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Abstract

Wetlands are an important part of coastal ecosystems but are under increasing pressure
from climate change-induced sea-level rise and flooding, in addition to development
pressures associated with increasing human populations. The change in tidal events and
their intensity due to sea-level rise is also reshaping and challenging the vitality of existing
wetland systems, requiring more intensive localized studies to identify future-focused
restoration and conservation strategies. To support this endeavor, this study utilizes tide
gauge datasets from the Australian Bureau of Meteorology (BOM) for maximum sea-level
(Hmax) prediction and Landsat Collection surface reflectance datasets obtained from the
United States Geological Survey (USGS) database to detect and project patterns of change
in the Maroochy River floodplain of Queensland, Australia. This study developed an
efficient hybrid deep learning model combining a Convolutional Neural Network and
Bidirectional Long Short-Term Memory (CNNBiLSTM) architecture for the prediction of
maximum sea-level and tidal events. The proposed model significantly outperformed
three benchmark models (Multiple Linear Regression (MLR), Support Vector Regression
(SVR), and CatBoost) in achieving a high correlation coefficient (r = 0.9748) for maximum
sea-level prediction. To further address the increasing frequency and intensity of tidal
events linked to sea-level rise, a CNNBiLSTM classification model was also developed,
achieving 96.72% accuracy in predicting extreme tidal occurrences. This study identified a
significant positive linear increase in sea-level rise of 0.016 m/year between 2014 and 2024.
Wetland change detection using Landsat imagery along the Maroochy River floodplain
also identified a substantial vegetation loss of 395.64 hectares from 2009 to 2023. These
findings highlight the strong potential of integrating deep learning and remote sensing for
improved prediction and assessment of sea-level extremes and coastal ecosystem changes.
The study outcomes provide valuable insights for informing not only conservation and
restoration activities but also for providing localized projections of future change necessary
for the progression of effective climate adaptation and mitigation strategies.

Keywords: CNNBiLSTM bidirectional long short-term memory (BiLSTM); convolutional
neural network (CNN); deep learning (DL); machine learning (ML); maximum sea level
(Hmax); support vector regression (SVR); categorical boosting (CatBoost); multilinear
regression (MLR); successive variational mode decomposition (SVMD)
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1. Introduction

Wetlands are an important part of coastal ecosystems but are under increasing pressure
from climate change-induced sea-level rise and flooding, as well as from development
pressures associated with increasing human populations [1]. The health and vitality of
wetlands are considered to be a critical factor in positively contributing to a number of
United Nations Sustainable Development Goals [2]. The response of wetland areas to these
extreme impacts occurs on a varying timescale, spanning near-instantaneous vegetation
loss after nearby land reclamation [3] to long-term lagged effects exacerbated by climate
change [4]. Blue carbon sequestered and stored by coastal wetlands plays an important role
in regulating the global carbon balance [4]. Climate change factors and soil degradation
due to anthropogenic activities, however, continuously degrade the vitality of wetland
ecosystems, which, in turn, compromises the systems’ capacity to regulate the carbon
balance [3]. This cyclic relationship will continue unabated whilst 0.15-1.02 Pg of CO,
emissions continues to be released into the atmosphere [5]. Although there are many abiotic
and biotic factors that influence the health and functionality of wetlands, climate change is
identified as a major threat.

Coastal wetlands in Australia range from extensive mangrove forests and sabkha
plains in the tropical north to numerous fronted estuaries, drowned river valleys, and
coastal embayment [6]. Tasmania is the only island state where mangroves are absent.
According to [6], observations in past decades indicate that recent anthropogenic climate
change has significantly impacted the Australian coastline. The key aspects of these
climate-induced impacts relate to accelerating sea-level rise with saline intrusion, mangrove
encroachment and Melaleuca dieback [6]. Due to the position of coastal wetlands, which are
located in the intertidal zone, these ecosystems are highly vulnerable to sea-level rise and
tidal inundation [7]. The rise in the sea level with increased inundation and salinity also
affects the shape and span of the wetlands and habitats of wetland species [8]. For example,
previous research [9] examining the southeast Australian coast analyzed wetland lateral
accommodation in 110 estuaries under a high sea-level rise scenario. The study showed
that, under this scenario, saline wetlands were at risk of disappearing from open—closed
estuaries if they could not vertically accrete at the pace equal to, or greater than, the rate of
sea-level rise. Wetland environments are challenging to work in, as some areas are difficult
and time-consuming to access and quantify [10]. Despite these challenges, and due to
their important functions, monitoring wetlands is important, as Guo et al. [11] found that
wetlands have dramatically declined in the last 50 years due to pollution in some regions
of the world.

Other studies from around the world have also identified that the rise in maximum sea
level (Hmax) during tidal events poses an increasing threat to wetland ecosystems [12,13].
According to [14], a large portion of Mediterranean coastal marshes will be lost due to sea-
level rise by 2100. As a result of increasing mean sea levels, a study on coastal inundation in
Sydney, Australia, reported that as sea levels rise, severe floods will become more frequent
with high tidal events [15]. Another study located in northern New South Wales, Australia,
identified that the combination of spring tides, ocean surface climate drivers, the Southern
Oscillation Index (SOI), and the Pacific Decadal Oscillation (PDO) is a significantly positive
indicator of high sea levels and extreme coastal erosion [16]. These studies further highlight
that sea-level rise and associated coastal inundation are largely driven by a combination
of lunar effects on tides and the trapping of solar radiation in the Earth’s atmosphere
producing enhanced climate change impacts. Accordingly, the thresholds used to identify
climate risk in these environments cannot remain fixed but, rather, should be relative to
these changing background conditions and specific locational nuances.
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The Sunshine Coast is one of Australia’s fastest-growing urban regions and is
renowned for its diverse coastal environments, including extensive wetlands, and es-
tuarine system [17]. The Maroochy river estuary experiences significant pressure due to
urbanization and broader climate impacts. It recorded declines in mangrove forests due
to human activity from 1988 through to 2016 [18] but remains an enclave of biodiversity,
providing habitat for shorebirds [19] and areas of supratidal wetlands, which continue to
support a variety of plant species [20,21]. The region accommodates a blend of residential,
tourism, and conservation land uses, with coastal ecosystems, which comprise mangroves,
saltmarshes, and wetlands. These coastal environments provide essential ecological ser-
vices, which include flood mitigation, biodiversity support, and blue carbon storage. Given
the region’s rapid urbanization and heightened exposure to climate-related issues, the
Sunshine Coast is a strategically important site for examining sea-level trends, wetland
dynamics and coastal vulnerability.

