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Abstract
Chronic Ocular Diseases (COD) such as myopia, diabetic retinopathy, age-related macular degeneration, glaucoma, and
cataract can affect the eye and may even lead to severe vision impairment or blindness. According to a recent World Health
Organization (WHO) report on vision, at least 2.2 billion individuals worldwide suffer from vision impairment. Often, overt
signs indicative of COD do not manifest until the disease has progressed to an advanced stage. However, if COD is detected
early, vision impairment can be avoided by early intervention and cost-effective treatment. Ophthalmologists are trained to
detect COD by examining certain minute changes in the retina, such as microaneurysms, macular edema, hemorrhages, and
alterations in the blood vessels. The range of eye conditions is diverse, and each of these conditions requires a unique patient-
specific treatment. Convolutional neural networks (CNNs) have demonstrated significant potential in multi-disciplinary
fields, including the detection of a variety of eye diseases. In this study, we combined several preprocessing approaches
with convolutional neural networks to accurately detect COD in eye fundus images. To the best of our knowledge, this is
the first work that provides a qualitative analysis of preprocessing approaches for COD classification using CNN models.
Experimental results demonstrate that CNNs trained on the region of interest segmented images outperform the models
trained on the original input images by a substantial margin. Additionally, an ensemble of three preprocessing techniques
outperformed other state-of-the-art approaches by 30% and 3%, in terms of Kappa and F1 scores, respectively. The
developed prototype has been extensively tested and can be evaluated on more comprehensive COD datasets for deployment
in the clinical setup.

Keywords Healthcare informatics · Clinical decision support systems · Explainability · Fundus imaging ·
Convolutional neural networks

1 Introduction

According to WHO projections [1], the global population
suffering from myopia will reach 3.36 billion by 2030,
while those suffering from age-related macular degener-
ation (AMD), glaucoma, and diabetic retinopathy (DR)
will reach 243.3 million, 95.4 million, and 180.6 million,
respectively. Early detection of COD is essential for clini-
cal decision-making and can significantly reduce the risk of
vision impairment. Regular screening is an important step
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toward early detection. However, the process adopted for
screening is primarily a manual investigation [2, 3]. This
makes it impractical to scale, given the wide range of dis-
eases and ever-growing patient population. Additionally, the
doctor-to-patient ratio is lower in most of the third world.
Though over two lakh expert ophthalmologists are practis-
ing globally, there is a severe shortage of ophthalmologists
in underdeveloped countries [4]. In underdeveloped nations,
the number of expert ophthalmologists per million people is
reported to be just 11 [4], which is highly inadequate when
compared to the growing COD patient population. Auto-
mated systems can aid in the early detection of COD via
tele-ophthalmology in rural areas where there is a short-
age of retina specialists. Given the ever-increasing patient
population every day, manual screening is highly time-
consuming, and the treatment capacity is often limited due
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to low doctor:patient ratios across the world. It is crucial to
develop intelligent computational systems like multimodal
image retrieval [5–7] and clinical decision support systems
(CDSSs) [8–10] that accommodate these needs by facili-
tating automated diagnostic image management for early
detection of chronic diseases at the patient level. The detec-
tion of ocular diseases can be considered as a multi-label
classification problem involving the binary classification of
multiple diagnostic labels. Labels are assigned to identify a
specific diagnostic condition recorded as a binary indicator,
considering the patient’s eye conditions. Recently, there has
been significant interest in developing an automated COD
screening system capable of detecting various eye disorders.
These models use colored fundus photographs, fluorescein
angiography, optical coherence tomography (OCT), opti-
cal coherence tomography angiography (OCTA), and other
ocular imaging data. Most earlier computer-aided screen-
ing methods used digital image-processing based techniques
(IPT) [11]. Later, supervised machine learning techniques
(MLT) were developed, which extract features using prede-
fined rules or statistical and structural metrics [12–14]. Over
the years, research directions have shifted towards end-to-
end, intelligent predictive systems that use the predictive
power of deep neural networks, owing to their data-driven-
feature learning capabilities. Deep neural networks have
achieved state-of-the-art performance for various clinical
prediction and diagnostic tasks over multiple patient data
modalities [15, 16], lifestyle diseases [17–20] and CODs
[21–25].

Convolutional neural networks (CNN) have shown
promising performance in detecting COD like glaucoma,
DR, and AMD, using color fundoscopy images [24, 26–
29]. Although several preprocessing techniques are used
to detect COD using CNN, a comprehensive experimental
study on the effect of preprocessing on the performance
of CNN is yet to be explored. In this context, we design
and conduct a series of experiments comparing the COD
detection performances of CNN architectures, exploring
possible alterations in preprocessing and augmentation
methods that can enable existing CNN models to distinctly
focus and learn the relevant features from minute ocular
lesions. This study also aims to delve deep into effective
preprocessing techniques that can boost the patient-
level predictive performance of DL-based diagnostic
systems. Additionally, a pilot study was carried out to
understand the efficient preprocessing techniques that
can aid ophthalmologists in clinical decisions. The key
contributions of this study can be summarized as follows:
1) Development of a region of interest (RoI) detection
algorithm for precisely segmenting the fundus region for
efficient CNN training in learning minute lesions. 2)
Provide a comprehensive comparative COD classification
performance evaluation of state-of-the-art DL architectures

3) Present the findings of a wide range of experiments that
document the effects of preprocessing, data augmentation,
and ensemble methods. 4) Conduct a pilot study to
understand the effective preprocessing methods that can aid
ophthalmologists in their clinical decisions.

