
 

 

* Corresponding author. Tel: +61416080049, Fax: +61746312920, E-mail address:  behshad.jodeirishokri@usq.edu.au (B. Jodeiri Shokri). 
Journal Homepage: ijmge.ut.ac.ir 

 
 

IJMGE 56-1 (2022) 1-9 DOI: 10.22059/IJMGE.2021.313278.594874 

  Determination of ozone concentration using gene expression 
programming algorithm (GEP)- Zrenjanin, Serbia 

Hesam Dehghani a, Milica Velicković b, Behshad Jodeiri Shokri c, *, Ivan Mihajlovic b, Djordje 
Nikolic b, Marija Panic b 

a Department of Mining Engineering, Hamedan University of Technology (HUT), Hamedan, Iran 

b University of Belgrade, Technical Faculty in Bor, Bor, Serbia 
c School of Civil Engineering and Surveying, University of Southern Queensland, Queensland, Australia  

 
 

A B S T R A C T 

 

As one of the hazardous pollutants, ozone (O3), has significant adverse effects on urban dwellers' health. Predicting the concentration of ozone 
in the air can be used to control and prevent unpleasant effects. In this paper, an attempt was made to find out two empirical relationships 
incorporating multiple linear regression (MLR) and gene expression programming (GEP) to predict the ozone concentration in the vicinity 
of Zrenjanin, Serbia. For this purpose, 1564 data sets were collected, each containing 18 input parameters such as concentrations of air 
pollutants (SO2, CO, H2S, NO, NO2, NOx, PM10, benzene, toluene, m- and p-xylene, o-xylene, ethylbenzene), and meteorological conditions 
(wind direction, wind speed, air pressure, air temperature, solar radiation, and relative humidity (RH)). In contrast, the output parameter was 
ozone concentrate. The correlation coefficient and root mean squared error for the MLR were 0.61 and 21.28, respectively, while the values 
for the GEP were 0.85 and 13.52, respectively. Also, to evaluate these two methods' validity, a feed-forward artificial neural network (ANN) 
with an 18-10-5-1 structure has been used to predict the ozone concentration. The correlation coefficient and root mean squared error for the 
ANN were 0.78 and 16.07, respectively. Comparisons of these parameters revealed that the proposed model based on the GEP is more reliable 
and more reasonable for predicting the ozone concentrate. Also, the sensitivity analysis of the input parameters indicated that the air 
temperature has the most significant influence on ozone concentration variations. 
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1. Introduction 

In recent years, the increased concentration of atmospheric pollutants 
and their association with human health in metropolitan areas and 
developing countries has become important. Among all atmospheric 
pollutants, the concentration of ground-level (tropospheric) ozone 
produced as a result of the photochemical process has increased more 
than twice over the last century from 1900 to 1998 as reported by 
European Environment Agency (EEA) [1, 2]. Ozone re-enters the 
troposphere and reaches the earth's surface with the reaction with the 
pollutant chemicals produced and emitted at the earth's surface. In this 
case, ozone has a destructive and polluting role because, along with the 
chemicals, it severely damages other vital tissues of animals and plants. 
At low altitudes, ozone and smoke, and steam in the air exacerbate the 
pollution in many major and industrial cities worldwide. Ozone acts as 
greenhouse gases in the lower atmosphere (troposphere). The process 
of formation and depletion of the ozone layer in the lower layers is 
highly nonlinear [3], and the increase in the ozone density at lower 
points is effective in raising the earth's overall temperature. Ozone 
concentration is one of the major problems of air pollution for public 
health and the environment, which is not directly released by human 
activities. It is a secondary pollutant caused by the reaction of nitrous 
oxide (NOx), carbon monoxide (CO), and volatile organic compounds 
(VOC) in the presence of UV rays, which are emitted by human 

