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ABSTRACT 

This paper reports the application of neural networks for the numerical analysis of steady-state 
axisymmetric flow through an indefinitely long corrugated tube. Meshless global radial basis function 
networks (RBFNs) are employed to represent all dependent variables in the governing differential 
equations. For a better quality of approximation, the networks used here are constructed based on the 
integration process rather than the usual differentiation process. Multiple spaces of network weights for 
each variable are converted into the single space of nodal variable values, resulting in the square system of 
equations with usual size. The governing equations are discretized in the strong form by point collocation 
and the resultant nonlinear system is solved with trust-region methods. The corrugated tube flow of a 
Newtonian fluid, power-law fluid and Oldroyd-B fluid are considered.  With relatively low numbers of data 
points, flow resistance predictions obtained are in good agreement with the benchmark solutions.

INTRODUCTION 

The principal methods of discretization for the 
analysis of non-Newtonian flow include finite 
difference methods (FDM), finite element methods 
(FEM), finite volume methods (FVM), boundary 
element methods (BEM) and spectral methods. 
Although much progress has been made, there still 
remain great challenges for the achievement of 
accurate numerical solutions at high values of 
Weissenberg number (We) and there still exist great 
difficulties in the numerical modeling process such 
as the generation of meshes. 
  
The development of numerical methods without 
using a mesh for the solution of engineering 
problems has been an active research area recently. 
The meshless methods do not require any 
connectivities between data points, resulting in an 
easy process of numerical modeling.  
 
For the group of meshless methods based on radial 
basis function networks (RBFNs), it requires only a 
minimum amount of effort to implement. 
Furthermore, the governing equations involving 
high order or complicated differential operators can 
be discretized in a straightforward manner with 
RBFNs. The networks can be constructed based on 
a differentiation process, namely direct RBFNs 
(DRBFNs) or based on an integration process, 
namely indirect RBFNs (IRBFNs). Previous 
findings showed that the indirect approach 

performs better than the direct approach in terms of 
both solution accuracy and convergence rate [1].  
 
In the present study, the meshless IRBFN method 
is developed to simulate the corrugated tube flow 
of a Newtonian fluid, power-law fluid and 
Oldroyd-B fluid. Nonlinearities of the discretized 
system are handled by using trust region methods 
that retain two best features, namely rapid local 
convergence of the Newtonian iteration method 
and strong global convergence of the Cauchy 
method. The computed results are compared with 
the benchmark solutions obtained by the full 
pseudo-spectral (FCC) and the mixed spectral 
finite difference (PCFD, PSFD) methods [2-4]. 
Two salient features of the proposed high order 
IRBFN method are the mesh-free feature and the 
capability to achieve high accuracy using low 
numbers of data points. 
 

REVIEW of RBFNs 

RBFNs have been proven to have the property of 
universal approximation. The network allows a 
conversion of a function from low dimension space 
(1D-3D) to high dimension space in which the 
function can be expressed as a linear combination 
of RBFs. There is a large class of radial basis 
functions whose design matrices are always 
invertible provided that the data points are distinct 
whatever the number of data points and the 
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dimensionality of problem. On the other hand, the 
Cover theorem, that can be stated as follows: the 
higher the number of neurons (RBFs) used the 
more accurate the approximation will be [5], 
indicates the property of “mesh”  convergence of 
RBFNs.  These important theorems can be seen to 
provide the theoretical basis for the design of 
RBFNs to the field of numerical solution of PDEs. 

 

The superior accuracy of the IRBFN method over 
the DRBFN method can be argued as follows. Any 
inaccuracy (noise) in the assumed RBFN 
decomposition is badly magnified in the process of 
differentiation (the slope of the curve). However, 
the effects of noise can be suppressed by the 
process of integration (the area under curve). The 
approximating functions are expected to be much 
smoother thorough the integration process. 

IRBFNs for SOLUTION of PDEs 

Each dependent variable and its derivatives in the 
governing equations are represented by IRBFNs. 
Prior conversions of the multiple spaces of network 
weights into the single space of nodal variable 
values are employed to form the square system of 
equations of usual size. These closed-form 
representations are substituted into the governing 
equations and the obtained system is then 
discretized by point collocation.  
 
The present method appears to be close to the FCC 
method [4] in the sense a) they are global high 
order methods, b) the governing equations are 
approximated in the strong form by point 
collocation and c) the resultant matrices are dense. 

 

In contrast to the FCC method, the present method 
uses only IRBFNs to represent the field variables 
and their derivatives in both radial and axial 
directions. Furthermore, collocation points in the 
IRBFN method can be chosen randomly, while the 
coordinates of data points in the radial direction in 
the FCC method should be chosen as the roots of 
Chebyshev polynomials. It is known that spectral 
methods are typically employed for “nice 
geometries” . 

 

In the following section, it will be shown that like 
the FCC method, the present IRBFN method can 
produce accurate results using relatively coarse 
densities of data points.  

NUMERICAL RESULTS 

Consider the fluid flow through an infinitely long 
corrugated tube. Relevant geometry parameters are 
defined in Figure 1. Creeping flows of a Newtonian 
fluid and an Oldroyd-B fluid as well as inertial 
flows of a Newtonian fluid and a power-law fluid 
are simulated. To study “mesh”  convergence, three 
densities of 17×17, 21×21 and 25×25 data points 
are employed. Results for the flow resistance (fRe) 
obtained by the IRBFN method and other methods 
are displayed in Tables 1-4 and Figures 2-3. The 
present results are in good agreement with the 
benchmark solutions [2-4] for all tested cases. In 
the case of (a=0.1, N=0.16) (moderate amplitude 
and moderate wavelength), convergence can be 
obtained up to high Weissenberg number, at least of 
about 30 (Figure 2). For the range of We from 0 to 
20, the flow resistance is not much different from 
that obtained at We=0 (Newtonian fluid), which 
looks feasible when compared to the available 
results in the literature. However, the present flow 
resistance is observed to increase quickly when 
We>20. The reason could be that data densities 
become too coarse to capture the solution, 
especially for the stress fields near boundaries. 

