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A B S T R A C T

This article proposes a novel multi-criteria multi-commodity network flow (MCMCNF) model to help transport
planners and other analysts holistically assess different types of transportation systems (TS). This model provides
a tool to autonomously analyse the effect of expansions, tolls, different levels of congestion and accidents leading
to potential insights into a network's resilience and vulnerability, emissions distribution and risk. Unlike the
mono criterion network flow models used for some time, we propose the application of multiple objectives. In
this article we investigate the application of two objectives. The first maximises the flow of commodities and the
second minimises travel related costs. The travel cost is modelled generically and may include the distance
travelled, travel time and access charges. The considered cost function is non-linear, so different linearization
strategies are suggested. These permit the model to be solved efficiently using Separable Programming techni-
ques and the ɛ-constraint method (ECM). We have applied the proposed model to a variety of case studies and
demonstrate how different forms of sensitivity analysis can be performed. The numerical investigations have
highlighted the specific features of the Pareto frontiers and the resilience and flexibility of the networks con-
sidered.

1. Introduction

Transportation systems are vital for moving passengers and freight,
also called commodities, between different locations, either positioned
locally, nationally, or internationally. There are many different systems;
the most numerous are bulk material flow (i.e. coal, ores, grain, etc),
urban transportation of passengers, mail and parcels, and transporta-
tion of goods and freight in containers between ports and major urban
locations [4].

In this article the assessment of transportation system flow (a.k.a.
capacity) is re-considered and an improved multi-criteria multi-com-
modity network flow model (MCMCNF) is proposed. This article's
MCMCNF is generic and can be applied to many types of systems. This
model is an extension of those found in Bevrani et al. [[4],[5]]. In that
article the virtues and merits of capacity models and how/when they
should be used has been motivated.

The primary objective of the model is to determine the maximum
flows of commodities that a network can sustain. Commodities are
transported between specific pairs of locations, traditionally called

origin–destination pairs (ODP). As a by-product, the model provides a
complete description of the routes that need to be taken in order to
attain maximum flow. There are however many alternative solutions
with completely different flows on each arc and for each ODP, but si-
milar if not equal “total” flows. There are also many routes, which can
be assigned to commuters and commodities. To choose those routes, the
travel time and travel cost of commuters and commodities should be
incorporated; but to our knowledge this was not done in past network flow
models. Those costs are directly affected by route, congestion and the
presence of access charges and other fees. There are many different
costs. Travel time is perhaps one of the most important as, i) commuters
are highly sensitive to the time it takes to reach their destination and ii)
people are highly sensitive of the time to obtain their goods and other
commodities. The emissions produced by vehicles within transportation
systems can also be viewed as a type of cost. The reduction or dispersal
of emissions has gained significant attention in recent years due to
current environmental concerns [19].

The inclusion of travel and access costs is an innovation but ne-
cessitates the presence of a second objective in network flow models
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and the application of a multi-criteria optimization approach. The so-
lution of the MCMCNF provides Pareto optimal capacity solutions. The
obtained solutions are non-dominated. This means that there are no
other solutions that are superior in terms of both objectives. In contrast,
prior capacity models with single objectives provide solutions that are
non-optimal with respect to a variety of other metrics, i.e. they provide
dominated solutions.

This article's MCMCNF model is required for a variety of reasons.
There is evidence to suggest that upgrading and reconfiguring TS in a
timely fashion to meet rising demands is difficult to accomplish. TS are
a constantly evolving; as urban areas become denser and more popu-
lated, there is a need to transport more people and freight. To meet the
increasing demands, TS must be reconfigured and expanded shrewdly
else they become increasingly large and complex. Determining how to
increase capacity is a tricky task, particularly when changes cannot be
evaluated in an unprejudiced and scientifically consistent and accurate
way. Designing TS is problematic because good intentions can backfire.
Planners lack clarity on how to improve the system and good intentions
without adequate scientific evidence often results in unexpected out-
comes. For instance, adding extra arcs can decrease the networks ca-
pacity and cause added congestion (i.e. Braes paradox).

In the next section, background information and prior research is
discussed. The main technical developments are then introduced in
Section 3. Solution techniques are discussed in Section 4 and numerical
testing follows in Section 5. Our numerical investigations are provided
to demonstrate the efficacy of the MCMCNF model for analysing dif-
ferent types of TS.

2. Literature review

TS have been a topic of research for a long time. Recent topics of
interest include multi-objective models, congestion modelling, and
travel cost modelling. The following papers demonstrate multi-objec-
tive approaches: Yang et al. [32], Ghoseiri et al. [20], Zhou and Zhong
[33], Cantarella and Vitetta [13], Burdett [8], Burdett [7], Ghaderi et al
[18]. For example, Zhou and Zhong [33] demonstrated the potential of
using multi-objective scheduling methods for generating Pareto solu-
tions and for railroad timetable planning applications purposes. Their
proposed model can optimise and balance the travel and waiting times
of existing trains. They also consider both acceleration and deceleration
in their model. In Bevrani et al. [4] a multi-modal transportation ca-
pacity assessment model was developed. This model can integrate
various transportation modes while maximizing the flow of MMTS. The
model chooses how to move commodities between different origin
destination pairs to attain maximum flow. Their follow-up article (i.e.
Bevrani et al. [5]) added flow reduction functions on arcs to incorporate
congestion and user behaviour. Burdett [7] also considered, in a
railway capacity identification approach, different forms of competi-
tion, namely, service versus service, train versus train, and corridor
versus corridor. A variety of multi-objective models and techniques
were implemented and then tested on a case study. Cantarella and Vi-
tetta [13] proposed a multi-criteria approach for an urban network
design problem (UDP). The UDP problem is NP-hard and hence they
determine the optimal configuration with respect to a set of criteria
using a Genetic algorithm. Simulation of route choice has been con-
sidered in their approach using a local optimisation of signals (LOSS)
approach. In their numerical instances, total travel time and CO emis-
sions are predominantly minimised. Number of users that change their
mode and the number of vehicles that park outside a desired destination
are also considered. Despite the comprehensiveness of their approach, it
is only suited to road network scenarios and not general TS scenarios, as
is considered in this article. In Szeto et al. [29] a sustainable road
network design and land-use problem was considered. The social,
economic, and environmental impact to commuters was considered
using a multi-objective bi-level optimization model. Their numerical
testing indicates that all objectives cannot increase together and trade-

offs must be carefully chosen between objectives.
Despite significant research on individual modes, there is still a need

for techniques that evaluate the capacity of the whole transportation
system that jointly considers all the modes [[2],[23],[27]]. Effective
planning of MMTS network and trains services has been considered in
the literature on regular occasions. MMTS traffic management is an
important criterion for dispatchers whose primary concern is conflict
detection and resolution. Corman et al. [14] introduced a bi-objective
model to minimise the consecutive delays between trains and to max-
imise the total value of satisfied connections. They observed that small
changes in a limited set of connections could have a serious impact on
delay time.

Traffic congestion in transportation networks has been studied fre-
quently. Congestion may be alleviated in many ways and various po-
licies have been suggested to manage and manipulate demand on spe-
cific links [[3],[6],[8],[12],[15],[16],[31]]. To date it is most popular
to tackle traffic congestion with infrastructure expansion and to add
capacity to a network where it is needed. Changing signalisation and
traffic light timings at intersections can also affect congestion and
system capacity. Furthermore, changing speed limits on links can dra-
matically affect flow. Improving public transport services and en-
couraging the usage of public transport by introducing a credit scheme or
more affordable fees for commuters could decrease the usage of private
car usage within an urban TS and significantly reduce congestion.

Another alternative is to divert traffic where possible, from heavily
congested links, to less congested links. Access charges and tolling
however may be necessary to accomplish this in practice. Tolling is an
artificial mechanism to persuade road users to consider alternative
paths. Tolls may be placed on new or on existing road links. In the
former case, revenue generation is a significant objective, but in the
latter, the objective is the alleviation of congestion. Revenues from
tolling can be used for a variety of actions, i.e. capacity expansion,
safety upgrades, maintenance, etc. Hence, tolls can collectively increase
the welfare of all transport users. The success of tolling is not guaran-
teed [17]. The extent of the charge is highly influential. If alternative
routes are not available, then tolling is pointless, as commuters have no
other choice. Tolling is imposed to manipulate and alter people's daily
route choice. Some people find it acceptable to pay tolls and save time,
while others may prefer to travel an alternate route that is longer in
terms of travel time if it is free. Tolling may disrupt individual road
users but has universal benefits. There has been debate that congestion
pricing may negatively impact poorer people in terms of time man-
agement and cost, while it will not influence richer people [[3],[31]].
On the other hand, congestion pricing may increase the flow, alleviate
congestion on specific links and the tolls can be used to improve the
system to the benefit of all. Wu, et al. [31] developed an optimization
approach for designing an equitable congestion pricing and tradable
credit schemes for MMTS. Their pricing scheme is a strategy for tolling
roads and adjusting fares on transit lines. The tradable scheme is a
credit that the government will distribute to eligible travellers free of
charge. Their model maximises the social benefit and the income-based
equity simultaneously. They used existing solution algorithm (i.e. de-
rivative-free algorithms) to solve the model. They concluded that there
is a trade-off between pricing and credit scheme. A more equitable and
progressive tradable credit scheme can be obtained by considering
lower toll revenues.