The rest of the paper is organized as follows: Section 2
provides a comprehensive review of the most relevant and
effective DL-based COD detection methods reported in
the literature. Different preprocessing methods and DL-
based COD diagnostic systems have also been reviewed.
Section 3 details the preprocessing, data augmentation, and
DL architectures used to analyze the performance of the
COD detection system. Section 4 documents the evaluation
of the DL models and details the extensive experiments con-
ducted on DL models trained under different preprocessing,
augmentation, and ensemble methods. Section 5 summa-
rizes the proposed experimental study and presents future
work.

2 Review of existing works

Color fundus images captured from fundus cameras are
used for the early diagnosis of COD. The transformations
on the input color fundus images before feeding them to
the deep neural models play a crucial role in improving
the diagnostic performance. Preprocessing reduces the
possible noise in color fundus images such as irregular
illumination, low contrast, unimportant features, etc., thus
improving the performance of DL-based COD diagnosis. A
few digital image preprocessing techniques reported in the
literature are adaptable to all COD (hereby referred to as
generic techniques). On the other hand, a few preprocessing
methods are only versatile for particular ocular diseases like
DR, glaucoma, cataract, or AMD (hereby referred to as
specific preprocessing techniques).

The most common clinical signs based on which oph-
thalmologists identify the progression of DR in the fundus
images are microaneurysms, haemorrhages, exudates, thick-
ening within one disc diameter from the foveal centre, and
retinal neovascularisation [30, 31]. Thus, the lesion regions
are segmented for building DL-based automated DR diag-
nostic systems. Chalakkal et al. [32] investigated the effect
of fovea segmentation on macular oedema screening using
DL-based transfer learning approaches. The authors criti-
cally analysed the effects of limiting the RoI to the fovea and
reported improved performance due to RoI segmentation
than considering the entire fundus image. The progressive
alterations in the retinal vessels are also crucial for identi-
fying DR [33]. Several researchers [34–37] have segmented
the retinal vessel structure from the input color fundus
images before feeding them to the DL-based diagnostic
system.
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Damage to the optic nerve is the primary cause of vision
loss in glaucoma. Glaucoma can be detected by examining
the abnormalities of the optic disc. Several works [38–44]
employed cropping/segmentation of optic disc regions, and
then used CNN to diagnose glaucoma using color fundus
images. Juneja et al. [43] proposed a modified version of U-
net (G-net) to segment the optic disc and cup region, after
which they used the ratio of these areas to predict glaucoma.
Zhao et al [41] adapted a template matching method for
locating and cropping the bounding region around the optic
disc and proposed MFPPNet to screen glaucoma. Modified
U-Net [45] is predominantly used for optic disc segmenta-
tion [39, 40, 44] and then transfer learning is applied to the
cropped region to screen glaucoma. Pathan et al. [13] used
inpainting to eliminate the vascular structure before seg-
menting the optic disc/cup regions. A recent study, [46, 47]
suggests that various regions, like the arterioles, venules,
etc., are also associated with high-tension open-angle
glaucoma. The performance of CNN using only optic disc
cropped regions has been experimented with, a systematic
experimental evaluation of other preprocessing methods in
CNN has yet to be undertaken.

The increase in protein aggregation in the lens does not
allow light to pass through the lens and may lead to cataract.
Xu et al. [48] divided the input fundus images into eight
local patches based on ophthalmologists’ recommendations
for automatic cataract grading using CNN. Using the unified
rectangular fundus images, Zhang et al. [49] extracted
the high-level texture features using a CNN model and
supervised SVM to grade the severity of the cataract. Imran
et al. [50] extracted the image green channel, resized the
images, and used CNNs for feature extraction and SVM
for cataract severity identification. Thus, there is a wide
scope for the experimental evaluation of other preprocessing
methods using CNN for automatic cataract diagnosis.

Though the choice of preprocessing techniques is
dependent on the type and requirements of a particular
ocular disease diagnosis, a thorough analysis of the effect of
preprocessing on the efficiency of DL models has not been
undertaken, to the best of our knowledge. The qualitative
analysis of the adapted preprocessing strategies is not
well discussed in the existing literature. Preprocessing of
input fundus images necessitates the use of computational
resources. A few preprocessing methods may improve
the predictive performance, while others may have the
opposite impact. Some preprocessing techniques may be
best suited for specific ocular diseases. Still, they may
not meet the clinical needs in real-time, particularly
in scenarios where there is a lot of variation in eye
diseases. Thus, there is significant scope for conducting a
comprehensive, systematic assessment of such techniques’

relative strengths and weaknesses for quantifying their
usefulness in automated chronic disease diagnosis.

