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A B S T R A C T

Predicting electricity demand (𝐺) is crucial for electricity grid operation and management. In order to make
reliable predictions, model inputs must be analyzed for predictive features before they can be incorporated
into a forecast model. In this study, a hybrid multi-algorithm framework is developed by incorporating
Artificial Neural Networks (ANN), Encoder-Decoder Based Long Short-Term Memory (EDLSTM) and Improved
Complete Ensemble Empirical Mode Decomposition with Adaptive Noise (ICMD). Following the partitioning
of data, the 𝐺 time-series are decomposed into multiple time-series using the ICEEMDAN algorithm, with
partial autocorrelation applied to training sets to determine lagged features. We combine lagged inputs into a
predictive framework where 𝐺 components with the highest frequency are predicted with an ANN model, while
remaining components are predicted with an EDLSTM model. To generate the results, all IMF components’
predictions are merged using ICMD-ANN-EDLSTM hybrid models. A comparison is made between this objective
model and standalone models (ANN, RFR, LSTM), hybrid models (CLSTM), and three decomposition-based
hybrid models. Based on the results, the Relative Mean Absolute Error at Duffield Road substation was ≈ 2.82%,
≈ 4.15%, ≈ 3.17%, ≈ 6.41%, ≈ 6.60%, ≈ 6.49%, and ≈ 6.602%, compared to ICMD-RFR-LSTM, ICMD-RFR-CLSTM,
LSTM, CLSTM, RFR, and ANN. According to statistical score metrics, the hybrid ICMD-ANN-EDLSTM model
performed better than other benchmark models. Further, the results show that the hybrid ICMD-ANN-EDLSTM
model can not only detect seasonality in 𝐺 data, but also predict and analyze electricity market demand to
add valuable insight to market analysis.
1. Introduction

As part of the power system’s operation and control, electricity
demand (𝐺,MWh) prediction is an essential method of predicting fluc-
tuations in electricity demand. Smart grids are capable of dispatching
power more intelligently by predicting 𝐺 accurately, although inaccu-
rate estimation of 𝐺 remains a major cause of power grid failures [1].
The seventh goal of the United Nations Sustainable Development Goals
(SDG7) aims to empower the provision of affordable and reliable energy
for all people and therefore calls for ensuring that energy generation
and distribution are efficient in production and distribution [2]. Con-
sequently, it is useful to study more efficient methods for 𝐺 prediction,
which is still a complex problem. Under-estimating 𝐺 can reduce the
stability of the entire electric power grid and prevent normal utilisation
requirements from being met whereas overestimating 𝐺 can lead to
energy waste and additional operating costs [3]. Moreover, there have
been studies showing that a 1% increase in electricity load forecast
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error can result in millions of dollars lost [4]. In the past few decades,
accurate modelling and prediction of 𝐺, which are crucial for power
system management and electricity capacity scheduling, has attracted
extensive attention.

Electricity demand prediction is classified into three groups based
on prediction periods: short-term, mid-term, and long-term. Short-term
prediction lasts from minutes to a week, whereas mid-term predic-
tion lasts from a week to a year. Long-term prediction can have a
period of more than a year. All three types of prediction are necessary
instruments for smart grid control. Therefore, there have been nu-
merous efforts by magnanimous researchers to develop precise models
to predict 𝐺 over last few decades. The 𝐺 prediction model can be
divided into four groups (a) physical model, (b) statistical model,
(c) Artificial Intelligence (AI) based model and (d) hybrid models.
Combining physical attributes and historical 𝐺 data yields the physical
vailable online 5 October 2023
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model for 𝐺 prediction. The majority of studies in this area show
that future 𝐺 data may be anticipated by studying the relationship
etween the original 𝐺 time-series sequences and the physical infor-
ation embedded within these datasets. The Unit Consumption, Load
ensity, and Elastic Coefficient [5] approaches are some of the physical
odels in literature. These physical methods, however, require a huge

mount of data and are best suited for long-term 𝐺 predict on. Statis-
tical model requires historical data as their foundation, and produce
short-term projections by modifying the parameters after investigating
the relationship between historical and present data [6]. Although
these statistical techniques benefit from their inherent improved in-
terpretability, their predicting performance is unreliable due to their
linear mapping feature [7]. The most common statistical model for
𝐺 prediction are the Auto-Regressive Moving Average (ARMA) [8],
Auto-Regressive Integrated Moving Average (ARIMA) [9], Generalised
Autoregressive Conditional Heteroskedasticity (GARCH), Exponential
Smoothing (ES), Grey Forecasting Model (GFM), Seasonal Exponential
Smoothing (SES), Gray Linear Regression (GLR), Threshold Autoregres-
sive Conditional Heteroskedasticity (TARCH), Fuzzy Logic (FL), and
Kalman Filter (KF) [10]. In [8], 𝐺 was predicted using ARMA with
empirical findings demonstrating the effectiveness of their proposed
model. In [11], a Multiplicative Seasonal ARIMA (MSARIMA) method
for monthly peak 𝐺 prediction for India, and empirical results show that
MSARIMA outperforms other benchmark models. In [12,13], Fractional
Grey Prediction model and Kalman Filter to predict 𝐺 with empiri-
cal results showing that the proposed model outperformed the other
comparable models.

The aforementioned statistical models are beneficial for linear se-
quences analysis but they could be ineffective for nonlinear model
datasets. Furthermore, when used for time-series prediction, these sta-
tistical models make assumptions about stationarity. Moreover, be-
cause of their strengths in addressing problems with nonlinear and
instable relationships, nonstationary time-series, and complex calcu-
lations, AI based Machine Learning (ML) and Deep Learning (DL)
algorithms have become popular in predicting 𝐺 [14,15]. The Artifi-
cial Neural Network (ANN) [16], Extreme Learning Machine (ELM),
Random Forest Regression (RFR), Long-Short Term Memory Network
(LSTM) [17], Convolutional Neural Network (CNN) [18], Gated Re-
current Unit (GRU), Kernel Ridge Regression (KRR), Deep Residual
Network (ResNet), Deep Belief Network (DBN), Generalised Regression
Neural Network (GRNN) [19], Back Propagation (BP) Neural Network
(BPNN) [20], Recurrent Neural Network (RNN) and Support Vector
Regression (SVR) are some of the most commonly used AI-based models
for 𝐺 prediction. The experimental results revealed that these models
outperformed widely utilised statistical models for nonlinear dynamics
of time series [21]. In [22], deep sequence-to-sequence Bidirectional
LSTM was proposed and benchmarked with ANN, SVR and LSTM, the
proposed model demonstrates the significant improve in prediction
performance. Further, [23,24] compared ANN with a classic ARIMA
model for 𝐺 prediction to show the ANN outperformed an ARIMA
model in terms of predictive power. In [25,26], it has been shown that
the Deep Neural Network model (RNN, LSTM, and CNN) were found
to outperform standard time-series models. There are other recently
proposed relevant approaches including deep learning techniques such
as [27], in which a deep learning algorithm based on an LSTM is pro-
posed to improve electricity demand prediction including the COVID
19 lockdown. Similarly the SVR model was used by [28,29] resulting
in significantly accurate predictions. However, any single AI approach
alone cannot meet all of the prediction needs; consequently, one may
need to combine several methodologies to thoroughly evaluate the data
and increase prediction accuracy [30]. Thus, it is currently a common
practice to build prediction model that use multiple AI techniques,
reflecting their unique characteristics and future utility in electricity
demand applications.

Based on literature, this study therefore aims to integrate improved
complete ensemble empirical model decomposition, a data decom-
2

position method used previously [31] with two AI-based predictive
methods including an encoder–decoder long short-term memory net-
work [32] and an artificial neural network framework [33]. The inte-
gration of these methods is also based on the premise that a single AI
model can have its own limitations and may not be applied to all kinds
of 𝐺 datasets or temporal forecasting scenarios. As a result, many schol-
ars have proposed the concept of a hybrid model to address the existing
issues. In [34], a new deep learning hybrid model combining Deep
Neural Network and Historical Data Augmentation (DNN-HDA). This
model has excellent generalisation and prediction accuracy compared
to standalone models. Similarly, the Holt–Winters (HW) approach and
an ELM model was employed in [35] to generate an HW-ELM hybrid
model which considered a nonlinear hybrid model using linear forecast
outputs and nonlinear residuals as the model inputs. In general, the
results suggested that the HW-ELM model had a low prediction error.
Other ELM-based hybrid models have been recently proposed, reporting
important results, such as ANFIS-ELM [36]. Furthermore, in order to
develop an effective operation control approach, [37] has suggested
an Attention-based load prediction Recurrent Neural Network (Att-
RNN) structure, which outperformed single RNN benchmark model
in terms of precision and interpretability. Transformer’s self-attention
mechanism has been also explored in [38] for electricity demand.
Additionally, in [39], a CNN and an LSTM model was integrated to
shows increased prediction accuracy by 25%, and recently, in [40], the
same hybrid method has demonstrated to have good performance for
peak electricity demand prediction.

Several researchers have integrated single artificial intelligence and
machine learning models with data processing methods to improve the
predictive accuracy of their models [31,41,42]. These studies showed
that a data decomposition-based hybrid model can break down any
complex time-series such as 𝐺, into numerous modalities that represent
unsteadiness in electricity use to improve the predictive accuracy and
capture useful pattern required to model the fluctuations in 𝐺 [43].
In [43], authors specifically proposed empirical mode decomposition
(EMD) combined with an LSTM model for short-term load predictions
with their results showing that the performance of the hybrid model
was superior than a standalone model. In [44], the authors have built
a Complementary Ensemble Empirical Mode Decomposition (CEEMD),
a Multi-Objective Grey Wolf Optimiser (MOGWO), and a DBN with
their proposed model showing increased predictive performance com-
pared with standalone models. The study of [45] has developed a
hybrid model comprised of Variational Mode Decomposition (VMD), a
Binary Encoding Genetic Algorithm (BEGA), and an LSTM model with
their results demonstrating superior performance of the hybrid model
compared to the conventional benchmark models. In [46], authors
developed a hybrid self-adaptive Particle Swarm Optimisation-Genetic
Algorithm-Radial Basis Function model for annual electricity demand
prediction, and in [47], a novel machine learning approach was devel-
oped to estimate electricity demand taking empirical evidence for the
case of Thailand.

Although hybrid artificial intelligence frameworks for analysing
various kinds of datasets with a feature decomposition-based approach
are currently available, these methods still fail to consider unique
characteristics of the 𝐺 time-series, which are particularly driven by the
low-and high-frequency fluctuations caused by dynamism in consumer
electricity markets. To address this industry problem, the contributions
of this research are as follows. (i) To fill in the important knowledge
gaps in electricity demand predictions that takes into account low-
and high-frequency patterns in 𝐺 and further integrating novel AI
methods to predict the inherently diverse 𝐺 features. (ii) To improve
the accuracy of 𝐺 predictions by developing a hybrid framework with
an ANN and an Encoder Decoder LSTM model, denoted as EDLSTM
based on the Improved Complete Ensemble Empirical Mode Decom-
position with Adaptive Noise (ICEEMDAN or ICMD) method. (iii) To
comprehensively evaluate the proposed hybrid ICMD-ANN-EDLSTM
model to ascertain its capability to decompose the 𝐺 data into low- and

high-frequency pattern in such a way that the historical patterns can
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be considered for more accurate modelling of daily electricity demand
than currently available models. Moreover, the proposed model is
tailored to detect the anomalous features prior to forecasting the future
electricity demand efficiently.