It is clear that in order to effectively address the challenge of more extreme storm
and tidal events with rising sea levels, more accurate and efficient studies are needed
that can support climate risk assessments and adaptation plans for coastal communities.
The application of machine learning and deep learning technologies to monitor natural
ecosystems is increasingly recognized as effective so as to provide accurate information
for environmental scientists, planners and policy makers [22], yet at this stage, it is an
emerging area of research. A 2025 comprehensive review of multidisciplinary studies that
integrated machine learning with remote sensing technologies for water quality monitoring
and prediction [22] identified only 186 journal articles. The majority of these (15 articles)
were published in this journal, Remote Sensing, with just over 23% of the 186 articles applied
to studies in environmental science. Landsat imagery provided by the United States Geo-
logical Survey (USGS) was the most common source of remote sensing data for monitoring
water bodies, whilst the Sentinel 2 data provided by Copernicus Data Space Ecosystem
were most commonly used for land, atmospheric and oceanic monitoring [22]. In regard
to machine learning methods frequently employed in the review undertaken by [22], the
Support Vector model was identified as a highly successful and well-established supervised
machine learning model. Random forest was also identified as a popular ensemble-based
supervised machine learning model, whilst the use of boosting algorithms, such as gradient
boosting, were also identified as a common method used to increase the accuracy of weak
learners [22]. The 2025 review also considered the use of deep learning models identifying
Convolutional Neural Network (CNN) [23], and Long Short-Term Memory (LSTM) as one
of the most widely used techniques in water quality applications [22].

An earlier review of studies centered on remote sensing and machine learning methods
applied to the topic of invasive plants was published in 2024, in the journal of Remote
Sensing [24]. The review identified the use of aerial photography using LiDAR data, and
multispectral and hyperspectral images as complementary with other satellite derived
remote sensing data to monitor vegetation changes, specifically the spread of invasive
species. The use of deep learning models, ref. [24] contend has become increasingly
dominant in the last ten years. CNN methods in addition to Deep Convolutional Neural
Network (DCNN) and Generative Adversarial Network (GAN) were the most commonly
employed methods featured in this review [24].

Of relevance to this study which focusses on monitoring and predicting the impact of
sea-level rise and tidal surge on coastal wetlands, is a study undertaken in 2022 that used
small unmanned aerial systems (sUAS) and deep learning technologies (U-net classifier)
to monitor and model tidal marsh vegetation in South Carolina [25]. The study revealed
insights into marsh health and land use changes due to coastal development. Other relevant
studies concentrate on the use of remote sensing to map and monitor mangrove ecosystems,
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one of which [26] recommends the use of deep machine learning which use both pixel-
based and object-based approaches. Similarly, a 2024 review of studies that utilized remote
sensing and geographic information systems to monitor coastline dynamics, noted that
machine learning techniques were effective in extracting geomorphological data and in
classifying coastal geomorphology [27].

This study extends knowledge related to the integration of deep machine learning
technologies with remote sensing data to monitor wetland change and to project future
changes. Specific references to other studies and techniques considered in this study
is documented and presented in the comprehensive methods section below. The study
proposes a hybrid deep learning Convolutional Neural Network—Bidirectional Long Short-
Term Memory (CNNBiLSTM) model and remote sensing to predict maximum sea level
(Hmax) and high tidal events in Maroochydore. In addition to this, the study also uses
Landsat data for wetland change detection along Maroochy River floodplain and mean
annual Hmax trend from 2014 to 2024. These techniques are tailored to specifically examine
the encroachment on wetlands in this case study area.

The remainder of this paper is organized as follows: Section 2 describes the study area,
dataset, preprocessing steps, theoretical background of models, evaluation metrics and
flowchart summary. Section 3 presents the results and discussion which include the model
evaluation results, result visualizations, tidal wave analysis, wetland change detection and
Hmax trend. Section 4 concludes the paper with a summary and potential directions for
future work.

2. Materials and Methods
2.1. Study Area and Dataset

The study focusses on a study site located within Maroochydore in Queensland,
Australia. Figure 1 below illustrates the location on the map. Maroochydore is a coastal
urban center situated within the Sunshine Coast region adjacent to the Coral Sea. The region
is characterized by sandy beaches and estuarine systems. This study specifically targets the
Maroochy River floodplain which lies within the coastal zone and features flat topography.
This coastal area lies within a low-lying floodplain adjacent to the Coral Sea, making it
highly vulnerable to the impacts of sea-level rise, storm surges, and tidal inundation.

The dataset for maximum sea level and associated oceanic parameters in this study
is obtained from Queensland Government’s Open Portal (Coastal Data System—Near
real time storm tide data—Dataset—Open Data Portal | Queensland Government; https:
//www.data.qld.gov.au/dataset/ coastal-data-system-near-real-time-storm-tide-data, ac-
cessed on 5 January 2024). The floating buoys record and transmit wave parameters to the
receiver station which electronically processes and stores the dataset. The dataset for the
Maroochy River floodplain wetland was derived from the National Aeronautics and Space
Administration (NASA) Landsat mission (https:/ /landsat.gsfc.nasa.gov/data/ (accessed
on 5 January 2024)) for wetland satellite images from Collection 2 Tier 1 calibrated top-of-
atmosphere (TOA) reflectance of the United States Geological Survey (USGS) Landsat 7
and 8 image at a 30-m digital elevation. Table 1 outlines the oceanic parameters obtained
via Queensland Open Portal site for maximum sea level forecasting in this study. Zero up
crossing wave period (Tz) is the time (in seconds) interval between two successive points
where the wave elevation crosses the mean water level (typically zero) in the upward
direction [28]. Peak energy wave period (Tp) is the wave period (in seconds) corresponding
to the frequency at which the wave energy spectrum reaches its maximum [29]. Sea surface
temperature (°C) is the temperature of the uppermost layer of the ocean, typically measured
at or near the surface [30]. A lag in time series analysis refers to the time difference between
a current data point and a previous data point used for comparison. When working with
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60-min (hourly) data as in this study, a lag of 5 corresponds to the value recorded 5 h before
the current time t. Specifically, lag 1 (L1) is the value at time (t — 1), (one hour ago), lag 2
(L2) is at (t — 2) (two hours ago), lag 3 (L3) at (t — 3), and so forth up to lag 5 (L5), which is
the value at time (t — 5) (five hours ago). These lagged values help identify relationships
and dependencies across time within the data, making them useful in forecasting, autocor-
relation, and modelling how past values influence current or future observations In signal
processing and decomposition methods like Successive Variational Mode Decomposition
(SVMD), a successive mode refers to each component or Intrinsic Mode Function (IMF)
extracted one after another in sequence from the original signal. [31]. Each IMF (in metres)
represents a simple oscillatory mode embedded in the original data, with well-defined
instantaneous frequencies. When a signal is decomposed into 3 IMFs, the original time
series is separated into three different oscillatory components, each capturing different
frequency bands or patterns within the data. IMF 1 corresponds to the highest-frequency
oscillations (fastest fluctuations), IMF 2 captures medium-frequency oscillations, and IMF 3
represents lower-frequency trends or slower variations. Analysing these IMFs individually
allows for better understanding and interpretation of the underlying processes at different
time scales within the original signal.