SUMMARY 

This paper reports a numerical method based on 
universal high order RBFNs for the analysis of a 
steady-state axisymmetric flow in a corrugated 
tube with the periodic boundary conditions. 
Nonlinearities of the discretized system are treated 
using trust region methods. Like the FCC method, 
the present method can produce accurate results 
using low numbers of data points. The IRBFN 
method is a truly meshless method and can be 
extended straightforwardly to simulate non-
periodic flows. 

REFERENCES 

1. N. Mai-Duy and T. Tran-Cong, Neural Networks 
14, 185 (2001). 
2. S. Pilitsis and A.N. Beris, J. Non-Newtonian 
Fluid Mech. 31, 231 (1989). 
3. S. Pilitsis, A. Souvaliotis and A.N. Beris, J. 
Rheol.  35, 605 (1991). 
4. S. Pilitsis and A.N. Beris,  Comput. Meth. Appl. 
Mech. Engrg. 98, 307 (1992). 
5. S. Haykin,  Neural Networks: A  Comprehensive 
Foundation (Prentice-Hall, New Jersey,1999). 



 Proc. XIVth Int. Congr. on Rheology 
Edited by: 

Copyright 2004 – The Korean Society of Rheology 

August 22-27, 2004 
Seoul, Korea 

 

Table 1. Creeping flow of a Newtonian fluid, 25×25 
points: flow resistance for different tube geometries by 
the IRBFN method and other methods. Good agreement 
is achieved. 

fRe  
Method a=0.2 

N=0.1042 
a=0.3 
N=0.1592 

a=0.286 
N=0.2333 

IRBFN 19.7582 26.4331 26.3814 
FCC        [4] 19.7655 26.437 26.383 
PSFD      [2] 19.765 26.436 26.383 
PCFD      [2] 19.761 26.432 26.377 
FEM        [2] 19.756 26.385 26.293 

 
Table 2. Inertial flow of a Newtonian fluid, a=0.3, 
N=0.16: flow resistance for different Re numbers by 
IRBFNs. Good convergence is achieved for every Re.  

fRe (Error %) Re 
17×17 21×21 25×25 

0 26.45 (0.03) 26.44 (0.00) 26.44 
0.012 26.45 (0.03) 26.44 (0.00) 26.44 

12 27.19 (0.07) 27.18 (0.01) 27.17 
22.6 28.57 (0.09) 28.55 (0.02) 28.55 
51 31.75 (0.02) 31.75 (0.01) 31.75 
73 33.43 (0.06) 33.45 (0.01) 33.45 
132 36.42 (0.33) 36.54 (0.01) 36.54 

207.4 38.68 (0.80) 39.02 (0.05) 38.99 
264 39.77 (1.31) 40.34 (0.09) 40.30 

397.2 41.13 (3.12) 42.57 (0.26) 42.45 
783 -------------- 46.08 (0.75) 45.74 

 
Table 3. Inertial flow of a Newtonian fluid: flow 
resistance by the IRBFN method and other methods. 
GSM-Galerkin spectral method, GFE-Galerkin finite 
element. The IRBFN and the FCC results are in the 
most agreement. 

fRe  
Re IRBFN 

25×25 
GSM 

[4] 
FCC [4] 

Nx=16,Nc=33 
GFE [4] 

Nr=40,Nz=40 
0 26.44 26.4 26.44 26.41 

0.012 26.44 26.4 26.44 26.41 
12 27.17 27.1 27.17 27.09 

22.6 28.55 28.5 28.55 28.44 
51 31.75 31.7 31.74 31.69 
73 33.45 33.4 33.44 33.40 
132 36.54 36.7 36.52 36.53 

207.4 38.99 38.9 38.96 38.93 
264 40.30 39.7 40.24 40.15 

397.2 42.45 40.6 42.34 42.11 
783 45.74 41.2 45.58 45.07 

 
Table 4: Inertial flow of a power-law fluid (n=0.54, 
k=1), a=0.3, N=0.1592: flow resistance by the IRBFN 
and the PCFD methods. The IRBFN results agree well 
with the PCFD results. 

fRe  
Re IRBFN 

25×25 
PCFD [3] 

Nx=16,Np=100 
0 9.1268 9.1052 

1.528 9.1434 9.1240 
12.484 9.8270 9.8508 
21.581 10.3788 10.3885 
36.912 11.0120 11.0083 
50.430 11.4189 11.3988 
62.905 11.7202 11.6876 
85.934 12.1586 12.1067 
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Figure 1. ‘ ‘Wiggly’’ tube problem: geometry. The 
shaded area represents a unit computation cell. 
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Figure 2. Geometry (a=0.1, N=0.16), Oldroyd-B fluid: 
the plot of flow resistance (fRe) versus Weissenberg 
number (We) using three relatively coarse 
discretizations (17×17, 21×21 and 25×25 data points). 
 

 

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
17

17.1

17.2

17.3

17.4

17.5

17.6

17.7

17.8

17.9

18

We

fR
e

FCC (16× 33)
IRBFN(25× 25)

 
Figure 3. Geometry (a=0.1, N=0.5), Oldroyd-B fluid: 
Comparison of the flow resistance obtained by the 
present IRBFN method and that obtained by the FCC 
method [4] . Good agreement is achieved. 