The novelty of this study is to consider the trends, chaotic behaviour
and instabilities found in 𝐺 data that cause inaccuracies in forecast
models and therefore, to adopt multiple predictive methods to emulate
these distinct components as follows.

• The original electricity demand time-series are decomposed into
Intrinsic Mode Functions (IMFs) using the ICMD method.

• The Partial Autocorrelation Function, aiming to investigate the
relationships between antecedent electricity demand, is employed
to deduce the significant lagged data series from decomposed IMF
to create an input matrix for the proposed hybrid ICMD-ANN-
EDLSTM model.

• An ANN is used to predict the highest frequency components
whereas the remaining IMFs are predicted by a new EDLSTM
model.

• The Bayesian Optimisation (BO) method is employed to obtain
optimal hyperparameters of the proposed ICMD-ANN-EDLSTM
(and the comparative counterpart) models.

• The prediction of each IMF components are aggregated to gener-
ate the final prediction results and the ICMD-ANN-EDLSTM model
is benchmarked with decomposition-based hybrid and standalone
models.

To the best of the authors’ knowledge, a careful integration of the
proposed hybrid ICMD-ANN-EDLSTM model based on ICMD method
in predicting daily 𝐺 has not been yet explored. As the proposed
CMD-ANN-EDLSTM model integrates components from both the ICMD
ethod and the ANN-EDLSTM model, this allows it to better capture

he complex dynamics of daily 𝐺 data. By combining these approaches,
he proposed model is able to make more accurate predictions of the
aily 𝐺 than either of the standalone models.

. Theoretical framework of deep learning models

The proposed hybrid ICMD-ANN-EDLSTM model was trained to
redict daily electricity demand by combining a well-known frequency
ecomposition technique based on the Improved Complementary En-
emble Empirical Mode Decomposition with Adaptive Noise (ICMD),
nd a hybrid Deep Learning method (ANN-EDLSTM). To have a better
nderstanding of the proposed methods, we firstly present a brief
heoretical background of the models and, after that, the details of the
roposed hybrid models are discussed.

.1. Improved Complementary Ensemble Empirical Mode Decomposition
ith Adaptive Noise

The time series prediction decomposition model has been enhanced
rom the basic Empirical Mode Decomposition model (EMD) to Ensem-
le EMD (EEMD), Complementary EEMD (CEEMD), Complementary
EMD with Adaptive Noise (CEEMDAN). The EMD, proposed by Huang
t al. [48], is a method for adaptive time-frequency analysis that is
ulnerable to the mode mixing problem. EEMD [49] addresses this
ssue, although it is computationally inefficient, and residual noise is
lways present in the reconstructed signal. Further, CEEMD [50] was
eveloped to address these constraints. Both EEMD and CEEMD have a
roclivity to generate erroneous components [51]. CEEMDAN resolves
uch issues; nonetheless, CEEMDAN still has some issues [52]. As a
esult, in [53], the Improved Complementary Ensemble Empirical Mode
ecomposition with Adaptive Noise (ICEEMDAN or ICMD) method was
roposed. In ICMD, complex time-series signals are decomposed into
inite Intrinsic Mode Functions (IMFs) and residuals. Each IMF holds
he signal’s local characteristics and can help minimise noise. Firstly,
he local mean is utilised instead of modal estimate. Secondly, rather
f employing white noise directly, the signal’s local mean value is used
o extract the k-order modes [42]. Further details on the ICEEMDAN
mplementation can be found in [53].
3

2.2. Artificial neural network

Artificial neural networks, designed to recreate basic biological
neural systems, particularly the human brain, consist of a massive
number of neurons stacked in different levels, usually three levels: an
input layer, an output layer, and one or more hidden layers [54]. The
input layer, which contains one neuron for each of the problem’s input
parameters. The second layer is the hidden layer, which is used for
parameter interactions. The output layer, is used to generate expected
values. Weights determined iteratively in a training stage define the
link between neurons. The ANN architecture considered in this work is
shown in Fig. 1(a). In the training phase, the training algorithm is used
to determine weights that minimise some overall error measure, such as
the Sum of Squared Errors (SSE) or root Mean Squared Errors (RMSE).
As a result, ANN training is an unconstrained nonlinear minimisation
problem. The training algorithm plays a vital role in the minimising
the loss. In this study, an specific backpropagation (BP) algorithm, the
Adam optimiser, is used. The Adam optimizer is an adaptive learning
strategy which learns each weight in the neural network. It employs
estimations of both the first and second moments of gradient and
analyses individual learning rates for distinct parameters [55]. In turn
the ReLU activation function is used in this work, since ReLU can
handle large layers and deal with the vanishing gradient problem [56].

2.3. Random Forest model

The Random Forest (RFR) model is one of the most often used mod-
els in decision tree learning for regression and classification, proposed
by Breiman [57]. It is extremely efficient and many time exceeds other
regression models in terms of regression accuracy. The RFR model cre-
ates a large number of decorrelated decision trees during the training
phase. The model’s output is then calculated by averaging the output
values of all individual trees [58]. In the regression problem, the RFR
model did well at simulating highly non-linear relationships between
a set of inputs and an output. Mathematically, the RFR model is a
development of classification and regression trees (CART), which has
the benefit over other techniques for dealing with non-linearities, such
as NN, of always being free of over-fitting [59]. The RFR architecture
is shown in Fig. 1(b). To produce the training random set and the
associated decision tree, the bootstrap resampling approach is utilised.

The applications of the RFR model have demonstrated its capability
in a variety of fields including hydrological, renewable and electric-
ity demand prediction domains [33,55,58,60–68]. During the model
development, three parameters 𝑛𝑡𝑟𝑒𝑒𝑠, 𝑚𝑡𝑟𝑦, and 𝑛𝑜𝑑𝑒𝑠𝑖𝑧𝑒 affect the
model performance, and must be determined by users. The 𝑛𝑜𝑑𝑒𝑠𝑖𝑧𝑒
option specifies the minimum number of samples in each node. A
smaller 𝑛𝑜𝑑𝑒𝑠𝑖𝑧𝑒 suggests that more trees must be produced, resulting
in increase in computation time. 𝑛𝑜𝑑𝑒𝑠𝑖𝑧𝑒 is usually set to 5 for the
regression work [69].

2.4. Long Term Short Term Memory Network

The Long Term Short Term Memory Network (LSTM) model [70]
is a special type of Recurrent Neural Network (RNN) with memory ca-
pabilities, that is often used to process and forecast critical events with
fairly long time intervals in time-series. It has cell and hidden states that
can account for the long-short term memory effects [71]. Furthermore,
the LSTM model defines three gate mechanisms on the RNN structure to
address the issue of not retaining information history for a long time.
These gates are the input gate, the forget gate, and the output gate.
LSTM outperforms other RNNs, notably Gated Recurrent Unit (GRU),
by integrating a gating mechanism to govern the flow of information
and the updating of states and cells [72,73]. Moreover, because of its
gate structure, an LSTM layer can learn long-term dependencies and
can be used to predict time series successfully.
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Fig. 1. Structure of Artificial Neural Network (ANN) and Random Forest (RFR) for a regression problem.
Fig. 2. Architecture of the Encoder Decoder based Long Term Short Term Memory Network (EDLSTM), The ‘‘Repeat Vector’’ layer connects the Encoder and Decoder by repeatedly
repeating the internal representation of the input sequence, once for each time step in the output sequence.
2.5. Auto encoder–decoder architecture with LSTM

The LSTM approach, in conjunction with an encoder–decoder (EDL-
STM) architecture, was first proposed in [74] for the task of natural
language processing (NLP). This architecture, in conjunction with LSTM
model (EDLSTM) is commonly used now to predict time-series and ad-
dress sequence-to-sequence problems, in various fields like renewable,
electricity demand, [32,75–80]. This model’s architecture is made up of
two LSTM networks, one in each of the encoder and decoder sections
(Fig. 2). The encoder section reads the sequence’s input information
to extract the timing characteristics of historical data and encodes
the fixed-length vector; the decoder section decodes the vector and
outputs the predicted sequence. In EDLSTM, the encoder layer, unlike
the fundamental LSTM structure, only outputs the hidden state from
the last cell. Then, in the decoder layer, output from encoder is copied
as input for each LSTM cell. It stores data gathered from the input
sequence at each time step. Therefore, it may be more beneficial to
employ EDLSTM to improve long-term dependencies for longer time
4

step prediction than the normal LSTM. An illustration of the EDLSTM
network is shown in Fig. 2.

2.6. Convolution Neural Network

Convolution Neural Network (CNN) [81] is another type of Deep
Neural Network. CNN is an excellent technology for automatically
extracting features that has achieved remarkable success in the field
of image vision. Meanwhile, they show great promise in dealing with
time-series, such as automatic speech recognition, wind speed predic-
tions and solar radiation [33,55,68,82,83]. To extract feature informa-
tion, CNN models can include a convolution layer (CL) as a core layer,
pooling layer (PL), fully connected (FC) layer and the output (OP) layer.
The CL and PL, which are directly inspired by the basic notions of
simple cells and complex cells in visual neuroscience, play a significant
part in a CNN model. Multiple convolution filters are used in each CL to
extract distinct characteristics. The units in a CL are connected to the
previous layer’s local patches by a set of weights, and the outputs of
this local weighted sum are then processed via a non-linearity function
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Table 1
Descriptive statistics of daily electricity demand 𝐺 (MWh) at four substations of South-east Queensland.

Statistical parameters Duffield Road sub-station Kedron sub-station Kirra sub-station Molendinar sub-station

Median (MWh) 247.62 283.87 208.69 446.83
Mean (MWh) 248.35 290.18 210.34 445.20
Standard deviation (MWh) 32.96 46.23 40.88 65.78
Variance 1086.05 2137.42 1671.06 4327.35
Maximum (MWh) 528.01 498.69 429.54 755.26
Minimum (MWh) 34.58 7.83 −0.24 174.35
Range 493.43 490.86 429.78 580.91
Interquartile range 40.97 56.35 32.01 80.85
Skewness 0.42 0.62 −2.67 0.41
Kurtosis 5.53 4.84 15.97 3.69
S

S

Fig. 3. Schematic of Convolution Neural Network integrated with LSTM model.

known as the activation function (AF). Furthermore, the PL is primarily
utilised to reduce spatial dimension, which can significantly reduce the
amount of calculation required for network training. Convolution, non-
linearity, and pooling are stacked in two or three levels, followed by
more CL. Finally, the features make their way through the FC layers to
the OP layer.