CNN based models have been recently used for COD
detection by many researchers. Islam et al. [51] proposed
a shallow CNN to predict CLAHE preprocessed RGB
fundus images with the dimension of (32 × 32). With
such tiny image dimensions, the most relevant information
is lost, resulting in neural network overfitting. Wang
et al. [52] applied histogram equalization on both (448 ×
448) RGB and grayscale images. Then, two EfficientNet-
B3 [53] networks were separately trained on these images,
and the predicted values for networks were averaged to get
the final prediction. The increased input image dimensions
necessitate the use of more training parameters, which
increases the computing resources required during both
the training and inference phases. Gour and Khanna [54]
concatenated left and right fundus RGB images of
dimension (256 × 256) and classified COD using sigmoid
activation function. Li et al. [55] fused the left and right
eye CNN network features and classified COD using eight
separate classifiers. He et al. [25, 56] extracted ResNet
features of left and right fundus RGB images of dimension
(448×448) and refined the features using spatial correlation
module. The authors randomly split the training ODIR
dataset and cross-validated the proposed method on 1166
fundus images. He et al. [57] improved prior efforts [25,
56] by training a teacher network on fused features from
both eye images and the 102 diagnostic keywords. While
it is not always prudent to get fundus images of both eyes
at the same visit, the developed CDSS should be adaptable
to such circumstances. Due to the fusion of multiple input
fundus images, visualizing the information learned by the
CNNmodels for predicting the output COD is a challenging
task. For CDSS to be adaptable in real-world circumstances,
providing a transparent, explainable decision (even if it
is wrong) is considerably more acceptable than putting
forth a highly accurate, non-transparent decision, primarily
due to the trust barrier between ophthalmologists and
automated systems. To address these issues, we propose an
automated RoI segmentation and ensemble technique that
enables CDSSs to learn minute lesions for accurate early
COD detection and allows visualization of the input image
features that contributed to it.

3Methodology

The role of preprocessing in improving the performance of
the DL-based diagnostic system is investigated in this study
by experimenting with two specific (vessel segmentation
and inpainting) and nine generic preprocessing techniques.
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Fig. 1 Overall methodology employed in the proposed study for COD classification

Figure 1 provides an overview of the training methodology,
and further details regarding the preprocessing and augmen-
tation methods used in the course of experiments have been
elaborated below.

3.1 Automatic region of interest segmentation

The gradient Hough transform is used to segment the
foreground circular fundus region. The parameters are
chosen based on the validation of 500 fundus images. The
inverse of the ratio of accumulator resolution to image
resolution is set to 1, and the minimum distance between
the detected circles’ centre coordinates is set to 20. The
accumulator threshold value is set to 30, and the gradient
value for edge detection is set to 50. The minimum radius (in
pixels) is set to 1/4 of the input dimensions’ minimum, while
the maximum size is set to the input dimensions’ maximum
size. The bounding box is formed for the detected circular
region, ensuring that the cropped region is within the image
dimension. The appropriate circular area (from the detected
circles) is chosen, ensuring that non-zero pixels outside the
cropped region are within five rows and columns.

The automatic foreground cropping mechanism is
described in detail in Algorithm 1. A few sample input
fundus images and the corresponding foreground segments
obtained after processing are shown in Fig. 2c. We also
experimented with Otsu thresholding [58] using the largest
contour crop method, but the foreground regions obtained
were clipped in the darker images. With our proposed auto-
matic segmentation approach, only the background regions
are cropped without losing useful details (refer Fig. 2(a-c)).

3.2 Image enhancement

During this process, we aim to enhance the visual quality
of the fundus images for improved learning performance.
To improve the visual quality of input fundus images,
experiments are carried out using CLAHE [59] (on both
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Fig. 2 Results of preprocessing on input sample images. A)Original,
B)Otsu’s thresholding segmentation, C)Proposed Hough transform
segmentation, D)Green channel, E)Green channel CLAHE, F)Green
channel Gaussian convolution, G)RGB CLAHE, H)RGB Gaussian
convolution, I)MSR, and J)MIRNET images

green and RGB channels), Gaussian filter convolution,
Multiscale Retinex (MSR) [60], and multiscale residual
block network (MIRNET) [61] approaches. The CLAHE
enhanced image is obtained by applying the normalized
intensity histograms Pn (see (1)) to the image patches (5 ×
5), which are defined as a matrix M (r×c) with values (pixel
intensity) ranging from 0 toL−1. The resulting image patch
Ieq is defined by (2). The contrast factor (or clip limit) that

limits the slope associated with the gray-level assignment
scheme in CLAHE is set to 2.

Pn = Number of pixels with intensity n

Total number of pixels
n = 0, 1 . . . L−1

(1)

Ieq = �(L − 1)

Mi,j∑

n=0

Pn� (2)

In this work, a Gaussian filter convolved (blurred) image
is blended with the original image to improve image
contrast. The resulting enhanced image Igs is defined by
(3). G(h, w) represents a Gaussian filter with a scale σ

and ∗ the convolution operator. The parameter values are
determined based on experimentation and are set as α = 4,
β = −4, σ = 10, and γ = 128. The MSR algorithm [62,
63] is adapted to improve the local contrast enhancement
of the fundus images. MSR is implemented by [60], based
on the Retinex [64] theory, which attempts to model human
visual color perception. MSR improves the local contrast
of the fundus image as per the desired scales (sigman) of
the Gaussian kernels (refer (4)). N is set to three scales
([5, 35, 150]) in this study, and the weight factor associated
with the Gaussian function (Wn) is set to 1/3.

Igs(h, w) = αIorig(h, w) + βG(h, w, σ) ∗ Iorig(h, w) + γ

(3)

I (h, w)ms−retinex =
N∑

Wn(log(I (h, w))

−log((I (h, w)) ∗ G(h, w, σn))) (4)

Recently, [61] proposed the MIRNET model that
integrates parallel multi-resolution convolution, spatial and
channel attention for image enhancement. The pre-trained
weights of this model are utilized in our work to enhance the
contrast of fundus images. From Fig. 2, the effect of each
preprocessing phase considered as part of our experiments
on sample input fundus images can be observed. As can
be seen from Fig. 2, MSR increases the brightness while
maintaining/improving the overall visual quality. CLAHE
and MIRNET enhance the visual quality of the image but
also introduce additional artefacts, while the green channel
retains the original image’s visual quality.