activities [4- 7]. The high oxidizing potential of ozone during breathing 
can cause serious respiratory problems, chest pain, asthma attacks, 
bronchitis, headaches, and many other human problems. Therefore, 
several different but related models need to be developed. To predict 
future ozone concentration, it is necessary to develop a model that can 
describe the complex relationships between the ground-level ozone and 
a large number of variables involved in its formation or depletion. There 
are various methods in the scientific literature for predicting ozone 
concentration. The predictions are based on the development of three 
different models [8]: (a) deterministic models, (b) physical models, and 
(c) statistical models. The atmospheric scattering models simulating the 
atmosphere's physical and chemical processes have been previously 
used to predict the ozone concentration [9]. However, such models are 
not suitable because they require the knowledge of specific aspects of 
the reaction, complex calculations, and a large number of input 
parameters [3, 10]. Keeping these drawbacks in mind, the statistical 
models have begun to be used as alternatives to deterministic and 
physical models for the ozone level prediction. The simplicity of the 
models shows their advantage; however, a serious disadvantage is a fact 
that they only relate to a particular area because they are based on local 
data [8, 11, 12]. Although the linear models are easier to use and widely 
accepted, they do not consider the ozone's nonlinearities. On the other 
hand, these defects can be remedied by neural networks [13]. For many 
years, researchers have estimated the ozone concentration using various 
smart methods. Arsić et al. investigated the prediction of ozone 
concentration in the ambient air using the linear multivariate regression 
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and artificial neural network methods. They used the statistical 
modeling results of ground-level ozone concentration in the vicinity of 
Zrenjanin, Serbia. They considered two categories of parameters in their 
study: concentration of SO2, CO, H2S, NO, NO2, NOx, PM10, benzene, 
toluene, m- and p-xylene, o-xylene, ethylbenzene in air and 
meteorological parameters (wind direction, wind speed, air pressure, air 
temperature, solar radiation and relative humidity (RH)) as input 
parameter and ozone concentration as an output parameter. The 
multiple linear regression (MLR) and artificial neural network (ANN) 
analyses were used as a tool for the mathematical analysis of the 
occurrence. The results showed that ANN provides a better estimate of 
ozone concentration, while the MLR model once again proved to be less 
efficient in accurately predicting the ozone concentration [14]. Mishra 
and Goyal investigated the neuro-fuzzy approach to predict the ozone 
episodes in India's Delhi metropolitan area. The MLR, ANN, and neuro-
fuzzy (NF) artificial intelligence techniques were applied. The air 
pollutants and meteorological parameters were utilized to analyze the 
ozone episode. Also, correlation coefficient (R), normalized mean 
square error (NMSE), fractional bias (FB), and index of agreement 
(IOA) was considered as the objective functions. The statistical analysis 
showed that artificial intelligence implementation has a more 
reasonable agreement with the observed values [4]. Fontes et al. 
addressed the question as to whether artificial neural networks can be 
used to predict the source of ozone episodes. They used the multilayer 
perceptron (MLP) with a hidden layer to automate the ozone episode 
classification according to air quality and meteorological variables from 
long data series between 2001 and 2010. They found that with a small 
complexity model, the mean error is obtained about 2-7% (depending 
on the scenario), which can be a good generalization. The results 
suggested that such a tool can be used to help the authorities manage 
the ozone [15]. Samdian-Fard et al. made a comparative analysis of 
ozone level prediction models using gene expression programming 
(GEP) and the MLR. In this study, they presented the results of two 
diagnostic models including GEP, which is a variable of genetic 
programming (GP) and MLR to predict the ozone levels in real-time up 
to 6 hours ahead in four stations in Bilbao, Spain. They considered the 
GEP inputs as weather conditions (wind speed and direction, 
temperature, relative humidity, pressure, solar radiation, and thermal 
gradient), hourly ozone level, and traffic parameters (number of 
vehicles, occupation rate, and speed), which were measured from 1993 
to 1994. They compared the performance of the developed models with 
the observed values and evaluated the model using specific performance 
measures for the air quality models developed in the validation model 
and recommended by the US Environmental Protection Agency 
(USEPA). They found that GEP provides superior predictions in most 
cases [16]. Baawain and Al-Serihi used a systematic approach to predict 
air pollution at ground level (around an industrial port) using ANN. 
They proposed a precise method of preparing the air quality data for 
achieving the more accurate air pollution prediction models based on 
the ANN. The models predict the daily concentrations of air pollutants 
at ground level, namely CO, PM10, NO, NO2, NOx, SO2, H2S, and O3 
measured by the air quality control station in Ghadafan village. The 
models' training is based on the MLP method with the back-propagation 
(BP) algorithm. The results indicated an excellent agreement between 
the actual and predicted concentrations since the values of the multiple 
coefficients of determination (R2) for all ANN models exceed 0.70. The 
results also revealed that the importance of temperature in the daily 
variations of O3, SO2, and NOx. The wind speed and wind direction play 
important roles in the daily variations of NO, CO, NO2, and H2S. The 
PM10 concentration was affected by almost all the measured 
meteorological parameters [17]. Geng et al. measured the properties of 
ozone, NOx, and VOC in Shanghai, China. They investigated the spatial 
and temporal variations of O3 and its precursors (NOx and VOCs) and 
the precursors' influence on O3 formation. A chemical mechanism 
model (NCAR-MM) was used to evaluate the sensitivity of O3 formation 
to NOx and VOC concentrations. The results show that the 
concentration of O3 in rural areas is higher than that in the city center. 
The results also indicated that the highly reactive (aromatic) VOCs play 
an important role in determining the O3 formation. The 

toluene/benzene ratio showed that cars play an important role in 
forming O3 in Shanghai. The further increase in Shanghai vehicles could 
lead to high potential O3 concentration in the future [18]. Stathopoulou 
et al. investigated the effect of temperature on the tropospheric ozone 
(O3) concentration in Athens' urban and photochemical polluted areas. 
The hourly values of ambient air temperature used to study the impact 
of urban heat islands were recorded in twenty-three experimental 
stations in Athens, while the ozone concentration was measured at three 
stations for two years (1996 to 1997). The linear correlation between 
ozone concentration and air temperature and the temporary changes of 
temperature and ozone concentrations were calculated and analyzed for 
the test stations. Besides, they used a neural network method to 
investigate the influence of temperature on ozone concentration values 
in Athens's greater region. The neural network model used ambient air 
temperature as one of the input parameters and found that temperature 
is a dominant parameter that significantly affects the ozone 
concentration values [19]. Sousa et al. used MLR and principal 
component-based artificial neural networks to predict the ozone 
concentration. They compared the developed model with MLR, ANN-
based on principal data, and principal component regression. The results 
showed that the use of principal components as input improves the 
model prediction by reducing the complexity and eliminating data [20]. 
Bandyopadhyay and Chattopadhyay investigated the single hidden-
layer ANNs models compared with MLR models to predict the total 
ozone time series in Arosa, Switzerland. The single-layer neural network 
model was developed with a variable number of nodes. The performance 
was evaluated by the least-squares method and error estimation, and 
compared with MLR models. Consequently, they identified a hidden 
layer model with 8 hidden nodes as the best prediction model [21]. 
Wang et al. investigated daily maximum ozone level prediction using the 
combined neural networks and statistical properties. This study aimed 
to develop an improved neural network model that combines adaptive 
radial basis function (ARBF) of the network with the statistical 
properties of ozone in the selected specific regions and is used to predict 
the maximum daily ozone level. The improved method uses the hourly 
time series data collected at three air pollutant monitoring stations in 
Hong Kong during 1999 and 2000. The simulation results show the 
effectiveness and reliability of the proposed method [22]. Nishanth et 
al. studied the changes in the ground-level ozone and NOx concentration 
in India. The results showed that the highest concentrations of ozone in 
the afternoon and the minimum values in the early hours of the morning 
and reported the highest ozone mix ratio values in winter [23]. Prybutok 
et al. developed a neural network model to predict the daily maximum 
ozone levels and compared it with two conventional statistical models, 
regression and Box-Jenkins ARIMA [24]. Zhu et al. developed a novel 
ozone prediction model based on the ozone generation mechanism in 
the corona discharge region [25]. The results showed that the neural 
network model is more accurate than the tested regression and Box-
Jenkins ARIMA models. The ground-level ozone has been measured in 
Serbia since 2008. However, few comprehensive studies have been 
conducted on the formation, concentration, and potential risks for 
human health. For this reason, this study aimed to determine the 
probable pattern of dependence, on the one hand, between the 
concentration of ozone in the ambient air and, on the other hand, other 
pollutants and meteorological conditions. Such a model makes it 
possible to develop other measures that can be used to control the 
concentration of ozone in the ambient air. The Banat region (northeast 
of Serbia) represents Europe's most fertile agricultural areas as the 
measurement site. The increased ozone concentration has been 
recorded in this area, which is a potential risk to human health and plant 
growth [26]. Hybrid models, combining the benefits of some models, 
are suggested to achieve better prediction, and the decomposition 
approaches such as CEEMD enhance the performance of hybrid models 
[27]. Alomar et al. were applied the wavelet transform (WT) approach 
to handling input variables before introducing them to ANN. This 
approach attempts to remove the noise impacts, which decreases the 
accuracy of simulation processes. Additionally, to improve ANN model 
performance, selecting a suitable type of transfer function with effective 
input combinations was thoroughly investigated before introducing the 
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WT approach. The hybrid model (W-ANN) was also compared to the 
classical ANN in predicting one-hour ozone concentrations. The results 
show that the hybrid model (W-ANN) reported fewer errors than the 
conventional ANN modeling approach [28]. According to the authors' 
best review, many AI techniques were developed and proposed for 
predicting future ozone concentrations. However, their effectiveness is 
different. Furthermore, depending on the meteorological condition, 
amount of pollutant, and the location of each measurement station, the 
ozone, and its effects are different. The previous studies' biggest 
advantage was to consider the effect of different parameters on the 
ozone concentration. Nevertheless, few studies have attempted to 
minimize this phenomenon in addition to predicting it. Considering the 
disadvantages caused by increasing the ozone amount and its 
importance from many researchers' viewpoints, this paper studied the 
undesirable ozone concentration and its influential parameters in 
Zrenjanin, Serbia. For achieving this aim, a mathematical equation was 
developed using GEP.  