2.7. Deep learning hybrid model: Convolution Neural Network integrated
with Long Term Short Term Memory Network

CLSTM refers to a model that combines CNN and LSTM architecture.
The CNN model operates on the same concept as discussed in the
preceding section. The LSTM model, on the other hand, receives inputs
from preceding dense layers, which receive inputs from CNN pooling
layers. Fig. 3 shows the architecture of the proposed CLSTM model.

2.8. Decomposition based deep learning hybrid models

To predict electricity demand (𝐺,MWh), this study presents a deep
learning hybrid technique of ANN and EDLSTM based on ICMD. The
original 𝐺 data is translated into different IMF components utilising
ICMD in the first stage of our proposed method. The component with
the greatest frequency is then predicted using ANN, while the remain-
ing components are predicted using EDLSTM. The prediction findings
of all IMF components are merged in the final stage to generate the
final prediction results. This Hybrid model is termed as ICMD-ANN-
EDLSTM. This Objective model (ICMD-ANN-EDLSTM) was compared
with standalone models (ANN, RFR and LSTM), deep learning hybrid
model (CLSTM) and the following three decomposition based deep
learning hybrid models.

Model 1: ICMD-ANN-CLSTM: Highly fluctuating IMFs are predicted
using ANN and remaining IMFs by CLSTM.

Model 2: ICMD-RFR-CLSTM:Highly fluctuating IMFs are predicted us-
ing RFR and remaining IMFs by CLSTM.

Model 3: ICMD-RFR-LSTM:Highly fluctuating IMFs are predicted us-
ing RFR and remaining IMFs by LSTM.
5

3. Material and methods

3.1. Study region and electricity demand dataset

The 𝐺 data utilised in this study is from ENERGEX((https://www.
energex.com.au)). The 𝐺 data sets were selected for four Sub-stations
((a) Duffield Road, (b) Kedron, (c) Kirra, and (d) Molendinar) at
South-east Queensland, Australia. Table 1 displays some descriptive
information for the selected substations’ daily 𝐺. The dataset contains
280,560 measurements for 30-min 𝐺 from 01/07/2011 to 30/06/2021
(120 months or 3654 days). The dataset has been downsampled from
30-min interval to daily interval using Eq. (1), where 𝐺𝐷 is a function
that takes a collection of electricity demand data as input and down
samples to a given period at a rate of 𝑛 (i.e., 𝑛 = 48 for daily
transformation of 30-min data). It should be also noted that there are no
missing data in the extracted 𝐺 time-series data for four Sub-stations.

𝐺𝐷𝑖 =
(𝑖∗𝑛)+𝑛
∑

𝑗=𝑖∗𝑛
𝐺𝐷𝑖 (1)

3.2. Development of the ICMD-ANN-EDLSTM model

In this study, we develop a deep learning hybrid model for pre-
dicting electricity demand (𝐺,MWh) that combines Artificial Neural
Network (ANN), Encoder and Decoder based Long Short Term Memory
(EDLSTM), and Improved Complete Ensemble Empirical Mode Decom-
position with Adaptive Noise (ICMD). The development of the proposed
ICMD-ANN-EDLSTM model involved the following steps:

tep 1: The extracted data is divided into training and testing set,
50% of data for training (i.e. 1827 data point) and remaining
50% for testing. To prevent the existence of future data in the
input 𝐺 time-series and the subsequent introduction of biases
in the predictions, all data were partitioned independently into
training and testing sets. Furthermore, the 50/50 split was
done in order to get the equal number of IMFs for training and
testing period.

tep 2: The Training data as well as testing data is divided into mul-
tiple Intrinsic Mode Function (IMF) components using ICMD.
Each IMF component created by ICMD has unique proper-
ties and is sorted from highest to lowest frequency. The first
component (IMF1) has the highest frequency. The remaining
frequency IMFs reflect the periodic patterns or seasonality of
the data. The final IMF component, commonly known as the
residual, has the lowest frequency component. It also indicates
the overall trend of the data. To generate the IMF the prede-
fined ICMD parameters are used, the number of realisations of
the Gaussian Noise or ensemble number 𝐸𝑁 = 1000, the added
Gaussian noise was set to 0.2 times the standard deviation
of the 𝐺 time-series, and maximum shifting iteration (𝑁𝑆)
was set to 5000. For Duffield Road, Kedron and Molendinar
sub-stations, the ICMD algorithm decomposed the 𝐺 data into
eight IMF sub-series (IMF1, IMF2, . . . ,IMF8) and a residual
component (RES) whereas for Kirra sub-station using the ICMD

https://www.energex.com.au
https://www.energex.com.au
https://www.energex.com.au
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Fig. 4. Intrinsic mode functions (IMFs) and a residual component of electricity demand time-series using ICMD for (a) Duffield Road, (b) Kedron, (c) Kirra, and (d) Molendinar
sub-stations during the training period.
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Fig. 5. Statistically significant PACF of IMFs and residual used for developing the ICMD-ANN-EDLSTM model at (a) Duffield Road, (b) Kedron, (c) Kirra, and (d) Molendinar
sub-stations.
S

algorithm the 𝐺 series was decomposed into nine IMF sub-
series and a residual component. Fig. 4 depicts the ICEEMDAN
decomposed 𝐺 data series in IMFs with residual during training
period for all four sub-stations.

tep 3: Following that, in order to create the input matrix for the deep
learning hybrid model statistically significant lag time-series
of respective IMFs and residual component were determined
using the Partial Autocorrelation Function (PACF), as shown
in Fig. 5. Table 2 shows the PACF generated significant input
lags for the deep learning hybrid models.

tep 4: Further, the significant lags of IMFs are normalised using
the z-score method. This normalisation is done to speed-up
the training process and increase the prediction precision of
model [84]. The z-score, which is derived using the arithmetic
7

mean and standard deviation of the given data, is the most
often used score normalisation technique in Deep Learning.
The normalisation process is done using Eq. (2)

𝐼𝑀𝐹 ′
𝑘 =

𝐼𝑀𝐹𝑘 − 𝜇
𝜎

(2)

where 𝜇 is the arithmetic mean, 𝜎 is the standard deviation of
the given data, 𝐼𝑀𝐹 ′

𝑘 is normalised IMF and 𝐼𝑀𝐹𝑘 is original
IMF.

tep 5: The next stage in model development is data prediction, the
respective IMFs, and the residual component were predicted
one at a time. In this step, two prediction models are employed
to predict IMF components based on their properties. As can
be seen in the Fig. 5, the IMF1, IMF2, IMF3, and IMF4 series
are the most complex and highly volatile. The ANN prediction
model was chosen because of its ability to predict complex
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Table 2
Input variables for objective(ICMD-ANN-EDLSTM) as well as benchmark models based on PACF in daily electricity demand
prediction.
Significant input lag numbers at respective sub-stations

Intrinsic mode functions Duffield Road sub-station Kedron sub-station Kirra sub-station Molendinar sub-station

IMF1 1–12 1–9,15 1–4,7 1–4,6–7,8,12,14,15
IMF2 1–12 1–9 1–6 1–8,11,12,14
IMF3 1–12 1–9 1–6 1–9
IMF4 1–12 1–10 1–7 1–5,7–9
IMF5 1–13 1–10 1–3,5,6,7 1–9
IMF6 1–12 1–10 1–6 1–10
IMF7 1–8 1–8 1–8 1–9
IMF8 1–7 1–8 1–9 1–2
IMF9 1–2
RES 1–2 1–2 1–2 1–2
Fig. 6. Flowchart of the proposed deep learning hybrid ICMD-ANN-EDLSTM model.
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time series [85,86]. The remaining IMFs (IMF5, IMF6, IMF7,
IMF8,IMF9) which is periodic component of original IMF, for
which the EDLSTM model is selected because this EDLSTM
model has demonstrated success in predicting periodic patterns
in time series data [32,87–89]. Additionally, for the residual
component which indicates the long-term trend of data again
the EDLSTM Model is used.

tep 6: In the last stage, the prediction outputs of all components
are aggregated using summation to produce final prediction
results. Fig. 6 depicts the proposed method’s block diagram.

.2.1. Benchmark model development
The deep learning hybrid ICMD-ANN-EDLSTM performance on test-

ng set is compared against the standalone models (ANN, RFR and
STM), deep learning hybrid model (CLSTM) and the decomposition
ased deep learning hybrid models (ICMD-ANN-CLSTM,ICMD-RFR-
LSTM and ICMD-RFR-LSTM). The simulation and coding for the
bjective model as well as benchmark models are done by the Python
upyter Notebook [90] with the Intel i5-7200U CPU of 2.50 GHz.
his software contains many libraries such as NumPy, TensorFlow,
atplotlib, Keras, etcetera [91–93].

.2.2. Model hyperparametes tuning with Bayesian optimisation
A deep learning model performs best on a particular issue when its

yperparameters are optimised. Using various optimisation techniques,
n ideal combination of hyperparameters can be obtained. Manual or
utomated procedures (such as grid search, random search, and so on)
ave typically been employed for hyperparameter optimisation. The
ccuracy of grid search reduces as the number of parameters increases.
anual procedure is prone to human errors and necessitates specialist

nowledge [94]. Furthermore, random search is based on random
istribution functions, therefore, it is common for it to miss the ideal
8

r

yperparameters in the search. In this study, the objective models as
ell as benchmark models has been optimised using the Bayesian Op-

imisation (BO). Bayesian optimisation successfully solves the classical
achine intelligence problem in sequential decision theory [95]. In or-
er to arrive at the optimal solution in the shortest amount of time, BO
etermines the next evaluation position based on the information pro-
ided by the unknown objective function (𝐟). Literature has extensively
nvestigated BO’s effectiveness over other optimisation methods [96].
s presented in Algorithm 1, BO algorithm is an iterative process.
Nine hyperparameters of the proposed model (ICMD-ANN-EDLSTM)
lgorithm 1 Bayesian optimisation
1: for 𝑡 = 1, 2...... do
2: Find 𝑥𝑡 by optimising the acquisition function 𝑢 over function 𝐟 :

𝑥𝑡 = arg max
𝑥

𝑢(𝑥|𝐷𝟏∶𝐭−𝟏)
3: Sample the objective function:

𝑦𝐭 = 𝐟
(

𝑥𝐭
)

4: Augment the data 𝐷𝟏∶𝐭 =
{

𝐷𝟏∶𝐭−𝟏,
(

𝑥𝐭 , 𝑦𝐭
)}

and update the
posterior of function 𝐟

5: end for
ere optimised using BO. Table 3 displays the parameter range and the
ptimal values acquired after the optimisation procedure. Additionally
he RFR, LSTM and CLSTM models hyperparameters are also derived
rom BO method, the optimal value of the hyperparameters are de-
icted in Table 4. Furthermore, during model training the epochs was
et to 1000 but we have added the Keras checkpoint for stopping the
raining process if the performance starts degrading. These checkpoints
re Earlystopping (𝑒𝑠) and ReduceLROnPlateau, 𝑒𝑠 is a technique that
llows the users to provide an arbitrary large number of training epochs
nd then stop training when the model performance on the validation
ataset stops improving i.e. terminate training before a model begins
o overfit. Similarly, ReduceLROnPlateau is a scheduling approach that
educes the learning rate (𝑙𝑟) when the validation loss stops improving
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Table 3
Range of hyperparameters of the proposed model (ICMD-ANN-EDLSTM) and the optimal values obtained from Bayesian optimisation algorithm. Note: ReLU = Rectified Linear
Units and Adam = Adaptive Moment Estimation Algorithm.