3.3 Vessel segmentation

The progressive changes of retinal vessels are crucial
for detecting COD, for which preprocessing is performed
through the segmentation of blood vessel regions. The
DRIVE dataset [65] is used to train the RetinaNet [66]
model for this purpose. CLAHE is applied to increase the
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contrast of the color fundus images, and the generative
neural model [66] is re-trained for the segmentation
of vessel masks. Regions with intensities less than the
threshold (20) are set to zero in the mask. If the number of
connected pixels in each connected component is less than
100, the intensities are set to zero. Algorithm 2 details the
steps involved in vessel segmentation. To observe the impact
of vessel structure on the COD detection performance, a
process of background color inpainting is applied to the
segmented vessel masks, using a pre-trained generative
model [67]. Figure 3 shows some sample images from
various COD classes.

3.4 Data augmentation

For effective learning performance, generalizable deep
neural models require a large number of labelled images.
A variety of data augmentation techniques are widely used
to deal with the limited number of training images. In our
work, batch-level and condition-level data augmentation
techniques are incorporated to increase the number of
images used to train the neural models. In batch-level
augmentation, horizontal and vertical flipped images, as

well as random angle rotated images, are generated and
added to the training set. In condition-level augmentation,
training images are augmented conditionally using the
StyleGAN2 model [68]. The StyleGAN2 is applied to
the training dataset, using the textual descriptions of the
ocular diseases. The diseases with fewer than five training
images were excluded, which resulted in 48 conditions. The
network has been trained for 25 million training images.
Figure 4 presents a representative sample of fundus images
generated for the given COD. As a result of the data
augmentation, over 21,000 training images were obtained
by augmenting 300 images for each ocular condition.

3.5 Convolutional neural models

CNNs have shown exceptional performance in various
computer vision tasks, including the classification of COD.
We base our experiments on eleven prominent CNN models
that have demonstrated high performance on the ImageNet
[69] challenge dataset. We experimented with SqueezeNet
[70], MobileNet [71], Inception [72, 73], DenseNet [74],
EfficientNet [53], ResNeXt [75], ResNet [76], WideResNet
[77], and VGG16 [78], using both cropped and non-
cropped fundus images. Table 1 lists the number of training
parameters used for the DL models in ascending order. The
model parameters are initialized using the ImageNet pre-
trained weights. The final dense layer is initialized with the
same random seed for all the models. This ensures that all
models are trained as per a common parameter setting. After
observing the outcomes of the experiments, the model with
the highest F1 score is utilized as a baseline for examining
the effect of various preprocessing techniques on CNN
performance. Fundus images are preprocessed individually
and fed into the CNN models for inference. The maximum
score is regarded as the final screening result at the patient
level.

COD classification is a multi-label classification problem
that requires binary classification of multiple diagnostic
labels, each label indicating a specific COD. As a result, in
this study, binary predictions are used as target scores, with
actual and predicted values compared pairwise. A multi-
label one-versus-all loss based on max-entropy is used to
train the CNN, as illustrated in (5) (where i ∈ {0 . . . , N},
y[i] ∈ {0, 1}). In this study, Y represents the actual target
labels, while ŷ represents the predicted labels of dimension
(N, C) (where N is the batch size and C is the number of
classes=8).

loss(ŷ, y) = − 1

C
∗

∑

i

y[i] ∗ log((1 + exp(−ŷ[i]))−1)

+(1 − y[i]) ∗ log

(
exp(−ŷ[i])

(1 + exp(−ŷ[i]))
)

(5)
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Fig. 3 Results of segmentation
and inpainting of vessel
structure on sample input
images. A)Original (normal,
DR, glaucoma, cataract and
AMD), B)Vessel segmentation,
C)Vessel inpainting images

4 Experimental results and discussion

For the experimental evaluation of the proposed approaches,
the ODIR-5K (Ocular Disease Intelligent Recognition)
challenge dataset [79], consisting of a total of 5,000

patients’ data, was employed. The training dataset com-
prises 3,500 patient records with 7,000 fundus images, and
the final label is based on both eye conditions. The dataset
is highly imbalanced. It contains over 3,000 normal images
but only 190 hypertensive retinopathy images. About 500

Fig. 4 Sample of generated
fundus images using
StyleGAN2 for the given ocular
conditions. A)Normal, B)DR,
C)Cataract, D)AMD, E)Myopia
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Table 1 Details of model training parameters

Model Parameters (in millions)

SqueezeNet [70] 0.726600

MobileNetv2 [71], 2.234120

Inceptionv1 [72] 5.608104

DenseNet121 [74] 6.962056

EfficientNet-B3 [53], 10.708528

ResNeXt50 [75] 22.996296

ResNet50 [76], 23.524424

Inceptionv3 [73] 25.128656

EfficientNet-B7 [53] 63.807448

WideResNet50 [77] 66.850632

VGG16 [78] 134.29332

images have multiple labels, and the “Others” category con-
sists of more than 20 distinct eye diseases. The statistics
of the training data are summarized in Table 2. Automatic
relabeling was carried out based on the textual informa-
tion available for each eye condition, and the validity was
checked by comparing the union of the labels with the
final available labels. For example: the image 0 left.jpg was
labelled 00010000, as cataract was present in the textual
description. The 0 right.jpg was labelled 10000000 as the
text included normal fundus. The union 00010000 was ver-
ified with the final available label 00010000. Normal labels
are considered only when both eyes have the text nor-
mal fundus, ignored otherwise. Some representative fundus
images along with the final available labels are listed in
Table 3. All the images are resized to 256 × 256.