Public transport is considered as one of the best approaches to deal
with traffic congestion in urban TS. Tirachini et al. [30] developed a
multi-modal social welfare maximisation model with disaggregated
demand in a system that commuters have multiple travel alternatives.
They focused on optimising the design of urban bus routes including
pricing decisions for both bus and car. They reported the existence of a
trade-off between the level of congestion inside buses (i.e. number of
passengers in the bus) and the level of congestion on the road. Their
analysis indicates that either buses should have the maximum number
of seats possible or they have to increase the frequency of their services
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to deal with the demand for the discomfort imposed on public transport
users.

Dynamic traffic assignment (DTA) is facilitated by this article's
model and is another approach to deal with traffic congestion and
emissions. The purpose of DTA is to direct commuters, vehicles and
commodities to use links that are less congested or polluted. To perform
DTA it is necessary to provide up to date costs for each link.
Mahmassani et al. [24] introduced a bi-criteria time-dependent shortest
path problem to simultaneously minimise two common path char-
acteristics, namely travel time and travel cost. They proposed both
exact and heuristic approximation methods to determine efficient time-
dependent shortest paths, which is a critical component for solving the
proposed model. Their proposed approximation scheme is described as
computationally efficient for large-scale bi-objective time-dependent
shortest path applications. Nace et al. [25] considered how flows can be
distributed fairly in a telecommunications network in contrast to prior
scenarios that maximise flows globally. Their approach consists of a
linear programming based formulation and an iterative lexicographic
algorithm. Issues on fairness are reported as a key concern in numerous
studies inspired from applications in the telecommunications area such
as congestion and flow control, load-balancing or fair routing. Our work
is similar but concentrates upon a different domain and includes more
test cases and the introduction of Pareto concepts. Rétvári et al. [28]
considered the fair and feasible allocation of user throughputs in ca-
pacitated networks. A geometric approach is developed that generalizes
several throughput allocation strategies. They show that the set of
throughput configurations realizable in a capacitated network makes up
a polyhedron, which gives rise to a max-min fair allocation. Ogryczak
et al. [26] reviewed fair optimization models and their application to
location problems and resource allocation problems in communication
networks. They found that this topic is underexplored. In addition,
there are few approaches that consider multi-attribute outcomes. Goes
et al. [19] propose a network vulnerability framework and assess traffic
reassignment and emissions. They describe network vulnerability as-
sessment as a process of searching for vulnerable links and then dis-
rupting those links before performing a more detailed analysis. They
also comment upon another approach whereby all links are separately
disrupted and the network is scanned to find which links are most
critical. The motivation for further research on traffic reassignment and
greenhouse gas (GHG) mitigation is identified. Our proposed MCMCNF
model provides a means of maximising flow and minimising emissions.
Emissions can be added as either a separate independent cost or an
additional cost.

In summary, the capacity of TS depends on many different para-
meters and criteria. TS capacity analysis under these circumstances can
be facilitated by multi-objective optimisation models. In retrospection,
the majority of recent analytical models focus upon a single objective in
their models. These cannot capture the effect of multiple competing
objectives. There is an increasing recognition that more than one ob-
jective should be included in capacity planning models. As the number
of objectives is potentially numerous, the development of advanced
solution techniques may be necessary. Our literature review shows that
there are a variety of different costs and access charges that need to be
added to assessments of TS and relatively few methods do this.

3. The model

In this section, the MCMCNF model is introduced for capacity as-
sessment and capacity planning activities. The MCMCNF is essentially a
mixed integer programming model (MIP) model with several objec-
tives. A summary of all the notations used in our model are listed in
Table 1.

3.1. Decisions

The purpose the MCMCNF is to determine Pareto optimal solutions

that simultaneously maximise the flow (a.k.a. the system capacity) and
minimise the cost for commuters and other commodities in a specified
time period T. Pareto frontiers are pre-computed to facilitate the eva-
luation of different preferences later. Once the Pareto frontier has been
obtained, solutions can be selected by decision makers in a variety of
ways; the specific shape of the frontier can influence that choice. It is
important to mention that we do not propose a minimum cost flow
model that finds the lowest cost solution amongst all max flow solu-
tions.

As there are many commodity types, it is necessary to determine the
number of each type, denoted by Γk, and to determine how that number
is distributed across the different ODP, denoted γk, p. On each arc the
flows of commodities will be divided amongst the different ODP. This
flow is described by the variable p a k, , . The flow across each arc how-
ever is restricted by the capacity of the arc, namely ca. As commodities
are transported within vehicles and do not move on their own accord,
the capacity of an arc is the maximum number of vehicles. The decision
variables are assumed real-valued but enforceable as integer should the
need arise.

Table 1
Notation used.

Indices:
p, a, n, k, z Origin-Destination (OD) pairing, arcs, nodes, commodities,

objective
Sets:
N, A, O, D, P, K Set of nodes, arcs, origins, destinations, OD pairings,

commodities
Parameters:
ωk Importance of commodity k (i.e. weighting)
oa, da Origin and destination of arc a

o d˜ , ˜p p Origin and destination of ODP p

℧a k, The number of commodities of type k per vehicle on arc a
T Specified duration of time for the capacity analysis (in

minutes)
τa Number of lanes on arc a
Θ A small numerical value
p k, Demand for commodity k on ODP p (integer)
cpv cpv cpv, ,a a a Cost per vehicle on arc a, upper and lower bound cost per

vehicle on arc a ($)
toll toll,a a Toll on arc a, upper bound on the toll for arc a ($)
ca Capacity of arc a in terms of number of vehicles (integer or

real)
t t, ¯a a Free flow travel time on arc a, upper bound (in minutes,

integer or real)

costa
1 cost, a

2 Costs of travel time on arc a ($)

votvota Value of time function, value of time on arc a ($)
ϕa Used to describe the term (va)5

UBz, LBz Upper and lower bound for objective z
H Value of time multiplied by travel time ($)
ma Gradient of vot function for arc a
Δ, ɛ Size of division in epsilon constraint method and vector of

divisions
cpka, k Cost of travel incurred by commodities of type k on arc a ($)
b, g Breakpoints for a piecewise linear function and the gradient

vector
βa BPR congestion parameter (real, typically around 0.1)
Decisions:
Γk Total flow of commodity k throughout the network
γk, p Number of commodities of type k transported on ODP p
p a k, , Flow of commodity k on arc a for ODP p
p a, Number of vehicles that travel on arc a for ODP p
fa Intended flow of vehicles on arc a before any flow reduction is

performed ≤ ca)
v v v, ¯ ,a a a Total number of vehicles on arc a, upper bound and lower

bound ( ≤ ca)
� Flow reduction function. Note that � f( )a is used to scale back

an intended vehicle flow
GCa General cost of travel on arc a ($)
PLF(λ, ℘(λ)) Piecewise linear function for ℘(λ)
TTa Travel time on arc a (in minutes)
OBJ1,OBJ2 Objective function values: total flow, total cost

B. Bevrani, et al. Operations Research Perspectives 7 (2020) 100159

3



3.2. Objectives

The MCMCNF model has two objectives. The first is to maximise the
total weighted flow. The second is to minimise the costs of travel in-
curred by the commodities. The two objective functions are as follows:

∑ ∑= =
∈

OBJ ω OBJ GCMaximise Γ ; Minimise
k K k k a a1 2 (1)

In the first objective the number of commodities is defined as
= ∑ ∀ ∈∈ γ k KΓk p P p k, and the flow of commodities on ODP p is γp, k.

The importance of each commodity type is governed by parameter ωk.
In the second objective, the cost of travel on each arc is aggregated.
Further details of the cost GCa will be described later.

