

1

This is an author’s copy of the paper, which has been accepted and published in the Journal of Systems and Software

Reusing empirical knowledge during cloud

computing adoption

Mahdi Fahmideh, Ghassan Beydoun

Faculty of Engineering and Information Technology, University of Technology Sydney

Mahdi.Fahmideh@uts.edu.au, Ghassan.Beydoun@uts.edu.au (corresponding author)

Abstract. Moving legacy software systems to cloud platforms is an ever popular option. But, such an

endeavour may not be hazard-free and demands a proper understanding of requirements and risks involved

prior to taking any actions. The time is indeed ripe to undertake a realistic view of what migrating systems to

the cloud may offer, an understanding of exceptional situations causing system quality goal failure, and

insights on countermeasures. The cloud migration body of knowledge, although is useful, is dispersed over

the current literature. It is hard for busy practitioners to digest, synthesize, and harness this body of

knowledge into practice in a scenario of integrating legacy systems with cloud services. We address this issue

by creating an innovative synergy between the approaches evidence-based software engineering and goal-

oriented modelling. We develop an evidential repository of commonly occurred obstacles and platform

agnostic resolution tactics related to making systems cloud-enabled. The repository is further utilized during

the systematic goal-obstacle elaboration of given cloud migration scenarios. The applicability of the proposed

framework is also demonstrated.

Keywords: cloud computing adoption, legacy software systems, evidence-based software engineering, goal-

oriented requirement engineering, legacy system reengineering, KAOS framework

1. Introduction

Cloud computing is a fundamental shift in delivering IT services to software systems. A perennial

concern of IT managers embarking on migrating critical legacy systems to cloud platforms is to

ensure attainability of their goals (Khajeh-Hosseini, Sommerville, Bogaerts et al. 2011). Despite

pervasiveness and hype over cloud computing, some organisations are still reluctant to undertake

migration projects. Whether the migration is of legacy systems to the cloud or changing an existing

cloud platform, perceived uncertainties often hinder undertaking such projects. Uncertainties originate

from various factors, e.g. data security, failure accounts of other organisations, vendor lock-in in

absence of standards, cultural shift, unclear jurisdiction for online activities over distributed cloud

data centres, service outage, and many others (Chow, Golle, Jakobsson et al. 2009; Pepitone 2011;

Linthicum 2012; Tsidulko 2016). For example, the reliability of cloud services is sometimes

questioned because of the outage of Google GMail service or Microsoft's Danger division's causing

loss of some customers’ data. Failure to adequately identify and mitigate such risks beforehand may

become costly to rectify if they are detected at later stages when systems are in operating in the cloud.

Ideally, such issues should be accounted for requirement analysis time when system goals are being

identified. This would allow more flexibility to negotiate multiple trade-offs and can lead to a cheaper

overall outcome in a satisfactory way.

Since the emergence of cloud computing technology in 2007, there has been an ever increasing

number of versatile accounts, published by both academia and industrial ends, on effective adoption

of cloud services to augment operation and maintenance of legacy systems in different organisational

and project settings. Such documented accounts provide a test bed that can be reused for informed

decision making in moving systems to or across cloud platforms. Nevertheless, given the widespread

of the literature produced, a systematic support that capitalizes this body of knowledge to make it

more explicit, reusable, and accessible is non-extant yet.

Repeated calls by (Giovanoli 2012; Zimmermann, Wegmann, Koziolek et al. 2015) have remained

largely unheeded for capturing and reusing cloud migration knowledge to improve decision making

which subsequently has an impact on various system quality goals. This article alleviates this gap via

2

deploying a combination of evidence-based software engineering (EBSE) (Dyba, Kitchenham and

Jorgensen 2005) and goal-oriented modelling (Yu 1997). We introduce a knowledge-based decision

support framework that systematises reusing the existing body of cloud migration knowledge. The

framework comprises an evidential repository of commonly occurring cloud migration goals,

obstacles hindering satisfying cloud migration goals, and corresponding countermeasures to handle

these obstacles. The repository has been identified through an extensive review of published studies

and experience reports in the literature. The repository information is further utilized during reasoning

about requirements of cloud migration scenarios. We believe the proposed framework helps a system

architect in better handling of potential risks before they are propagated in later stages of cloud

migration and thus improving the reliability of decision outcomes. We illustrate the applicability of

the framework in two scenarios.