4.1 Evaluationmetrics

Several standard metrics were used for validation purpose.
F1 score is used as a primary metric for validating the output
of preprocessing techniques, as it is a weighted harmonic
mean of precision and recall (see (6)). Thus, models with
higher F1 scores are expected to improve the system’s

Table 2 Details of ODIR training data

Type of COD (Class) Training images

Normal 3,098

DR 1,801

Others 1,200

Glaucoma 326

Cataract 313

AMD 280

Myopia 268

Hypertension 193

predictability. The F1 metric is also more indicative than
the standard accuracy score because it accounts for true
and false positives (TP and FP) as well as true and false
negatives (TN and FN). The precision and recall for the
neural system over C classes are computed using (7) and are
macro-averaged over the target output classes. In addition to
these metrics, we also report the models’ performance using
the area under the curve (AUC) and Kappa score (average
of Cohen’s kappa for each label) multi-label classification
metrics. The area under the ROC curve is referred to as the
AUC. The model’s classification accuracy improves as it
gets closer to 1. It is often used to determine the model’s
stability. Cohen’s Kappa [80] (see 8) is a quantitative
measure of reliability - a score of 0 indicates that there is a
random match, while a score of 1 means that the true and
predicted labels are fully in the agreement.

Fβ=1 = (1 + β2) · precision · recall
(β2 · precision) + recall

(6)

precision = 1

C

C∑

c=1

TPc

TPc + FPc

; recall = 1

C

C∑

c=1

TPc

TPc + FNc

(7)

Kappascore = Po − Pe

1 − Pe
; (8)

4.2 Observed results

During inference, the left and right eye images are both
considered, and the final ocular condition is determined
by a label-wise maximum score among two output
predictions. The ODIR test set contains 500 unlabeled
patient records (1,000 images) that can be labelled in
any of the eight possible ways. Thus, if a single label is
correctly predicted, an F1 score of 0.00025 is achieved,
demonstrating the significance of prediction scores. Table 4
summarizes the results obtained with original color and
cropped images obtained using state-of-the-art neural
models with test ODIR data.1 The experimentation is
conducted using a batch-level augmentation method (please
refer Section 3.4). The performance of the top scoring
neural model (ResNeXt50) with RoI crop is benchmarked
using several preprocessing methods. As stated earlier, nine
preprocessing methods have been employed, and the results
are shown in Table 5. Experimentation was carried out to
evaluate the top three performing neural models and further
analyze the top-performing prepossessing techniques. The
results are shown in Table 6. It can be observed that results

1Submitted to: https://odir2019.grand-challenge.org/evaluation/
challenge/submissions/create/
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Table 3 Sample fundoscopy images from ODIR dataset

Final label Right & left eye images

DR

AMD + DR

DR + Myopia + Others

DR + Cataract + Others

are comparable to ResNeXt50 and the best results are
obtained with RGB RoI cropped images.

The ResNeXt50 model achieved the best F1, Kappa
and AUC scores on the cropped images obtained using
the proposed RoI segmentation algorithm. As per the
strategy adopted for benchmarking experiments (discussed
in Section 3.4), the ResNeXt50 model is trained on the
augmented training set, using the proposed preprocessing
pipeline for COD classification. The observed results are

tabulated in Table 7. It can be observed that batch-level
augmentation achieved the best performance. Therefore,
for the rest of the experiments, it was utilized for training
the models. The majority rule voting approach is used
to ensemble the predictions of the top three DL models
(ResNeXt50, EfficientNetB7 and VGG16) with only RoI
cropped color images and the top three preprocessing
approaches (RoI cropped, green channel, and MSR) trained
with the ResNeXt50 model. The results of ensemble
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Table 4 Observed performance for state-of-the-art DL models on the testset

With original image With cropped image

Kappa AUC F1 Kappa AUC F1

DenseNet [74] 0.4659 0.7888 0.8698 0.5195 0.8210 0.8804

EfficientNetB3 [53] 0.4691 0.7922 0.8695 0.5090 0.8199 0.8803

EfficientNetB7 [53] 0.4677 0.7265 0.872 0.5260 0.8317 0.8845

Inceptionv1 [72] 0.4124 0.7746 0.8553 0.4733 0.8021 0.8718

Inceptionv3 [73] 0.3131 0.7201 0.8365 0.3882 0.7671 0.8535

MobileNet [71] 0.4664 0.7984 0.8703 0.4852 0.8191 0.8740

ResNet50 [76] 0.4110 0.7602 0.8575 0.5022 0.8093 0.8782

ResNeXt50 [75] 0.4733 0.7921 0.8717 0.5680 0.8606 0.8953

WideResNet [77] 0.4222 0.7634 0.8618 0.4734 0.8343 0.8743

SqueezeNet [70] 0.1347 0.6178 0.7838 0.1594 0.6412 0.7873

VGG16 [78] 0.5092 0.7828 0.8790 0.5268 0.8248 0.8813

models’ performance are shown in Table 7 and the results of
benchmarking experiments with respect to state-of-the-art
DL models are summarized in Table 8.

