only well-defined statistical properties, the velocity equation (9) is

understood as a stochastic differential equation. Based on the interaction zone and the peculiar

velocity, one can define the following time scale [Español and Warren (1995)]

tc =
rc
V

=

√
mrc√
3kBT

. (36)

For the present DPD fluid, tc = 0.1826 for m = 0.1, tc = 0.0577 for m = 0.01, and tc = 0.0183

for m = 0.001. The time step used should be much smaller than tc. Otherwise, the motion of
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Table 4: Couette flow: Comparison of the mean equilibrium temperature of the ETD and velocity-
Verlet algorithms for the case of m = 0.001. The velocity-Verlet algorithm fails to converge at
∆t ' 0.00007.

ETD velocity-Verlet

∆t kBT Error(%) kBT Error(%)
0.0002 0.9501 4.98 - -
0.0001 0.9805 1.94 - -
0.00009 0.9837 1.62 - -
0.00008 0.9865 1.34 - -
0.00007 0.9891 1.08 - -
0.00006 0.9916 0.83 0.9127 8.72
0.00005 0.9934 0.65 0.9235 7.64
0.00004 0.9951 0.48 0.9365 6.34
0.00003 0.9958 0.41 0.9502 4.97

DPD particles, where their displacements can approach the range of the interaction in one time

step, may no longer follow that predicted by the velocity equation [Español and Warren (1995)].

From Tables 2, 3 and 4, relatively large time steps can be employed here, 0.01 for m = 0.1, 0.007

for m = 0.01 and 0.0002 for m = 0.001. They are a decreasing function of the particle mass as

expected.

Results concerning velocity, temperature and number density are presented in Figure 1 for the case

of Couette flow and in Figure 2 for the case of Poiseuille flow. We obtain a linear/parabolic velocity

profile in the x direction, and uniform temperature and density using a time step ∆t = 0.02 for

m = 1.0, ∆t = 0.005 for m = 0.1, ∆t = 0.001 for m = 0.01 and ∆t = 0.0002 for m = 0.001. In

the case of Poiseuille flow, by fitting the obtained parabolic velocity profiles to equation (32), the

viscosity is numerically estimated as η = 2.6354 for m = 1 (∆t = 0.01), η = 1.9914 for m = 0.1

(∆t = 0.0009), η = 1.9649 for m = 0.01 (∆t = 0.0001), and ∆t = 1.9230 for m = 0.001 (∆t =

0.00003). The percentage differences (relative to kinetic theory estimate (22)) of the calculated

viscosity are 9.53% for m = 1 and 13.85% for m = 0.001.
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5 Modelling rigid spheres in a Newtonian fluid

Consider a steady uniform flow of a Newtonian fluid past a stationary sphere. We choose the

dimensions of the domain as Lx = 40, Ly = 30 and Lz = 30 and place the sphere at the centre of

the domain. Periodic boundary conditions are applied in the x and y directions, while the velocity

vectors U = (3.0, 0, 0)T are imposed on the two planes z = −15 and z = 15. We choose the particle

mass as 0.01 and conduct the simulations using ∆t = 0.001, unless otherwise stated.

We employ DPD particles to represent the fluid (solvent) phase with the following parameters:

n = 4, aSSij = 18.75, rSSc,C = rSSc,D = 1.0, wSS
C = (1− rij/r

SS
c,C), w

SS
D = (1− rij/r

SS
c,C)

1/2, σSS = 2.0 and

kBT = 0.25. It is noted that (i) the superscript SS is used to denote the solvent-solvent interaction;

and (ii) rc,C and rc,D represent the cut-off radius used for the conservative and dissipative forces,

respectively. Such parameters constitute a Newtonian fluid of η = 3.9682, using the estimated

viscosity (equation (22)), and Sc = 6012.4, using the VACF approach (equation (34)). Although

a DPD particle is a point mass, it is endowed with a soft repulsive potential, and therefore has an

“effective” size, which is the exclusion zone of the particle. To estimate the effective radius of a

DPD particle, we utilise the radial distribution function [Reichl (1980)]

g(q) =
1

N/V

⟨s⟩
4πq2∆q

, (37)

where V is the volume of the domain of interest and ⟨s⟩ is the average number of particles in a

spherical shell of width q → (q+∆q) at a distance q from any particle in the fluid. As opposed to

the Stokes-Einstein relation, equation (37) does not involve the estimated viscosity and diffusivity.

The present procedure is a direct determination and thus has the ability to give a better estimation.

Figure 3 shows the variation of g(q), where ∆q is chosen as 0.05, for the present DPD fluid. Let

q̄ be the value of q at which g (q) becomes non-zero, say at g(q) > 0.05. The effective radius of

the solvent particles can be estimated as aSeff = q̄/2 = 0.32/2 = 0.16 (taking half because q̄ is the

distance between the two particles centres). Making use of this function g, one can compute the

sound speed and the Mach number for the present fluid in a more precise way. The equation of

state (25) reduces to p = nkBT + 0.0968an2r4c from which, through (27), one acquires cs = 38.43.

