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Abstract

In machine learning and data mining, heuristic and association rules are two

dominant schemes for rule discovery. Heuristic rule discovery usually produces a

small set of accurate rules, but fails to find many globally optimal rules. Associ-

ation rule discovery generates all rules satisfying some constraints, but yields too

many rules and is infeasible when the minimum support is small. Here we present

a unified framework for the discovery of a family of optimal rule sets, and charac-

terise the relationships with other rule discovery schemes such as non-redundant

association rule discovery. We theoretically and empirically show that optimal

rule discovery is significantly more efficient than the association rule discovery

independent of data structure and implementation. Optimal rule discovery is an

efficient alternative to association rule discovery, especially when the minimum

support is low.

keywords: Data mining, rule discovery, optimal rule set.
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1 Introduction

Rules are one of the most expressive and human understandable representations of

knowledge; a rule based method produces self-explanatory results. Therefore, rule

discovery has been a major issue in machine learning and data mining.

Heuristic algorithms for rule discovery that were developed in the machine learning

community, such as C4.5rules [15], CN2 [6], and RIPPER [7] focus on classification

accuracy and usually return small rule sets. However, a heuristic method does not

guarantee the discovery of the best quality rules. A complete or optimal rule set is

more desirable whenever it is computationally feasible.

Association rule discovery [1] produces a complete rule set within the minimum

support and confidence constraints. It has been widely accepted because of the simplic-

ity of the problem statement and the effectiveness of pruning by support. Association

rule discovery is a general purpose rule discovery scheme, and has wide applications.

Classification is one application. CBA [12] makes use of a method that is similar to the

C4.5rules pruning method to prune an association rule set and produces more accurate

classifiers than C4.5rules. This suggests that some rules in the complete rule set, which

are missed by C4.5rules, make CBA classifiers more accurate. However, association

rule discovery usually produces too many rules and is inefficient when the minimum

support is low.

Non-redundant association rule discovery [19] improves the efficiency of associ-

ation rule discovery. However, the requirements for redundant rules are strict, and

the efficiency of non-redundant rule discovery can be further improved. We discuss

the relationships between our proposed optimal rule set and the redundant rule set in

Section 3.

Optimal rule discovery uncovers rules that maximise an interestingness measure.

The search for maxima further prunes the search space, and hence optimal rule discov-
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ery is significantly more efficient than association rule discovery.

One type of optimal rule sets is k largest rule sets, which contain the top k rules

measured by an interestingness metric. Webb and Zhang’s k-optimal rule set [18] is a

typical example. k-optimal rules are measured by a Leverage metric. However, the top

k rules may come from the same section of data, and leave some records in a data set

uncovered by rules. This is a drawback for optimal rule sets containing k largest rules.

The problem of not reasonably covering the data set exists in other optimal rule

sets, such as the SC optimality rule set [2] and rule sets defined by all confidence

and bond [13]. In a SC optimality rule set, a rule with higher confidence and support

excludes another rule with lower confidence and support. When the records covered by

the excluded rule are not covered by another rule, these records lose their representative

rules in the SC-optimal rule set. In the generation of rule sets defined by all confidence

and bond, rules with different targets are compared directly for the exclusion of rules

from the rule sets. Rules with different targets have different implications and they

should not be used to exclude each others.

The definition of optimal rule sets in this paper is very close to a special constraint

rule set with a zero confidence improvement [3], which consists of rules whose con-

fidences are greater than confidences of all their simpler form rules. A rule covers a

subset of records covered by one of its simpler form rule, and hence it is guaranteed

that the records covered by the excluded rule are covered by other rules with higher

confidence. A PC optimality rule set [2] post prunes the constraint association rule

set with a zero confidence improvement [3], and hence is in the same category of the

optimal rule sets which we discuss.

We achieve the following four developments in this paper. First, we present a gen-

eral definition for a family of optimal rule sets for a range of interestingness metrics.

Second, we prove that the family of optimal rule sets observe the same anti-monotonic

property. Third, we develop an effective algorithm for mining the family of optimal
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rule sets without assuming that the target is fixed to one class. Fourth, we characterise

the relationships between an optimal rule set and a non-redundant rule set, and reveal

the relationships among support pruning, closure pruning, and optimality pruning.

The rest of this paper is arranged as follows: Section 2 presents definitions; Sec-

tion 3 gives properties of the family of optimal rule sets; Section 4 provides a complete

algorithm for mining the optimal rule sets; Section 5 illustrates the relationships among

support pruning, closure pruning and optimality pruning; Section 6 presents proof-of-

concept experimental results; and Section 7 concludes the paper.

2 Definitions

Consider a relational dataset D with n attribute domains. A record of D is set of

attribute-value pairs, denoted by T . A pattern is a subset of a record. We say a pattern

is a k-pattern if it contains k attribute-value pairs. All the records in D are categorised

by a set of classes C.

An implication is denoted by P → c, where P is called the antecedent, and c

is called the consequence. The support of pattern P is defined to be the ratio of the

number of records containing P to the number of all the records in D, denoted by

supp(P ). The support of implication P → c is defined to be the ratio of the number

of records containing both P and c to the number of all the records in D, denoted by

supp(P → c). The confidence of the implication P → c is defined to be the ratio of

supp(P → c) to supp(P ), represented by conf(P → c).

An association rule is a strong implication whose both support and confidence are

not less than given thresholds from a dataset.

The cover set of pattern P is the set of IDs of records containing P , represented

by cov(P ). The cover set of rule P → c is a set of IDs of records containing both

P and c, denoted by cov(P → c). Clearly, if P ⊂ Q then we have cov(P ) ⊇ cov(Q)
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and cov(P → c) ⊇ cov(Q → c).