To solve the MCMCNF a method such as the epsilon-constraint
method (ECM) can be used. In order to use ECM, a single objective is
selected and an ``ɛ –constraint” is added to regulate the second objec-
tive. To determine the Pareto frontier the following model is repeatedly
solved (i.e. N times):

Maximise OBJ1 subject to: ≥ +OBJ LB ε n[ ]2 2 2 + the regular con-
straints of the model

The parameter ɛ2[n] describes the value of the second objective
required in the nth solve where = …n N1, , . When more steps are
chosen (i.e. as N → ∞) the Pareto frontier becomes larger and more
detailed. It is important to note that OBJ2 ∈ [LB2, UB2] and

= …ε N[0, Δ, 2Δ, , Δ]2 where = −Δ UB LB
N

( )2 2 . The upper and lower bounds
for each objective, namely LBz, UBz are computed in a preliminary
analysis for z ∈ {1, 2},. The model must be solved four times to de-
termine these values.

3.3. Constraints

The necessary constraints to enforce correct flows are as follows:

= ∑ ∀ ∈∈ γ k KΓ [Number of commodities]k p P p k, (2)

= ∑ ∀ ∈ ∀ ∈∈ =γ p P k K, [Flow from the origin]p k a A o o p a k, | ˜ , ,a p (3)

= ∑ ∀ ∈ ∀ ∈∈ =γ p P k K, [Flow to the destination]p k a A d d p a k, | ˜ , ,a p

(4)

 ∑ ∑= ∀ ∈ ∀ ∈ ∀ ∈

≠ ≠

∈ = ∈ = k K n N p P d

n o n

, , | ˜

, ˜
[Conservation of commodity flow]

a A d n p a k a A o n p a k p

p

| , , | , ,a a

(5)

∑ = ∀ ∈ ∀ ∈
∈ =

k K p P0 ,

[Nooutflowatdestination; onlyinflow]
a A o d

p a k
| ˜

, ,
a p

(6)

∑ = ∀ ∈ ∀ ∈
∈ =

k K p P0 ,

[Noinflowatorigin;onlyoutflow]
a A d o

p a k
| ˜

, ,
a p

(7)

 ≤ ∀ ∈ ∀ ∈ ∀ ∈p P k K a A℧ , ,
[Flow to vehicle relationship]

p a k p a a k, , , ,

(8)

≤ ∀ ∈f c a A [Vehicle flow limitation]a a (9)

 �= ∑ ≤ ∀ ∈∈v f a A( ) [Vehicle flow correction]a p P p a a, (10)

≥ ∀ ∈ ∀ ∈γ p P k K, [Required number]p k p k, , (11)

 ≥ ≥ ∀ ∈ ∀ ∈ ∀ ∈a A p P k K0, 0 , , [Positivity]p a p a k, , , (12)

The total number of commodities of each type (i.e. Γk) is determined
across all origin destination pairs (i.e. ODP) as shown in Eq. (2).

Constraint (3) and (4) define the number of commodities that can be
moved between the origin and destination of each ODP. In those
equations p a k, , represents the number of commodities of type k using
arc a for ODP p. Constraint (5) has been formulated to ensure the
conservation of commodity flow at each node. It is only applied to
nodes, which are not origins or destinations of ODP's. Constraint (6)
and (7) are needed at the origin and destination of ODP. At those nodes,
it is necessary to enforce either outflows or inflows respectively. Con-
straint (8) provides the necessary linkage between vehicle and com-
modity flows on each arc. The number of vehicles on arc a for ODP p
isp a, , and the number of commodities per vehicle is ℧a k, . Positivity of
vehicle and commodity flows is enforced by constraint (12).

The intended flow of vehicles fa must be less than or equal to the
capacity of the arc, namely ca. That condition is specified in constraint
(9). The arc capacity is a function of the number of lanes τa, the time
period T, and arc specific attributes. For more details about that func-
tion we refer the reader to Bevrani et al. [4]. Multiple vehicle types can
be accommodated if need be. The mix of vehicles must however be
defined. That mix can then be used to compute a more accurate arc
capacity. The parameter, ℧a k, is affected by the mix and can be updated
appropriately, for instance as a weighted average of the number of
commodities transported by all the different vehicle types.

Function � in constraint (10) is introduced as a corrective device to
reduce an intended flow to a reduced flow. It is used to model the ef-
fects of different forms of congestion, delay and user behaviour on flows
that may be present on different arcs. Without any form of flow re-
duction, the intended flow is simply = ∑ ∈fa p P p a, . In all other cir-
cumstances Eq. (10) is required. It restricts the sum of the vehicle flows
to the value of the corrected intended flow, namely � f( )a . Specific de-
mands for commodity flows on different ODP, denoted p k, , can be
enforced by the model if need be. As a hard constraint, constraint (11) is
required to be added. When constraint (11) is added, two things can
happen. First, the model may solve and will report flows over and above
the specified demands. Otherwise, the model will not solve. In that
event, one or more demands will not be met. If specific demands are a
soft constraint, an alternative approach would be to penalise the ob-
jective by adding the term ∑ −∀ ∈ ∀ ∈ ω γmax( , 0)p P k K p k p k p k, , , , where ωp,

k is the importance of meeting demand of commodity k on ODP p.

3.4. Costs

Without loss of generality, it is appropriate to define the general
cost on each arc as a function of the total number of vehicles using that
arc and the cost incurred by each vehicle. The following equation is
suggested:

=GC v cpva a a (13)

The cost incurred by each vehicle on arc a (i.e. cpva) can include a
variety of things such as the travel time across arc a (i.e. TTa) and tolls
or other charges incurred by using arc a (i.e. tolla). Three typical options
are as follows +TT toll TT toll{ , , }a a a a . The toll may include fixed charges
that are static, or variable charges, which are to be determined, i.e.

= +toll toll tolla a a
f v . As tolla is a monetary value, it is necessary to con-

vert the travel time in the third scenario to a monetary value. To do this
we multiply the travel time by a value of time parameter. The value of
time is the cost assigned for every minute of travelling time. It reflects
the importance of time either generally (e.g. vot) or specific to each arc
(e.g. vota) and therefore influenced by the mode of travel. If a vot
mechanism is not used, then it is necessary to define multiple objectives
to regulate travel time and toll trade-offs.

When the cost per vehicle is not fixed (i.e. is a function of assigned
flow), Eq. (13) is a non-linear expression of two continuous decision
variables. To avoid non-linear programming methods, this can be lin-
earized by introducing two new variables xa and ya according to [1]:

= +y v cpv0.5( )a a a (14)
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= −x v cpv0.5( )a a a (15)

The difference of the squares is an alternative way to compute GCa

because:

− =y x v cpva a a a
2 2 (16)

The two terms in the left hand side of Eq. (16) are non-linear but can
be approximated efficiently using piecewise linear functions (PLF) and
Separable Programming techniques. It is noteworthy to mention that it
is not possible to define a PLF for the product of the two continuous
decision variables in Eq. (13). Separable Programming permits a convex
nonlinear program to be approximated by an equivalent linear pro-
gramming model. It is important to note that GCa, ya

2 and xa
2 are all

convex functions. It is easy to show that the Hessian matrix of each
function is positive semi-definite (see Appendix).

Each non-linear term is replaced with a piecewise linear approx-
imation, PLF(ψ, ℘) → ℘(ψ). Practically speaking, each PLF must be
specified in terms of an array of breakpoints and gradients. Using
specified lower and upper bounds ψ ψ[ , ¯] and a prescribed number of
break-points M, these arrays are computed as follows:

= + + …b lb lb ζ lb ζ ub[ , , 2 , , ], = ℘ − ℘+g b b ζ( ( ) ( ))/i i i1 for
= … −i M1, , 1 where = −ζ ψ ψ M( ¯ )/ . For each PLF an additional in-

teger decision variable must be added to the model. This variable de-
scribes the interval in which ψ exists.

Now let us approximate (ya)2 by ℘ =y y yPLF( , ( ) )a a a
2 and (xa)2 by

℘ =x x xPLF( , ( ) )a a a
2 . The following equations may then be added to the

model:

= −GC y y x xPLF PLF( , ) ( , )a a a a a
2 2 (17)

= +y cpv v0.5( )a a a (18)

= −x cpv v0.5( )a a a (19)

= +cpv TT vot tolla a a a (20)

= ℘TT v vPLF( , ( ))a a a (21)

A PLF is also required to determine the travel time. This will be
discussed further in Section 3.5. The lower and upper bounds for the
number of vehicles and the costs are as follows:

∈ ∈ +v c cpv t vot t vot toll[0, ]; [ , ¯ ]a a a a a a a a (22)

The free flow travel time on arc a is at least ta when there is no
congestion. The domains described at (22) are used when evaluating
the left and right hand sides in (23) and (24). The over and under bar
are used to describe the lower and upper bounds. The aforementioned
ranges are required when generating the PLF.