It leads to a Mach number of M = U/cs = 3.0/38.43 = 0.078.
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We model a rigid suspended sphere using a single DPD particle. It can be seen that parameters

associated with this rigid (colloidal) particle should not be the same as those with the solvent

particles. We use the superscript CS to denote the colloidal-solvent interaction. Parameters are

chosen as rCS
c,C = 1.0, rCS

c,D = 1.5, wCS
C = (1− rij/r

CS
c,C)

1/2, wCS
D = (1− rij/r

CS
c,D)

1/4, aCS
ij = 1750, and

σCS = 3.2.

We also utilise the radial distribution function to determine the radius of the colloidal particle.

The quantity ng4πq2∆q is the number of particles in a spherical sell of width ∆q at a distance q

from the centre of the colloidal particle. Let q̄ be the value of q at which g (q) becomes non-zero,

at g(q) > 0.05. The effective radius of the colloidal particle can be estimated as (Figure 4)

q̄ − aSeff ≤ aCeff ≤ q̄ +∆q − aSeff . (38)

Figure 5 shows the variation of g(q) against q. The value of q̄ is measured to be 0.95. With

aSeff = 0.16, we arrive at 0.79 ≤ aCeff ≤ 0.84. It leads to 0.0478 ≤ Re = 2aCeffUρ/η ≤ 0.0508.

Using Stokes results [Happel and Brenner (1973)], the corresponding drag force is in the range

177.27 ≤ F = 6πηaCeffU ≤ 188.49. (39)

We plot the drag and its conservative, dissipative and random parts against the time in Figure 6. As

expected, the total force is larger in the x direction than in the y and z directions. Furthermore,

after a certain time, the mean values of the total, dissipative and conservative forces in the x

direction appear to be stable, showing that the flow reaches a steady state condition. The obtained

total force, which is measured in an average sense for the chosen period of 60 ≤ t ≤ 150, is 178.36,

in the range of 177.27 to 188.49 as given by (39).

Figures 7, 8 and 9 display distributions of the temperature, x-component velocity and velocity

vector on the middle plane y = 0, respectively. It can be seen that the method obeys equipartition

(Figure 7) and produces a smooth flow field around the sphere (Figure 9). Velocity in the x

direction appears to be constant on the two boundary lines x = −19.83 and x = 19.83 (Figures
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8 and 9). Making use of Stokes solution for a sphere moving with a velocity U = (U, 0, 0)T in

a stationary fluid [Batchelor (1967)] and then superimposing on this for a stationary sphere, one

can obtain the x-component velocity of the fluid at the distance x = ∓Las (as is the radius of the

sphere) as

ux

U
= 1− 3

4L
+

1

4L3
(40)

Substitution of U = 3 and L = 19.83/0.8 = 24.79 into (40) yields ux = 2.9093. From our DPD

calculations, the average values of the x-component velocity at the upstream and downstream

(i.e., x = ∓19.83 and y = 0) are 2.8651 and 2.8323, and their percentage errors (relative to Stokes

solution (40)) are thus 1.51% and 2.64%, respectively.

Figure 10 is a plot of the drag coefficient, defined as Cd = F/(0.5π(aCeff )
2ρU2), versus the Reynolds

number. Re is changed by means of the particle mass. We use m = 0.005 → 0.1,which leads to

0.02 ≤ Re ≤ 0.48 and 0.05 ≤ M ≤ 0.24. The corresponding flows can thus be considered as low

Reynolds number quasi-incompressible flows. It can be seen from the figure that the obtained drag

coefficient is very close to that predicted by Stokes’ law. It is noted that if m = 1 is used, one

has Re = 4.80 and M = 0.78 and hence, the effects of compressibility on the flow field may be

noticeable. As shown in Figure 11, values of ux are readily smaller than U in the regions close to

the centreline at the upstream and downstream planes, indicating that compressibility effects may

be already significant.

Table 5: Flow around a sphere, rCS
c,C = 1, rCS

c,D = 1.5, aCS
ij = 1750: Effects of σCS on the forces and

the size of the sphere. It is noted that the obtained forces acting on the sphere are shown in the
mean for the period of 60 ≤ t ≤ 150.