For simplicity, in the rest of this paper we use upper case letters, for example, P

and Q, to stand for patterns, and lower case letters, for example, a, b, . . . , to stand for

attribute-value pairs. We abbreviate P ∪Q as PQ and P ∪ {a} as Pa.

The association rule definition is understandable, but it has the following major

obstacles in real world applications:

1. The confidence is not suitable for a variety of applications;

2. The number of association rules is too many; and

3. The support pruning is not efficient when the minimum support is low.

To overcome the first obstacle, many interestingness metrics have been proposed to

measure interestingness of rules. For example, lift (interest or strength), gain, added-

value, Klosgen, conviction, p-s, Laplace, cosine, certainty factor, Jaccard, and many

others discussed by Tan et al [16].

All these interestingness metrics are used monotonically. A rule with a higher

value in a metric is more interesting than a rule with a lower one. To generalise, we

use Interest to stand for an interestingness metric and Interestingness(P → c) for the

interestingness of rule P → c.

Some interestingness metrics are not monotonic with the interestingness, such as,

odds ratio. A rule with the odds ratio that is significantly greater than or less than 1 is

interesting. For example, let c be a disease and A be a symptom or exposure factor. A

high odds ratio of rule A → c means the disease has higher occurrence probability in

the cohort with A than the cohort without A, and vice versa. In this paper, we consider

an odds ratio that is greater than 1, and hence it is monotonic with the interestingness.

When we need rules with odds ratios lower than 1, we switch the consequence. For
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example, when we divide data into the disease group and the non-disease group. A

high odds ratio in the non-disease group means a low odds ratio in the disease group.

To make the rule definition more general, we replace the confidence by the value

of an interest metric. Formally, we have the following definition.

Definition 1 The general rule

A rule is a strong implication whose both support and interestingness are not less than

given thresholds.

In the rest of this paper, a rule refers to a generalised rule instead of an association

rule. To proceed the discussions of obstacles 2 and 3, we give another definition.

Definition 2 General and specific relationships

Given two rules P → c and Q → c where P ⊂ Q, we say that the latter is more

specific than the former and the former is more general than the latter.

A specific rule covers a subset (at most the equal set) of records covered by one of

its more general rules. More formally, cov(Q → c) ⊆ cov(P → c). Therefore, the

removal of a specific rule from a rule set does not reduce the total coverage of the rule

set.

In some cases, we may consider the rule ∅ → c as the most general rule targeting

c. Its confidence equals supp(c). For example, if 80% customers buy bread when they

shop in a supermarket, then this is formalised as ∅ → bread (confidence = 80%). Such

a rule filters many trivial rules that do not surprise a manager, for example rule egg →
bread (confidence = 75%).

In other cases, we need to consider 1-pattern antecedent rules, such as a → c and

b → c, as the most general rules. For example, 99.9% of records in a medical data

set are not related to a particular disease, but we are still interested in rules with 80%

confidence in the records since they may reveal some preventative patterns. In this
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paper, we consider this case.

Obstacles 2 and 3 are closely related. A major reason for a lot of rules being of no

interest to users is that they are superfluous. For example, suppose that we have two

rules, (salary>$30,000) → creditCard(approval) (conf = 85%) and (salary>$30,000)

and (occupation = X) → creditCard(approval) (conf = 84% ). The latter rule is super-

fluous and should be removed.

There are two cases where the latter rule will be interesting: when it has much

higher confidence, or when it has much lower confidence than the former rule. The

primary goal for rule discovery is to find rules with the high interestingness. After

identifying a small set of highly interesting rules, their exceptional rules, which have

low interestingness, are considered. For example, (salary>$30,000) and (occupation

= X) → creditCard(approval) (conf = 30% ) is an exception of rule (salary>$30,000)

→ creditCard(approval) (conf = 85%). After a small set of rules that are of interest to

users has been identified, finding their exceptional rules is relatively simple.

Therefore, we disregard those superfluous rules in the rule discovery stage. To

achieve this goal, we have the following definition.

Definition 3 An optimal rule set

A rule set is optimal with respect to an interestingness metric if it contains all rules

except those with no greater interestingness than one of its more general rule.

Since only more specific rules are removed from an optimal rule set, an optimal

rule set covers the same set of records covered by its corresponding complete rule set.

Each interestingness metric defines an optimal rule set, and the above definition

defines a family of optimal rule sets. We use the following example to elaborate the

definition.

Example 1 Let interestingness metric be odds ratio (or). We have a rule set and its

corresponding optimal rule set as follows.
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Rule set Optimal rule set

a → z(2.3)∗, b → z(2.0), c → z(1.8) a → z(2.3), b → z(2.0), c → z(1.8)

ab → z(2.7), ac → z(2.1), bc → z(1.9) ab → z(2.7)

abc → z(2.5)

∗Numbers in parentheses are odds ratios.

Rules ac → z(or = 2.1), bc → z(or = 1.9), abc → z(or = 2.5) are excluded since

their odds ratios are smaller than those of their more general rules.

We provide another example to show the practical implication of an optimal rule

set.

Example 2 When the Interestingness is measured by an estimated accuracy of a rule,

the optimal rule set is an optimal class association rule set [11]. Based on an ordered

rule based classification model, all rules excluded by the optimal class rule set will not

be used in building a classifier because they are less accurate and more complex than

some rules in the optimal class association rule set covering the same data section.

Therefore, a classifier built from the optimal class association rule set is identical to

that from a class association rule set. In summary [11]: the optimal class association

rule set is the minimum subset of rules with the same predictive power as the complete

class association rule set. Further experimental proofs are reported in [10]. Classi-

fiers built on the optimal class association rule sets are at least of the same accuracy

as those from CBA [12] and C4.5rules [15].