135 E 150° E

120 E Study Site 165" £

45 S
Figure 1. Study site map of Australia showing the geographical location of Maroochydore in
Queensland, Australia.

Table 1. The oceanic parameters utilized for modeling in the study.

Input Wave Features Description
Hmax Maximum sea level (m)
Tz Zero up crossing wave period (s)
Tp Peak energy wave period (s)
SST Sea surface temperature (°C)
t—1DEt—2)t—3)(t—4) (t—D5) Hmax Lags (m)

IMF1, IMF2, IMF3 Intrinsic Mode Functions (IMFs) (m)
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2.2. Data Preprocessing and Model Inputs

Data preprocessing is a critical step in the development of robust and reliable data
models [32]. The accuracy and efficiency of artificial intelligence (Al) models are highly
dependent on the quality of input data, as well as the selection of relevant features that
guide the model’s learning and prediction processes. To capture temporal dependencies
and allow the models to detect repeating patterns, lags are an important input in the
Al-based modelling [33]. It is important to understand historical data in predicting of
future changes [34]. Statistical tools such as Autocorrelation function (ACF) and Partial
Autocorrelation function (PACF) are widely used to determine how a sea level time series
data is correlated to its past values [35,36]. Figure 2 presents the results of the ACF
and PACF analysis, highlighting the significant lags that were used as model inputs. To
investigate the inputs with sea level dataset parameters and lags, correlation of the inputs
were computed as shown in Table 2. It is important to see the inter dependent realtionship
of the target variable with other oceanic variables for modeling [37]. Table 2 displays the
strength of the relationship of Hmax with all inputs with colour and darker shades imply a
stronger correlation.

Autocorrelation Function

1¢

E QQQQQQQQ.Q. .L
]
E05f |
S —O ACF
£ - - - -95% CI
< ® Significant Lags

0 - = 1 | - L I -l

0 5 10 15 20
Lags (60 min)

.5 e Partial Autocorrelation Function
= * —© PACF
= - = =:95% CI
S ® Significant Lags
205} 1
=
: LT
=
= 0 T ? 2090t e-eB=-5--0-0--0
£ 0 a 10 15 20

Lags (60 min)

Figure 2. ACF and PACF lags of Hmax sea level data for Maroochydore Sea level tide gauge in
Queensland, Australia.

Table 2. Maximum Sea Level (Hmax) Correlation with Observed Oceanic Parameters and Lags.

Tz

0.4877

Tp SST L1 L2 L3 L4 L5 Hmax

0.4877 0.0445 0.3381 0.3333 0.3285 0.3239 0.3194 0.3475
—-0.0867 —0.0108 —-0.0119 —-0.0126 —-0.0124 —-0.0122  —0.0082
0.2176 0.2181 0.2185 0.2191 0.2197 0.2173

SST 0.0445
L1 0.3381
L2 0.3333
L3 0.3285
L4 0.3239

Hmax 0.3475
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2.3. Data Decomposition

Data decomposition is an effective technique to improve the prediction of Al models
in many studies [38—40]. These methods decompose and extract useful information at
different frequencies [40,41]. In this study, the Successive Variational Mode Decomposition
(SVMD) [42] was employed, which is a powerful technique for concurrently decomposing
a signal into its constituent intrinsic modes. Successive Variational Mode Decomposition
(SVMD) is a method that extracts modes one at a time without requiring prior knowledge
of how many modes are present. Like VMD, it treats each mode as a signal with the
most compact spectrum. However, SVMD modifies the VMD optimization problem by
introducing additional criteria [42]. The extracted mode should have minimal or no
spectral overlap with the remaining modes or the residual signal. Furthermore, SVMD
has significantly lower computational complexity and offers greater robustness to the
choice of initial center frequencies compared to VMD [42]. SVMD is an improved version
of Variational Mode Decomposition (VMD) where the performance is not affected if the
number of modes in the signal is not precisely known [42]. Decomposition of the signal
is done by successively applying Variational Mode Extraction (VME) which extracts the
intrinsic mode function by its approximate center frequency. Unlike VMD which extracts
modes concurrently, SVMD extracts the modes in a successive manner which reduces
complexity [42,43]. SVMD breaks down complex non stationary signals into its IMFs
and addresses the issue of mode mixing better when compared to EMD, EEMD and
CEEMDAN [43]. The sea level data contains trends, seasonal cycles, tidal oscillations and
extreme events hence decomposition techniques help to break these into simpler oscillatory
modes for Al modelling [38,41]. The resulting IMFs shown in Figure 3 capture the local
characteristics of the original signal and represent intrinsic modes of oscillation that reflect
the maximum sea level signal variability in maximum sea level (Hmax).

)
L

—— Mode 1

25,000 50,000 75,000 100,000 125,000 150,000 175,000

—— Mode 2

25,000 50,000 75,000 100,000 125,000 150,000 175,000

— Mode 3

25,000 50,000 75,000 100,000 125,000 150,000 175,000

—— Mode 4

25,000 50,000 75,000 100.000 125,000 150,000 175,000
Sample Index

Figure 3. Decomposed Maximum Sea Level (Hmax) IMFs obtained from SVMD decomposition for
the Maroochydore Tide Gauge study site.
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2.4. Data Normalization

The final step of data preprocessing before feeding the dataset for data partition in Al
modelling is normalization using the Equation (1) given below:

X — Xmi
Xy = actual min (1)

Xmax — Xmin
Normalization of large values of the dataset helps to reduce the time taken for the
learning stage in Al modelling [44]. Neural networks which rely on gradient based archi-
tecture tend to converge faster when features are within the same scale [45]. The values are
converted back to normal using Equation (2) below after prediction.