Hyperparameters Range of values Duffield Road sub-station Kedron sub-station Kirra sub-station Molendinar sub-station

Optimal value

Hidden neuron [50,60,70,80,90,100] 80 60 80 80
Learning rate [0.001,0.002,0.005,0.006,0.008] 0.005 0.001 0.005 0.008
Epochs 1000
Activation function ReLU

ANN

Solver [Adam]

Number of units in Encoder Cell 1 [80,90,100,200] 80 100 200 100
Number of units in Encoder Cell 2 [30,40,50,90,100] 50 90 50 30
Number of units in Encoder Cell 3 [10,20,30,40,50] 40 40 20 50
Number of units in Decoder Cell 1 [80,90,100,200] 100 90 100 80
Number of units in Decoder Cell 2 [30,40,50,90,100] 30 100 50 40
Number of units in Decoder Cell 3 [10,20,30,40,50] 30 10 20 40
Batch size [5,10,15,20,25,30] 5 5 5 5
Epochs 1000
Learning rate [0.001]
Optimisation algorithm [Adam]
Activation function of encoder [ReLU]

EDLSTM

Activation function of decoder [ReLU]
Table 4
Range of hyperparameters of the other benchmark models and the optimal values obtained from Bayesian optimisation algorithm. Note: ReLU = Rectified Linear Units and Adam
= Adaptive Moment Estimation Algorithm.

Hyperparameters Range of values Duffield Road
sub-station

Kedron
sub-station

Kirra
sub-station

Molendinar
sub-station

Optimal value

The maximum depth of the tree. [5,8,10,20,25] 20 25 25 10
The number of trees in the forest. [50,100,150,200] 150 50 100 200
Minimum number of samples to split an internal node [2,4,6,8,10] 4 2 4 6RFR

The number of features to consider when looking for the best split. [‘auto’, ‘sqrt’, ‘log2’] auto auto auto auto

LSTM layer [1,2,3,4] 2 3 3 3
LSTM cell (units) [10–200] 180,60 90,50,40 100,70,20 110,50,40
Batch size [5,10,15,20,25,30] 5 5 5 5
Epochs 1000
Learning rate [0.001]
Optimisation algorithm [Adam]

LSTM

Activation function [ReLU]

CNN layer [1,2,3,4] 2 3 2 2
CNN filter [10–150] 80,50 120,70,10 90,40 90,60
LSTM layer 1 1 1 1 1
LSTM cell (units) [10–200] 60 40 80 50
Batch size [5,10,15,20,25,30] 10 5 10 10
Epochs 1000
Learning rate [0.001]
Optimisation algorithm [Adam]

CLSTM

Activation function [ReLU]
for a longer period of time than the patience number permits. Thus, the
𝑙𝑟 is kept constant as long as it improves the validation loss, but 𝑙𝑟 is
reduced when the results become stagnant. In this study, the patience
for 𝑒𝑠 was set to 20 and for ReduceLROnPlateau the factor was set as
0.25 (𝑙𝑟𝑛𝑒𝑤 = 𝑙𝑟 ∗ 0.25) and Patience = 10.

.2.3. Model performance evaluation criteria
Since there are not a single statistical metric available that is com-

letely conclusive, a comprehensive and resilient model evaluation ne-
essitates both objective and subjective evaluations. Therefore, in this
tudy, the performance of the objective model (ICMD-ANN-EDLSTM)
nd all of the other benchmark predictive models were evaluated using
eterministic error metrics such as Coefficient of Determination (𝑅2),
ean Absolute Error (MAE (MWh)), Root Mean Square Error (RMSE

MWh)), Relative Root Mean Square Error(RRMSE(%)), Relative Mean
bsolute Error (RMAE(%)), Willmott’s Index (𝐸𝑊 𝐼 ), Nash–Sutcliffe

ndex (𝐸𝑁𝑆) and Legates and McCabe’s Index(𝐸𝐿𝑀 ). The shortcoming
f these metrics is that they quantify model assessment in a few num-
ers. Thus, subjective model performance assessments using various
iagnostic plots such as box plots, forecasting error histograms, and
9

aylor plot are also performed to have a better understanding. The
mathematical expression of objective metrics are as follows [97,98]:

𝑅2 =

⎛

⎜

⎜

⎜

⎝

∑𝑛
𝑖=1 (𝐺

𝑎 − ⟨𝐺𝑎
⟩) (𝐺𝑝 − ⟨𝐺𝑝⟩)

√

∑𝑛
𝑖=1 (𝐺𝑎 − ⟨𝐺𝑜

⟩)2
√

∑𝑛
𝑖=1 (𝐺𝑝 − ⟨𝐺𝑝⟩)2

⎞

⎟

⎟

⎟

⎠

2

(3)

𝑅𝑀𝑆𝐸 (MWh) =

√

√

√

√
1
𝑁

𝑁
∑

𝑖=1
(𝐺𝑝 − 𝐺𝑎)2 (4)

𝑀𝐴𝐸 (MWh) = 1
𝑁

𝑁
∑

𝑖=1
|𝐺𝑝 − 𝐺𝑎

| (5)

𝑅𝑅𝑀𝑆𝐸(%) =

√

1
𝑁

∑𝑁
𝑖=1(𝐺𝑝 − 𝐺𝑎)2

⟨𝐺𝑎
⟩

⋅ 100 (6)

𝑅𝑀𝐴𝐸(%) = 1
𝑁

𝑁
∑

𝑖=1

|𝐺𝑎 − 𝐺𝑝
|

𝐺𝑝 ⋅ 100 (7)

𝐸𝑊 𝐼 = 1 −
∑𝑁

𝑖=1 (𝐺
𝑎 − 𝐺𝑝)2

∑𝑁 𝑝 𝑎 𝑜 𝑝 2
(8)
𝑖=1 (|𝐺 − ⟨𝐺 ⟩| + |𝐺 − ⟨𝐺 ⟩|)
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𝐸𝑁𝑆 = 1 −
∑𝑁

𝑖=1 (𝐺
𝑎 − 𝐺𝑝)2

∑𝑁
𝑖=1 (𝐺𝑎 − ⟨𝐺𝑎

⟩)2
(10)

where 𝐺𝑎 and 𝐺𝑝 are the actual and the predicted G, ⟨𝐺𝑎
⟩ and ⟨𝐺𝑝

⟩

are the actual and predicted mean values of G and 𝑁 is the number of
tested (future) data points. For the best model performance, the range
and the rationale of the metrics, in terms of their sophistication, are as
follows:

• First Order Metrics: 𝑅2 is bounded by [−1, 1] whereas MAE and
RMSE (in absolute units of G (MWh)) range from 0 for a perfectly
fitted to ∞ for a inferior model. 𝑅2 determines how well the
modelled data is fit to observed or actual data whereas the RMSE
and MAE are measure of predictive power in absolute terms.

• Second Order Metrics: Relative RMSE and MAE are in the range
of [0, 100]%. If these relative metrics are less than 10% then the
predictive model is excellent, and if the value is between 10% to
20% the model is good [99].

• Normalised Metrics:

– The 𝐸𝑊 𝐼 , bounded by [0, 1], is an improvement of RMSE
and MAE, 𝐸𝑊 𝐼 can detect additive and proportional dif-
ferences in the observed and simulated means and vari-
ances [100].

– The 𝐸𝑁𝑆 , bounded by [−∞, 1], determines the relative mag-
nitude of the residual variance compared to the measured
data variance, −∞ for the worst fit to 1 for a perfectly fitted
model [101].

– The 𝐸𝐿𝑀 , bounded by [0, 1], When compared to𝐸𝑁𝑆 and
𝐸𝑊 𝐼 , 𝐸𝐿𝑀 is a more robust metric that was developed to
solve the shortcomings of both [102].

Furthermore the performance of the model was assessed via the Kling–
Gupta Efficiency (𝐾𝐺𝐸) [103] and the Absolute Percentage Bias
(𝐴𝑃𝐵; %) [104]. 𝐾𝐺𝐸 is improved version of 𝐸𝑁𝑆 , which facilitates
the analysis of the relative importance of its different components
(correlation, bias and variability).

𝐾𝐺𝐸 = 1 −

√

(𝑟 − 1)2 +
(

⟨𝐺𝑝
⟩

⟨𝐺𝑎
⟩

− 1
)2

+
(𝐶𝑉𝑝
𝐶𝑉𝑎

)2

(11)

APB(%) =
|

|

|

|

|

∑𝑛
𝑖=1 (𝐺

𝑎 − 𝐺𝑝)
∑𝑛

𝑖=1 𝐺𝑎

|

|

|

|

|

⋅ 100 (12)

where 𝑟 was the correlation coefficient and 𝐶𝑉 was the coefficient of
variation.

Additionally, the Promoting Percentage of Absolute Percentage
Bias 𝜆𝐴𝑃𝐵 , Kling–Gupta Efficiency 𝜆𝐾𝐺𝐸 , and Root Mean Square Error
𝑅𝑀𝑆𝐸 are adopted to compare the performance of different models.

𝐴𝑃𝐵 =
|

|

|

|

(𝐴𝑃𝐵1 − 𝐴𝑃𝐵2)
𝐴𝑃𝐵1

|

|

|

|
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𝜆𝐾GE =
|

|

|

|

(𝐾𝐺𝐸1 −𝐾𝐺𝐸2)
𝐾𝐺𝐸1

|

|

|

|
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𝑅𝑀SE =
|

|

|

|

(𝑅𝑀𝑆𝐸1 − 𝑅𝑀𝑆𝐸2)
𝑅𝑀𝑆𝐸1

|

|

|

|

(15)

where 𝐴𝑃𝐵1, 𝑅𝑀𝑆𝐸1 and 𝐾𝐺𝐸1 are objective model performance
metrics, and 𝐴𝑃𝐵2, 𝑅𝑀𝑆𝐸2 and 𝐾𝐺𝐸2 are benchmark model perfor-
mance.