2. Gene expression programming 

Gene expression programming (GEP) algorithm is a method for 
developing computer programs and mathematical modeling based on 
evolutionary computation inspired by natural evolution. This method 
was devised by Ferreira in 1999 and formally introduced in 2001 [29]. 
Since then, GEP has been applied in different scopes of science as 
reliable predicting tools. For instance, Jodeiri Shokri et al. (2020), used 
GEP for estimating silver price by using historical data [30]. In another 
research, Jodeiri Shokri et al. (2020) applied this algorithm for 
investigating acid mine drainage (AMD) throughout copper tailing 
particles [31]. Shakeri et al. (2020) predicted blast-induced ground 
vibration by coupling GEP and MLR [32].  

The GEP algorithm combines the two former inheritance algorithms' 
dominant view to cover both ones' weaknesses. In this method, the 
chromosome genotype has a linear structure similar to that of the 
genetic algorithm (GA). The chromosomes' phenotype is a tree 
structure with variable length and size similar to the genetic 
programming (GP) algorithm. The GEP algorithm employs the Karva 
language. The multiple genes are used for multiple chromosome 
structures and create sub-trees from multiple genes that provide better 
adaptability and responsiveness to the algorithm. The flowchart or 
process of the GEP algorithm is shown in Figure 1, where the initial stage 
of the algorithm of random population generation (chromosome) 
begins. The generated population is then expressed, and each individual 
is evaluated and selected according to the evaluation function. By 
modifying the selected individuals, they begin to replicate the 
populations with new traits. Like the older generation, the new 
individuals repeat the processes that continue until the right solution is 
reached [29]. 

The simplicity of the gene expression programming algorithm allows 
encoding any part of the program, making the evolution effective. The 
expression tree and chromosome are the two main parameters of this 
algorithm, where the expression trees display the information encoded 
on the chromosomes. Displaying this information is done by converting 
the information from the chromosome to the expression tree. This code 
is a one-to-one relationship between chromosomes, functions, and 
terminals. The linear chromosome components include the terminals 
(A, B, C, ...) and functions (+, -, ...). In the GEP algorithm, the lengths of 
chromosomes and genes are constant, and only the length of the open 
reading frame (ORF) changes. This causes the GEP terminal not to 
match the terminal of the genes. This matching is because of the non-
coding regions at the end of the gene. The non-coding regions in GEP 
allow the operators to work without restriction and generate genetic 
diversity to achieve evolution. According to Equation (1), genes are 
composed of two parts, Head (h) and Tail (t), each having different 
functions. The head part is used to encode the functions, and a tail part 
is a place for the terminals to ensure the formation of a good structure. 
The number of function arguments means the number of variables the 
function needs for its operation. For example, the sin (x) function has 

one argument, and the if (x, y, z) function has three arguments. There 
are the following rules for drawing an expression tree, and a 
hypothetical example in Figure 2 is used for a better understanding: 

 

 
Figure 1. Flowchart of GEP algorithm 

 
1. Read the root of the expression tree, which lies above the tree. 
2. Specify the number of output nodes depending on the root (for 

example, the root has one output node). 
3. Provide existing functions after the root and define output nodes. 
4. Make the number of nodes in the next row equal to the current row 

arguments' sum. 
5. Fill the nodes in each row from left to right in the same order as the 

gene members. 
6. Continue this process until having the only terminal at the end [33]. 

 (1) t = h (n-1) + 1 
 

 
Figure 2. (a) Karva language, (b) expression tree, (c) final relation 

 

3. Case study 

The present research was conducted in the Banat region (Serbia), one 
of the most fertile parts of Europe. This region extends over three 
countries: the northern part belongs to Hungary, the eastern part 
belongs to Romania, and the western part belongs to Serbia. The Serbian 
part of Banat covers an area of 8997 km2. Zrenjanin is the center of this 
region, with a population of 80,000. The climate, typical for this area, is 
moderate continental with four seasons, while the average annual 
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temperature is 11.2°C. Wind direction is mostly east, southeast or 
northwest. The average number of sunny hours in the area is 2000 to 
2200 per year, and the average relative air humidity is 75%. A detailed 
description of the study area can be found in [14, 26].  