+ ≤ ≤ +v cpv y v cpv0.5( ) 0.5( ¯ )a a a a a (23)

− ≤ ≤ −v cpv x v cpv0.5( ) 0.5( ¯ )a a a a a (24)

≤ ≤cpv cpv cpva a a (25)

As this approach involves three approximations per arc, the com-
putational overhead may be large for networks with many arcs and
could perform poorly.

A second approach involving logarithms may be used to linearize
Eq. (13). It is possible to define GCa as a decision variable and to add
the following condition:

= +GC GC v v cpv cpvPLF PLF PLF( , ln( )) ( , ln( )) ( , ln( ))a a a a aa (26)

This condition can be used because
= = +GC v cpv v cpvln( ) ln( ) ln( ) ln( )a a a a a . The log terms can be approxi-

mated by PLF but are undefined at zero, which is problematic as the
number of vehicles and costs may also be zero. To resolve this, a small
value Θ is added and two additional variables are introduced:

′ = + = ′ −v v v vΘ, i.e. Θa a a a (27)

′ = + = ′ −cp v cpv cpv cp vΘ, i.e. Θa a a a (28)

It is important to note that ′ >v 0a and cp′va > 0. Hence the general
cost is computed as follows:

= × = ′ − ′ − = ′ ′ − ′ − ′GC v cpv v cp v v cp v v cp v( Θ)( Θ) Θ. Θ.a a a a a a a a a

(29)

We can introduce a decision variable ζa for the product ′ ′v cp va a. If
= ′ ′ζ v cp va a a then = − + − +GC ζ v cpvΘ( Θ) Θ( Θ)a a a a and:

= ′ + ′ζ v cp vln ln lna a a (30)

Eq. (30) can be evaluated using PLF as follows:

= ′ ′ + ′ ′ζ ζ v v cp v cp vPLF PLF PLF( , ln( )) ( , ln( )) ( , ln( ))a a a a a a (31)

It is unnecessary to introduce ′va and cp′va explicitly; they can be
substituted from all the equations.

3.5. Travel Time

The travel time on each arc is an important piece of information
used in the capacity assessment of an MMTS. The BPR function [21] is
often used to model the travel time of vehicles. The equation considers
the number of vehicles on the road and scales the free flow travel time
ta in the following way:

⎜ ⎟⎜ ⎟= ⎛

⎝
+ ⎛

⎝
⎞
⎠

⎞

⎠
TT t β v

c
1a a a

a

a

4

(32)

The parameter ∈βa describes the effect of congestion. The value
of βa is traditionally selected as 0.15 but can be calibrated empirically.
For instance, consider a 1 km lane of road with a speed of 100 km/h. At
that speed the travelling time is observed to be 36 seconds (i.e. 60 × 1/
100). At high density when the number of vehicles approaches the
theoretical capacity (say 1000), the speed drops to 60 km/h and leads
to a travel time of 60 seconds. The value of β is hence 0.66 (i.e. 60 = 36
(1 +β)). The BPR travel time function for that situation is shown in
Fig. 1.

The general cost to commuters previously described at (13) can be
partitioned in terms of the travelling time and the tolls incurred by
vehicles as follows:

= +GC cost costa a a
1 2 (33)

where =cost vot TT va a a a
1 and =cost toll va a a

2 . An expansion of the first cost
term using the BPR function provides the following:

= + = =cost vot t v vot λ ϕ λ
t β
c

ϕ vwhere
( )

and ( )a a a a a a a a
a a

a
a a

1
4

5
(34)

Intermediate steps:

Fig. 1. BPR function for =β 0.66 and =c 1000.

B. Bevrani, et al. Operations Research Perspectives 7 (2020) 100159

5



⎜ ⎟ ⎜ ⎟⎜ ⎟= ⎛

⎝
+ ⎛

⎝
⎞
⎠

⎞

⎠
= ⎛

⎝
+ ⎞

⎠

= +

cost vot t β v
c

v vot t v
β
c

v

vot t v vot
t β
c

v

1
( )

( )

( )
( )

a a a a
a

a
a a a a

a

a
a

a a a a
a a

a
a

1
4

4
5

4
5

It is worthwhile pointing out that the following alternative cost can
be used:

⎜ ⎟= − = ⎛
⎝

⎞
⎠

=cost vot TT t v vot
t β
c

v vot λ ϕ( )
( )

( )a a a a a a
a a

a
a a a a

1
4

5

(35)

This alternative just considers the travel time above the free flow
time. A PLF function can be used to approximate ϕa. For instance, we
can set =ϕ v vPLF( , )a a a

5 . From a numerical perspective however, this
approach is problematic as the value is so large. An alternative ap-
proach is to scale the number of vehicles first and to approximate that
scaled value raised to the power of five. If we define =ua

v
c

a
a
then

ua ∈ [0, 1] and(ua)5 ∈ [0, 1]. As =v u ca a a the cost function can be
rewritten as follows:

⎜ ⎟= ⎛
⎝

+ ⎞
⎠

= +cost v vot t v
t β
c

u c vot t v t β c u( )
( )

( ) ( ( ) )a a a a a
a a

a
a a a a a a a a a

1
4

5 5

(36)

The (ua)5 term is approximated by a piecewise linear function and
we replace (ua)5 with u uPLF( , )a a

5 :

= +cost v vot t v t β c u uPLF( ) ( ( , ))a a a a a a a a a a
1 5 (37)

The travel time is also computed in terms of ua:

= +TT t β u uPLF(1 ( , ) )a a a a a
4 (38)

where u uPLF( , )a a
4 is a piecewise linear function for (ua)4. As a final

remark, it should be noted that if the toll is a decision variable then
costa

2 must be handled using one of the approaches suggested in
Section 3.4.

3.6. Further remarks

Scenarios where the VOT value is not a static parameter are fore-
seeable. It may depend solely upon the commodity type and not the arc
travelled across. In that situation it may be necessary to define votk or
vota, k. The general cost may need to be redefined as follows:

 ∑ ∑ ∑ ∑= =GC cpk GC cpkora p k p a k k a p k p a k a k, , , , , (39)

The cost for commodities of type k is either cpkk or cpka, k. Those
costs can be defined in a variety of ways and will involve the use of votk
or vota, k. That extension is outside the scope of this article and could
warrant further investigation and consideration.

The vot function may be used as a mechanism to penalize excessive
travel times and delays. Hence it is plausible for the VOT to be a
function of the travel time. Consequently, vota should be replaced with
a non-decreasing function vot(a, TTa). If the vot is independent of the
arc travelled upon, a general function vot(TTa) may be defined. The
relevance of a vot function of this nature is grounded in reality. Some
perishable goods should not have excessive travel times. Commuters are
also averse to excessive travel times. Another practical example origi-
nates from Burdett et al. [[10],[11]]. They consider the arrival of trains
and ships that unload and load coal respectively in a coal export
terminal. There is no penalty for train departures occurring within two
hours of arrival. Departures occurring from two to three hours are pe-
nalised by a small amount, after which departures are heavily pena-
lised. Without loss of generality, the cost may be defined as follows:

=cost a TT TT vvot( , )a a a a
1 (40)

Predominantly vot(a, TTa) would be piecewise linear or slightly
non-linear. The product vot(a, TTa) × TTa may be aggregated into a
single function H(a, TTa). The cost is then evaluated as follows:

=cost a TT vH( , )a a a
1 (41)

The function vot(a, TTa) maps a real valued travel time to a dollar
per minute amount. Function H(a, TTa) in contrast maps the travel time
to a dollar value. As Eqs. (40) and (41) involves products of two un-
knowns, one of the approaches suggested in Section 3.2 should be
adopted.

If the vot function is linear then the substitution
=a TT m TTvot( , )a a a can be made. It is important that the VOT re-

presents the correct value at the minimal travel time ta, and that it
increases at a specific rate (based on economic analysis) for values
TTa > ta.

Substituting the BPR function for travel time, Eq. (40) can be re-
written as follows:

= + +cost m c t u β u β u( ) ( 2 ( ) ( ) ( ) )a a a a a a a a a
1 2 5 2 9 (42)

Intermediate steps:

= + +
=

= + +

= + +

cost m t β u t β u u c
TT v u c

cost m c t u β u β u

cost m c t u β u β u
u

(1 ( ) ) (1 ( ) )
[Substitute and ]

( ) (1 2 ( ) ( ) ( ) )
[Expand brackets]

( ) ( 2 ( ) ( ) ( ) )
[Redistribute ]

a a a a a a a a a a

a a a a

a a a a a a a a a

a a a a a a a a a

a

1 4 4

1 2 4 2 8

1 2 5 2 9

The non-linear terms in (42) may be approximated by PLF. We can
then replace (ua)5 with u uPLF( , )a a

5 and (ua)9 with u uPLF( , )a a
9 .