Xactual = xn(xmax - xmin) + Xmin )

2.5. Data Partition

The partition of dataset into training, validation and testing is an important step
to ensure data is divided to build, tune and evaluate the models effectively. Each set is
important and distinct so that overfitting, underfitting and overlap is avoided [46].There
is no set rule for the partition and this study aligns with other studies [40,47,48] which
divide the dataset into 60% for training, 20% for validation and 20% for testing as shown in
Table 3 below.

Table 3. Data partition breakdown with dates for the study sites.

Partition

Training Validation Testing
(60%) (20%) (20%)

Oceanic Dataset

January 2014-December 2019 January 2020-December 2021 January 2022-December 2023

2.6. Objective Model Theoretical Background: Convolutional Neural Network-Bidirectional Long
Short-Term Memory (CNNBILSTM)

This study uses a hybrid CNNBIiLSTM as the objective model for predicting Hmax
in Maroochydore. This helps to take advantage of CNN and BilSTM layers in feature
extraction and learning for prediction. The 1-dimensional CNN uses specialized layers to
process sequential time series data [49]. The core layers apply one dimensional convolution
and filters on the input dataset. The pooling layer reduces the dimensionality and the
flatten layer converts the output into a one dimensional vector [50]. The Bidirectional Long
Short-Term Memory (BiLSTM) model architecture consists of two Long Short-Term Memory
(LSTM) networks. Long Short-Term Memory (LSTM) neural networks are a special type of
Recurrent Neural Network (RNN) which is designed to learn long term dependencies on
sequential dataset [51]. LSTM networks are comprised of three layers: an input layer, one
or more hidden layer(s), and an output layer, with the neuron number in the input/output
layer equivalent to the amount of feature space [52]. Memory cell(s) within these hidden
layers have three gates: forget, input, and output, and at every time-step ¢, each gate is
presented with an input x; and the output of the memory cells at the previous time step,
x¢—1. For each time-step, the cell state s; and output /; is calculated and the gates act as
filters. The forget gate determines what information will be removed from the cell state
and the input gate selects what new information should be added. The output gate decides
which part of the cell state should be passed on as the output [53]. The gates and functions
below form the basis of the overall architecture (see Figure 4):
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Figure 4. The BiLSTM cell structure at time step t. The architecture has the forward and backward
flow arrangement of connected LSTM layers.

Forget Gates:
ft = 5g (fot + ufht—l + bf) (3)
Input Gates:
it = (Sg(Wixt + ul‘ht_l + bz) (4)
Output Gates:
Sigmoid Function:
1
‘Sg(x) = 1 e X (6)
Cell Input State:
¢ = tanh(Wexy + Uchy—q1 + be) (7)
Hypertangent Function:
hxy=2"%" 8
tanh(x) = P (8)

where, b r b;, b, and b, are bias vectors. The Uy, Ui, Uy, and U, are weight matrices
connecting the previous cell output state to the gates and the input cell state. The Wf, W;, W,,
and W, are weight matrices that maps the hidden layer input to the gates and the input cell
state. The gate activation function J¢ used in this modelling process is sigmoid. The cell
output ¢; and output /; at each iteration t are as follows:
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Ct = fr*ciq1 +ip*Ch )
hy = o * tanh(ct) (10)

The input is processed in both directions with separate hidden layers as shown in
Figure 4. Final output is given as:

Ye=1[ ., Ye-1, Y& Yet1, ---)- (11)

The architecture used Adam optimizer for training as shown in Table 4. It is efficient
in adaptive learning rate and performance on a wide range of large datasets [54]. Rectified
Linear Unit (ReLU) is employed as the activation function which helps in faster convergence
and mitigation of the vanishing gradient issue [55]. For weight regularization, an L2 penalty
of 0.01 is applied (with L1 set to 0), which helps to prevent overfitting by discouraging
large weights. A dropout rate of 0.1 is chosen from grid search, randomly deactivating
10% of the neurons during training to further enhance generalization. To optimize training
and avoid overfitting, early stopping is implemented with a mode set to ‘minimum’ and a
patience of 20 epochs [56]. This will ensure that training will stop if the validation loss does
not improve for 20 consecutive epochs. Figure 5 shows a snapshot of model summary with
engaged layers, output shape and parameters. Figure 6 shows the data flow for training,
validation and prediction with relevant hyperparameters.

Table 4. BILSTM model variables and hyperparameters obtained from Grid Search in Python 3.12.3.

Optimizer Activation Function = Weight Regularization Dropout Early Stopping
Adam Rectified Linear Unit L1=0,L2=001 0.1 Mode = Minimum, Patience = 20
(ReLU)
Layer (type) Output Shape
convld (ConvlD) (None, 8, 5)

bidirectional (Bidirectiona (None, 8, 20)

1)

flatten (Flatten) (None, 160)
dense (Dense) (None, 64)
dense_1 (Dense) (None, 1)

Total params: 14,544
Trailnable params: 14,544
Non-trainable params: @

Figure 5. A snapshot within the BILSTM model development phase.



Remote Sens. 2025, 17, 2988

11 of 28

Input Layer
Sequence Data

A4

ConvlD
(None, 8, 5)
Params: 15
ReLU, L2 =0.01, Kernel Size=2

<

Bidirectional LSTM
(None, 8, 20)
Params: 14,160
ReLU, Dropout=0.1,12=10.01

<

Flatten
(None, 160)

<

Dense
(None, 64)
Params: 10,304
ReLU, Dropout=0.1,L2=0.01

G

Dense output
(None, 1)
Params: 65
Linear

Figure 6. Model Layers showing the data flow for training, validation and prediction in the network
with the hyperparameters.

2.7. Benchmark Models: Theoretical Background
2.7.1. Multilinear Regression (MLR)

Multiple Linear Regression (MLR) is a mathematical model that estimate the relation-
ship between two or more explanatory variables and one response variable [57]. The MLR
model is a supervised learning algorithm which can be used to predict a target variable
with given multiple input variables.

The formula for MLR is:

y=PBo+pP1 X1+ P2Xo+ ...+ BuXnte (12)

where y is the predicted or expected value of the dependent variable, g is the y-intercept
(i.e., the value of y when all other parameters are set to 0), 1 to , are the regression
coefficients of the independent variables X; to X, and € is the model error that measures
how much variation exists in the estimate of y [58].