Continuous measurement of the air pollutants, used for the modeling 
of Ozone concentration presented in this research, was facilitated in an 
automatic measuring station located in Zrenjanin. This station measures 
air pollution levels originating from exhaust gasses and other sources of 
pollution. Details on the measurement intervals, calibration of the 
equipment, quality control, and standardization are presented in [26]. 

4. Data collection 

To model the ozone concentration, the required data were used from 
an automated measurement station in the vicinity of Zrenjanin (Serbia). 

The data were collected over one year at different times so that all 
pollutants and all meteorological parameters were simultaneously 
measured. This period is as follows: 

1. Winter: February 1-8 and 23-28; December 21-31; 
2. Spring: May 5-15; 
3. Summer: July 13-18; September 1-20; and 
4. Fall: October 1-22. 
During these 83 days, the measurements were made hourly, from 0:00 

to 24:00, and the hourly averages were calculated. As such, a 
representative database was created for accurate statistical analysis 
consisting of 1564 data series. The obtained database is shown in Table 
1. After the investigations, 18 data were used as input parameters and the 
ozone concentration as an output parameter to construct the ozone 
concentration, prediction model. The statistical indicators of the input 
and output parameters are presented in Table 1. 

 

Table 1. Statistical indicators of input and output parameters 

Type Parameter Symbol Range Min Max Mean 
Std. 

Deviation Variance 

Input 

SO2 (μg/𝑚3) d0 220.40 0 220.4 17.74 22.59 510.09 
CO (μg/𝑚3) d1 480.00 0.7 480.7 31.09 37.52 1407.77 
H2S (μg/𝑚3) d2 150.30 4 154.3 34.07 22.79 519.46 
NO (μg/𝑚3) d3 864.40 5.5 869.9 81.56 74.91 5611.21 
NO2 (μg/𝑚3) d4 6337.00 0 6337 781.27 628.44 394931.80 
NOx (μg/𝑚3) d5 73.91 0 73.91 2.01 6.19 38.36 
PM10 (μg/𝑚3) d6 497.40 0 497.4 43.85 38.75 1501.18 
Benzene (μg/𝑚3) d7 22.23 0 22.23 1.78 2.62 6.87 
Toluene (μg/𝑚3) d8 90.40 0 90.4 2.71 4.24 17.99 
m,p-Xylene (μg/𝑚3) d9 34.14 0 34.14 1.66 2.87 8.24 
o-Xylene (μg/𝑚3) d10 25.81 0 25.81 0.62 1.76 3.10 
Ethylbenzene (μg/𝑚3) d11 15.97 0 15.97 0.53 1.45 2.10 
Wind direction (º) d12 345.00 9 354 188.69 70.58 4981.78 
Wind speed (m/s) d13 452.82 0.18 453 2.03 11.56 133.67 
Air temperature (ºC) d14 47.70 -12.5 35.2 15.11 9.70 94.00 
Air pressure (hPa) d15 993.00 27 1020 993.15 113.24 12823.18 
Solar radiation (W/m2) d16 844.00 4 848 139.87 215.66 46510.81 
Relative humidity-RH (%) d17 82.00 10 92 64.71 16.98 288.46 

Output Ozone concentration (g/𝑚3)  y 160.70 1.3 162 69.23 34.35 1179.70 

In the next step, the data were divided into two parts: model-building 
data and validation data, where 70% (1036 data) were used for the model 
building, and 30% (528 data) were used for the validation. The training 
and validation data were randomly selected. 

 

5. Modeling of ozone concentration using GEP 

In the present study, GEP software was used to analyze the final 
relationship between the initial and ozone concentrations. GEP 
modeling consists of five main steps: 

Step I: The first step in the GEP modeling is to select the fitness 
function. In this study, the MSE, RMSE, and RRSE fitness functions 
were used to predict the ozone concentration. The relationships 
between each of the fitness functions are listed below. Among these 
functions, based on the results in Table 2, the RRSE fitness function 
yielded the best results for predicting the ozone concentration. 

MSE =
1

N
∑ (Xipred − Ximes)2

N

i=1
 (2) 

RMSE = √
1

N
∑(Xipred − Ximes)2
N

i=1

 (3) 

RRSE =  √
∑ (Xipred − Ximes)2N
i=1

∑ (Ximes̅̅ ̅̅ ̅̅ ̅̅ − Ximes)2N
i=1

 (4) 

Where, Xipred is the predicted Ozone concentration, and Ximes is the 
measured Ozone concentration. 

Step II: This step involves selecting a set of terminals and functions to 
form the chromosomes. The terminals are selected according to the 
inputs and outputs of the model. In the present study, 18 parameters 
listed in Table 1 are considered input and the ozone concentration. Also, 
at this step, the most appropriate functions are determined to obtain the 
final Equation. The functions used in the model include {F = +, -, *, /, 
sqrt, x, x^2, x^3, x^(1/3), 1/x, exp(x), log(x)}. 

Step III: This step involves selecting the chromosomal structure. This 
step is done by trial and error. For this purpose, more than 40 models 
were developed. In this paper, 30 chromosomes were selected. 

Step IV: In this step, the type of link function is select. In this paper, 
the sum link function was used to predict the ozone concentration in all 
models. 

Step V: Finally, a set of genetic and rate operators are produced at this 
step. Table 3 lists the parameters used in this software [30]. Finally, the 
values of R2 and other parameters were obtained concerning the models 
in Table 2, which had the best results among all models, and the results 
are listed in Table 4. 
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Table 2. Values of parameters used to predict ozone concentration 

GEP Parameter 
Model 

1 2 3 4 5 

Fitness function RMSE RMSE MSE RRSE RRSE 

Inversion rate 0.00546 0.00546 0.00546 0.00546 0.00546 

IS transportation rate 0.00546 0.00546 0.00546 0.00546 0.00546 

RIS transportation rate 0.00546 0.00546 0.00546 0.00546 0.00546 

One-point recombination rate 0.00277 0.00277 0.00277 0.00277 0.00277 

Two-point recombination rate 0.00277 0.00277 0.00277 0.00277 0.00277 

Gene size 15 21 21 19 17 

Head size 7  10 10  9 8  

Tail size 8  11 11 10 9  

Mutation rate 0.00138 0.00138 0.00138 0.00138 0.00138 

Number of  Chromosome 30 30  30  30 30 

Number of genes 4  3  4 3 4 

Gene recombination rate 0.00277 0.00277 0.00277 0.00277 0.00277 

Gene transportation rate 0.00277 0.00277 0.00277 0.00277 0.00277 

Training 70% 70% 70% 70% 70% 

Validation 30% 30% 30% 30% 30% 

Number of generation 10000 10000 10000 10000 10000 

 
 