= + +cost m c t u β u u β u uPLF PLF( ) ( 2 ( , ) ( ) ( , ))a a a a a a a a a a a
1 2 5 2 9 (43)

Eq. (43) is not essential for evaluating Eq. (40). The function
= ×TT a TT TTH( ) vot( , )a a a can be defined explicitly and a generic ap-

proach may be taken. The downside is the need for a greater number of
PLF than indicated in (43). It is worth pointing out that if

=a TT m TTvot( , )a a a then H(TTa) is non-linear.

4. Numerical testing

In this section, our novel MCMCNF is applied to different scenarios
to demonstrate how it is used and how flexible it is for assessing MMTS.
Important nuances and intricacies of capacity assessment are high-
lighted. All numerical experiments have been run on a quad core Dell
personal computer (PC) with a 2.6 Ghz processor and 16 GB memory
under Windows 7.

An important component of multi-objective optimization is the
utopia point. This is an ideal solution where each objective attains its
best value. How close Pareto optimal solutions are to that ideal point is
important when choosing a solution. It is important to note that the
solution closest to the ideal is shown in many of our charts and may not
look geometrically closest due to figure scaling and differences in units
of measurement but are nonetheless correct.

The number of search points used in the ECM is =N 100, but more
can be used if additional solutions are required. The time period for the
capacity analysis is 60 min, the value of time is assumed constant at $1
per minute of travelling time and the BPR parameter βa is 0.15. The PLF
for u5 and u4 have breakpoints every 0.001. Different spacing like 0.01,
0.005, 0.1, 0.25, and 0.5, were investigated however only minor dif-
ferences in value and computing time were observed. To use Separable
Programming, IBM's ILOG CPLEX optimization studio 12.7 and C++
concert technology was utilised. Each PLF requires a vector of the
breakpoints and gradients and the variable that is input to the function,
i.e. PLF(dvar, b, g). All MCMCNF instances were solved to optimality.

4.1. Ring road example

The network in Fig. 2a is first considered. The distance of each arc is
shown. In total there are 42 ODP. The considered ODP are given by the

B. Bevrani, et al. Operations Research Perspectives 7 (2020) 100159

6



statement ⋃ ′∀ ′∈ ≠ ′ n n( , )n n IO n n, | where =IO {2, 3, 4, 5, 6, 7, 8}. Set IO is
an abbreviation for “input-output” and records the nodes of the net-
work where flows can originate and terminate. Initially one lane is
assumed in each direction and the speed limit is 70 km/h. The capacity
per lane is 1296.3 vehicles and is computed using a headway of 50 m
and the methodology from Bevrani et al [4]. The number of commod-
ities per vehicle is assumed one. The ECM was applied, and Fig. 3
displays the trade-off between flows and travel time cost. This frontier
was obtained within a couple of minutes of computing time.

In our situation the ideal solution has no travel time cost and
maximal flow. This solution is shown in the right-hand corner by the
green triangle. If we adopt a Euclidean distance measure, the solution
shown at the blue rectangle is closest. That solution (see Fig. 2b) de-
scribes the situation where a relatively high flow is obtained for a re-
latively low travel time cost. Higher levels of capacity are certainly
possible in this network but the travel time of those vehicles and
commuters will evidently be higher. For instance, it could be necessary
for commuters to take alternative routes of longer distance to get be-
tween their origin and destination. To get higher levels of capacity it
will also be necessary to favour commuters on some ODP and not
others. The solution at the blue rectangle is shown in Table 2. That

Fig. 2. The network for the first example and best trade-off solution.

Fig. 3. Pareto frontier; Minimum @ (17277.7, 52624.7).

Table 2
Details of solution (17277.71, 52624.7).

Arc Flow Cost Arc Flow Cost

[1, 2] – – [2, 3] 1296.3 2897.54
[2, 1] – – [3, 2] 1296.3 2897.54
[1, 3] – – [3, 4] 451.11 2813.38
[3, 1] – – [4, 3] 452.41 2821.53
[1, 4] – – [4, 5] 1296.3 3803.82
[4, 1] – – [5, 4] 1296.3 3803.82
[1, 5] 1000.74 2620.1 [5, 6] 1296.3 536.11
[5, 1] 1000.74 2620.1 [6, 5] 1296.3 536.11
[1, 6] 1296.3 2297.61 [6, 7] 1296.3 2361.44
[6, 1] 1296.3 2297.61 [7, 6] 1296.3 2361.44
[1, 7] 1296.3 1697.68 [7, 8] 465.37 2899.15
[7, 1] 1296.3 1697.68 [8, 7] 465.37 2899.15
[1, 8] 0.68 2.51 [2, 8] 740.19 4383.01
[8, 1] 0.68 2.51 [8, 2] 738.89 4374.86

Table 3
Flows assigned to different ODP.

ODP [a-b] a → b b → a ODP [a-b] a → b b → a

[2-3] 1296.3 1296.3 [5-7] 1000.06
[2-8] 740.19 738.89 [5-8] 0.68
[3-4] 451.11 452.41 [6-7] 2592.59 1591.85
[4-5] 1296.3 1296.3 [7-8] 466.05 465.37
[5-6] 2297.04 1296.3

Table 4
Details of highest capacity solution (with flow 27222.22).

Flows of 1296.3 Flows of 648.2 Flows of 0

[2,3],[2,8],[3,4],[4,5],
[5,6],[6,7],[7,8]

[2,4],[2,7],[3,5],[3,8],
[4,6],[5,7],[6,8]

[2,5],[2,6],[3,6],[3,7],
[4,7],[4,8],[5,8]
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solution is characterised by paths with shorter distance in order to sa-
tisfy the second objective. This is what we would expect in real life. The
flows by ODP are shown in Table 3.

Some arcs have not been assigned flows in Table 2. Predominantly
however, the flows occur on shorter arcs. Flows on the longest arcs have
been avoided completely or else are made as small as they can be. The
highest flow of 2592.59 from node 5 to 6 is achieved by sending flow
over arc (5, 1) first and then diverting that flow to (1, 6). Similarly the
high flow between node 6 and 7 is achieved by sending traffic on (6, 1)
first and then on (1, 7). It is interesting to note that the solution with the
highest capacity level has a cost of 160,118. The flow by ODP is very
similar to the solution shown in Tables 2 and 3. That information is
summarised in Table 4. The same ODP have been given precedence

albeit with higher flow.

4.1.1. Analysis of congestion
A sensitivity analysis of the BPR value βa has been performed to see

what effect congestion would have on the capacity of the system.
Incremental changes on the range [0.15, 1] were analysed. The results
are shown in Fig. 4. It shows significant differences at high flow solu-
tions.

4.1.2. Analysis of lanes
The number of lanes greatly affects capacity and hence a sensitivity

analysis of that number has been performed. Five scenarios were tested.
In the first three scenarios all arcs have 1, 2, or 3 lanes. In scenario four,

Fig. 4. Pareto frontier sensitivity w.r.t. the BPR parameter [Scenario 1].

Fig. 5. Pareto frontier sensitivity to number of lanes [Scenario 1].

Table 5
Details for the three demand-based scenarios.

Case ODP Demand Flow Range Cost Range Max Flow-Cost Solution Best Solution

1 200 [8400, 27222.2] [36246.3, 160118] [27222.22,160118] [19941.44, 87033.7]
2 500 [21000, 22296.3] [145898, 160118] [22296.3,160118] [21647.51,152866]
3 custom [5450,25211.1] [45177, 160118] [25211.11,160118] [17637.17,86555.8]
Case ODP flows in Max Flow-Cost Solution ODP flows in Best Solution
1 [2,3, 2,8, 3,2, 3,4, 4,3, 4,5, 5,4, 5,6, 6,5, 6,7, 7,6, 7,8, 8,2, 8,7]@1296.3; [2,5,

2,6, 3,6, 3,7, 4,7, 4,8, 5,2, 5,8, 6,2, 6,3, 7,3, 7,4, 8,4, 8,5]@448.15;
[2,3, 3,2]@1096.11; [2,8]@755.74; [3,4, 4,3]@310.74 [4,5, 6,5]@1296.3; [5,4]@1295.19;
[5,6]@1503.7; [5,7]@201.11; [6,7]@1792.59; [7,5]@407.41; [7,6]@1585.19; [7,8]@
519.82; [8,2]@755.56; [8,7]@518.7;

2 [2,3, 2,8, 3,2, 3,4, 4,3, 4,5, 5,4, 5,6, 6,5, 6,7, 7,6, 7,8, 8,2, 8,7] @ 592.59; [2,8]@546.67; ([4,5, 5,6], [6,7])@591.85; [5,4, 6,5, 7,6]@593.33; [7,8]@500.1, [8,2]@
545.16;

3 [2,3, 3,4]@1092.59; [7,8]@1688.89; [2,8, 3,2, 3,7, 4,5, 5,4, 6,5, 7,6, 8,5, 8,7]
@1296.3; [4,3, 5,6]@2592.59; [6,7, 8,2]@392.59;

[2,3]@209.44; [2,8]@765.93; [3,2]@1295.56; [3,7]@1000; [4,3]@539.26; [4,5]@1296.3;
[5,4]@1296.11; [5,6]@1657.59; [5,7]@296.3; [6,5]@1080.93; [6,7]@607.96; [7,5]@
360.74; [7,6]@2231.3; [8,5]@750; [8,7]@549.76;
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the inner arcs have one lane and two lanes are present on the outer arcs.
The last scenario inverts the situation in scenario four, i.e. each inner
arc has two lanes and the outer ones have one lane. Fig. 5 demonstrates
that higher capacity levels can be obtained if higher travel costs are
incurred.