Building classifiers from optimal class association rule sets is significantly more ef-

ficient than from class association rule sets. Firstly, mining optimal class association

rule sets is significantly faster than mining class association rule sets. When the mini-

mum support is low, mining class association rule sets may not be feasible. Secondly,

an optimal class association rule set is significantly smaller than a class association
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rule set, and hence building a classifiers from the optimal class association rule set is

more efficient.

In the next section, we discuss properties of the family of the optimal rule sets.

3 Properties of optimal rule sets

In this section, we discuss some properties of the family of optimal rule sets and their

relationships with the non-redundant rule set.

We start with some notation. Let X be a pattern where X 6= ∅ and c be a class.

PX is a proper super pattern of P . PQ is a super pattern of P . PQ = P and

PQX = PX when Q = ∅. PQX is a proper super pattern of P . ¬c stands for

a special class occurring in a record where c does not occur, and therefore we have

supp(¬c) = 1− supp(c). So is it for pattern P : supp(¬P ) = 1− supp(P ). P¬X is

a pattern with the following support: supp(P¬X) = supp(P )− supp(PX). Further,

we have supp(¬(PX)) = supp(¬PX) + supp(¬P¬X) + supp(P¬X).

Theorem 1 Anti-monotonic property

if supp(PX¬c) = supp(P¬c)1 then rule PX → c and all its more specific rules

will not occur in an optimal rule set defined by confidence, odds ratio, lift (interest or

strength), gain, added-value, Klosgen, conviction, p-s (or leverage), Laplace, cosine,

certainty factor or Jaccard.

A proof is provided in the appendix.

The practical implication of the above theorem is that: once supp(PX¬c) =

supp(P¬c) is observed, it is not necessary to search for more specific rules of PX →
c, for example PQX → c. Those more specific rules will not be in an optimal rule set.

Rule PX → c is removed since it is not in an optimal rule set either.
1In this paper, we only discuss rules with a single class as the consequence, but this theorem holds

for rules with a pattern as the consequence.
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In the following, we consider two special cases of the above theorem.

Corollary 1 Closure property

If supp(P ) = supp(PX), then rule PX → c for any c and all its more specific rules

do not occur in an optimal rule set defined by confidence, odds ratio, lift (interest or

strength), gain, added-value, Klosgen, conviction, p-s (or leverage), Laplace, cosine,

certainty factor or Jaccard.

A proof is provided in the appendix.

The practical implication of the above corollary is that: once supp(PX¬c) =

supp(P¬c) is observed, it is not necessary to search for rules with PQX as their

antecedent for any Q. Those rules will not be in the optimal rule set.

The reason for naming the above corollary as closure property is that it is closely

related to closed pattern set mining [20].

Pattern P c is closed if there exists no proper super pattern X ⊃ P c such that

cov(X) = cov(P c). Consider a chain of patterns P ⊂ P ′ ⊂ P ′′ ⊂ P c which satisfies

cov(P ) = cov(P ′) = cov(P ′′) = cov(P c). P c is the closure of patterns P , P ′, and P ′′.

A closed pattern is the same as its closure. The support of a pattern is equivalent to that

of its closure. In the above example, supp(P ) = supp(P ′) = supp(P ′′) = supp(P c).

Further, a pattern Y is a proper generator of Y ′ if Y ′ ⊃ Y and cov(Y ′) = cov(Y ) hold.

A pattern is a minimal generator if it has no proper generator. For example, P ′ is a

generator of P ′′ and P c, and P is a minimal generator of P c if there exists no Z ⊂ P

such that cov(P ) = cov(Z).

The closed pattern and minimal generator are two closely related concepts and the

mining methods for both are very similar. The condition of Corollary 1 is the funda-

mental test for mining both patterns. For example, we have supp(P ) = supp(PX)

for any X ⊆ (P c\P ) in the above example. We illustrate this in Section 5. Usually,

closed patterns are useful for producing all frequent patterns and minimal generators
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are useful for generating non-redundant rules.

Zaki [19] gave a general definition of non-redundant association rule sets. Here,

we rephrase it in a simple form by constraining the consequence to c. Rule Y → c is

redundant if there exists Y ⊃ X such that cov(Y ) = cov(X). supp(Y ) = supp(X)

is the immediate result of cov(Y ) = cov(X). For example, in the chain P ⊂ P ′ ⊂
P ′′ ⊂ P c, all rules, such as P ′ → c, P ′′ → c, and P c → c, are redundant since they

have the same support and interestingness as rule P → c but are more specific. A rule

set is non-redundant if it includes all rules except redundant rules.

Theorem 2 The relationship with the non-redundant rule set

An optimal rule set is a subset of a non-redundant rule set.

A proof is provided in the appendix.

We have another special case for Theorem 1.

Corollary 2 Termination property

If supp(P¬c) = 0, then all more specific rules of the rule P → c do not occur in

an optimal rule set defined by confidence, odds ratio, lift (interest or strength), gain,

added-value, Klosgen, conviction, p-s (or leverage), Laplace, cosine, certainty factor

or Jaccard.

A proof is provided in the appendix.

The practical implication of the above corollary is that: once supp(P¬c) = 0 is

observed, it is not necessary to search for more specific rules of P → c. Those more

specific rules will not be in an optimal rule set. Rule P → c is kept since it may be in

an optimal rule set.

Let us look at why it is called the termination property. Assume that the interesting-

ness metric is confidence. If supp(P¬c) = 0 then rule conf(P → c) = 100%. None

of its more specific rules improves this confidence, and we stop going any further. The
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Figure 1: Depictions of conditions of Theorem 1, and Corollaries 1 and 2. In each
diagram, the left hand side rectangle stands for the set of records not containing the
class c, and the right hand side rectangle stands for the set of records containing the
class c. Ellipses denote the cover sets of patterns P and X

same is true for other interestingness metrics.

An illustrative comparison of conditions of Theorem 1, and Corollaries 1 and 2 is

given in Figure 1.