Table 3. GEP functions definition 

Name Representation Definition 

Addition + (x+y) 
Subtraction - (x-y) 
Multiplication * (x*y) 
Division / (x/y) 
Exponential Exp exp(x) 
Natural logarithm Ln ln(x) 
Inverse Inv 1/x 
x to the power of 2 X2 x^2 
x to the power of 3 X3 x^3 
Cube root 3Rt x^(1/3) 
Addition with 3 inputs Add3 (x+y+z) 
Multiplication with 3 inputs Mul3 (x*y*z) 
Average of 2 inputs Avg2 avg(x,y) 
Sine Sin sin(x) 
Cosine Cos cos(x) 
Tangent Tan tan(x) 
Arctangent Atan arctan(x) 
Hyperbolic tangent Tanh tanh(x) 
Complement NOT (1-x) 

 
 

Table 4. Performance indicator values for building GEP models to predict ozone concentration 

Model 
Fitness 

function 
Training   Testing 

R2 RMSE   R2 RMSE 

1 RMSE 0.76 16.77  0.75 17.09 

2 RMSE 0.73 17.81  0.73 17.96 

3 MSE 0.75 17.09  0.75 16.96 

4 RRSE 0.79 16.44  0.85 13.52 

5 RRSE 0.76 16.82  0.76 16.78 

 
 
According to Table 4, among the models built using the GEP, Model 

4 was selected as the best model among the five final models due to the 
high R2 value and low RMSE value. Using the GEP algorithm, the last 

relationship was obtained to predict the ozone concentration in the 
expression tree (Figure 3) and the last relationship (Equation 5). In this 
Equation, C0 to C9 are the numerical constants. 
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(5) 

𝒚 = (𝒄𝟗
𝟐 − (√(𝒅𝟐 − 𝒅𝟏𝟑) − (𝒅𝟏𝟒 × (𝒅𝟏𝟒 × 𝒄𝟒))

𝟑
)) + (((𝒅𝟏𝟒 × √𝒅𝟖 × 𝒄𝟐) −

𝒅𝟖) − 𝒄𝟐) +

(

 
 
𝒅𝟏𝟒 − ((√√𝒅𝟖

𝟑 × (𝒅𝟑 × 𝒅𝟏𝟎)
𝟑𝟑

) × 𝒅𝟏𝟒)

)

 
 
            

The values of the final constant coefficients in Equation (5) are given 
in Table 5. By substituting the coefficients into Equation (5), the final 
Equation (6) is obtained 

 
 

Table 5. Constant coefficients in the GEP model 

C0 C1 C2 C3 C4 C5 C6 C7 C8 C9 

0.0 0.0 2.37 0.0 4.93 0.0 0.0 0.0 0.0 6.51 

 

 
Sub-ET1 Sub-ET2 Sub-ET3 

 
  

Figure 3. Expression tree for GEP model to predict ozone concentration 

. 

(6) 

𝐲 = ((6.51)2 − (√(𝐻2𝑆 − 𝑤𝑖𝑛𝑑 𝑠𝑝𝑒𝑒𝑑) − (𝐴𝑖𝑟 𝑡𝑒𝑚𝑝𝑟𝑎𝑡𝑢𝑟𝑒 × (𝐴𝑖𝑟 𝑡𝑒𝑚𝑜𝑟𝑎𝑡𝑢𝑟𝑒 × 4.93))
3

)) + (((𝐴𝑖𝑟 𝑡𝑒𝑚𝑝𝑟𝑎𝑡𝑢𝑟𝑒 × √𝑇𝑜𝑙𝑢𝑒𝑛𝑒 × 2.37) −

𝑇𝑜𝑙𝑢𝑒𝑛𝑒) − 2.37) + (𝐴𝑖𝑟 𝑡𝑒𝑚𝑝𝑟𝑎𝑡𝑢𝑟𝑒 − ((√√𝐴𝑖𝑟 𝑡𝑒𝑚𝑝𝑟𝑎𝑡𝑢𝑟𝑒3 × (𝑁𝑂 × 𝑜𝑋𝑦𝑙𝑒𝑛𝑒)
33

) × 𝐴𝑖𝑟 𝑡𝑒𝑚𝑝𝑟𝑎𝑡𝑢𝑟𝑒)) 

 

6. Validation 

A new mathematical model was developed in the present paper using 
the gene expression programming algorithm to predict the ozone 
concentration in ambient air with effective parameters. The obtained 
results can be compared with the models obtained from other methods 
to evaluate the proposed relation's efficiency. The multivariate 
regression and artificial neural networks were used for this purpose. In 
the following, the models proposed by these methods are presented, and 
finally, the results are compared with the determination coefficient (R2), 
and root mean squared error (RMSE) indicators. 

6.1. Multivariate regression 

The linear dependence of the air ozone concentration (Y) on the 
input parameters (d0-d18) was obtained using IBM SPSS v25 software. 

Among the constructed models, the results of the top four models are 
shown in Table 6. It should be noted that the statistical analyses have 
been extensively used in suggesting empirical relationships in various 
scope of science. For instance, Jodeiri Shokri et al. (2014) suggested 
several relationships for predicting AMD generation throughout coal 
waste particles [34]. Soleimani and Jodeiri Shokri applied statistical 
methods for predicting chromite ore production rates in Iran [35]. 
Comparing the obtained results shows that model 4 with an R-square of 
0.63 and RMSE of 21.0781 was selected as the best model for the training 
data. The best MLR model is presented in Eq. 7. According to Equation 
7, the R-square and RMSE values for the validation data were 0.61 and 
21.28, respectively. 

the Figure 4 demonstrates a histogram for the analysis of the 
modeling error. The modeling error distribution function is normal, 
confirming regression test has been done correctly. 