In addition, the same level of capacity can be achieved with dif-
ferent scenario, but those scenarios with more lanes can achieve that

Fig. 6. Pareto frontier when ODP demand is given [Scenario 1].

Fig. 7. Network for the second scenario. Dotted arcs are potential arcs.

Table 6
Details of the second example.

Arcs (1,2) (2,3) (2,4) (2,5) (4,5) (4,6) (3,5) (3,6) (5,6) (6,7) (3,7)

Distance (km) 5 7.28 12 10 5 2 2 3.605 3 11 7
#Lanes 3 1 1 2 1 1 1 1 2 2 1
Speed (km/h) 70 60 60 100 60 60 60 70 60 100 60
Capacity/lane 1296.3 1296.3 1111.11 1851.85 1111.11 1111.11 1111.11 1296.3 1851.85 1851.85 1296.3
Arc Capacity 3888.9 1296.3 1111.11 3703.7 1111.11 1111.11 1111.11 1296.3 3703.7 3703.7 1296.3
βa 0.75 0.1 0.1 0.5 0.1 0.1 0.1 0.1 0.5 0.5 0.1

Fig. 8. Pareto frontier before and after expansion [Scenario 2].
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capacity with less travel time cost. Scenario 5 is very similar to Scenario
1. Scenario 5 however does provide higher capacity if a total travel time
cost of about 18,000 or more is incurred. In contrast, Scenario 1 cannot
achieve higher levels as the system's absolute capacity has been
reached. A similar relationship occurs between Scenario 4 and 2.
Clearly, the three-lane scenario outperforms the others.

4.1.3. Meeting demands
In the previous analysis the model was permitted to choose the

flows assigned to each ODP. Static minimum demands are now con-
sidered for each ODP, to see how much latent capacity exists and
whether the frontier changes in any way. Three scenarios were in-
vestigated. The first and second has a demand of 200 and 500 respec-
tively for each ODP. The third scenario is customized and has demands
of (1500,1000,2200,750) for ODP [2, 4, 3, 7, 6, 2, 8, 5] respectively.
The total demand for each scenario is hence (8400, 21,000, 5450) re-
spectively. The ECM was then applied to each. The results are shown in
Table 5. Fig. 6 summarises these results and demonstrates that the
frontier becomes smaller and more linear as the demands are increased.
The frontier in (b) is quite small and is only a little curved. The range of
the flow and costs are 1296.3 and 14,220 respectively. In (a) the
frontier is much larger. The range of the flow and costs is 18,222.2 and
123,871.7 respectively. The range for (c) is largest as the demand is

lowest.

4.2. Expansion scenario

The second case study that has been considered is shown in Fig. 7.
The ODP are {(1,7), (7,1)}. Table 6 describes the arc lengths, number of
lanes, and the speeds. The capacity per lane is computed using a
headway of 50 m and the methodology from Bevrani et al. [4]. The
number of commodities per vehicle is assumed one. The ECM was ap-
plied, and Fig. 8 displays the trade-off between vehicle flows and the
travel time cost. The CPU times were again minimal to achieve the
presented results.

Before expansion, the upper bound for flow is 4814 and the upper
bound for cost is 215,577. After expansion, the upper bound is 7777
and the upper bound for cost is 319,113. Hence, the network's flow can
increase by adding the additional arcs. The first part of the frontier is
very linear and indicates a constant increase in cost as capacity is in-
creased. Later on, the cost starts to increase more greatly due to con-
gestion, for instance when flows exceed 4000 in the first network and
6000 in the second.

The ideal solutions are shown by the red and blue triangles at the
bottom of the chart in Fig. 8. Along the frontiers, the solutions closest to
those utopia points are the red and blue marked rectangles. The solu-
tion at the red rectangle is (3728.75, 79,763.6) with a scaled Euclidean
distance of 0.43. The solution at the blue rectangle is (5955.64,
118,072) with a scaled Euclidean distance of 0.4379. The solutions
shown in Tables 7 and 8 (and graphically in Fig. 9) have pushed ve-
hicles along the shortest path possible and to arcs with the highest
capacity. In Table 8’s solution, additional vehicles are routed from node
2 to node 3 and node 6 via node 5 to attain additional flows. There are
many solutions to this test instance with the same maximum flow of
7777.8. We need to be careful not to choose a dominated solution,
which has a high travel time cost to commuters. This example de-
monstrates how a multi-criteria approach is better suited for the ca-
pacity analysis of that network. A traditional approach would have
provided a dominated solution.

4.2.1. Effect of tolling
In the remainder of our analysis we investigate the effect of adding

tolls to the new arcs (2,5) and (5,6). In Fig. 10, the effect of tolls in the
range [1, 100] is displayed. Evidently as the tolls are increased so too
does the cost. At higher toll levels the vertical part of the frontier in-
creases in size. This indicates that the number of solutions achieving
maximum flow is very large. In other words, there are many more
routes that are promising, that would not have been considered if there
were no tolls. Our analysis here demonstrates what commuters would
have to do to avoid paying tolls.

In Table 9, the flows on the network's arcs are shown. That solution
occurs closest to the ideal solution on the Toll@$100 frontier. It is
worth mentioning that flows on arc (5, 6) have been avoided because a
toll is present. Flows are however placed on arc (5, 6) when tolls are less
(see Table 8). When arc (5, 6) is taken, the path to node 7 is longer. In

Table 7
Flows for solution (3728.75, 79763.6).

Arc [1,2] [2,3] [2,4] [4,6] [6,7] [3,7] [2,1] [3,2] [4,2] [6,4] [7,6] [7,3]
Flow 1865.2 1105.7 759.5 759.5 759.5 1105.7 1863.5 1105.7 757.8 757.8 757.8 1105.7
Cost 8311.2 8726.3 9312.9 1552.2 5017.1 6985.7 8302.3 8726.3 9290.1 1548.3 5005.7 6985.7

Table 8
Flows for solution (5966.64, 118072).

Arc [1,2] [2,3] [6,7] [3,7] [2,5] [5,3] [5,6] [2,1] [3,2] [7,6] [7,3] [5,2] [3,5] [6,5]
Flow 2980.6 885.5 1851.9 1128.8 2095.2 243.3 1851.9 2975 877.6 1851.9 1123.2 2097.4 245.6 1851.9
Cost 16080.4 6126.7 12604.2 7162.1 13214.8 486.8 3437.5 16025 6051.4 12604.2 7118.7 13231.6 491.2 3437.5

Fig. 9. Graphical description of solutions shown in Tables 7 and 8.
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contrast the path through (5, 3) is considerably shorter.

4.2.2. Effect of VOT
A linear vot function was also investigated. We assumed that

=a TT m TTvot( , )a a a and tested =m 1a and =m 0.2a . When ma is one,
the cost is $1 if the travel time is one minute, and the cost is $n if the
travel time is nminutes. The value of function H is therefore (TTa)2. The
results of our analysis are shown in Fig. 11. That chart shows a con-
siderable difference between the frontiers and the costs involved. This
difference highlights how influential the vot function is on the type of
analysis we have proposed. The costs are significantly higher when

=m 1a and it is much more expensive to accommodate vehicle flows.
The frontier is also much more curved, and ends with a significant
vertical segment.

4.3. Double ring road example

The third case study that has been considered is an extension of the
first. It is shown in Fig. 12.