σCS F FC FD FR q
2.8 166.44 54.99 110.46 0.98 0.95
3.2 178.36 47.53 130.73 0.10 0.95
3.6 187.97 39.96 148.03 -0.01 0.95
4.0 197.47 33.40 163.14 0.92 0.95
4.4 203.65 26.68 178.79 -1.82 0.95

Some implementation notes:
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Table 6: Flow around a sphere, rCS
c,C = 1, rCS

c,D = 1.5, σCS = 3.2: Effects of aCS
ij on the forces and

the size of the sphere. It is noted that the obtained forces acting on the sphere are shown in the
mean for the period of 60 ≤ t ≤ 150.

aCS
ij F FC FD FR q

1000 177.74 46.34 129.81 1.57 0.95
1250 177.15 45.66 130.82 0.67 0.95
1500 177.88 48.52 129.95 -0.59 0.95
1750 178.36 47.53 130.73 0.10 0.95
2000 176.70 46.94 129.23 0.52 0.95
2250 177.23 46.30 129.69 1.24 0.95

Table 7: Flow around a sphere, rCS
c,C = 1.0, rCS

c,D = 1.0, aCS
ij = 1750: Effects of σCS on the forces

and the size of the sphere. It is noted that the obtained forces acting on the sphere are shown in
the mean for the period of 60 ≤ t ≤ 150.

σCS F FC FD FR q
3.0 113.34 100.27 13.20 -0.14 0.95
4.0 124.37 100.63 23.59 0.14 0.95
5.0 133.84 97.80 35.99 0.04 0.95
6.0 147.75 96.54 51.00 0.20 0.95
7.0 164.22 95.28 68.69 0.25 1.00
8.0 183.35 94.70 88.52 0.11 0.95

• Effects of σCS on the drag force and the size of the sphere are presented in Table 5. Increasing

σCS leads to a decrease in the conservative component and an increase in the dissipative

component. Furthermore, the radius of the sphere remains unchanged. For all values of σCS

employed, the dissipative force is dominant. The parameter σCS has a strong influence on

the drag force, which can be helped to tune in the correct value of the drag force on the

sphere.

• Effects of aCS
ij on the drag force and the size of the sphere are presented in Table 6. The

parameter aCS
ij does not greatly affect the forces exerted on the sphere. As aCS

ij increases,

the radius of the sphere remains unchanged. It appears that the size of the sphere is mainly

decided by rCS
c,C and aSeff , which is different from that reported in [Pan et al. (2010)] (they

reported that the size of a colloidal particle can be controlled by adjusting the value of aCS
ij ,
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which we do not find here).

• In the case of rCS
c,C = rCS

c,D, one needs to employ relatively-large values of σCS (about 8.0) to fit

the drag force and the radius of the sphere in the model predicted by Stokes’ law (177.27 ≤

F = 6πηaCeffU ≤ 188.49) (Table 7). For all values of σCS employed, the conservative force is

larger than the dissipative force.

6 Concluding remarks

We have reduced the mass of DPD particles to induce an incompressible slow viscous flow in a

DPD fluid and to enhance its dynamic response. This approach appears effective as the simplicity

of the DPD algorithm still retains and an efficient solution is still achieved with the help of

an ETD algorithm. Numerical simulations for the Couette flow have showed that the present

method works effectively for relatively-large time steps and, for a given a small time step for which

the velocity-Verlet algorithm works, the ETD algorithm produces more accurate results than the

velocity-Verlet algorithm. We have also investigated the use of a single DPD particle to represent

a rigid sphere suspended in a Newtonian fluid. Detailed results show that (i) the cut-off radius for

the conservative force and the effective radius of solvent particles are the key factors in deciding

the size of the suspended sphere, and (ii) the strength and the cut-off radius of the dissipative force

are instrumental in fitting the computed drag force and the size of the sphere into the Stokes drag

model. Extension of the method to colloidal suspensions is underway and results will be reported

in future work.
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Figure 1 - Couette flow: Profiles of velocity, temperature and number density for several values of
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Figure 2 - Poiseuille flow: Profiles of velocity, temperature and number density for several values
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Figure 3 - Flow around a sphere: Radial distribution function for the DPD fluid.

Figure 4 - Flow around a sphere: A schematic outline for estimating the radius of the colloidal

particle.

Figure 5 - Flow around a sphere: radial distribution function for the colloidal particle.

Figure 6 - Flow around a sphere: Time variations of DPD forces exerted on the sphere. It is noted

all plots have the same y coordinate scale.

Figure 7 - Flow around a sphere: Distribution of the equilibrium temperature on the middle plane

y = 0. A unit circle is also plotted for length reference.

Figure 8 - Flow around a sphere: Distribution of the x-component velocity on the middle plane

y = 0. A unit circle is also plotted for length reference.

Figure 9 - Flow around a sphere: Distribution of the velocity vector on the middle plane y = 0. A

unit circle is also plotted for length reference.

Figure 10 - Flow around a sphere: Comparison of the drag coefficient between the present method

and Stokes’s law.

Figure 11 - Flow around a sphere: Distribution of the x-component velocity on the middle plane

y = 0 for the case of m = 1.0. A unit circle is also plotted for length reference.
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