 

 

 

(7) 

 

 

Table 6. Comparison of statistical criteria of models obtained using MLR for training data 

No. Model R 
Square RMSE 

1 

𝒚 = 89.403 + (1.438 × 𝑑14) + (−28.414 × 𝑑11) + (10.729 × 𝑑9) + (−0.005 × 𝑑4)
+ (−0.497 × 𝑑17) + (0.134 × 𝑑6) + (−0.827 × 𝑑5) + (−0.249 × 𝑑2)
+ (−3.399 × 𝑑13) + (0.114 × 𝑑0) + (−1.910 × 𝑑10) + (0.012 × 𝑑16)
+ (−1.491 × 𝑑7) 

0.624 21.2315 

2 

𝒚 = 89.345 + (1.431 × 𝑑14) + (−26.109 × 𝑑11) + (10.809 × 𝑑9) + (−0.005 × 𝑑4)
+ (−0.495 × 𝑑17) + (0.137 × 𝑑6) + (−0.816 × 𝑑5) + (−0.246 × 𝑑2)
+ (−3.382 × 𝑑13) + (0.109 × 𝑑0) + (−2.161 × 𝑑10) 

0.626 21.1748 

3 

𝒚 = 84.541 + (1.362 × 𝑑14) + (−27.246 × 𝑑11) + (11.376 × 𝑑9) + (−0.006 × 𝑑4)
+ (−0.428 × 𝑑17) + (0.136 × 𝑑6) + (−0.813 × 𝑑5) + (−0.215 × 𝑑2)
+ (−3.839 × 𝑑13) + (0.108 × 𝑑0) + (−2.200 × 𝑑10) + (0.010 × 𝑑16) 

0.628 21.1254 

4 

𝒚 = 87.948 + (1.210 × 𝑑14) + (−27.343 × 𝑑11) + (12.319 × 𝑑9) + (−0.007 × 𝑑4)
+ (−0.439 × 𝑑17) + (0.156 × 𝑑6) + (−0.794 × 𝑑5) + (−0.201 × 𝑑2)
+ (−3.940 × 𝑑13) + (0.099 × 𝑑0) + (−1.910 × 𝑑10) + (0.012 × 𝑑16)
+ (−1.491 × 𝑑7) 

0.630 21.0781 

 

𝒚 = 87.948 + (1.210 × 𝐴𝑖𝑟 𝑡𝑒𝑚𝑝𝑟𝑎𝑡𝑢𝑟𝑒) + (−27.343 × 𝐸𝑡ℎ𝑦𝑙𝑏𝑒𝑛𝑧𝑒𝑛𝑒) + (12.319 × 𝑚𝑝𝑋𝑦𝑙𝑒𝑛𝑒) + (−0.007 × 𝑁𝑂2) +
(−0.439 × 𝑅𝐻) + (0.156 × 𝑃𝑀10) + (−0.794 × 𝑁𝑂𝑥) + (−0.201 × 𝐻2𝑆) + (−3.940 ×𝑊𝑖𝑛𝑑 𝑠𝑝𝑒𝑒𝑑) + (0.099 × 𝑆𝑂2) +
(−1.910 × 𝑜𝑋𝑦𝑙𝑒𝑛𝑒) + (0.012 × 𝑆𝑜𝑙𝑎𝑟 𝑟𝑎𝑑𝑖𝑎𝑡𝑖𝑜𝑛) + (−1.491 × 𝐵𝑒𝑛𝑧𝑒𝑛𝑒) 
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Figure 4. Histogram for the analysis of the modeling error 

 

6.2. Artificial Neural Network 

For finding the ability of GEP in predicting the ozone concentration, 
the obtained results were compared with the results of the artificial 
neural network algorithm. This algorithm is so accurate, and many 
researchers used it for predicting various problems [36, 37]. For this 
purpose, a multilayer perceptron (MLP) network was used in MATLAB 
software. The training and validation datasets were selected randomly. 
To reach an appropriate architecture, MLP networks with one and two 
hidden layers were examined. To determine the optimum network, 
RMSE was calculated for various models. The network with architecture 
18-20–5–1 (LOGSIG–LOGSIG-LOGSIG–POSLIN), which has the 
minimum RMSE, is considered as the optimum model (Figure 5).  

 

 
Figure 5. the ANNs architecture with 18-10-5-1 (back-propagation network) 

 

Figure 6 compares the validation R-square of GEP, MLR, and ANNs 
models. Based on this figure, the best predictions were obtained using 
the GEP algorithm. The amount of absolute relative error (ARE), 
average absolute relative error (AARE), and root mean square error 
(RMSE), were compared for GEP, MLR, and ANNs in Figure 7. 

7. Sensitivity Analysis 

A useful concept has been proposed to identify the significance of 
each "cause" factor (the input data) on the "effect' factor" (the output). 
This enables the most sensitive factors affecting ozone concentration to 
be identified hierarchically. To find the most influential parameters in 
ozone concentration, a sensitivity analysis was performed on the input 
parameters. For achieving this aim, two types of sensitivity analysis i.e., 
tornado and spider graphs were conducted. These plots are typically 
created by fixing an input distribution to a low value (say its fifth 
percentile), running a simulation, recording the output means, and then 

repeating the process with a high value (say 95th percentile) of the input 
distribution: these output means to define the extremes of the bars. The 
input parameters were chosen based on the result of the GEP model.  

 

 

a. GEP model 

 

b. MLR model 

 
C. ANN model 

Figure 6. Comparison of the measured Ozone versus predicted PPV using the 
GEP, ANNs, and MLR for test data 

 
Figure 7. Comparison of the statistical parameters for predictions of MLR, ANNs, 

and GEP models 
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The results of the sensitivity analysis were shown in Figures 8 and 9. 
In the tornado sensitivity analysis, the ranges of correlations are between 
-1 and +1. Figure. 8 shows tornado analysis for ozone concentration. As 
it is shown in this figure, air temperature and Toluene amount are the 
most influential parameters on ozone concentration. The ozone 
concentration variation based on changing the air temperature, toluene, 
o-Xylene, H2S, and NO is shown in Figure 9. As mentioned in this figure, 
changes in "air temperature" affect Ozone concentration. It is evident 
that with increasing the amount of air temperature, Ozone 
concentration increases dramatically. 