The rest of this article is organised as follows. Section 2 presents a motivating scenario for this study.

Section 3 presents the research methodology conducted to develop and validate the proposed

framework. Section 4 delineates the development of the framework components. Section 5 illustrates

the application of the framework in two scenarios of moving legacy systems to cloud platforms. In the

view of a set of analysis criteria, Section 6 reviews related work. Section 7 provides discussion on the

benefit of using the framework, following with validity threats in Section 8. Finally, section 9

includes the research summary, conclusion, and future research directions.

2. Motivating scenario

The uncertainty surrounding cloud enablement of legacy systems may raise some challenges. Our

research is inspired by a real-world cloud migration scenario in oil and gas industry sector discussed

in (Khajeh-Hosseini, Greenwood and Sommerville 2010) through which an IT solution organisation

moves a legacy system from an in-house data centre to Amazon EC2. The system allows users, who

own an oil rig located in the North Sea oilfields, to manage, monitor, and acquire minutely data from

an off-shore oil rig operations. The system comprises a database layer that logs and archives data

coming from offshore in a database and tape for taking daily database backups. The business logic

layer provides functionalities for data reporting and monitoring. The end users access the system

through using a remote desktop client over the internet. The real-time data that are coming from

onshore are provided for users via communication links provided by the IT solution organization. The

organisation has responsibility for maintaining and upgrading the system.

Top level management of the IT solution organization intends to augment the scale of servicing and

competitiveness via expanding its system services to users who own Middle-east oil rigs.

Nevertheless, the organization cannot afford procurement and maintenance of new infrastructure to

support timely processing of upcoming massive scale data from multiple oil rigs during the workload.

Cloud services attract the top level management as they are said to provide powerful infrastructures

along with a wide-range of services. A system architect is appointed to design an overall architectural

solution to deploy the system in Amazon EC2 Web services as a co-location. However, she is

unsettled with many intriguing questions being asked by the top level management, for example:

(i) By moving these systems to the cloud, will higher system performance be attainable in all

situations?

(ii) What risks are likely to obstruct reducing infrastructure cost and system security in the cloud?

and

(iii) How such risks can be negated in advance?

If the system reengineering to cloud is to achieve its potential, this sort of questions should be clearly

answered. The system architect might have basic knowledge of promised benefits and issues around

migrating systems to the cloud. However, she may face difficulty in making informed answers to the

abovementioned questions due to uncertainty and little objective evidence to confirm suitability and

inherent risks of such transition. For instance, the choice of replacing the current system relational

database to a new non-SQL cloud database solution may have an uncertain impact on the query

processing time and thus system throughput. She may seek and select various information resources

such as documents, weblogs, domain expert advice, or personal experience. Due to voluminous such

sources in the cloud computing field, in particular the continuous growing publication rate since 2008

3

(Yang and Tate 2012), it becomes more cumbersome for her to grasp, synthesise, and reuse extant

material for the given scenario since they may not be easy to find among the mix of other papers.

Furthermore, she may rarely review or even have access to them. Solely, if they are collected, the

system architect may not be able how to analyse these contents and envisage implications to

organisational strategic goals.

EBSE approach is known to be one of most successful solution for an informed decision on a new

technology adoption. In the spirit of EBSE, best pieces of evidences from scientific publications are

capitalized by collecting, generalizing, documenting, and storing in an evidential repository which can

be later reused for a decision making situation (Dyba, Kitchenham and Jorgensen 2005). In this

research, we provide an evidential repository assorting the most evidential goals, obstacles, and

countermeasures on how to negate obstacles.