2.7.2. Support Vector Regression (SVR)

Vapnik and colleagues proposed the Support Vector (SV) algorithm [59] based on
non-linear generalisation of the generalised portrait algorithm [59,60]. The Support Vector
Machine (SVM) was adapted for regression tasks, resulting in the Support Vector Regression
(SVR) model. It is based on the same underlying principles but work effectively with time
series numerical dataset [58,61]. This regression version was developed by Vapnik, Steven
Golowich, and Alex Smola in 1997 [62]. SVR is used for prediction to minimize error,
identify the optimal solution, and mitigate the effects of the “curse of dimensionality,” [63].
The model constructs a linear function:
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f(x)=wlx+b (13)

The weight vector w and bias b are optimized to minimize the model complexity,
represented by 1 || w ||? and the prediction error beyond the ¢ margin [64].

2.7.3. Categorical Boosting (CatBoost)

CatBoost is from the family of Gradient Boosted Decision Trees (GBDT’s) machine
learning techniques [65]. The algorithm was proposed in [66] and can be effectively used to
solve problems with heterogeneous features, noisy data and complex dependencies [67].

CatBoost models an unknown function to build an ensemble of decision trees. The
predicted output is given by 7 :

9 =30 Tu(x) (14)

Each component plays a critical role in the learning process. M denotes the total
number of trees or boosting iterations used in the ensemble. The learning rate n controls
the contribution of each individual tree to the final prediction, thereby balancing learning
speed and model accuracy [68]. Ty, (x) represents the output of the m* decision tree given
the input features x with each tree trained to correct the residual errors of the previous ones.

2.8. The Performance Evaluation Metrics for AI Models

The models were evaluated based on the testing dataset using ten statistical metrics
(four classification) from Equations (15)—(27) of the predicted results. The models were
evaluated by comparing the model predictions. These metrics provide insights into the
accuracy, reliability, and agreement between predicted and observed values. Pearson
Correlation Coefficient (r) measures the strength and direction of the linear relationship
between predicted and observed values. Values near +1 or —1 indicate strong correlation,
while values near 0 suggest little to no linear relationship [69]. Coefficient of determination
(R?) is a statistical measure that shows how well a regression model explains the variability
of the target variable [70]. It represents the proportion of the total variation between the
observed and predicted data and is used in the scatterplots in visualization of results.
Willmott’s Index of Agreement (d) evaluates the degree to which predicted values match
the observed values, accounting for both systematic and random errors. It ranges from
0 (no agreement) to 1 (perfect agreement) [71]. Nash-Sutcliffe (NS) Coefficient assesses the
predictive skill of the model by comparing it to the mean of the observed data. A high
NS value indicates that the model performs well relative to simply using the mean as a
predictor [72]. Legates and McCabe’s Efficiency Index (LM) is a modified version of NSE
that uses absolute errors rather than squared errors, making it more robust to outliers. It is
particularly useful in environmental modeling where extreme values can skew traditional
metrics [47].

In addition to performance metrics, error metrics also help to evaluate the efficiency
of Al models. Mean Absolute Error (MAE) represents the average absolute difference
between predicted and actual values [70]. Mean Absolute Percentage Error (MAPE) gives
the average absolute error as a percentage of the actual values. This helps to provide
a normalized measure of prediction accuracy [73]. Root Mean Squared Error (RMSE)
measures the average magnitude of the prediction errors [74]. It is the square root of the
Mean Squared Error (MSE) and is expressed in the same units as the target variable. A
confusion matrix is a tabular representation of the actual versus predicted classifications [75].
In binary classifications, accuracy is the ratio of correctly predicted to the total observations.
Precision measures the proportion of correctly predicted positive cases out of all cases
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predicted as positive. Recall quantifies the ability of the model to identify all relevant
positive cases. The F1 score is the harmonic mean of precision and recall.
1. Pearson Correlation Coefficient (r)

2
. * ,(DO; — MDO)(DS; — MDS) (15)
\/IIL,(DO; - MDOY* L, (DS; — MDS)?
2. Coefficient of Determination (R?)
A2
R2:1— Z(yi_yi) (16)
L(yi — )
3. Willmott’s Index of Agreement (d)
i1 " (DO; — DS;)? a7)
" (|DS; — MDO|+|DO; — MDS|)?
4. Nash-Sutcliffe Coefficient (NS)
n (DO — DS;)2
NS=1- =1(DO; 51)2 ,—00 < NS<1 (18)
" (DO, — MDO)
5. Legates and McCabe’s Index (LM)
" 1|(DS; — DO;)|
L =1— i=1 |( 1 1 < <
M { " DO; — MDS| ,0<L<1 (19)

6. Root Mean Square Error (RMSE)

RMSE = \/(}1) Y. (DS;—DO;)? (20)

7. Mean Absolute Error (MAE)

1
MAE = — Y L (DS;— DOy)| (21)

8. Mean Absolute Percentage Error (MAPE)

1 i=1 (SWLfor - SWLobs)
MAPE = — 1 22
N ( N SWLyp, x 100 22)
9. Confusion Matrix (CM)
C
CM = —CZ':lc = (23)
21:1 Z]‘:1 Mi,j
1C:1 M; ; = sum of diagonal elements (correct predictions),
c C
Y ) M;; = total number of predictions.
i=1j=1
10. Classification:
TP+T
Accuracy = TN (24)

TP+TN+FP+FN
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TP
Precision = ———— 2
recision TP + FP (25)
TP
R = — 2
ecall TP+ EN (26)
F1 Score — 2 x Precision x Recall 27)

Precision + Recall

TP = True Positive, TN = True Negative,

FN = False negative, FN = False negative

2.9. Flowchart Summary of Hmax Forecasting

Figure 7 illustrates the process of Hmax forecasting using the oceanic dataset. The
data preprocessing is the initial stage to clean and fill in any missing values using data
interpolation. This is followed by the computation of Hmax lags (fromt — 1 tot — 5) and
data normalization. In time series analysis, lags are created by shifting a variable’s value
backward in time to represent its past states as additional input features for a predictive
model [76]. The next step involves correlation analysis to identify significant features for
model inputs. The refined dataset undergoes data decomposition using SVMD (Successive
Variational Mode Decomposition) to extract intrinsic mode functions (IMF1, IMF2, and
IME3). These decomposed components, along with input features such as Tp, Tz, SST, Hs,
and lagged values of Hmax (from t — 1 to t — 5), are used to predict the target variable
(Hmax). Four models are employed for prediction: CatBoost, MLR (Multiple Linear
Regression), SVR (Support Vector Regression), and a hybrid CNN-BiLSTM model. The
outputs from these models are then passed through a denormalization step to revert the
data to its original scale, resulting in the final forecasted Hmax value.