We use the following example to show how the Theorem 1 and its corollaries work.

Example 3 We assume z is a class and do not assume the minimum support require-

ment in this example.

b c z
a b c d z
a c z
a b d z

b d ¬z
a b c ¬z
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Usually, we have to consider all 15 candidate rules: a → z, b → z, c → z, d → z,

ab → z, ac → z, ad → z, bc → z, bd → z, cd → z, abc → z, abd → z, acd → z,

bcd → z, and abcd → z.

Since supp(ab¬z) = supp(a¬z), according to Theorem 1 rule ab → z and all its

more specific rules, abc → z, abd → z and abcd → z will not be in an optimal rule

set. Similarly, both rule ac → z and rule bc → z and their more specific rules will not

be in the optimal rule set.

Since supp(ad¬z) = 0, all more specific rules of ad → z, e.g. abd → z, acd → z

and abcd → z will not be in the optimal rule set. Similarly, all more specific rules of

cd → z will not be in the optimal rule set.

Since supp(d) = supp(bd), bd → c and all its more specific rules will not in the

optimal rule set.

Therefore, rules that are possible to be in the optimal rule set are a → z, b → z,

c → z, d → z, ad → z and cd → z. This set of candidate rules is significantly smaller

than the original 15 candidate rules.

4 An optimal rule discovery algorithm

In this section, we first show how to use Theorem 1 and its corollaries for forward

pruning. Then we discuss a candidate presentation method for easy pruning. Subsec-

tions 4.3 and 4.4 present the detailed implementation of forward pruning by Theorem 1

and its corollaries. The complete algorithm is presented in Subsection 4.5. After that,

an illustrative example shows how the algorithm works. Finally, we discuss some

implementation issues such as counting and data structure.
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4.1 Basic ideas and forward pruning

General to specific searching is very common in rule discovery. For example, C4.5rules,

CN2 and Apriori employ this method.

When a heuristic search method is employed, we worry less about combinatorial

explosion. However, when we conduct optimal search, combinatorial explosion is a

big problem.

We first look at how association rule discovery alleviates this problem. An as-

sociation rule discovery algorithm prunes infrequent patterns forwardly. A pattern is

frequent if its support is not less than the minimum support. A pattern is potentially

frequent only if all its sub patterns are frequent, and this anti-monotonic property is

used to limit the number of patterns to be searched. This is called forward pruning.

Optimal rule discovery makes use of Theorem 1 and Corollaries to forwardly prune

rules.

We illustrate how Theorem 1 forwardly prunes rules that are not in an optimal

set. Given a pattern abcd, and assume the target is fixed to z. We usually have to

examine candidate rules a → z, b → z, . . . for 1-patterns, ab → z, ac → z, . . . for

2-patterns, abc → z, abd → z, . . . for 3-patterns, and abcd → z for 4-pattern. If

we know supp(a¬z) = supp(ab¬z), then the theorem empower us to skip examining

candidates, ab → z, abc → z, abd → z, and abcd → z because they are not in the

optimal rule set anyway. Corollary 2 works in the similar way.

We show how Corollary 1 forwardly prunes rules that are not in an optimal rule

set by using the above example. When the targets are not fixed to z but include x and

y too, the number of rule candidates is tripled. We list those including pattern ab in

their antecedents as follows, ab → x, ab → y, ab → z, abc → x, abc → y, abc → z,

abd → x, abd → y, abd → z, abcd → x, abcd → y, and abcd → z. If we know that

supp(a) = supp(ab) holds, then all above listed candidates are ignored according to
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Corollary 1. Corollary 1 prunes more candidates than Theorem 1, but its requirement

is stricter.

4.2 Candidate representation

To facilitate the implementation of forward pruning by Theorem 1 and its corollaries,

we define a rule candidate as a pair of (pattern, target-set), denoted by (P,C). P is

a pattern and C is a set of classes. In a relational data set, we have P ∩ C = ∅.

For example, let P = abc and C = xyz, and then (P,C) stands for three candidate

rules, abc → x, abc → y and abc → z. To remove a candidate rule, we simply

remove a class from the target-set. For example, candidate {abc, yz} stands for only

two candidate rules, namely abc → y and abc → z. When the target-set is empty, the

candidate stands for no rules.

The removal of classes from target-set C is determined by Theorem 1 and its corol-

laries. For example, if we have supp(ab¬x) = supp(abc¬x), then according to the

Theorem, rule abc → x and all its more specific rules will not occur in the opti-

mal rule set. x should be removed from the candidate set and the candidate becomes

(abc, yz). If we know supp(abc¬y) = 0, y should be removed from the target-set

according to Corollary 2 and the candidate becomes (abc, z). Consider another candi-

date (bcd, xyz). If we have supp(bcd) = supp(cd), then according to Corollary 1 the

target-set of the candidate should be emptied and the candidate becomes (bcd, ∅).
Candidate (P, ∅) should be removed since no rules will be generated from it and

its super candidates. (P ′, C ′) is called a super candidates of (P,C) if P ′ ⊃ P holds.

The existence of a candidate relies on two conditions: (1) pattern P is frequent,

and (2) target-set C is not empty.
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4.3 Candidate generator

For the easy comparison, we present Candidate-gen for the optimal rule set discovery

in the similar way as does the Apriori-gen. We call a candidate l-candidate if its pattern

is a l-pattern. An l-candidate set includes all l-candidates.