This study has also adopted the Global Performance Indicator
(GPI) [105] to integrate six performance metrics into 1. The 𝐺𝑃𝐼 is
defined as below

GPI =
𝑛
∑

𝛼𝑗 (𝑦𝑗 − 𝑦𝑚𝑗 ) (16)
10

𝑗=1
where 𝑗 is the performance indicator, whose number varies from 1 to
𝑛; 𝑦𝑗 is the normalised value of the performance indicator 𝑗; and 𝑦𝑚𝑗
s the median of the normalised values of the performance indicator
. The 𝐺𝑃𝐼 value is the distance between the normalised value of a
odel’s performance indicator and the median of the same indicator’s
ormalised value. The higher the deviation of a model’s performance
ndicator value from the median of all models, the more accurate the
odel is when compared to the others. In this study, 𝛼𝑗 value is −1 for

𝑅2 and equalled 1 for the other statistical indicators.
The proposed ICMD-ANN-EDLSTM model has been evaluated from

a statistical perspective based on the Diebold–Mariano (DM) test and
Harvey,Leybourne and Newbold (HLN) test, both of which are excellent
for evaluating predictive model statistical significance. DM and HLN
statistics test assumes similar accuracy between two forecasting models.
The main process of the DM and HLN test is found in [106].

4. Results

The performance of the proposed deep learning hybrid ANN-
EDLSTM model based on ICEEMDAN (ICMD) for daily electricity de-
mand (𝐺,MWh) prediction was compared with standalone models
(ANN, RFR and LSTM), deep learning hybrid model (CLSTM) and
the decomposition based deep learning hybrid models (ICMD-ANN-
CLSTM,ICMD-RFR-CLSTM, and ICMD-RFR-LSTM). The proposed deep
learning hybrid ICMD-ANN-EDLSTM model: ICMD-ANN-EDLSTM is
evaluated using a variety of model evaluation metrics. Table 5 tab-
ulates the RMSE and MAE metrics of ICMD-ANN-EDLSTM and other
benchmark models. The proposed deep learning hybrid model (ICMD-
ANN-EDLSTM) revealed the best performance by displaying the lowest
error values of RMSE (MWh) ≈ 9.39, ≈ 9.73, ≈ 3.51 and ≈ 17.04 for
Duffield Road, Kedron, Kirra, and Molendinar sub-station, respectively
during testing phase. Similarly, the deep learning hybrid (ICMD-ANN-
EDLSTM) model also outperform the benchmark model in terms of MAE
for all four substations. Additionally, when the MAE of the proposed
model is compared with other decomposition based models (ICMD-
ANN-CLSTM,ICMD-RFR-CLSTM, and ICMD-RFR-LSTM), the MAE was
reduced by 37%, 34% and 50% for Duffield Road sub-station, in case
of deep learning hybrid model (CLSTM) the MAE was reduced by
127%, similar trend can be seen for standalone models (ANN,RFR
and LSTM) with more than 100% reduction in MAE by the proposed
model. Therefore, based on RMSE and MAE metrics, it was clear
that the proposed decomposition based deep learning hybrid model
ANN-EDLSTM are superiors compared to other comparing models
(ICMD-ANN-CLSTM,ICMD-RFR-CLSTM,ICMD-RFR-LSTM, and CLSTM)
and their standalone (ANN, RFR, and LSTM) counterparts.

The scatter plots, as illustrated in Fig. 7, were created to provide
a more comprehensive understanding of the model prediction perfor-
mance. The scatter plots also show the coefficient of determination
𝑅2, which can be used to further evaluate the developed models. The
statistical correlation for each model was examined using a scatter
plot of the actual electricity demand 𝐺𝑎 versus predicted electricity de-
mand 𝐺𝑝. During the testing phases, the proposed ICMD-ANN-EDLSTM
model produced the best regression results (𝑅2 ≈ 0.960), followed
by the ICMD-ANN-CLSTM, ICMD-RFR-LSTM, ICMD-RFR-CLSTM, LSTM,
CLSTM, RFR and ANN models, with values of 𝑅2 ≈ 0.951, ≈ 0.949,
≈ 0.798, ≈ 0.760, ≈ 0.759, ≈ 0.757, and ≈ 0.727, respectively for
Duffield Road sub-station. Similarly, the proposed deep learning hy-
brid model has shown best regression result for the other three sub-
stations. Also, in all four sub-stations the decomposition based deep
learning hybrid benchmark model shows better performance than the
deep learning hybrid and standalone models. Notably, when compared
to the other benchmark models, the proposed deep learning hybrid
(ICMD-ANN-EDLSTM) model produced the best results by exhibiting
the closest line of fit (1:1, red regression line in Fig. 7). In comparison
to ICMD-ANN-EDLSTM, the ANN and RFR produced inferior results
due to excessively distributed scatter points around the regression
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Table 5
The testing performance of the proposed Deep Hybrid ICMD-ANN-EDLSTM model vs.
benchmark models as measured by Root Mean Square Error (𝑅𝑀𝑆𝐸,MWh) and Mean
Absolute Error (𝑀𝐴𝐸,MWh).

Sub-stations Predictive model Model performance metrics

RMSE (MWh) MAE (MWh)

ICMD-ANN-EDLSTM 9.3993 6.7758
ICMD-ANN-CLSTM 13.09 9.771
ICMD-RFR-CLSTM 13.494 10.156
ICMD-RFR-LSTM 10.3 7.6376
CLSTM 20.453 15.433
LSTM 20.458 15.526
ANN 20.382 15.599

Duffield Road

RFR 20.729 15.615

ICMD-ANN-EDLSTM 9.738 6.6901
ICMD-ANN-CLSTM 10.799 7.7203
ICMD-RFR-CLSTM 21.955 15.541
ICMD-RFR-LSTM 11.047 7.7997
CLSTM 23.99 17.816
LSTM 23.976 17.546
ANN 25.563 18.237

Kedron

RFR 24.106 17.605

ICMD-ANN-EDLSTM 3.5145 2.3248
ICMD-ANN-CLSTM 16.739 13.877
ICMD-RFR-CLSTM 4.1384 2.6524
ICMD-RFR-LSTM 4.1349 2.9442
CLSTM 14.043 10.401
LSTM 11.299 8.4958
ANN 9.9397 7.2456

Kirra

RFR 9.5123 6.8965

ICMD-ANN-EDLSTM 17.042 11.265
ICMD-ANN-CLSTM 30.564 22.956
ICMD-RFR-CLSTM 27.668 19.288
ICMD-RFR-LSTM 18.636 12.452
CLSTM 31.461 21.651
LSTM 31.126 20.839
ANN 33.939 23.498

Molendinar

RFR 32.184 21.809

line. Furthermore, throughout testing, the RFR model produced the
worst goodness-of-fit values for all four sub-stations. The decomposition
based deep learning hybrid models (ICMD-ANN-CLSTM, ICMD-RFR-
LSTM, and ICMD-RFR-CLSTM), deep learning hybrid model (CLSTM)
and the standalone (LSTM) model are built on a DL algorithm that
processes data via several layers, allowing these models to successfully
learn the properties of the 𝐺 time-series and remember long-term de-
pendencies. ANN and RFR, on the other hand, are all shallow learning
networks that do not typically use deep structures like DL. As a result,
the performance of decomposition based deep learning hybrid models
using DL outperformed these shallow learning network (ANN and RFR).

In order to illustrate more intuitively the prediction performance of
the decomposition based deep learning hybrid model, the normalised
and relative metrics (𝐸𝑊 𝐼 , 𝐸𝑁𝑆 , 𝐸𝐿𝑀 , RRMSE, and RMAE) are utilised.
Based on performance results listed in Tables 6 and 7, With higher
magnitude of 𝐸𝑊 𝐼 , 𝐸𝑁𝑆 , and 𝐸𝐿𝑀 and lower magnitude of RRMSE, and
RMAE the proposed decomposition based deep learning hybrid model
outperform the standalone (LSTM, ANN and RFR) and deep learning
hybrid model (CLSTM) for all four sub-stations. At Kirra sub-station
for proposed decomposition based deep learning hybrid model yielded
𝐸𝑊 𝐼 ≈ 0.990, 𝐸𝑁𝑆 ≈ 0.983 and 𝐸𝐿𝑀 ≈ 0.889 compared to 𝐸𝑊 𝐼 ≈ 0.918,
𝑁𝑆 ≈ 0.868 and 𝐸𝐿𝑀 ≈ 0.655 for ANN model. Similarly, for relative
rrors, the proposed model yielded 𝑅𝑅𝑀𝑆𝐸 ≤ 4% and 𝑅𝑀𝐴𝐸 ≤ 3% for
ll four sub-stations. The best 𝑅𝑅𝑀𝑆𝐸(≈ 1.66%) and 𝑅𝑀𝐴𝐸(≈ 1.07%)

were found for Kirra sub-station followed by Kedron, Molendinar and
Duffield Road sub-stations. At Kirra sub-station, decomposition based
deep learning hybrid benchmark models (ICMD-RFR-CLSTM and ICMD-
RFR-LSTM) showed excellent performance with 𝑅𝑅𝑀𝑆𝐸 ≈ 1.96%.
This indicates that the predictability of the 𝐺 prediction model can be
significantly improved by using ICMD to decompose original 𝐺 time-
series. The ICMD algorithm is capable of reducing the nonstationary
11
Table 6
The performance of the Deep Hybrid ICMD-ANN-EDLSTM model vs. benchmark models
using the Willmott’s Index (𝐸𝑊 𝐼 ), Nash–SutcliffeCoefficient (𝐸𝑁𝑆 ), and the Legates &

cCabe’s (𝐸𝐿𝑀 ) Index of Agreement. Note that the best model is boldfaced (blue).
Sub-stations Predictive model Model performance metrics

𝐸𝑊 𝐼 𝐸𝑁𝑆 𝐸𝐿𝑀

ICMD-ANN-EDLSTM 0.957 0.930 0.751
ICMD-ANN-CLSTM 0.912 0.863 0.642
ICMD-RFR-CLSTM 0.907 0.855 0.627
ICMD-RFR-LSTM 0.945 0.915 0.720
CLSTM 0.739 0.667 0.434
LSTM 0.714 0.669 0.430
ANN 0.755 0.669 0.428

Duffield Road

RFR 0.734 0.658 0.427

ICMD-ANN-EDLSTM 0.970 0.960 0.823
ICMD-ANN-CLSTM 0.962 0.951 0.795
ICMD-RFR-CLSTM 0.848 0.799 0.588
ICMD-RFR-LSTM 0.961 0.949 0.793
CLSTM 0.787 0.760 0.527
LSTM 0.820 0.760 0.535
ANN 0.800 0.731 0.516

Kedron

RFR 0.817 0.757 0.533

ICMD-ANN-EDLSTM 0.990 0.983 0.889
ICMD-ANN-CLSTM 0.731 0.626 0.340
ICMD-RFR-CLSTM 0.986 0.977 0.874
ICMD-RFR-LSTM 0.986 0.977 0.860
CLSTM 0.749 0.736 0.505
LSTM 0.878 0.829 0.596
ANN 0.918 0.868 0.655

Kirra

RFR 0.924 0.879 0.672

ICMD-ANN-EDLSTM 0.962 0.927 0.772
ICMD-ANN-CLSTM 0.852 0.766 0.535
ICMD-RFR-CLSTM 0.892 0.808 0.609
ICMD-RFR-LSTM 0.951 0.913 0.748
CLSTM 0.851 0.752 0.561
LSTM 0.862 0.757 0.578
ANN 0.840 0.712 0.524

Molendinar

RFR 0.845 0.740 0.558

pattern that was present in the original 𝐺 time-series. The prediction
accuracy can be enhanced by decomposing nonstationary original 𝐺
time-series into many reasonably stationary IMF components. Further-
more, the proposed model (ICMD-ANN-EDLSTM) outperforms the other
three decomposition based deep learning hybrid models (ICMD-ANN-
CLSTM, ICMD-RFR-CLSTM, and ICMD-RFR-LSTM), which use identical
prediction methods to predict all components. This demonstrates the
efficacy of combining various prediction approaches in predicting the
IMF components generated by ICMD. Thus, by taking into account the
various characteristics of each IMF component and employing vari-
ous methodologies to predict each IMF component, the corresponding
prediction performance can be further enhanced.