Maroochydore

Oceanic Dataset

w
/ ~ v

Data Computation of :
. Lags and Data Correlation
Preprocessing Normalisation |::> Analysis

¥
(
Data Decomposition by SVMD
\ 1
~
Inputs: Tp, Tz, SST, Hs, Hmax Lags (t-1, l Target -
t-2, -3, t-4, t-5), IMFs (IMF1, IMF2, Hmax
IMEF3)
S
| | E N + |
la + Y v v Al
CatBoost MLR SVR CNN
s Model Model BiLSTM
Model Model
_ J
nVa
Predicted Data Denormalisation

Figure 7. Flowchart summary of Hmax forecasting.
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3. Results and Discussion
3.1. Model Evaluation Results

Table 5 below shows the results of evaluation metrics for Hmax prediction. Among
the models evaluated, the CNNBiLSTM model clearly outperforms all the benchmark
models across all metrics. It achieves the lowest MAE (0.1472), MSE (0.0438), RMSE
(0.2092), and MAPE (6.8829%), while also attaining the highest R? score (0.9503), Pearson
correlation coefficient (r = 0.9748), Wilmott index (0.9867), Nash-Sutcliffe efficiency (0.9492),
and Legates-McCabe index (0.7942). In contrast, SVR shows the weakest performance with
significantly higher error metrics and lower efficiency indicators. Meanwhile, CatBoost
and MLR demonstrated moderately strong performances, with very low error and high
efficiency scores. This comparison highlights the advantage of implementing a hybrid deep
learning framework for capturing complex patterns in sea level data.

Table 5. Model performance and error metrics for Hmax prediction.

Model MAE RMSE  MAPE (%) R r Wilmott Sﬁjﬂlf‘fe lblect‘;ca:ﬁi
CNNBILSTM  0.1472 0.2092 6.8829 09503 09748  0.9867 0.9492 0.7942
CatBoost  0.1943 0.2725 9.2743 09139 09560  0.9768 0.9138 0.7284
MLR 0.1961 0.2746 9.3755 09125 09552 09765 0.9125 0.7259
SVR 0.3371 0.3925 20.6861 09098 09538  0.9485 0.8212 0.5288

3.2. Result Visualizations and Discussion

Figure 8 shows the scatterplot of observed versus predicted data. The closesly packed
cluster of points indicate the higher accuracy of the models. CNNBiLSTM shows most
of the points are clustered together around the line of best fit with highest R? value for
the Hmax study site. Scatterplots also reveal a general pattern between the observed and
predicted data points. Figure 9 shows the absolute prediction error distribution for all
models. This is a helpful tool to understand how models can have small or large errors
between observed and predicted values [38]. The bars closer towards the lower end as
in CNNBiLSTM indicates higher accuracy. Figure 8 illustrates the time series trend of
100 data points, highlighting the close alignment between observed and predicted values.
The minimal deviation between the two line curves visually supports the accuracy of the
CNNBiILSTM model prediction. As shown in Figure 10, benchmark models show the
greater presence of outliers that associate with lower accuracy [77].

3.3. Wetland Detection Results

In this study, Google Earth Engine (GEE) and QGIS was utilized to assess wetland
changes by analysing surface reflectance data from USGS Landsat Tier 1 Surface Reflectance
imagery dataset. Landsat 5 was selected for the year 2009, while Landsat 8 imagery was
used for 2023, with both datasets filtered to reduce cloud cover and clipped to the Maroochy-
dore River Floodplain defined Region of Interest (ROI) as shown in Figures 11 and 12. The
study used six indices from surface reflectance bands of Landsat imagery. These included
Normalized Difference Vegetation Index (NDVI), Normalized Difference Water Index
(NDWI), Modified NDWI (MNDWTI) and Normalized Difference Moisture Index (NDMI).
Each index was calculated using band specific normalised differences. Soil-Adjusted Vege-
tation Index (SAVI) and Enhanced Vegetation Index (EVI) were additionally derived for
soil brightness and atmospheric effects. These were integrated into the original imagery
and served as input features for the supervised classification. The Normalized Difference
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Vegetation Index (NDVI) [78] was calculated for both years using the near-infrared and
red bands to extract vegetation distribution and detect potential water presence. To com-
plement NDVI, additional spectral indices were computed to enhance wetland detection
accuracy. These included the Modified Normalized Difference Water Index (MNDWI) [79],
which improves the delineation of open water and flooded areas; the Normalized Differ-
ence Moisture Index (NDMI) [80], which is sensitive to vegetation moisture content; and
the Soil-Adjusted Vegetation Index (SAVI) [81], which accounts for soil background effects
in sparse vegetation zones. The Enhanced Vegetation Index (EVI) [82] was also used to
better capture canopy dynamics in densely vegetated wetlands. The difference in NDVI
values between the two years was used to detect changes in vegetation cover. A threshold
was applied to isolate significant NDVI changes, and the extent of change was quantified
using pixel-based area calculations.

Scatter Plots for Model Observed vs Predicted

9. CNNBILSTM Model 9. CatBoost Model
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Figure 8. Scatter plot of predicted vs. observed Hmax. A least square regression line and coefficient
of determination with a linear fit equation are shown in each sub-panel.

The change detection analysis focussed on three key classes of wetland, water and land.
Ground truth labels were derived from the ESA WorldCover dataset, which is remapped
into the three target classes and used to generate balanced training and validation samples.
A random forest classifier is trained on the ground truth data and then applied to both
2015 and 2023 imagery to classify each pixel. The model’s performance is evaluated using
a confusion matrix for reporting overall accuracy and kappa coefficient for each class.
Tables 6 and 7 below show the evaluation results.
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Figure 9. Histograms of absolute prediction error (PE) generated by CNNBiLSTM and the bench-

mark models.
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Figure 10. Time Series Comparison of CNNBiLSTM with the benchmark models.



Remote Sens. 2025, 17, 2988 18 of 28

B water

B Wetland

Figure 11. 2009 Wetland vegetation extraction (in hectares (ha)) for Maroochy River floodplain study
location derived from Landsat Surface Reflectance Tier 1 Imagery Dataset.