The length of each arc is shown. The ODP for this scenario are
⋃ ′∀ ′∈ ≠ ′ n n( , )n n IO n n, | where =IO {1, 9, 11, 13, 15, 17, 19, 21}. In this sce-
nario, the main roads are shown by the thick arcs. They have two lanes
in both directions. Movement between main roads is facilitated by a
variety of connecting roads, which have one lane in each direction. Two
scenarios are considered. In the first there are no specific demands for

each ODP but in the second, demands of 500 between all ODP's except
those that originate or conclude at node 1 are imposed. The results are
summarised in Fig. 13. A small vertical segment is evident; this is the
boundary of the Pareto frontier. Fig. 13 demonstrates that there is some
flexibility to move traffic around in different ways. For example, there
are alternative paths, which do not use the main roads. Some conges-
tion however cannot be avoided and this is shown by the increased
curvature at flows greater than 40,000 or thereabouts. In Tables 10 and
11, the flows on different ODP are shown for the solutions closest to the
ideal. The main roads are most heavily utilised and move traffic from
the outer IO points. High flows are also made along the outside arcs.
Only demands above 500 are shown in Table 11.

4.4. Vulnerability assessment

A real-life example is now considered. This transportation network
is in the south-east corner of Brisbane (Australia) and connects the
airport and CBD with the southern suburbs. Commuters in Brisbane
travel between these major zones daily. The six ODP are ((1, 15), (15,
1), (1, 19), (19, 1), (15, 19), (19, 15)). We also consider one type of
commodity (i.e. passengers) travelling in cars. The number of lanes and
length of each arc are written on the arcs in Fig. 14.

The vulnerability of the network and its capability to respond to
accidents is investigated. Our capacity analysis is performed for a one
hour “peak” period. The vulnerability of a network can be seen as a

Fig. 10. The effect of tolls on arc (2, 5) and (5, 6) [Scenario 2].

Table 9
Details of solution (6877.71, 378125) with toll 100.

Arc [1,2] [2,3] [2,4] [4,6] [3,6] [6,7] [3,7] [2,5] [5,3]
Flow 3429.6 1296.3 1111.1 1111.1 1022.2 2133.3 1296.3 1022.2 1022.2
Cost 21366.8 12101.1 14656.1 2442.7 3280.8 14854.9 8549.4 108373.4 2190.9
Arc [2,1] [3,2] [4,2] [6,4] [6,3] [7,6] [7,3] [5,2] [3,5]
Flow 3448.1 1296.3 1111.1 1111.1 1040.7 2151.8 1296.3 1040.7 1040.7
Cost 21627.2 12101.1 14656.1 2442.7 3349.3 15010.8 8549.4 110331 2241.5

B. Bevrani, et al. Operations Research Perspectives 7 (2020) 100159

11



problem of reduced accessibility [19]. On the two main highways,
namely ODP (1,15) and (1,19), we analyse a reduction in the current
number of lanes to one and use a BPR value of 4 to highlight a 5 time
increase in travel time across the “damaged” arc. The two ODP are
analysed separately “in isolation” as the model would otherwise assign
flows to other parts of the network, and to other ODP's. Adding specific
flow demands is not helpful in this analysis because when accidents
occur, those demands are unlikely to be achievable within the given
time period.

Fig. 15 summarise the results of the application of the ECM for the
four accident locations. Fig. 16 similarly summarises the effect of ac-
cidents in six locations. By comparing Figs. 14 and 15, it is evident that
the cost of travel for ODP (1, 19) is much higher. That ODP has a length
of 28km in contrast to (1,15) which has distance 17 km. Fig. 15 shows
that accidents have a larger effect on the ODP's capacity and the
commuters travel time. In Fig. 16, the accidents have a lesser effect and
hence the network has adaptive capacity for ODP (1,19) [22]. Acci-
dents on arc (2, 3) have the biggest impact, as there are no alternative
routes for commuters to take. A similar situation occurs on (18, 19).

4.5. Mixed-mode example

The preceding examples considered the movement of passengers in
an urban system. In contrast, this example considers the movement of
containers in a freight network where there are road and rail links over
which trucks and trains travel. In this scenario, trucks are assigned one
container, travel at 100 km/h and are separated by 100 m. Trains travel
at 60 km/h and carry 100 containers. The network is shown in Fig. 17;
there are 12 ODP and these involve node 1, 2, 3, and 5.

In Fig. 17 there is a single-track railway line punctuated by sidings
at equidistant positions. Each section of track permits a single train at
any moment in time. Trains however may travel in either direction in
an alternating fashion. As our model requires the network to have di-
rected arcs and not undirected, the rail links are translated as shown in
Fig. 18.

By dividing the flow on those rail links into two flows (i.e. one up
and one down), the conservation of commodity flows can be main-
tained and special undirected and bi-directional arc constructs need not
be devised. The two flows however are associated with a single piece of
infrastructure and hence an additional constraint must be added to the
model to apportion flows in each direction.

Fig. 11. Comparison of linearly increasing VOT and constant VOT [Scenario 2].

Fig. 12. The network for third example.
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∑ ∑ ≤ ∀ ∈∈ ∈ ∈ c g Gmin ( )a A p P p a a Ag a,g (43)

Eq. (43) aggregates vehicle flows across multiple arcs as if they were
a single arc. Groups of arcs denoted by Ag are defined upfront. For this
scenario, the groups are as follows:

G1: (1,21a), (21b,
1)

G2: (21a, 22a),
(22b, 21b)

G3: (22a, 23a),
(23b, 22a)

G4: (23a, 2), (2,
23b)

G5: (1, 18a), (18b,
1)

G9: (16a, 8), (8,
16b)

G13: (8, 15a), (15b,
8)

G17: (13a, 12a),
(12b, 13b)

G6: (18a, 11), (11,
18b)

G10: (8, 19a), (19b,
8)

G14: (15a, 14a),
(14b, 15b)

G18: (12a, 5),
(5,12b)

G7:(11, 17a), (17-
b, 11)

G11: (19a, 20a),
(20b, 19b)

G15: (14a, 6), (6,
14b)

G8: (17a, 16a), (-
16b, 17b)

G12: (20a, 3), (3,
20b)

G16: (6, 13a), (13b,
6)

A separate analysis of the road and rail networks was first per-
formed. The number of containers transportable across each ODP in
isolation is shown in Table 12. It is interesting to note that more trucks
can travel between ODP (2,3), (2,5) and (3,5) than ODP (1,2), (1,3) and
(1,5). This is because there are two independent routes. Hence twice as
much flow is achievable.

Jointly 2166 containers can be moved across the rail network. This
is achieved by transporting 459 containers on ODP (1,5), 868 on (2,1),
418 on (3,1) and 419 on (3,5). This would require 24 trains. If equal
numbers of containers are to be transported on each ODP, the max-
imum flow is 1308 (i.e. 109 per ODP) and would require 24 trains.
Some additional capacity however exists on ODP (1,2), (5,1) and (5,3)
and can be exploited to increase the flow to 1713 containers with 27
trains (see Table 13).

Across the road network, the capacity is limited by the number of
trucks. With no limitation, the maximum flow is 7142 containers with a
fleet of 7142 trucks. One way to achieve this is by transporting 892
containers on ODP (1,2), (2,1), (2,3), (2,5), (3,2), (3,5), (5,2), (5,3).
Hence, no flow occurs between (1,3), (1,5), (3,1), (5,1). If equal num-
bers of containers are to be transported on each ODP, the maximum
flow is 297 per ODP, i.e. 3564. Some additional capacity exists on ODP
(2,3), (2,5), (3,2), (3,5), (5,2) and can be exploited (i.e. 1191, 892, 892,
595, 1191) to increase flow to 6847 containers.

The whole network was analysed and a maximum flow of 9308
containers was identified. The flows for each ODP are shown in
Table 14.

It is possible to add restrictions on the number of vehicles of each
type, for instance the trucks. The following constraint can be added:
∑ ≤ ∀ ∈∈ = veh m MVa A mode m a| m

max
a

where Vm
max is the maximum

number of vehicles across all arcs of mode m. For a limit of 1000 and
2000 trucks, the capacity is 3166 and 4058 containers respectively with
flows as shown in Tables 15 and 16. The table shows that the railway is
predominantly used and trucks are only used to transport containers a
short distance (i.e. between node 2 and 3). Hence doubling the truck
fleet does not double the capacity.

A multi-criteria analysis involving cost and different numbers of
containers per train was then performed. The results are shown in
Fig. 19. The frontiers are more piecewise linear than those obtained for
earlier examples. There are five very distinct segments with fairly
constant gradients within each segment.