In terms of the Absolute Percentage Bias (APB%) error calculated
uring the testing phase, Table 8 demonstrates that the proposed
ecomposition based deep learning hybrid model produces a lower per-
entage value of APB when compared to the other benchmark models,
nd this is less than 3% for all four sub-stations. For instance, the lowest
alue of APB ≈ 1.10% is produced by the ICMD-ANN-EDLSTM model,

while the highest value of APB ≈ 6.57% is produced by the ICMD-
ANN-CLSTM model for the Kirra sub-station. Accordingly, all study sites
appear to achieve a Kling–Gupta Efficiency APB that is closer to unity
compared to all the other benchmark models. In all four sub-stations
the proposed decomposition based deep learning hybrid model (ICMD-
ANN-EDLSTM) yielded KGE ≥ 0.96. Notably, these values are higher
than that of other deep learning hybrid and standalone benchmark
models (see Table 8). Furthermore, the efficacy of the ICMD-ANN-
EDLSTM model was assessed utilising the promoting percentage (𝜆)
of RMSE, APB, and KGE. The assessment of 𝜆𝑅𝑀𝑆𝐸 , 𝜆𝐴𝑃𝐵 , and 𝜆𝐾𝐺𝐸
provides a significant improvement of the respective parameters com-

pared with the benchmark models, as tabulated in Table 9. For instance,
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Fig. 7. Scatter plots of the actual vs. the predicted 𝐺 values in the testing phase. the regression line and the 𝑅2 values with regression equation are shown.
the RMSE of proposed model (ICMD-ANN-EDLSTM) was improved by
≈ 39%, ≈ 43%, ≈ 9%, ≈ 117%, ≈ 117%, ≈ 116%, and ≈ 120%
when compared with ICMD-ANN-CLSTM, ICMD-RFR-CLSTM, ICMD-
RFR-LSTM, CLSTM, LSTM, ANN, and RFR respectively for Duffield
Road sub-station. Surprisingly, APB(%) and KGE(%) showed a similar
performance ranging from is 12 to 130% and 4 to 25%, respectively
for Duffield Road sub-station. Therefore, the APB,KGE, and 𝜆 results
of proposed decomposition based deep learning hybrid (ICMD-ANN-
EDLSTM) model is consistent with the previous results (Tables 5, 6,
12
7 and Fig. 7) and substantiate its applicability for daily electricity
demand prediction.

Fig. 8 shows the comparison of models absolute Prediction Error
(|𝑃𝐸|) utilising box plots in the testing phase to further ascertain the
enhanced results of the suggested decomposition based deep learning
hybrid model. Outliers of the extreme |𝑃𝐸| of the testing data are
represented by the ‘+’ symbol. First quartile (25th percentile) and third
quartile (75th percentile) were indicated by the lower and upper lines
of the boxplot, while the median (50th percentile) was indicated by
the central line. The smallest and largest non-outliers were defined by
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Fig. 7. (continued).
two horizontal lines, respectively, between the first and third quartiles.
In accordance with the previous results (Tables 5, 6, 7, 8, 9 and
Fig. 8), the smaller distribution of |𝑃𝐸| with a smaller quartile range
and therefore had better accuracy. Evidently, the proposed ICMD-ANN-
EDLSTM yielded overall better performance for daily 𝐺 prediction for
the four sub-stations, followed by the other decomposition based deep
learning hybrid models (ICMD-ANN-CLSTM, ICMD-RFR-CLSTM, and
ICMD-RFR-LSTM).

To gain a more in-depth knowledge of the proposed decomposition
based deep learning hybrid model, Fig. 9 illustrates a thorough inter-
pretation by plotting the 𝐺𝑃𝐼 values. It is revealed from Fig. 9 that the
decomposition based deep learning hybrid models have comparatively
13
higher 𝐺𝑃𝐼 value compared to deep learning hybrid and standalone
models. In only one sub-station (Kirra) the GPI value for the ICMD-RFR-
CLSTM (𝐺𝑃𝐼 ≈ −2.876) model have lower value than that of the CLSTM
(≈ −1.564), LSTM (≈ −0.62), ANN (≈ −0.07%) and RFR (≈ −0.08)
models. This lower value in 𝐺𝑃𝐼 for ICMD-RFR-CLSTM was because
of the high 𝑅𝑀𝑆𝐸(≈ 16.739 MWh) value of this model compared to
other models.

In terms of 𝐺𝑃𝐼 the proposed model:ICMD-ANN-EDLSTM has out-
perform all other benchmark models. For instance, at Kedron substation
the 𝐺𝑃𝐼 ≈ 2.33, ≈ 2.12, ≈ 2.09, ≈ 0.211, ≈ −0.211, ≈ −0.227, ≈ −0.245,
and ≈ −0.412 for ICMD-ANN-EDLSTM, ICMD-ANN-CLSTM, ICMD-RFR-
LSTM, ICMD-RFR-CLSTM, LSTM, RFR, CLSTM, and ANN, respectively.
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Fig. 8. Models performance comparison using box plots of |𝑃𝐸| during the training period.
Fig. 9. Global Performance Indicator (GPI) used to evaluate the proposed ICMD-ANN-EDLSTM model relative to seven other benchmarked models.
Furthermore, condensing the benchmarking and comparing findings
into one unique and correct parameter may be problematic; yet, a
unique metric termed Combined Performance Index (𝐶𝑃𝐼%) was also
employed in this study to demonstrate the prediction ability of the
proposed model. 𝐶𝑃𝐼 is defined as a weighted sum of numerous
measures that integrate dispersion and distribution function similitude
information (𝐶𝑃𝐼 = (𝐾𝑆𝐼 + 𝑂𝑉 𝐸𝑅 + 2𝑅𝑀𝑆𝐸)∕4) where, 𝐾𝑆𝐼 is
Kolmogorov–Smirnov test Integral and 𝑂𝑉 𝐸𝑅 is the relative frequency
of exceedance. It should be also noted that the lower the value of
14
𝐶𝑃𝐼 the better the model is. The more information regarding this 𝐶𝑃𝐼
metrics can be found in Ref. [107].

Fig. 10 shows he bar chart of the 𝐶𝑃𝐼 value for each model at four
sub-stations. The 𝐶𝑃𝐼 bar chart shows that the proposed decomposition
based deep learning hybrid model:ICMD-ANN-EDLSTM has yielded
lowest 𝐶𝑃𝐼 values for all four substation. For instance, at Molendinar
sub-station the 𝐶𝑃𝐼 ≈ 3.39%, ≈ 6.20%, ≈ 5.62%, ≈ 4.08%, ≈ 6.73%,
≈ 6.90%, and ≈ 6.13% for ICMD-ANN-EDLSTM, ICMD-ANN-CLSTM,
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Table 7
The geographic comparison of the Deep Hybrid ICMD-ANN-EDLSTM model vs. other
comparative models in terms of the relative errors (𝑅𝑅𝑀𝑆𝐸,%) and (𝑅𝑀𝐴𝐸,%)
computed within the test sites. Note that the best model is boldfaced (blue).

Sub-stations Predictive model Model performance metrics

RRMSE RMAE

ICMD-ANN-EDLSTM 3.89% 2.82%
ICMD-ANN-CLSTM 5.41% 4.01%
ICMD-RFR-CLSTM 5.58% 4.15%
ICMD-RFR-LSTM 4.26% 3.17%
CLSTM 8.45% 6.51%
LSTM 8.46% 6.60%
ANN 8.43% 6.49%

Duffield Road

RFR 8.57% 6.60%

ICMD-ANN-EDLSTM 3.42% 2.32%
ICMD-ANN-CLSTM 3.79% 2.70%
ICMD-RFR-CLSTM 7.70% 5.28%
ICMD-RFR-LSTM 3.88% 2.69%
CLSTM 8.42% 6.23%
LSTM 8.41% 6.04%
ANN 8.97% 6.06%

Kedron

RFR 8.46% 6.05%

ICMD-ANN-EDLSTM 1.66% 1.07%
ICMD-ANN-CLSTM 7.92% 6.68%
ICMD-RFR-CLSTM 1.96% 1.21%
ICMD-RFR-LSTM 1.96% 1.36%
CLSTM 6.65% 5.11%
LSTM 5.35% 4.05%
ANN 4.71% 3.35%

Kirra

RFR 4.50% 3.21%

ICMD-ANN-EDLSTM 3.81% 2.53%
ICMD-ANN-CLSTM 6.83% 5.28%
ICMD-RFR-CLSTM 6.18% 4.33%
ICMD-RFR-LSTM 4.16% 2.83%
CLSTM 7.03% 4.95%
LSTM 6.96% 4.74%
ANN 7.58% 5.28%

Molendinar

RFR 7.19% 4.96%

ICMD-RFR-CLSTM, ICMD-RFR-LSTM, CLSTM, LSTM, ANN, and RFR re-
spectively. According to the results of the preceding 𝐺𝑃𝐼 and 𝐶𝑃𝐼 met-
ric analysis, the objective mode: ICMD-ANN-EDLSTM outperforms the
decomposition based deep learning hybrid benchmark models (ICMD-
ANN-CLSTM, ICMD-RFR-LSTM, and ICMD-RFR-CLSTM), deep learning
hybrid model (CLSTM) and the standalone models (LSTM, RFR, and
ANN) in addressing nonlinear issues, and it is more suited for daily 𝐺
prediction. To estimate the performance of the constructed hybrid fore-
casting system, a more scientific and thorough evaluation is carried out.
The Taylor diagram, Diebold–Mariano (𝐷𝑀) and Harvey,Leybourne
and Newbold (𝐻𝐿𝑁) testing is used to examine the prediction error
for each model.