B Wetland

Figure 12. 2023 Wetland vegetation extraction (in hectares (ha)) for Maroochy River floodplain study
location derived from Landsat Surface Reflectance Tier 1 Imagery Dataset.
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Table 6. Wetland change detection classification and evaluation metrics.

Metric Value Description
Training Samples Count 1073 Number of points used to train the classifier
Validation Samples Count 427 Number of points used to test classifier accuracy

Matrix comparing predicted vs actual classes

Confusion Matrix [[131, 20, 1], [24, 109, 2], [0, 3, 137]] (rows = actual, cols = predicted)
Overall Accuracy 0.8829 Fraction of correctly predicted validation samples
Kappa Coefficient 0.8241 Agreement with ground truth beyond chance
Recall Land: 86.8 Wetland: 81.3 Water: 97.9 Proportion of true posmve. Predlcnons among all the
actual positive cases
Precision Land: 84.5 Wetland: 81.3 Water: 97.1 Proportion of true positive predictions among all the

predicted as positive

Table 7. Confusion matrix for wetland classification and ground truth evaluation.

Predicted Predicted Predicted
Land (0) Wetland (1) Water (2)
True Land (0) 131 20 1
True Wetland (1) 24 109 2
True Water (2) 0 3 137

This change detection identified the regions where wetland conditions had notably
altered between 2009 and 2023. Table 8 shows results of the change detection with a
decline of 395.64 hectares. This also aligns with a similar remote sensing study [18], which
reported a decline in mangroves in the Maroochy River Floodplain of 583 hectares from a
different timeline of 1988 to 2016. In addition to this, according to the 2021 Healthy Land
Water Report 2021 [83], wetland extent in the Maroochy River remains poor in the inland
freshwater reaches of the catchment. According to this report, the total wetland area in
the Maroochy River catchment is around 8624 hectares. It includes various wetland types
such as palustrine, riverine, and intertidal systems. The palustrine wetlands, which are
freshwater wetlands like swamps and marshes, constitute about 3051 hectares, making them
the most prevalent wetland type in the region. Riverine wetlands make up approximately
2346 hectares, while intertidal wetlands, including saltmarshes and mangroves, account
for about 804 hectares. The decline and vegetation health awareness have led to efforts
such as the Blue Heart project in the catchment, specifically targeting over 5000 hectares for
restoration and conservation efforts [84].

Table 8. Wetland change detection from 2009 to 2023 for the Maroochy River Floodplain study site.

Wetland Vegetation Detected Decline in Coastal Wetland Area
Study Area 2009 Area 2023 Area from 2009 to 2023
Maroochy River Floodplain 2787.61 ha 2391.97 ha 395.64 ha

The Normalized Difference Vegetation Index (NDVI) is a widely used spectral index
that indicates the presence and condition of live green vegetation [85]. It acts as a measure
for vegetation productivity, health and growth [86]. It is calculated as follows:
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NIR — RED
NDVI = NIR + RED’ (28)

where NIR represents the near-infrared band and RED refers to the red band of the electro-
magnetic spectrum. Healthy vegetation is indicated by a higher NDVI value since it reflects
more NIR and absorbs more red light [86]. To further investigate the wetland vegetation in
the study area, mean NDVI vales were calculated from 2015 to 2023, as shown in Figure 13.

Annual Mean NDVI (2015 — 2023)
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Figure 13. Wetland mean NDVI trend for Maroochy River Floodplain study location.

3.4. Wave Height Detection Results

The analysis for tidal wave height detection utilized a 30 min interval from 2014 to
2024 of maximum wave height, Hmax and the significant wave height Hs. To reduce noise
and short-term variability, Hmax is smoothed using a moving centered average over a

window size of w: 1

ﬁmax(t) = w Zfifﬁk Hmax(i)/ (29)

where t is time and k = wT_l

The tidal wave threshold Thy, is defined using the 99th percentile of Hs:
Thy = Pog(Hs). (30)
The detection is based on the following condition:
Detected Tidal Wave : Hmﬂx(t) > Thy. (31)

These peak values represent significant tidal occurrences affecting the Maroochydore
coastline. The detected peaks are shown in Figure 14.
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Figure 14. Tidal occurrences affecting the Maroochydore coastline using the computed threshold.
The detected peaks are shown above the threshold line.

3.5. Tidal Wave Prediction Using Deep Learning

The recorded events along with the timeline were for tidal prediction using BILSTM
and CNNBiLSTM classification models. The timeseries data included zero up crossing
wave period (s), peak energy wave period (s), sea surface temperature (°C), significant
wave height (Hs) and maximum wave height (Hmax) as predictors for an as-detected tidal
wave as the target. Table 9 shows the results of the classification prediction of tidal waves.
CNNBiLSTM significantly outperforms BiLSTM across all evaluated metrics. CNNBiLSTM
achieves an accuracy of 96.72%, which is higher than the 86.06% accuracy of BiLSTM. In
terms of precision, CNNBiLSTM attains 93.22%, surpassing BiLSTM’s 91.66%. Similarly,
the recall rate for CNNBILSTM is 94.66% which exceeds BiLSTM’s 91.42%. The F1 score,
which balances precision and recall, is also higher for CNNBiLSTM at 93.94%, compared to
91.54% for BiLSTM. These results indicate that integrating CNN with BiLSTM enhances
the model’s overall classification performance. Figure 15 shows the confusion matrix of
true and predicted classes. The false positives may arise during periods of anomalous
wind or pressure conditions that may mimic tidal wave precursors. This can occur during
off-season weather disturbances. These patterns may not be actual tidal waves but may
trigger due to their similarity to genuine events. The false negatives could occur when
tidal waves begin with delayed onset signals, hence making early detection difficult. Other
causes include the missing data interpolation where critical features can be obscured.

Table 9. Results of tidal wave prediction along the Maroochydore coastline using BiLSTM and
CNNBILSTM.

Metric BiLSTM CNNBiLSTM
Accuracy 86.06% 96.72%
Precision 91.66% 93.22%

Recall 91.42% 94.66%

F1 Score 91.54% 93.94%
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Figure 15. Confusion matrix of true and predicted classes. Darker colours show greater sample numbers.