Function Candidate-gen

// Combining

1) for each pair of candidates (Pl−1s, Cs) and (Pl−1t, Ct) in l-candidate set

2) insert candidate (Pl+1, C) in the (l + 1)-candidate set

where Pl+1 = Pl−1st and C = Cs ∩ Ct

// Pruning

3) for all Pl ⊂ Pl+1

4) if candidate (Pl, Cl) does not exist

5) then remove candidate (Pl+1, C) and return

6) else C = C ∩ Cl

7) If the target-set of (Pl+1, C) is empty

8) then remove the candidate

We first explain lines 1 and 2. Suppose that we have two candidates (abc, xy) and

(abd, y). The new candidate is (abcd, y). The intersection of target-sets here and in

line 6 is to ensure that removed classes from the target-set of a candidate never appear

in the target-set of its super candidates. The correctness is guaranteed by Theorem 1

and its corollaries since any class removal in the target-set is determined by them.

Second we explain lines 3 to 8. Suppose that we have new candidate (abcd, y). It

is the combination of (abc, y) and (abd, yz). We need to check if candidates identified

by patterns {acd} and {bcd} exist. Suppose that they do exist and are (acd, y) and

(bcd, xz). After considering candidate (acd, y) by line 7, the new candidate remains

unchanged. After considering candidate (bcd, xz) by line 7, the target-set of the new
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candidate becomes empty because of C = {y} ∩ {x, z} = ∅. The new candidate is

then pruned.

4.4 More pruning

We have a pruning process in candidate generation, and will have another pruning

process after counting the support of candidates. This is a key to make use of Theo-

rem 1 and its corollaries for pruning. In the following algorithm, σ is the minimum

support.

Function Prune(l + 1)

// l + 1 is the new level where candidates are counted.

1) for each candidate (P,C) in (l + 1)-candidate set

2) for each c ∈ C

// test the frequency individually

3) if supp(Pc)/ supp(c) ≤ σ then remove c from C

// test the satisfaction of Corollary 2

4) else if supp(P¬c) = 0 then mark c terminated

5) if C is empty then remove candidate (P,C) and return

6) for each l level subset P ′ ⊂ P

// test the satisfaction of Corollary 1

7) if supp(P ) = supp(P ′) then empty C

// test the satisfaction of Theorem 1

8) else if supp(P¬c) = supp(P ′¬c) then remove c from C

9) if C is empty then remove candidate (P,C)

We prune candidates from two aspects, the infrequency of the pattern and the

emptiness of the target-set.
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Here we consider a local support instead of the global support. Because of the

possible skewed distributions of classes, a single global support is not suitable for a

variant rules targeting different classes. Many applications have adopted local support

in spite of using different names, such as coverage in [3]. The local support of rule

P → c is defined as supp(Pc)/ supp(c). The local support is the support in the sub

data set containing c. It is also called the recall of rule P → c. We prefer local support

since it observes the anti-monotonic property of the support. When we make use of

local support, infrequent candidate rules are removed one by one as in line 3.

We are aware of two variants of the forward pruning by Theorem 1 and Corollary 2.

One is that rule PX → c and all its more specific rules are not in an optimal rule set

as in Theorem 1. In this case, we just remove c from the target set. Another is that all

more specific rules of rule P → c are not in an optimal rule set except rule P → c

as in Corollary 2. In this case, we cannot remove c since otherwise we may lose rule

P → c. We design a special statue for this situation, namely termination of target c.

Definition 4 Target c ∈ C is terminated in candidate (P,C) if supp(Pc) = 0.

Terminated c is removed after the rule forming in line 9 of the ORD algorithm.

Line 4 of the Prune function is a direct application of Corollary 2. Target c is

marked as terminated and will be removed after a rule is formed. Once c is removed

from C, all more specific rules of P → c will be removed in the following rule candi-

date generation.

Line 7 of the Prune function is a direct result from Corollary 1. All classes in C are

removed and as a results candidate (P,C) is removed. No super candidates of (P,C)

will be formed in the following rule candidate generation.

Line 8 of the Prune function is a direct utilisation of Theorem 1. Target c is re-

moved, and therefore rule P → c and all its more specific rules are removed in the

following candidate generation.
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All candidates with an empty target set are removed in lines 5 and 9 to ensure their

super candidates are pruned in the following candidate generation.

4.5 ORD algorithm

Now we are able to present our algorithm for the optimal rule discovery, in abbreviation

ORD. In this algorithm, any interestingness metric discussed in Section 3 can be used

as a rule selection criterion, and the output rule set is an optimal rule set defined by

the interestingness metric. It differs from association rule discovery in that it does not

form rules from the set of all frequent patterns but generates rules using partial frequent

patterns.

Algorithm 1 ORD: Optimal Rule Discovery

Input: a data set D, the minimum local support σ and the minimum interestingness θ

by a metric.

Output: an optimal rule set R defined by an interestingness metric

1) Set R = ∅
2) Count support of 1-patterns by arrays

3) build 1-candidate sets

4) Form and add rules to R

5) Generate 2-candidate set

6) While new candidate set is not empty

7) Count support of patterns for new candidates

8) Prune candidates in the new candidate set

9) Form rules and add optimal rules to R

10) Generate next level candidate set

11) Return the rule set R
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The above algorithm is self explanatory and its two main functions have been dis-

cussed in the previous subsections.

The ORD algorithm is efficient since it does not generate all frequent patterns. It

only makes use of a small subset of frequent patterns as shown in experiments. Note

that line 8 in Function Candidate-gen and line 5 and 9 in Function Prune, all super

candidates of a candidate with the empty target-set are removed on top of those of a

candidate with the infrequent pattern.

4.6 An illustrative example

We provide an example to show how the ORD algorithm works in this section.