For 100 containers per train, the best solution is (5779, 71,309).
This solution is interesting as ODP flows are achieved by combinations
of road and rail usage. The exact details are shown in Table 17. This
solution demonstrates how the model is very capable of achieving flows
at minimum cost by using different modes to best effect. The addition of

Fig. 13. Resulting Pareto frontier [Scenario 3].

Table 10
Details of solution (41596.7, 321049) with no demands.

ODP [1,9] [1,11] [1,13] [1,15] [1,17] [1,19] [1,21] [9,1] [9,11] [9,21] [11,1] [11,9] [11,13] [13,1]
FLOW 1588.2 1582.2 1700 2373.3 2006.7 2856.3 2180.7 1589.3 936.3 1111.1 1584.1 937.4 860 1700
ODP [13,11] [13,15] [15,1] [15,13] [15,17] [17,1] [17,15] [17,19] [19,1] [19,17] [19,21] [21,1] [21,9] [21,19]
FLOW 860 1111.1 2371.1 1111.1 1110.4 2003 1111.1 272.2 2852.9 272.2 1111.1 2183.7 1111.1 1111.1

Table 11
Details of solution (43051.9, 501689) with minimum demands of 500.

ODP [1,9] [1,11] [1,13] [1,15] [1,17] [1,19] [1,21] [9,1] [9,11] [9,21] [11,1]
FLOW 1087.78 874.07 1127.04 1882.59 1651.48 1965.56 1894.82 1089.63 856.67 517.78 875.93
ODP [11,9] [11,13] [13,1] [13,11] [13,15] [15,1] [15,13] [17,1] [19,1] [21,1] [21,19]
FLOW 856.67 513.33 1130.37 513.33 651.11 1879.63 652.22 1653.69 1966.67 1892.59 501.11
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eight extra road arcs between (4,6), (8,9), (9,3), (3,10) with distances
(10, 5, 12, 27) km respectively was then considered. With ODP de-
mands from Table 17 and an upper bound on cost of 71,309, the model
was resolved. The new flow was 5802, i.e. an increase of 24 containers.
The finer details of the flows and paths are shown in Table 18.

The multi-criteria analysis was re-applied for a truck fleet size of
1000 and 2000 respectively. The results are summarised in Fig. 20. This
chart indicates that with an increased truck fleet, extra arcs and routes
may be useful. These facilitate increased flow to an extent. The size of
the vertical segment on the boundary of the Pareto frontier indicates
the presence of many paths that incur long travelling times, and the
need to carefully select routes of shorter duration.

5. Conclusions

This article has introduced a novel optimisation approach for the
assessment of different transportation systems. Our multi-criteria multi-
commodity flow model maximises the flow of commodities and vehicles
but also simultaneously minimises the incurred cost of travel for those
commodities. To our knowledge this feature is not present in other
approaches. This multi criteria approach addresses an inherent weak-
ness of traditional commodity flow models. Traditional commodity flow
models determine the maximum flow but ignore the paths that com-
modities need to take, and the costs incurred for commodities.

Commodities may be forced to travel longer distances and incur more
travelling time, thus limiting the actual number of commodities that
may be transported over time. In contrast, our approach ensures that
commodities take paths with less travelling time and cost.

A sensitivity analysis of flow and travel cost is facilitated by our
approach and a set of candidate solutions (i.e. a Pareto frontier) is
provided. These are non-dominated solutions in contrast to the domi-
nated solution provided by a traditional single objective model. The
Pareto frontier clearly describes the trade-off between increased flow
and cost of travel. Different costs may be integrated and two methods
are suggested. The first is generic and the second is a simplification that
utilizes the well-known BPR function.

Numerical testing highlights that our approach is very versatile and
flexible. The squared terms in the non-linear cost expressions are
modelled very well by piecewise linear functions. Many breakpoints are
not required; and when they were used, we only saw minor differences
in the objective function values and in the observed computing times.
Hence scalability is no issue.

Our testing highlights that a linear Pareto frontier occurs when a
network's flow can be steadily increased without incurring congestion.
In these situations, the network may have underutilised arcs for which
extra flows can be assigned. In networks with less flexibility, congestion
must be endured. The Pareto frontier is then quite curved. In Example
1, there are fewer ways to get around efficiently as opposed to Example

Fig. 14. Real life case study [Scenario 4].
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2. Hence the Pareto frontier for Example 1 is more curved, and the
Pareto frontier for example 2 is quite linear. When specific demands are
placed upon a network, our numerical investigations demonstrate that
the size of the Pareto frontier and the curvature is much reduced. The
effect of adding additional arcs or lanes is normally an increase in ca-
pacity. In some situations however, the capacity does not increase, but
the travel time of commuters can be shown to decrease (i.e. in Example
2 and 5). Many of the frontiers had a vertical segment at the end. The
length of this segment has a direct relationship with how many alter-
native paths can be taken, as well as the presence of arcs and paths that

do not necessarily facilitate increased flow. The size of the vertical
segments describes the presence of many paths that incur long travel-
ling times, and the need to carefully select routes of shorter duration.
The numerical testing also demonstrates that our approach is effective
on mixed mode scenarios like the freight network example. Example 5
demonstrated how our approach can be used to analyse a network with
two modes of travel.

In future research, additional objectives may be considered. Which
objectives need to be added is worth investigating. Furthermore, the
idea of specifying emissions as an additional cost has not been fully

Fig. 15. Analysis of accident impact on ODP [1, 15] with four accident locations.

Fig. 16. Analysis of impact on ODP [1, 19] with six accident locations [Scenario 4].
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developed and investigated. Emissions may be appended to the current
cost function or introduced as a third “independent” objective. It is not
evident without further analysis which option is best. When there are
more than two objectives the complexity of the Pareto analysis in-
creases greatly [9] and it is not a trivial matter to apply the ECM. The

Fig. 17. Freight network consisting of road and rail links.

Fig. 18. Arcs required to model flows on unidirectional rail links.

Table 12
Maximum container flow on individual ODP.

ODP (1,2) (1,3) (1,5) (2,3) (2,5) (3,5)

Road 892 892 892 1785 1785 1785
Rail 868 837 878 837 868 837
Trains 8.68 8.37 8.78 8.37 8.68 8.37

Table 13
Maximum flow of containers across the rail network when ODP demands are equal.

ODP (1,2) (1,3) (1,5) (2,1) (2,3) (2,5) (3,1) (3,2) (3,5) (5,1) (5,2) (5,3)

Container 323 109 109 109 109 109 109 109 109 115 109 292
Trains 4 2 2 2 2 2 2 2 2 2 2 3

Table 14
Maximum flow of 9308 containers across the whole network.

ODP (1,2) (1,5) (2,1) (2,3) (2,5) (3,1) (3,2) (3,5) (5,1) (5,3)

Container 892 459 868 892 1785 418 1785 419 892 892

Table 15
Maximum flow of 3166 containers when truck fleet is restricted to 1000.

ODP (1,3) (1,5) (2,1) (2,3) (3,2) (3,5) (5,3)

Container 419 459 868 256 (road) 743 (road) 0.5 418
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ECM is potentially slow and more sophisticated approaches should be
applied. Further testing of our approach on other freight and mixed
mode networks seems warranted. Scenarios with passenger and freight
and multiple modes should be further investigated.

The resilience of a network is a metric, which is important to ex-
plicitly measure. Further research into the quantification of resilience
seems warranted. This article's approach however can provide some
insights into a network's resilience to accidents or any other incidents
that reduce flow. Accidents on specific arcs were considered and the
vulnerability and resilience of the network was analysed. Accidents
however cause effects on other arcs at the same time and further ana-
lysis and testing is required to capture the effect of this. Accidents di-
rectly affect the traffic that passes through an arc and the associated
ODP flows. Accidents however may affect traffic flows further away on
different ODP because they force traffic to be diverted to other parts of

the network. The diverted flows reduce the capacity to transport
commuters on other ODP's. An analysis that considers and quantifies
the whole network and the knock on effects should be further in-
vestigated.
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Table 16
Maximum flow of 4058 containers when truck fleet is restricted to 2000.

ODP (1,3) (2,1) (2,3) (3,1) (3,2) (5,1) (5,3)

Container 281 868 892 (road) 137 892 (road) 460 525 (107
road)

Fig. 19. Pareto frontier for combined road and rail network [Scenario 5].

Table 17
Flows achievable in solution (5779, 71309).

ODP (1,2) (1,3) (1,5) (2,1) (2,3) (3,2) (3,5) (5,3)

Container 1761 418 459 892 892 892 419 41
Mode both rail rail road road road rail road
Path (1,10,2)

& (1,2)
(1,8,3) (1,8,5) (2,10,1) (2,3) (3,2) (3,8,5) (5,4,3)
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