4.3 Discussion

During the extensive experiments conducted to evaluate the
effectiveness of the proposed approaches, we observed that
the models trained using cropped fundus images always
outperformed those trained on non-cropped images by
an average percentage difference of 15% Kappa score
as shown in Table 4. This can be attributed to the
enhanced predictability afforded due to the proposed
RoI segmentation algorithm. To visualize the dominant
features learned by the proposed model to detect a
particular type of COD, we used Gradient-weighted
class activation mapping (Grad-CAM) [82]. Figure 5

Table 5 Results of ResNeXt50 (best performing model) with proposed
preprocessing pipeline

Preprocessing method Observed performance

Kappa AUC F1

Original image 0.4733 0.7921 0.8717

Cropped image 0.5680 0.8606 0.8953

Green channel 0.5336 0.8186 0.8882

Green channel+CLAHE 0.5198 0.8189 0.8840

Green channel+Gaussian 0.4898 0.8082 0.8777

RGB+CLAHE 0.5308 0.8368 0.8860

RGB+Gaussian 0.5260 0.8206 0.8840

Multiscale Retinex (MSR) 0.5330 0.8418 0.8865

MIRNET 0.4438 0.8403 0.8550

Vessel segmentation 0.3097 0.7212 0.8325

Vessel inpaint 0.4865 0.8500 0.8765

shows the Grad-CAM visualization for the original (non-
cropped) and cropped images trained with ResNeXt50. The
last convolution layer’s coarse localization map (before
AdaptiveAvgPool2d) reflects the important regions in the
input image to detect a particular type of COD. The
obtained Grad-CAM is normalized and resized to the
original image size. A mask image is generated from
Grad-CAM with a threshold of 100. The contours are
drawn using the mask image and visualized on the input
fundus image as shown in Fig. 5 (iv & viii). Contours
are indicated in green when the prediction score is greater
than or equal to 0.5; otherwise, they are highlighted in
red. Owing to the difficulties in identifying minute lesions
(e.g., microaneurysms, drusens, cup to disc ratio, etc.),
DL models trained on non-cropped images failed to detect
a majority of early-stage ocular diseases (refer Fig. 5 ii-
iv). In contrast, the proposed approach performed well in
accurately identifying the majority of lesions, thus aiding in
the generation of explainable predictions.

The proposed ensemble model outperformed several
state-of-the-art models [51, 54, 55] in terms of Kappa and
F1 scores. AUC is insensitive to class imbalance, i.e., when
the labels include many zeros, correctly detecting them
may also lead to high AUC. As a result, a high F1 score is
more significant than a high AUC in cases with a high class
imbalance. For the studies using ODIR training using 1166

Table 6 Observations w.r.t top three performing models, when used
with RoI cropped images

DL model RGB Green MSR

ResNeXt50 [75] 0.8953 0.8882 0.8865

VGG16 [78] 0.8813 0.8498 0.8465

EfficientNetB7 [53] 0.8845 0.8668 0.8605
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Table 7 Comparative
performance of proposed
augmentation and ensemble
techniques

Method Observed performance

Kappa AUC F1

No augmentation 0.5246 0.8323 0.850

Batch-level (Flip + Rotation) 0.5680 0.8606 0.8953

Condition-level (GAN) 0.4228 0.8534 0.8710

Ensemble 1 (ResNeXt50, Effi-
cientNetB7 & VGG16)

0.5815 0.8532 0.9008

Ensemble 2 (RoI cropped, green
channel & MSR)

0.6081 0.8806 0.9070

Table 8 Comparative performance of proposed approaches against state-of-the-art techniques

No. Models Dataset Observed performance

Kappa AUC F1

1 ResNet-101 backbone [25, 56] 1166 patients data (ODIR train set) 0.6370 0.9300 0.9130

2 ResNet-101 + Textual features [57] 1166 patients data (ODIR train set) 0.6410 0.9380 0.9130

3 Graph convolutional network [81] 996 images of 498 patients (ODIR) 0.5765 0.7816 0.8966

4 EfficientNet-B3 [52] ODIR offline challenge test set 0.5200 0.7400 0.8900

5 Shallow CNN [51] ODIR offline challenge test set 0.3100 0.8050 –

6 Two input VGG16 [54] ODIR offline challenge test set – 0.6888 0.8557

7 VGG-16 [55] ODIR offline challenge test set 0.4494 0.8881 0.8730

8 Proposed pipeline (§ 3.1 +§ 3.4 +§ 3.5) with ResNeXt50 ODIR offline challenge test set 0.5680 0.8606 0.8953

9 Proposed DL ensemble (§ 3.1 +§ 3.4 +§ 3.5 +§ 4.3 ) ODIR offline challenge test set 0.5891 0.8610 0.9025

10 Proposed preprocessing ensemble (§ 3.1 + § 3.2 +§ 3.4 +§ 3.5 +§ 4.3) ODIR offline challenge test set 0.6081 0.8806 0.9070

Fig. 5 Visualization of Grad-CAM heatmap on the original input
images. Columns i-iv show the original images, where as, columns v-
viii are cropped versions. The annotated labels are A) Mild DR (D),

epiretinal membrane (O); B) Mild DR (D), drusen (O); and C) Mild
DR (D), glaucoma (G), vitreous degeneration (O)
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Table 9 Summary of preprocessing techniques for COD detection using fundus images

Method Observed execution time (in ms) Observations on COD fundus images

Individual channels 0.0348 Green channel best differentiates blood vessels, exudates, and
haemorrhages and is often used to identify DR. Unlike the red and
blue channels, this channel is neither under- nor over-illuminated.
CNN trained only on green channels needs fewer training
parameters. However, the green channel has less information on
the optic disc, which is necessary for diagnosing other eye illnesses
such as glaucoma. The red channel is the brightest, and it can
distinguish the optic disc from other portions of the fundus image.
Segmentation of the optic disc is primarily used to identify eye
disorders such as glaucoma. However, it is more noisy, so it is not
suitable for detecting other COD. The blue channel is the darkest
component and has not been extensively studied for use in detecting
COD.