Example 4 In the following data set, y and z are classes. We do not assume the

minimum support constraint. All candidates generated by the ORD algorithm are

listed in Figure 2.

b c d y

a c y

a b c y

a b c d y

a y

b d z

a c z

b c d z

a z

a b c z

The first level candidates are used to prune the second level candidates. z is re-

moved in candidate (ad, yz) by line 3 in Function Prune due to supp(adz) = 0. y in

candidate (ad, yz) is terminated by line 4 in Function Prune because of supp(ad¬y) =
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φ

(a, yz) (b, yz) (c, yz) (d, yz)

(ab, yz) (ac, yz) (ad, y z) (bc, yz) (bd, yz) (cd, yz)

(abc, y) 

Figure 2: All candidates searched in Example 4. A class crossed is removed and a
class boxed is terminated

0. Both y and z are removed in candidate (bd, yz) by line 7 in Function Prune

since supp(bd) = supp(d) holds. z in candidate (bc, yz) and (cd, yz) is removed by

line 8 in Function Prune because both supp(bc¬z) = supp(b¬z) and supp(cd¬z) =

supp(d¬z) hold.

After rules have been formed, candidates (ad, ∅) and (bd, ∅) are removed. As a

result, all their super candidates, such as, (abd, ∅), (acd, ∅) and (bcd, ∅), will not be

generated according to lines 4 and 5 in Function Candidate-gen.

Candidate (abc, yz) is generated by combining candidates (ab, yz) and (ac, yz)

according to lines 1 and 2 in Function Candidate-gen. z is then pruned by line 7 in

Function Candidate Generator using its sub candidate (bc, y). y in candidate (abc, y)

is removed by line 8 in Function Prune due to supp(abc¬y) = supp(ab¬y). Subse-

quently, candidate (abc, ∅) is removed.

In rule forming procedure, rules are formed by a user specified interestingness met-

ric. No matter what a metric discussed in 3 is used, the set of candidates is identical.

Only the output rule set differs.
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5 Support pruning, closure pruning and optimality prun-

ing

In this section we discuss support pruning, closure pruning, and optimality pruning

and then characterise relationships among them. This clarifies the efficiency improve-

ment of optimal rule discovery over association rule discovery and non-redundant rule

discovery.

First look at the support pruning of the following data set.

b c d e

a b d

a b c

a b c d

a c

Data set A

φ

a b c d e

ab ac ad bc bd cd

abc abd acd bcd

Figure 3: Support pruning for mining frequent patterns on data set A. Patterns crossed
are infrequent

Figure 3 shows the support pruning by using the minimum support of 0.2. We see

that the removal of e in Level 1 equals the removal of 15 patterns in the subsequent

levels, such as ae, be, . . . , abe, ace, . . . , abce, abde, . . . and abcde.

Support pruning works effectively when the underlying data set is sparse or the

minimum support is high. However, it does not work well on dense data sets or when
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the minimum support is low.

Look at the closure pruning by the following data set.

a b d

a c e

b e

d e

Data set B

Figure 4. shows the closure pruning. There is no minimum support requirement.

As discussed in Section 3, Corollary 1 summarises the closure pruning. The pattern

in box are terminated because the support of its super patterns equals that of itself.

If the final goal is to find minimal generators, all candidates are left as they are in

Figure 4. If the the final goal is to find closed patterns, the number of candidates

remains unchanged, but patterns in some candidates are extended. For example, ac is

terminated due to supp(ac) = supp(c), and as a result, all occurrences of c will be

replaced by ac. Similarly, all occurrences of c is further replaced by ce because of the

termination of ce by supp(ce) = supp(c). Pattern ace is the only closed pattern left

out in Figure 4, and other minimal generators are closed patterns too. Closed patterns

can be discovered in the same search tree finding minimal generators. Therefore, both

closed pattern mining and minimal generator mining search for the same number of

candidates and make use of the closure pruning strategy.

The closure pruning works effectively when the underlying data set is dense or the

minimum support is low. We use an example to elaborate the first point. Assume that a

dense data set contains five identical records {a, b, c, d, e}. Closed pattern mining will

stop at level 2 after searching for 15 candidates. In contrast, frequent pattern mining

will continue all the way to level 5 and search for 25 − 1 candidates. We present the

following justification for the second point: supp(PX) = supp(P ) means cov(P ) ⊆

23



φ

a b c d e

ab ac ad ae bc bd be cd ce de

abd abe ade bde

Figure 4: Closure pruning for mining minimal generators on data set B. Patterns
crossed are non-existing and patterns boxed are terminated

cov(X). When cov(X) remains unchanged, pattern P with a smaller cov(P ) is more

probable to satisfy cov(P ) ⊆ cov(X) than with a larger cov(P ).

The above two pruning strategies are complementary. How does the ORD algo-

rithm use them in an effective way?

Let us look at the following data set concatenating the above two data sets. z is the

target for rules. Figure 5 shows the optimality pruning with the minimum local support

of 0.2 in sub data set containing z.

b c d e z

a b d z

a b c z

a b c d z

a c z

a b d ¬z

a c e ¬z

b e ¬z

d e ¬z

Data set (A + B)

The candidate set searched by optimal rule discovery is the intersection of the

candidate set (frequent patterns) for association rule discovery in z sub data set and the
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φ

a b c d e

ab ac ad bc bd cd

abd

Figure 5: Optimality pruning for optimal rule discovery targeting z on data set (A+B).
Patterns crossed are removed and patterns boxed are terminated

candidate set (minimal generators) for non-redundant rule discovery in ¬z sub data set.

The crucial point is that both have to perform simultaneously. Both association rule

discovery and non-redundant rule discovery search for more candidates than optimal

rule discovery.

Now, we have an insight understanding of optimality pruning stated in Theorem 1.

It makes use of the closure pruning strategy. Comparing Corollary 1 with Theorem 1,

we find that Theorem 1 states Corollary 1 in the sub data set excluding c.

6 Experimental results

In this section, we empirically evaluate the computational complexity of optimal rule

discovery in comparison with association rule discovery and non-redundant associa-

tion rule discovery on four data sets from UCML repository [4] described in Table 1.

The efficiency of optimal rule discovery is its effective optimality pruning. We show

that the optimality pruning significantly reduces candidates for searching.