3.6. Annual Mean of Maximum Wave Height (Hmax) Trend

The annual mean of Hmax shows an increase with a linear trend estimation, as shown
in Figure 16 below. The increase of 16 mm in the maximum wave height is an important
change with respect to wetland vegetation. Over time, the waves can lead to sediment
redistribution, salinity variation and physical stress on the wetland plants [18,87]. Such
changes in wetland conditions can also impact the resilience of these plants, leading to
habitat loss. With its inability to move inward, the change in conditions will cause the loss
of some wetland species [88,89]. The Maroochy River estuary is also used by migratory
shorebirds, and, according to a study by Lloyd et al. [19], the roosting abundance for four
species has declined significantly. The proportion of coastal inundation is likely to increase
with a rise in sea level, as also found in a study [15] conducted in Sydney.

Yearly Mean Hmax with Trend Line

2.90 —&— Mean Hmax per Year
i ~== Trend (0.016 m/year)
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© ©
o 2
L L

Mean Hmax (m)
L
o
o

2014 2016 2018 2020 2022 2024
Year

Figure 16. Annual mean of Hmax linear trend estimation from 2014 to 2024.

The spatial correlation analysis was conducted to investigate the relationship between
NDVI loss zones and sea-level extremes in the Maroochydore region. The NDVI loss was
calculated by comparing vegetation changes between 2015 and 2023, where a significant
decrease in NDVI (less than —0.1) indicates areas of vegetation degradation, potentially due
to environmental stressors such as impacts of sea-level extremes. The sea-level extremes
were identified using the Global Surface Water dataset from the JRC, where areas experi-
encing frequent and prolonged flooding (greater than or equal to 10 months per year) were
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classified as sea-level extreme zones. The JRC Global Surface Water dataset (JRC/GSW1_4)
is provided by the Joint Research Centre (JRC) of the European Commission. This dataset
offers insights into the spatial and temporal changes in global surface water, including
the extent and occurrence of water bodies, water changes, and their variations over time.
The analysis overlays these two datasets to examine the overlap between NDVI loss and
sea-level extreme zones, highlighting regions where both phenomena occur simultaneously.
The mean NDVI change inside and outside sea-level extremes was calculated to compare
how vegetation change is influenced by the extent of sea-level flooding. The NDVI decline
inside and outside the wetland is found to be 0.002 and 0.012, respectively. This means that
vegetation greenness or density is decreasing both inside and outside the wetland area,
but the decline is more outside the wetland area. A small negative change of 0.002, which
agrees with the mean NDVI found before, could be a long-term concern, especially with the
increase in extreme tidal events. It also correlates with the annual mean Hmax trend, which
shows an increase in the maximum wave height in the same study region (Figure 16).

3.7. SHAP Model Evaluation and Limitations

The SHAP [90] summary plot provides an indication of each feature’s importance and
directional impact on the CNNBiLSTM model’s predictions. Features such as Tp (peak
period), Tz (zero-crossing period), and SST (sea surface temperature) show a wide spread of
SHAP values, indicating that they play a significant role in influencing the model’s output.
The presence of both positive and negative SHAP values for these features suggests that
their effect on the prediction may be varied. The high values may increase the prediction
in some cases while decreasing it in others. This behaviour is crucial for understanding
the model’s decision-making process, especially in complex temporal-spatial data like
oceanographic parameter forecasting. Moreover, the lags as input features (L1 to L5) and Hs
(significant wave height) also contribute effectively to the forecasting. The colour gradient
helps identify how feature values correlate with prediction impact. The red dots indicate
high feature values on the positive side of the SHAP axis, indicating a strong positive
contribution. The blue dots (low values) on the negative side suggest a suppressive effect.
Figure 17 shows the analysis summary.
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Figure 17. SHAP evaluation of CNNBiLSTM model.
Hmax forecasting, wetland change detection, and NDVI trend analysis each have

inherent limitations that can affect their reliability and interpretation [91]. In Hmax fore-
casting, model performance is highly dependent on the quality and completeness of input
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oceanic data. When using sea-level or wave datasets, missing values, sensor downtime, and
gaps in historical records can affect forecast accuracy, particularly for extreme or short-lived
events [91]. Wetland change detection using remote sensing can be hindered by cloud
cover, seasonal variability, tidal influences, and spectral confusion with other land cover
types, while mixed pixels in medium-resolution imagery reduce classification accuracy
without extensive ground validation [92,93]. Similarly, NDVI trend analysis faces chal-
lenges such as saturation in dense vegetation, soil background interference in sparse areas,
and atmospheric or sensor-related inconsistencies that can mimic or mask real trends [94].
In addition, missing or inconsistent timeseries data due to sensor errors or acquisition gaps
can distort both seasonal and long-term vegetation assessments. Together, these limitations
highlight the need for careful preprocessing, gap-filling techniques, validation, and inte-
gration of complementary datasets to improve robustness and accuracy in forecasting and
wetland change detection.

4. Conclusions

This study developed an efficient hybrid deep learning model combining a Convolu-
tional Neural Network and Bidirectional Long Short-Term Memory (CNNBiLSTM) model
for the prediction of maximum sea levels. It outperformed (r = 0.9748) all three benchmark
models of MLR, SVR and CatBoost with Hmax prediction in Maroochydore. To enhance
thus study’s maximum sea level and provide more accurate information regarding the
increasing frequency and intensity of sea-level rise, this study also developed a novel
CNNBILSTM classification model to predict the occurrence of extreme tidal events with
high accuracy (96.72%). The annual mean Hmax linear trend indicates a positive increase
of 0.016 m/year. This was also correlated with wetland change detection using satellite
Landsat data along the Maroochy River Floodplain that showed a decline of 395.64 ha
from 2009 to 2023. As a potential refuge for the support of regional biodiversity due to
the ongoing impact of climate change, declines of this magnitude are significant for the
Maroochy River region. Programs that aim to sustain and enhance the health of vulnerable
estuarine systems, encourage species diversity and limit the impact of urbanization remain
important if such decal trends are likely to continue.

The findings clearly demonstrate the potential of deep learning and remote sensing
integration for enhancing assessment and prediction of changes to coastal habitats with
maximum sea level, tidal wave height and wetland vegetation change. This has the
potential to strengthen and help better inform climate risk assessments and adaptation
strategies for a diverse range of stakeholders. This study provides important contextual
information for the refinement of programs aiming to support conservation and biodiversity
programs. Future research could effectively extend this approach and framework to
other coastal regions, incorporate real-time sensor data, or explore more advanced hybrid
architectures for further performance improvements.
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