 

 
Figure 8. Tornado analysis 

 

 
Figure 9. Spider analysis 

 

8. Conclusions 

The present study predicted the concentration of ozone in ambient 
air using GEP, MLR, and ANNs algorithms. For this purpose, 1564 data 
sets were collected each containing 18 input parameters such as 
concentrations of air pollutants (SO2, CO, H2S, NO, NO2, NOx, PM10, 
benzene, toluene, m- and p-xylene, o-xylene, ethylbenzene), and 
meteorological conditions (wind direction, wind speed, air pressure, air 
temperature, solar radiation, and relative humidity (RH)), in the vicinity 
of Zrenjanin (Serbia). Once finished with developing various models for 
predicting the ozone concentration, some performance indicators were 
calculated to evaluate the proposed prediction models, including R-
square, RMSE, and RRSE. The results showed that the developed GEP 
could practically outperform the MLR. Taking RRSE as the objective 
function, the obtained values of R-square and RMSE using the GEP 
algorithm for predicting the ozone concentrate indicated higher 
accuracy of this algorithm compared to the MLR and the ANNs. The 
obtained R-squared values and RMSE corresponding to GEP were 0.85 
and 13.52, respectively, while those of MLR were 0.61 and 21.28, 
respectively. Also, the lower values of R-Squared and RMSE, 0.79 and 
16.07, for the ANNs results proved that the GEP was more reliable and 
more reasonable. Eventually, the results' sensitivity analysis showed that 
the air temperature has the most significant effect on the increased 
ozone concentration. Therefore, global warming can help increase the 
concentration of this pollutant more rapidly in the earth's environment. 

REFERENCES 

[1]. USEPA, "Ozone Pollution", www.epa.gov/ozone-pollution, 2017. 

[2]. Susaya, J., Kim, K. H., Shon, Z. H., & Brown, R. J. (2013). 
Demonstration of long-term increases in tropospheric O3 levels: 
Causes and potential impacts. Chemosphere, 92(11), 1520-1528. 

[3]. Abdul-Wahab, S. A., & Al-Alawi, S. M. (2002). Assessment and 
prediction of tropospheric ozone concentration levels using 
artificial neural networks. Environmental Modelling & 
Software, 17(3), 219-228.  

[4]. Mishra, D., & Goyal, P. (2016). Neuro-Fuzzy Approach to 
forecasting Ozone Episodes over the urban area of Delhi, 
India. Environmental Technology & Innovation, 5, 83-94. 

[5]. Duan, J., Tan, J., Yang, L., Wu, S., & Hao, J. (2008). Concentration, 
sources, and ozone formation potential of volatile organic 
compounds (VOCs) during ozone episode in Beijing. 
Atmospheric Research, 88(1), 25-35. 

[6]. Lengyel, A., Héberger, K., Paksy, L., Bánhidi, O., & Rajkó, R. 
(2004). Prediction of ozone concentration in ambient air using 
multivariate methods. Chemosphere, 57(8), 889-896. 

[7]. Shao, M., Zhang, Y., Zeng, L., Tang, X., Zhang, J., Zhong, L., & 
Wang, B. (2009). Ground-level ozone in the Pearl River Delta 
and the roles of VOC and NOx in its production. Journal of 
Environmental Management, 90(1), 512-518. 

[8]. Sharma, S., Sharma, P., & Khare, M. (2017). Photo-chemical 
transport modelling of tropospheric ozone: A review.  
Atmospheric Environment, 159, 34-54. 

[9]. Moussiopoulos, N., Sahm, P., & Kessler, C. (1995). Numerical 
simulation of photochemical smog formation in Athens, 
Greece—a case study. Atmospheric Environment, 29(24), 3619-
3632. 

[10]. Chaloulakou, A., Saisana, M., & Spyrellis, N. (2003). 
Comparative assessment of neural networks and regression 
models for forecasting summertime ozone in Athens. Science of 
the Total Environment, 313(1-3), 1-13. 

[11]. Sousa, S. I. V., Martins, F. G., Alvim-Ferraz, M. C. M., & Pereira, 
M. C. (2007). Multiple linear regression and artificial neural 
networks based on principal components to predict ozone 
concentrations. Environmental Modelling & Software, 22(1), 
97-103. 

[12]. Abdi‐Oskouei, M., Carmichael, G., Christiansen, M., Ferrada, G., 
Roozitalab, B., Sobhani, N., Wade, K., Czarnetzki, A., Pierce, R.B., 
Wagner, T., & Stanier, C. (2020). Sensitivity of meteorological 
skill to the selection of WRF‐Chem physical parameterizations 
and impact on ozone prediction during the Lake Michigan 
Ozone Study (LMOS). Journal of Geophysical Research: 
Atmospheres, 125(5), e2019JD031971. 

[13]. Đorđević, P., Mihajlović, I., & Živković, Ž. (2010). Comparison of 
linear and nonlinear statistics methods applied in the industrial 
process modeling procedure. Serbian Journal of Management, 
5(2), 189-198. 

[14]. Arsic, M., Nikolic, D. J., Mihajlovic, I., & Zivkovic, Z. (2014). 
Monitoring of surface ozone concentrations in the western 
Banat region (Serbia). Applied ecology and environmental 
research, 12(4), 975-989. 

[15]. Fontes, T., Silva, L. M., Silva, M. P., Barros, N., & Carvalho, A. C. 
(2014). Can artificial neural networks be used to predict the 
origin of ozone episodes?. Science of the total environment, 488, 
197-207. 



 H. Dehghani et al.  / Int. J. Min. & Geo-Eng. (IJMGE), 56-1 (2022) 1-9-199 9 

 

[16]. Samadianfard, S., Delirhasannia, R., Kisi, O., & Agirre-Basurko, 
E. (2013). Comparative analysis of ozone level prediction 
models using gene expression programming and multiple linear 
regression. Geofizika, 30(1), 43-73. 