CLAHE 2.855 It is a sharpening filter that increases the contrast of fundus images
and is commonly used to detect DR and glaucoma. Enhances
the low-contrast regions, especially the contrast enhancement of
microaneurysms and small blood vessels. However, if the majority
of the pixels in the fundus image are dark, an excessive enhancing
effect may occur, distorting the image’s overall visibility.

Gaussian convolution 2.259 The Gaussian smoothed image reduces noise, and when subtracted,
the fundus image is sharpened. This increases the contrast between
blood vessels and the surrounding environment and is often
employed in DR detection. However, minute features are obscured
in brighter regions, such as the optic disc. Additionally, border areas
for the brighter photos exhibit additional artefacts.

MSR 17.667 The difference between the input value (centre) and normalized
surround or neighbourhood values determines MSR output. The
MSR technique enhances images captured under a variety of
nonlinear lighting conditions to the degree that a person would
perceive them in real time. However, several parameters in
this improvement procedure are image-dependent and must be
modified accordingly. Additionally, the algorithm will introduce
extra artefacts into the enhanced image for the regions with
significant brightness changes.

MIRNET 60896.423 Full-resolution processing recovers the original image’s high-
quality content from its degraded counterpart, while the com-
plementary set of parallel branches gives enhanced contextual
features. MIRNET establishes links between features both inside
and across branches of varying sizes. The method of feature fusion
enables dynamic adaptation of the receptive field without jeopar-
dizing the original feature details. However, additional artefacts are
seen in images with a high number of brighter lesions.

Vessel segmentation 6056.545 Segmentation of the vascular structure is commonly utilized to
detect COD such as AMD, diabetic retinopathy, and glaucoma.
However, segmented vessels often have poor contrast, particularly
thin and tiny vessels. Identifying minute changes in vascular
structure for the purpose of detecting COD is often challenging
without patient demographic information. Other retinal structures
(optic disc, macula, fovea, etc.) and lesions (microaneurysms,
exudates, etc.) also contribute significantly to the detection of
COD.

Vessel inpainting 6133.436 Blood vessel inpainting is a technique that includes inpainting
segmented vessels with a fundus backdrop. It is primarily used
to diagnose glaucoma by the localization and segmentation of the
optic disc. However, the anatomy of the vasculature is critical in
diagnosing other COD.
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Table 10 Comparative evaluation of augmentation and preprocessing techniques on DDR testset

Method Observed performance

Kappa F1 AUC Sensitivity

No augmentation 0.5797 0.7898 0.8669 0.9276

Batch-level augmentation 0.5812 0.7906 0.8793 0.9170

Condition-level augmentation 0.6052 0.8026 0.8769 0.9091

Ensemble 1 (ResNeXt50, EfficientNetB7 & VGG16) 0.6196 0.8098 0.8749 0.9563

Ensemble 2 (RoI cropped, green channel & MSR) 0.6302 0.8151 0.8730 0.9570

Patch-based lesion localization model [85] – – 0.8480 0.8910

patients’ data, the models put forth by He et al. [57] and Li
et al. [56] showed better results. Due to the lack of precise
patient IDs for each split, our proposed method could not
be evaluated and compared to these models. Additionally,
owing to the fusion of features, obtaining evidence for the
output predictions is difficult with these models. With the
proposed method, the evidence can be visualized for each
predicted label (true or false). Moreover, He et al. [57]
utilized diagnostic keywords indicative of actual diagnosis
along with fundus images to augment their accuracy. Due
to this, there is a dependency on expert generated diagnosis
reports, which imposes an additional load on the learning
models.

All other preprocessing strategies, except for the RoI
cropping method, had no significant impact on the pre-
diction performance of DL models (please see Table 5).
Though the images created with CLAHE and the MIRNET
seemed to improve contrast visually, the techniques did not
significantly boost the CNN performance. The efficiency
is similar to that of the RGB channels when only the green
channel is used, but the number of training parameters is
decreased by around 10000. Hence, this helps with efficient
training and inference. Furthermore, the vessel segmen-
tation technique that was primarily investigated for DR
detection [35–37], had no discernible effect on COD detec-
tion. Table 9 summarises the advantages, disadvantages,
and execution time (in milliseconds) of the various exper-
imental preprocessing techniques using fundus images.
Table 9 shows the average time taken by all preprocessing
methods for five random images when executed on Apple
M1 CPU processor with 16GB RAM. It can be observed
that certain preprocessing techniques enhance brighter
structures/lesions while others emphasise darker structures
or lesions in fundus images. Thus, using a combination of
preprocessing techniques improves performance.