The efficiency of an algorithm depends significantly on the data structure and im-

plementation. For example, association rule discovery has various implementations.

All are based on support pruning strategy, but their execution time varies. Theoreti-

cally, their computational complexities are the same since they all search for all fre-
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Name #Records #attribute #classes
Anneal 898 38 5

Hypothyroid 3163 25 2
Mushroom 8124 22 2

Sick 2800 29 2

Table 1: A brief description of data sets

quent patterns. Their efficiencies vary since they employ different data structures and

counting schemes. There are a number of implementations for association rule discov-

ery, and we are unable to compare with them individually by execution time.

However, the computational complexity improvement is fundamental and the im-

plementation only accelerates the improvement. An empirical estimation of the com-

plexity for a rule discovery algorithm is the number of candidates it searches. In this

paper, we compare the searched candidates for association rule discovery, for non-

redundant association rule discovery, and for optimal rule discovery. An association

discovery algorithm searches for all frequent patterns, and a non-redundant rule dis-

covery algorithm searches for all frequent minimal generators (equivalently all fre-

quent closed patterns). We compare the number of candidates for the ORD algorithm

with the number of frequent patterns and the number of frequent minimal generators.

This comparison is independent of the implementation.

In this experiment, we employ the local support as defined in Subsection 4.4, which

is a ratio for an individual class. A pattern is frequent if it is frequent in at least one

class. All frequent patterns are stored in the prefix tree.

The experiment was conducted on a 1 GHz CPU computer with 2G memory run-

ning Linux. We search for rules containing up to eight attribute-value pairs. We do not

specify the type of optimal rule set since the same candidate set generates an optimal

rule set defined by any interestingness metric discussed in Section 3.

Figure 6 shows the searched candidates by the ORD algorithm in comparison with
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the number of frequent patterns and the number of frequent minimal generators. The

set of ORD candidates is a very small subset of frequent patterns, and a subset of fre-

quent minimal generators. This trend is more evident when the minimum support is

low. This shows that optimal rule discovery has significant less computational com-

plexity than association rule discovery, and less computational complexity than non-

redundant association rule discovery.

In comparison with optimal rule discovery and non-redundant rule discovery, asso-

ciation rule discovery is very inefficient in data sets like ones used in this experiment.

The efficiency of association rule discovery deteriorates dramatically when the min-

imum support is low. Optimal rule discovery is more efficient than non-redundant

association rule discovery. Though differences between candidate numbers of non-

redundant association rule discovery and optimal rule discovery are squashed in Fig-

ure 6 by the large number of frequent patterns, the discrepancies are still clear in data

sets Mushrooms and Sick.

7 Conclusions

In this paper, we discussed a family of optimal rule sets, the properties for their effi-

cient discovery and their relationships with the non-redundant rule sets. The family

of optimal rule sets support a simple anti-monotonic property and an optimal rule set

is a subset of a non-redundant rule set. We presented the ORD algorithm for min-

ing optimal rule sets, and evaluated its computational complexity on some data sets in

comparison with the association rule discovery and non-redundant association rule dis-

covery. The computational complexity of optimal rule discovery is significantly lower

than that of association rule discovery and lower than that of non-redundant associ-

ation rule discovery. We discussed the relationship of optimal pruning with support

pruning and closure pruning, and concluded that optimality pruning makes use of both
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Figure 6: The number of candidates for optimal rule discovery versus the number of
frequent patterns for association rule discovery and the number of frequent minimal
generators for non-redundant association rule discovery. The ORD searches a small
subset of frequent patterns, and a subset of minimal generators.

28



support and closure pruning strategies simultaneously on two disjointed data sets.

Optimal rule discovery is efficient and works well with the low or no minimum

support constraint. It generates optimal rule sets for a number of interestingness met-

rics. Therefore, it is a great alternative for association rule discovery.
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Appendix

In this Appendix, we provide proofs for Theorems 1 and 2, and Corollaries 1 and 2.

Theorem 1 Anti-monotonic property

if supp(PX¬c) = supp(P¬c) then rule PX → c and all its more specific rules

will not occur in an optimal rule set defined by confidence, odds ratio, lift (interest or

strength), gain, added-value, Klosgen, conviction, p-s (or leverage), Laplace, cosine,

certainty factor or Jaccard.

Proof In the proof, we show Interestingness(PQX → c) ≤ Interestingness(PQ →
c). Therefore, rule (PX → c) (when Q = ∅) and all its more specific rules, for

example PQX → c (when Q 6= ∅), will not occur in the optimal rule set.

The only case for the condition supp(PX¬c) = supp(P¬c) holding is that cov(P¬c) ⊆
cov(X¬c). We then deduce that cov(PQ¬c) ⊆ cov(QX¬c) for any Q. consequently,

supp(PQX¬c) = supp(PQ¬c) holds for any Q.

For the confidence case, consider f(y) = y/(y + α) monotonically increases with

y when constant α > 0 and supp(PQ) ≥ supp(PQX) > 0:

conf(PQ → c) =
supp(PQc)

supp(PQ)

=
supp(PQc)

supp(PQc) + supp(PQ¬c)

=
supp(PQc)

supp(PQc) + supp(PQX¬c)

≥ supp(PQXc)

supp(PQXc) + supp(PQX¬c)

= conf(PQX → c).