[17]. Baawain, M. S., & Al-Serihi, A. S. (2014). Systematic approach for 
the prediction of ground-level air pollution (around an 
industrial port) using an artificial neural network. Aerosol and 
air quality research, 14(1), 124-134. 

[18]. Geng, F., Tie, X., Xu, J., Zhou, G., Peng, L., Gao, W., ... & Zhao, C. 
(2008). Characterizations of ozone, NOx, and VOCs measured 
in Shanghai, China. Atmospheric Environment, 42(29), 6873-
6883. 

[19]. Stathopoulou, E., Mihalakakou, G., Santamouris, M., & 
Bagiorgas, H. S. (2008). On the impact of temperature on 
tropospheric ozone concentration levels in urban 
environments. Journal of Earth System Science, 117(3), 227-236. 

[20]. Sousa, S. I. V., Martins, F. G., Pereira, M. C., & Alvim-Ferraz, M. 
C. M. (2006). Prediction of ozone concentrations in Oporto city 
with statistical approaches. Chemosphere, 64(7), 1141-1149. 

[21]. Bandyopadhyay, G., & Chattopadhyay, S. (2007). Single hidden 
layer artificial neural network models versus multiple linear 
regression model in forecasting the time series of total ozone. 
International Journal of Environmental Science & Technology, 
4(1), 141-149. 

[22]. Wang, W., Lu, W., Wang, X., & Leung, A. Y. (2003). Prediction 
of maximum daily ozone level using combined neural network 
and statistical characteristics. Environment International, 29(5), 
555-562. 

[23]. Nishanth, T., Kumar, M. S., & Valsaraj, K. T. (2012). Variations 
in surface ozone and NO x at Kannur: a tropical, coastal site in 
India. Journal of Atmospheric Chemistry, 69(2), 101-126. 

[24]. Prybutok, V. R., Yi, J., & Mitchell, D. (2000). Comparison of 
neural network models with ARIMA and regression models for 
prediction of Houston's daily maximum ozone concentrations. 
European Journal of Operational Research, 122(1), 31-40. 

[25]. Zhu, Y., Chen, C., Shi, J., & Shangguan, W. (2020). A novel 
simulation method for predicting ozone generation in the 
corona discharge region. Chemical Engineering Science, 227, 
115910. 

[26]. Arsić, M., Mihajlović, I., Nikolić, D., Živković, Ž., & Panić, M. 
(2020). Prediction of Ozone Concentration in Ambient Air 
Using Multilinear Regression and the Artificial Neural 
Networks Methods. Ozone: Science & Engineering, 42(1), 79-88. 

[27]. Mo, Y., Li, Q., Karimian, H., Fang, S., Tang, B., Chen, G., & 
Sachdeva, S. (2020). A novel framework for daily forecasting of 
ozone mass concentrations based on cycle reservoir with regular 

jumps neural networks. Atmospheric Environment, 220, 117072. 

[28]. AlOmar, M. K., Hameed, M. M., & AlSaadi, M. A. (2020). Multi 
hours ahead prediction of surface ozone gas concentration: 
Robust artificial intelligence approach. Atmospheric Pollution 
Research, 11(9), 1572-1587. 

[29]. Ferreira, C. (2001). Gene expression programming: a new 
adaptive algorithm for solving problems. arXiv preprint 
cs/0102027. 

[30]. Jodeiri Shokri, B., Dehghani, H., Shamsi, R. (2020). Predicting 
silver price by applying a coupled multiple linear regression 
(MLR) and imperialist competitive algorithm (ICA). 1(1):101-
104. 

[31]. Jodeiri Shokri, B., Dehghani, H., Shamsi, R. Doulati Ardejani, F. 
(2020). Prediction of acid mine drainage generation potential of 
a copper mine tailings using gene expression Programming-a 
case study. Journal of Mining and Environment, 11(4): 1127-
1140. 

[32]. Shakeri, J., Jodeiri Shokri, B., Dehghani, H. (2020). prediction of 
blast-induced ground vibration using gene expression 
programming (GEP), artificial neural networks (ANNs), and 
linear multivariate regression (LMR). Archives of Mining 
Sciences, 65 (2):317-335. 

[33]. Dehghani, H. (2018). Forecasting copper price using gene 
expression programming. Journal of Mining and Environment, 
9(2), 349-360. 

[34]. Jodeiri Shokri, B., Ramazi, HR., Doulati Ardejani, F., 
Moradzadeh, A. (2014) A statistical model to relate pyrite 
oxidation and oxygen transport within a coal waste pile: case 
study, Alborz Sharghi, northeast of Iran. Environmental Earth 
Sciences, 71: 4693-4702. 

[35]. Soleimani, M., Jodeiri Shokri, B. (2015). Defining chromite ore 
production trend by CCD method to reach sustainable 
development goals in mining sector, Iran. Mineral Economics, 
28: 103-115. 

[36]. Jodeiri Shokri, B., Ramazi, HR., Doulati Ardejani, F., 
Sadeghiamirshahidi, MH. (2014). Prediction of pyrite oxidation 
in a coal washing waste pile applying artificial neural networks 
(ANNs) and adaptive neuro-fuzzy inference systems (ANFIS). 
Mine Water and the Environment, 33: 146-156. 

[37]. Doulati Ardejani, F., Rooki, R., Jodeiri Shokri, B., Eslam Kish, T., 
Aryafar, A., Tourani, P. (2013). Prediction of rare earth elements 
in neutral alkaline mine drainage from Razi coal mine, Golestan 
Province, northeast Iran, using general regression neural 
network. Journal of Environmental Engineering 139 (6), 896-
907. 

 

 

https://scholar.google.com/scholar?oi=bibs&cluster=11123019334473611759&btnI=1&hl=en
https://scholar.google.com/scholar?oi=bibs&cluster=11123019334473611759&btnI=1&hl=en
https://scholar.google.com/scholar?oi=bibs&cluster=11123019334473611759&btnI=1&hl=en
https://scholar.google.com/scholar?oi=bibs&cluster=11123019334473611759&btnI=1&hl=en