In Fig. 11, the Taylor diagram, which calculates the angular lo-
cation of the inverse cosine of the correlation coefficient, is shown
to demonstrate the model that is closest to the actual data during
the testing period. In Fig. 11 it can be seen that, the correlation
coefficient (𝑟) on the radial axis and the Standard Deviation (𝑆𝐷) on
the polar axis are used combined to adapt the model with the best fit
to the predictors. For all prediction scenarios, the decomposition based
deep learning hybrid model:ICMD-ANN-EDLSTM with the highest 𝑟
alue produced the closest prediction to the actual 𝐺 data for all
ur sub-stations. Again, the modelled data generated by the other
ecomposition based deep learning hybrid models(ICMD-ANN-CLSTM,
CMD-RFR-LSTM, and ICMD-RFR-CLSTM), deep learning hybrid model
CLSTM) and standalone (LSTM, RFR, and ANN) differed significantly
rom that generated by the ICMD-ANN-EDLSTM model.

Furthermore, Table 10 shows the 𝐷𝑀 and 𝐻𝐿𝑁 statistical index ta-
le of the proposed model:ICMD-ANN-EDLSTM with each comparative
odel in order to evaluate the efficacy of the proposed model. From
15

able 10, the proposed model:ICMD-ANN-EDLSTM, performs better
Table 8
The testing performance of the Deep Hybrid ICMD-ANN-EDLSTM model vs. benchmark
models as measured by Kling Gupta Efficiency (𝐾𝐺𝐸), and Absolute Percentage Bias
𝐴𝑃𝐵). Note that the best model is boldfaced (blue).
Sub-stations Predictive model Model performance metrics

KGE APB

ICMD-ANN-EDLSTM 0.972 2.80%
ICMD-ANN-CLSTM 0.9011 4.04%
ICMD-RFR-CLSTM 0.8735 4.20%
ICMD-RFR-LSTM 0.9324 3.16%
CLSTM 0.7394 6.38%
LSTM 0.7068 6.42%
ANN 0.7293 6.45%

Duffield Road

RFR 0.7414 6.45%

ICMD-ANN-EDLSTM 0.9727 2.35%
ICMD-ANN-CLSTM 0.9711 2.71%
ICMD-RFR-CLSTM 0.8312 5.45%
ICMD-RFR-LSTM 0.9686 2.74%
CLSTM 0.7747 6.25%
LSTM 0.848 6.16%
ANN 0.708 6.40%

Kedron

RFR 0.8121 6.18%

ICMD-ANN-EDLSTM 0.9908 1.10%
ICMD-ANN-CLSTM 0.7551 6.57%
ICMD-RFR-CLSTM 0.9833 1.26%
ICMD-RFR-LSTM 0.9727 1.39%
CLSTM 0.6665 4.92%
LSTM 0.8208 4.02%
ANN 0.9064 3.43%

Kirra

RFR 0.9023 3.26%

ICMD-ANN-EDLSTM 0.9603 2.52%
ICMD-ANN-CLSTM 0.8035 5.13%
ICMD-RFR-CLSTM 0.878 4.31%
ICMD-RFR-LSTM 0.9232 2.78%
CLSTM 0.8651 4.84%
LSTM 0.8614 4.66%
ANN 0.8205 5.25%

Molendinar

RFR 0.8323 4.87%

since the 𝐷𝑀 and 𝐻𝐿𝑁 test statistics are positive. When compared
to benchmark models, the proposed model:ICMD-ANN-EDLSTM had
higher prediction accuracy. As a result, our proposed method is a useful
tool for daily 𝐺 prediction.

5. Discussion, limitations and future research work

Based on the results presented so far, it is apparent that the proposed
ICMD-ANN-EDLSTM model is considerably superior in respect to its
competing counterpart models used in daily electricity demand predic-
tions. The practical implications of this method is also clear. Energy-
company decision-makers and environmental professionals can benefit
from employing the ICMD-ANN-EDLSTM model as a solid framework
for performing accurate predictions, which can aid in the effective
management and planning of energy and environmental resources. For
diverse prediction applications, the developed models can simulate the
non-stationary and nonlinear properties of solar radiation, wind speed,
streamflow, and air pollutants.

Despite the rational performances provided by the ICMD-ANN-
EDLSTM model and the benchmark models, there are certain limitation
worth addressing. As a result, additional research is required to assess
the generalisation capabilities of the ICMD-ANN-EDLSTM model for the
𝐺 prediction. However, the current study only included data from four
sub-stations located at SEQ, Australia, and the prediction capacity of
ICMD-ANN-EDLSTM models for additional locations was not evaluated.
Consideration of electricity demand data from other sub-stations lo-
cated at different state of Australia may be beneficial in validating the
proposed models’ broad-scale applicability.

Additionally, this study focused on the 𝐺 time-series on a daily
cale. The discussion can be broadened in the future to include the



Energy Conversion and Management 297 (2023) 117707S. Ghimire et al.
Table 9
The promoting percentage metric, 𝜆 for the comparison models against objective (i.e., ICMD-ANN-EDLSTM) model in the testing phase. Note that 𝜆𝑅𝑀𝑆𝐸 = Promoting Percentages
of the Root Mean Square Error, 𝜆𝐾𝐺𝐸 = Promoting Percentages of Kling Gupta Efficiency, and 𝜆𝐴𝑃𝐵 = Promoting Percentages of Absolute Percentage Bias.

Predictive models Duffield Road sub-station Kedron sub-station Kirra sub-station Molendinar sub-station

𝜆𝑅𝑀𝑆𝐸 𝜆𝐾𝐺𝐸 𝜆𝐴𝑃𝐵 𝜆𝑅𝑀𝑆𝐸 𝜆𝐾𝐺𝐸 𝜆𝐴𝑃𝐵 𝜆𝑅𝑀𝑆𝐸 𝜆𝐾𝐺𝐸 𝜆𝐴𝑃𝐵 𝜆𝑅𝑀𝑆𝐸 𝜆𝐾𝐺𝐸 𝜆𝐴𝑃𝐵
ICMD-ANN-CLSTM 39.3% 7.3% 44.2% 10.9% 0.2% 15.4% 376.3% 23.8% 496.9% 79.3% 16.3% 103.8%
ICMD-RFR-CLSTM 43.6% 10.1% 49.9% 125.5% 14.5% 132.3% 17.8% 0.8% 14.1% 62.4% 8.6% 71.2%
ICMD-RFR-LSTM 9.6% 4.1% 12.7% 13.4% 0.4% 16.6% 17.7% 1.8% 26.6% 9.4% 3.9% 10.5%
CLSTM 117.6% 23.9% 127.8% 146.4% 20.4% 166.3% 299.6% 32.7% 347.4% 84.6% 9.9% 92.2%
LSTM 117.7% 27.3% 129.1% 146.2% 12.8% 162.3% 221.5% 17.2% 265.5% 82.6% 10.3% 85.0%
ANN 116.8% 25.0% 130.2% 162.5% 27.2% 172.6% 182.8% 8.5% 211.7% 99.1% 14.6% 108.6%
RFR 120.5% 23.7% 130.4% 147.5% 16.5% 163.1% 170.7% 8.9% 196.7% 88.9% 13.3% 93.6%
Fig. 10. Bar chart showing the Combined Performance Index of the proposed deep learning hybrid ICMD-ANN-EDLSTM model vs. seven other benchmark models.
Table 10
Evaluation of the Deep Hybrid Fused Network (FNET) model against comparison models in terms of: (a) The Diebold–Mariano (𝐷𝑀) test statistic, (b) The Harvey–Leybourne–
Newbold (𝐻𝐿𝑁) test statistic. Note: - The column of the table is compared with the rows, and if the result is positive, the model in the rows outperforms the one in the column;
on the contrary, if it is negative, then the one in the column is superior. Note that the best model is boldfaced (blue).

(a)

ICMD-ANN-EDLSTM ICMD-ANN-CLSTM ICMD-RFR-CLSTM ICMD-RFR-LSTM CLSTM LSTM ANN RFR

ICMD-ANN-EDLSTM 5.4272 10.9405 5.3796 14.5428 13.307 11.5596 12.8061
ICMD-ANN-CLSTM 6.5283 −4.6149 10.6105 9.8496 9.477 10.8175
ICMD-RFR-CLSTM −10.5297 2.9215 1.9781 3.3929 2.3794
ICMD-RFR-LSTM 14.802 13.3312 11.591 12.8219
CLSTM −2.0486 1.7196 −0.8564
LSTM 3.6848 1.0498
ANN −2.5625

(b)

ICMD-ANN-EDLSTM ICMD-ANN-CLSTM ICMD-RFR-CLSTM ICMD-RFR-LSTM CLSTM LSTM ANN RFR

ICMD-ANN-EDLSTM 5.4531 10.9928 5.4053 14.6122 13.3706 11.6148 12.8672
ICMD-ANN-CLSTM 6.5595 −4.637 10.6611 9.8967 9.5223 10.8691
ICMD-RFR-CLSTM −10.58 2.9354 1.9875 3.4091 2.3907
ICMD-RFR-LSTM 14.8727 13.3949 11.6463 12.8831
CLSTM −2.0584 1.7278 −0.8605
LSTM 3.7024 1.0548
ANN −2.5748
16
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Fig. 11. Performance assessment of the deep learning hybrid ICMD-ANN-EDLSTM model as well as benchmark models for daily prediction of 𝐺 in form of Taylor diagrams during
the testing phase.
minute level time scale for strategic management and planning of
renewable energy resources. Furthermore, one of the limitation of the
decomposition based deep learning hybrid models is that it cannot
properly balance prediction accuracy and computation time. The train-
ing time of standalone models (LSTM, RFR, and ANN) in this study is
rather low, however the prediction accuracy is not good. Therefore, the
model with a complex structure and numerous hyperparameters will
definitely take a long time to train. Lastly, the prediction of electricity
demand in this study was based on its previous demand values (uni-
variate prediction method). In future study, we will incorporate some
external elements into the prediction, such as weather conditions, and
time index (such as day of the week and hour of the day).

In comparison with literature on decomposition methods for arti-
ficial intelligence and machine learning models, our study provides
important advantages over previous studies (see Table 11) For example,
The study of [108] developed ANN model with climatic variables for
6-h and daily 𝐺 forecasting using Energex data for 8 stations in south-
east Queensland, Australia. Although the study sites were different to
the present study, we noted a relative 𝑅𝑀𝑆𝐸 between 3.88–10.26%
generated by their best (ANN) model compared to a significantly lower
value of 1.66–3.89% for the present ICMD-ANN-EDLSTM model. This
could perhaps be attributable to use of the more advanced EDLSTM
method for predicting IMFs 6–10 and ANN method for predicting IMFs
1–5 whereas in [108], authors only used an ANN model without any
decomposition of data.

In another recent study [18], authors used an integration of convo-
lutional neural networks and echo state network (CESN) for daily elec-
tricity demand prediction at four sites (Roderick, Rocklea, Hemmant,
Carpendale), in Southeast Queensland, Australia. The study found a
relative 𝑅𝑀𝑆𝐸 of 5.86–14.56%, which is also higher than the relative
errors encountered in the present study. In this study, the CESN did
not incorporate a data decomposition method, and therefore, this could
have contributed to a lower performance of their hybrid model.