We then prove the odds ratio case. Odds ratio is a classic statistical metric to
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measure the association between events. Consider f(y) = y/(α − y) monotonically

increases with y when constant α > 0 and supp(PQ) ≥ supp(PQX) > 0:

or(PQ → c) =
supp(PQc) supp(¬(PQ)¬c)

supp((¬(PQ)c) supp(PQ¬c)

=
supp(PQc)(supp(¬c)− supp(PQ¬c))

(supp(c)− supp(PQc)) supp(PQ¬c)

=
supp(PQc)(supp(¬c)− supp(PQX¬c))

(supp(c)− supp(PQc)) supp(PQX¬c)

=
supp(PQc) supp(¬(PQX)¬c)

(supp(c)− supp(PQc)) supp(PQX¬c)

≥ supp(PQXc) supp(¬(PQX)¬c)

(supp(c)− supp(PQXc)) supp(PQX¬c)

=
supp(PQXc) supp(¬(PQX)¬c)

supp(¬(PQX)c) supp(PQX¬c)

= or(PQX → c).

Lift also known as interest [5] or strength [8], is a widely used metric for ranking

the interestingness of association rules. It has been used in IBM Intelligent Miner. We

make use of the previous results, conf(PQ → c) ≥ conf(PQX → c), in the following

proof:

lift(PQ → c) =
supp(PQc)

supp(PQ) supp(c)

=
conf(PQ → c)

supp(c)

≥ conf(PQX → c)

supp(c)

= lift(PQX → c).

Gain [9] is an alternative for confidence. Fraction θ is a constant in interval (0, 1),

and only rules obtaining positive gain are interesting. We use conf(PQ → c) ≥
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conf(PQX → c) > θ in the following proof:

gain(PQ → c) = supp(PQc)− θ supp(PQ)

= (conf(PQ → c)− θ) supp(PQ)

≥ (conf(PQX → c)− θ) supp(PQX)

= gain(PQX → c).

The proofs for metrics added-value, addedvalue(P → c) = conf(P → c) −
supp(c), and Klosgen, Klosgen(P → c) =

√
supp(Pc)(conf(P → c) − supp(c)),

are very straightforward and hence we omit them here.

Conviction [5] is used to measure deviations from the independence by considering

outside negation:

conviction(PQ → c) =
supp(PQ) supp(¬c)

supp(PQ¬c)

=
supp(PQ)(1− supp(c))

supp(PQ)− supp(PQc)

=
1− supp(c)

1− conf(PQ → c)

≥ 1− supp(c)

1− conf(PQX → c)

= conviction(PQX → c).

P-s metric (or leverage), ps(P → c) = supp(Pc) − supp(P ) supp(c), is a classic

interestingness metric for rules proposed by Piatesky–Shaprio [14]. The proof for it is

very similar to that of gain and hence we omit it.

Laplace [6, 17] accuracy is a metric for classification rules. |D| is the number of

transactions in D and k is the number of classes. In classification problems, k ≥ 2 and

usually conf(PQX → c) ≥ 0.5. Therefore, k · conf(PQX → c) ≥ 1 holds. Function
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f(y) = (α|D| + y)/(|D| + ky) monotonically decrease with y when k · α > 1 and

1/ supp(PQX) ≥ 1/ supp(PQ).

Laplace(PQ → c) =
supp(PQc)|D|+ 1

supp(PQ)|D|+ k

=
conf(PQ → c)|D|+ 1/ supp(PQ)

|D|+ k/ supp(PQ)

≥ conf(PQX → c)|D|+ 1/ supp(PQ)

|D|+ k/ supp(PQ)

≥ conf(PQX → c)|D|+ 1/ supp(PQX)

|D|+ k/ supp(PQX)

= Laplace(PQX → c).

The proofs for the following two metrics are straightforward and hence we omit

them. Cosine(P → c) = supp(Pc)/(
√

supp(P ) supp(c)) and

Certaintyfactor(P → c) = (conf(P → c)− supp(c))/(1− supp(c)).

Finally, we prove the metric of Jaccard.

Jaccard(PQ → c) =
supp(PQc)

supp(PQ) + supp(c)− supp(PQc)

=
conf(PQ → c)

1 + supp(c)/ supp(PQ)− conf(PQ → c)

≥ conf(PQ → c)

1 + supp(c)/ supp(PQX)− conf(PQ → c)

≥ conf(PQX → c)

1 + supp(c)/ supp(PQX)− conf(PQX → c)

= Jaccard(PQX → c).

The theorem has been proved. ¤

Corollary 1 Closure property

If supp(P ) = supp(PX), then rule PX → c for any c and all its more specific rules
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do not occur in an optimal rule set defined by confidence, odds ratio, lift (interest or

strength), gain, added-value, Klosgen, conviction, p-s (or leverage), Laplace, cosine,

certainty factor or Jaccard.

Proof If supp(P ) = supp(PX), then supp(P¬c) = supp(PX¬c) holds for any c.

Therefore, this Corollary is proved immediately by Theorem 1. ¤

Corollary 2 Termination property

If supp(P¬c) = 0, then all more specific rules of the rule P → c do not occur in

an optimal rule set defined by confidence, odds ratio, lift (interest or strength), gain,

added-value, Klosgen, conviction, p-s (or leverage), Laplace, cosine, certainty factor

or Jaccard.

Proof If supp(P¬c) = 0 then supp(PX¬c) = supp(P¬c) = 0 holds for any X .

Therefore, this Corollary is proved immediately by Theorem 1. ¤

Theorem 2 The relationship with the non-redundant rule set

An optimal rule set is a subset of a non-redundant rule set.

Proof Suppose that we have supp(P ) = supp(PX) and there is no P ′ ⊂ P such that

supp(P ) = supp(P ′). The rule PX → c for any c is redundant. It will not be in an

optimal rule set either according to Corollary 1.

Suppose that supp(P ) = supp(PX) and there is P ′ ⊂ P such that supp(P ) =

supp(P ′). We always have supp(P ′) = supp(P ′Y ) for Y ⊆ (PX\P ′). Rules P → c

and PX → c are redundant. They will not be in an optimal rule set either according

to Corollary 1.

Further, many non-redundant rules are pruned by Theorem 1.

Therefore, an optimal rule set is a subset of non-redundant rule set. ¤
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