Condition-level augmentation improved prediction accu-
racy for the Normal, DR, Cataract, AMD, and Myopia
classes. It did not, however, improve prediction for Glau-
coma or Other categories of diseases. We believe this limi-
tation could be addressed by including more representative

images for these classes (particularly with minute lesions).
To further investigate the impact of augmentation on predic-
tion performance, the highest-scoring DL model (ResNeXt)
trained on ODIR is tested on the publicly available DDR

Table 11 Operational definitions used by domain experts for the
testset image labeling

Ocular disease Operational definition

Cataract Fundus image is hazy, may not
permit or only permits a faint
view of the disc, macula and the
vascular arcades.

Diabetic retinopathy Fundus image shows evidence
of microaneurysms with one
or more of the following: dot
and blot hemorrhages, intrareti-
nal microvascular abnormalities
(IRMA), hard exudates, venous
beading, neovascularization.

Hypertensive retinopathy Fundus image shows evidence of
arteriolar narrowing and arteri-
ovenous crossing changes with
any of the following changes:
flame-shaped hemorrhages, soft
exudates, hard exudates, optic
disc edema.

Glaucoma Fundus image shows cup:disc
ratio of> 0.5 with nasalization of
vessels.

AMD Fundus image shows evidence of
soft or hard drusen with pigmen-
tary changes in the macula.

Myopia Fundus image shows evidence
of a large temporal or an annu-
lar crescent with chorioretinal
degenerative changes.

Others Fundus image shows other fun-
dus lesions like medullated nerve
fibers, macular hole, pigmenta-
tion, or any other lesion unrelated
to the above conditions.

Normal Fundus image shows a normal
disc and macula, without any of
the above possible diagnosis.
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Table 12 Results of pilot study -illustrating its benefits to the
ophthalmologists in their diagnosis

Input images Observed performance

Kappa AUC F1

RoI cropped images 0.2631 0.6382 0.8078

Green channel 0.2387 0.6291 0.7958

test dataset [83]. The DDR dataset makes use of the Inter-
national DR Grade Classification [84] (ranging from 0 to
4), as well as a special label (5) for low-quality images.
These ungradable images are excluded from our study due
to their low quality. The remaining dataset (3,759 images)
is split into normal (0) and abnormal (1,2,3,4). The fore-
ground region is cropped using the proposed method (refer
Section 3) and tested using the ODIR pretrained ResNeXt
model. The final score is obtained using the predictions of
the “Normal” class. The results of the three augmentation
techniques for DR screening are presented in Table 10. The
observations revealed that the condition-level augmented
model holds promise for building a generalizable DLmodel.
The inference for DR screening is also achieved using an
ensemble of models trained on the ODIR dataset. The pro-
posed ensemble model outperformed a patch-based lesion
localization deep network proposed by [85] in terms of AUC
and sensitivity scores (refer Table 10).

4.4 Pilot study

A pilot study was conducted to understand the contribution
of each preprocessing technique, to assess their effective-
ness in aiding ophthalmologists to make better clinical
decisions. The study was designed based on the ODIR test
dataset, and the objective was to evaluate the most suit-
able approach in real-world scenarios when trained human
experts diagnose COD. Two specialist ophthalmologists
were provided with the ODIR test image collection for this
purpose. Two different experiments were carried out by sep-
arately providing them with the RoI cropped color, and RoI
cropped green channel images. The operational definitions
used by trained experts to annotate the images are listed in
Table 11. Any artefacts in the fundus images, like mild haze
and rim defects, were ignored. In some of the images, the
optic disc was not captured properly during fundus photog-
raphy, which posed difficulties in interpretation. Diagnosis
in the absence of clinical history and patient demographics
also added to the challenges. The observations reported by
medical experts with reference to the patient-level evalua-
tions carried out by them were considered, and the observed
performance was evaluated using the Kappa score, AUC
and F1 score. The results of this pilot study are tabulated in

Table 12. It can be noted from the table that the RoI cropped
color images are much more effective compared to the RoI
cropped green channel images. It can be noted from the tab-
ulated results that the ROI cropped color images are much
more effective when compared to the RoI cropped green
channel images. This is consistent with the results obtained
with the CNN model during our experimental evaluation
(refer Table 5).

5 Conclusion and future work

Early diagnosis of COD is important for clinical decision-
making and can potentially eliminate vision impairment.
However, existing manual screening approaches are cum-
bersome and time-consuming. In this paper, we presented
a comprehensive study on the effectiveness of preprocess-
ing techniques for automated COD diagnosis. Experiments
revealed that ResNeXt was most effective at modelling the
very imbalanced and noisy ODIR dataset, when compared
to the other state-of-the-art transfer learning approaches
considered for the evaluation. We demonstrated that the
models trained on images processed using the proposed
RoI Segmentation Algorithm outperformed those models
trained on original non-cropped input images by a signif-
icant margin. The interpretability was demonstrated using
the CNN learned features, thereby establishing the impact of
the proposed RoI segmentation on instigating trust in intel-
ligent healthcare systems. The experimental results show
that, except for the RoI segmentation method, the other pre-
processing strategies do not impact much on CNN perfor-
mance. The proposed ensemble approach with batch-level
augmentation was found to be superior when compared to
state-of-the-art techniques benchmarked on the ODIR-5k
dataset. As part of extended work, we aim to augment the
model and approaches presented to accommodate a detailed
study of the impact of attention layers at various stages
of inference using CNNs. Recently, image enhancement
approaches based on optimization algorithms [86–90], have
been proposed that have the potential to improve CNN per-
formance; these methods will be experimented with as part
of future work. Additionally, we intend to address the high
class imbalance problem and plan to explore the possibil-
ity of using patient profiling via automated generation of
textual findings while considering both eye conditions.
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