In other studies [109], authored develop a Maximum Overlap
Discrete Wavelet Transform-Online Sequential Extreme Learning Ma-
chines Algorithm whereby wavelets was used to decompose daily
17
𝐺 data at three regional campuses (i.e., Toowoomba, Ipswich, and
Springfield) at the University of Southern Queensland, Australia. The
proposed MODWT-PACF-OS-ELM model was tested against the non-
wavelet equivalent OS-ELM model to show that for all of the three
datasets, a significantly greater accuracy was achieved with in a relative
error of 4.31% vs. 11.31%, for the case of the Toowoomba as well
as a similarly high performance for the other sites. This performance,
however, remains lower than the proposed ICMD-ANN-EDLSTM model.

Finally, the study of [31] developed a hybrid two-phase particle
swarm optimisation-support vector regression (PSO-SVR) model inte-
grated with the improved version of empirical mode decomposition
with adaptive noise multi-resolution tool for demand forecasting to
show a significantly lower error of 2.01–4.65% (weekend forecast
horizon) and 1.22–4.92% (whole week forecast horizon) for entire
Queensland’s state’s aggregated demand dataset. It should be noted that
this data was not station-based, and therefore, could have contained
much less instabilities, patterns and trends due to the summing up of
the entire state’s electricity use compared with station-based data that
are usually very diverse in its features. Therefore, these comparisons
demonstrate the efficacy of the proposed hybrid ICMD-ANN-EDLSTM
model for daily electricity demand modelling at a sub-station level.

The primary advantage of our method lies in its capability to better
understand the characteristics of each of the time-series components in
the 𝐺 dataset using the ICMD method so that one can also tailor the
prediction algorithm to better fit the model data prior to developing
the predictive model. A combination of the ANN and the EDLSTM
algorithms in this study has also allowed for better predictions since
each algorithm has its own strengths and weaknesses. Furthermore, the
combination of the two approaches with a data decomposition method,
and perhaps, with the others deep learning algorithms, can also lead to
a more robust predictive model that can handle more complex data sets
and provide more accurate predictions of electricity demand.

Despite significant advantages in respect to performance efficacy,
there still remains some room for improvement. This study relies solely
on the 𝐺 data, ignoring other factors such as weather, season, and socio-
economic factors. Therefore in future, researchers could resolve this
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Table 11
Comparison of the proposed hybrid ICMD-ANN-EDLSTM model with literature studies focusing on Queensland’s electricity demand data. The
relative error 𝑅𝑀𝑆𝐸 is shown only for the objective model in each case study.

Reference Forecast horizon Type of model Error (%𝑅𝑀𝑆𝐸)

Present study Daily; 2 stations ICMD-ANN-EDLSTM vs. 1.66–8.57%
ICMD-ANN-CLSTM
ICMD-RFR-CLSTM
ICMD-RFR-LSTM
CLSTM
LSTM
ANN
RFR

[108] Daily; 8 stations Hybrid ANN (bootstrap) vs. 7.38–11.43%
ANN
MARS
MLR
ARIMA

[18] Daily; 4 stations CNN with echo state network vs. 5.86–11.77%
SVR
MLR
XGB
DNN
LGB

[109] Daily; 3 stations MODWT-PACF-OS-ELM (MPOE) vs. 5.47–7.49%
PACF-OS-ELM (POE)

[31] Various ICEEMDAN-PSO-SVR vs. Weekend: 2.01–5.03%
Work days: 1.13–3.26%
Whole week: 1.22–4.95%
Public holiday: 2.97–8.62%

ICEEMDAN-M5
ICEEMDAN-MARS
PSO-SVR
M5 model tree
MARS
a
t
t
c
p
a

a
r

limitation of the current model by using several of these datasets to
retrain the hybrid ICMD-ANN-EDLSTM model. In doing so, they need
to adopt multivariate empirical mode decomposition (MEMD) used in
studies other than electricity demand area [58,110]. The MEMD will
provide an edge over the ICMD used given that ICMD operates on
univariate data only. In terms of signal decomposition, the MEMD
can decompose multivariate signal (e.g. 𝐺, weather variables, social
presence, etc datasets) into several IMF groups, with each IMF group
having the same length and components containing the same frequency
distribution, in the same order of the group. This will enable the ANN
and EDLSTM methods to be applied in a similar manner while capturing
the patterns in weather as well as demand and other factors to retrain
the model.

Furthermore, the present study considered only the point-based
electricity demand prediction while ignoring the uncertainties and
confidence intervals of these predictions. Since electricity industries
are required to make important decisions, a probabilistic forecasting
framework of the hybrid ICMD-ANN-EDLSTM model could be more
appealing for confident decisions for the energy sector. Finally, the
present hybrid ICMD-ANN-EDLSTM model still adopts a black-box
approach, so it can be re-developed using multivariate data such as
weather- or seasonal variables and improved using explainable and in-
terpretable AI methods such as Shapley Additive exPlanations (SHAP),
Local Interpretable Model-agnostic Explanations (LIME) [111], as well
as DeepSHAP, Deep Learning Important FeaTures (DeepLIFT) [112]
and Causal Explanations for Model Interpretation under Uncertainty
(CXplain) [113] to help investigate the importance/contribution of
each feature in predicting the 𝐺 dataset.

Another important future study could use the proposed method
with weather datasets in context of a real demand side management
system to predict the electricity demand at local scales not tested
in the present work, and especially for the different seasons where
the inclusion of cooling and heating requirements could be expected
to provide a more responsive model subject to demand of electric-
ity. In such a circumstance, the proposed hybrid ICMD-ANN-EDLSTM
18
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could use weather observations as well as modelled weather variables
from European Centre for Medium Range Weather Forecasts (at multi-
hourly scales) or other sources like the Global Forecast System (GFS),
Global Ensemble Forecast System (GEFS), or other sources that provide
near real-time predictions to aid in more accurate electricity demand
predictions. Finally, as an independent study, researchers may adopt
consumer electricity usage and socio-economic driven variables such as
social and recreational events as lurking variables causing changes in
daily electricity demand in different localities in re-training of the hy-
brid ICMD-ANN-EDLSTM models for accurate estimation of electricity
demand in a real demand side management system.

6. Conclusions

Forecasting electricity demand (𝐺,MWh) can assist in power gen-
eration planning and electricity power systems development. To esti-
mate daily 𝐺, we have proposed a hybrid Artificial Neural Network
(ANN)-Encoder-Decoder Long Short-Term Memory (EDLSTM) based
on Improved Complete Ensemble Empirical Mode Decomposition with
Adaptive Noise (ICMD), where the ICMD was adopted as a feature
identification method to reveal the patterns in 𝐺 dataset. The main
contribution of this work is the proposed ICMD-ANN-EDLSTM model,
which integrates components from both the ICMD method and the
ANN-EDLSTM model. This approach allows a better capturing of the
complex dynamics of daily 𝐺 data. This way, the proposed model is
ble to make more accurate predictions of the daily 𝐺 than either of
he standalone models. The scientific contributions of this study are
herefore highly relevant to energy industries currently facing signifi-
ant challenges in predicting their electricity use, as well as spot selling
rice of electricity in face of renewables pumped into the grid as well
s weather- or other socio-economic related factors.

In the first stage of the proposed approach, the original 𝐺 time-series
re decomposed into numerous Intrinsic Mode Functions (IMFs), which
epresent distinct patterns in 𝐺 data. To create the input matrix for

he proposed: ICMD-ANN-EDLSTM model, the Partial Autocorrelation
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Function has been used to find the significant lagged variables using
the decomposed IMF series of 𝐺 data. In addition, the ANN model is
sed to predict the highest frequency components whereas the EDLSTM
odel was used for lower frequency IMFs and to calculate the optimal
yperparameters. To generate the final prediction result, the prediction
indings of each IMF component are aggregated to attain the predicted

values.
Based on the daily electricity demand data from four substations

n South-east Queensland, Australia, the proposed ICMD-ANN-EDLSTM
odel was evaluated. Additionally, seven other competing models were

ompared with the proposed model, which comprised of ICMD-ANN-
LSTM, ICMD-RFR-LSTM, ICMD-RFR-CLSTM, CLSTM, LSTM, ANN, and
FR. Regarding the numerical results obtained, the proposed hybrid

CMD-ANN-EDLSTM model yielded high accuracy and prediction sta-
ility based on the point prediction assessment metric, as well as
he promoting percentages, Diebold–Mariano test, Harvey, Leybourne,
nd Newbold test, box plot, scatter plot, and Taylor diagram, which
rovided exhaustive analysis of the predicted 𝐺 values. As an example,

considering the comparison of the hybrid ICMD-ANN-EDLSTM with
the hybrid ICMD-RFR-LSTM, ICMD-RFR-CLSTM, ICMD-ANN-CLSTM,
LSTM, CLSTM, RFR, and ANN, the Promoting Percentage for Root
Mean Square Error 𝑅𝑀𝑆𝐸 were ≈ 9.4%, ≈ 62.4%, ≈ 79.3%, ≈
82.6%, ≈ 84.6%, ≈ 88.9%, ≈ 88.9%, and ≈ 99.1%. Likewise, the

elative Mean Absolute Error (𝑅𝑀𝐴𝐸) were ≈ 2.82%, ≈ 4.01%,
≈ 4.15%, ≈ 3.17%, ≈ 6.51%, ≈ 6.60%, ≈ 6.49%, and ≈ 6.602%
for ICMD-ANN-EDLSTM, ICMD-RFR-LSTM, ICMD-RFR-CLSTM, ICMD-
ANN-CLSTM, LSTM, CLSTM, RFR, and ANN, respectively (at Duffield
Road sub-station).

In respect to the relative percentage error, the results demonstrated
significantly smaller error values for the proposed hybrid ICMD-ANN-
EDLSTM model for all four study sites (see Table 7). These ranged from
𝑅𝑅𝑀𝑆𝐸 of 1.66–3.81% and 𝑅𝑀𝐴𝐸 of 1.07–2.82%. This compares
with larger values for the other benchmark models as well as those in
literature for Queensland-based datasets (see Table 11). Likewise, the
other normalised metrics such as 𝐾𝐺𝐸 and 𝐴𝑃𝐵 (Table 8) and 𝑊 𝐼 ,
𝐸𝑁𝑆 and 𝐸𝐿𝑀 are all higher than benchmark model for the proposed
ICMD-ANN-EDLSTM model to further ascertain its efficacy in predicting
the daily electricity demand for the four study sites.

Our proposed hybrid ICMD-ANN-EDLSTM model is significantly
new as earlier studies did not employ two methods (i.e., an ANN
followed by an EDLSTM model) to predict the patterns in electricity
demand (see Fig. 6). The use of two-stage method of an ANN followed
by an EDLSTM model to predict the low- and high frequency IMF
signals generated from the 𝐺 data is a novel contribution enabling the
more subtle, yet important predictive features in electricity demand
to be used for accurate modelling. In order to improve the prediction
results, consideration of the characteristics of each component (IMFs)
and the use of different prediction algorithms (ANN and EDLSTM) has
provided a significant advantage over earlier studies.
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