Our objective is not only to develop an evidence-based repository, but also to utilize the repository

and incorporates its information in the suitability assessment of given cloud enablement scenarios.

Reusing the repository requires a systematic support that models and processes the information in the

repository in association with a variety of parameters e.g. goals, risks, effort, size, or calendar time.

We settled on the goal-oriented modeling approach for exploring the repository to make informed

answers to the abovementioned questions. Goal-obstacle analysis explicitly relates high-level cloud

migration goals with potential obstacles and relevant countermeasures addressing these obstacles.

Little or no research has focused on how the early stage suitability analysis of cloud enablement can

be complemented in the presence of evidential data available in the literature.

3. Research methodology

This research pursuit is to craft an IT artefact. The research paradigm that suits this inquiry is design

science research (DSR) (Henver, March, Park et al. 2004) through which a viable artefact addressing

a relevant solution to an unsolved problem is developed and validated. We conducted three phases of

a typical DSR, but tailored for the purpose of this research, as delineated in the following:

Phase 1- Problem identification has been already described in the sections 1, i.e. the lack of a

systematic knowledge reuse to improve the reliability of goal-obstacle analysis results and decision

outcomes. Our research objective is set up as “developing of a systematic framework reusing

empirical evidence for goal-obstacle analysis at the early stage of migrating systems to the cloud”.

Phase 2- Design and development of the framework that constitutes the development of two core

components as follows:

(i) an empirical knowledge repository of recurring goals, obstacles, and countermeasures in

cloud enablement of legacy systems,

(ii) a procedure including steps to identify cloud migration goals, potential obstacles,

assessing their risk, i.e. likelihood and severity, and tackling them by generating new

goals.

In the design science research, different approaches and kernel theories from inside or outside of the

software engineering discipline informing an artefact creation can be brought to bear (Gregor and

Jones 2007). As mentioned earlier, for the development of the first component, i.e. the knowledge

repository, we employed EBSE approach (Dyba, Kitchenham and Jorgensen 2005). A common

technique to run EBSE is Systematic Literature Review (SLR) (Kitchenham, Pearl Brereton, Budgen

et al. 2009) where findings from different empirical studies are gathered and summarized regarding

inclusion criteria and indicators to draw plausible conclusions (Kitchenham, Pearl Brereton, Budgen

et al. 2009). In this research, the framework’s repository has been developed out of an SLR of

published works empirical studies in the cloud migration literature.

For the second component, i.e. the procedure, we employed a generic goal-oriented modelling

framework called KAOS (Keep All Objects Satisfied). KAOS provides support for elaborating,

structuring and analysing software requirements, including both functional and non-functional ones

(Van Lamsweerde 2009). It also supports different levels of expression and reasoning that vary from

semi-formal to formal analysis goal models depending on the reasoning precision sought (Dardenne,

Van Lamsweerde and Fickas 1993; Van Lamsweerde and Letier 2004). In KAOS, goals are iteratively

4

refined through top-down (by asking how questions to refine goals into sub-goals) as well as a

bottom-up way (by asking why questions to identify parent goals). The refinement proceeds until all

goals reach clear and assignable responsibilities to agents who realize the goals. We used this

modelling framework in conducting the cloud enablement goal-obstacle analysis.

Generic KAOS’s concepts such as goal, obstacle, and resolution tactic do not provide precise

definitions that can be refined into testable and operational cloud migration requirements. For

example, KAOS’s concept obstacle refers to “an exceptional condition that prevents a goal from being

satisfied” (van Lamsweerde and Letier 2000). In our view, a preliminary use of KAOS that specifies

and refines high-level goals would not be sufficient. There is no operational definition for a refinable

and testable cloud-related goal-obstacle analysis. We enriched KAOS’s generic concepts with cloud-

specific knowledge provided by the evidential repository. For instance, the generic notions of obstacle

and resolution tactics in KAOS have been augmented with 67 and 45 cloud-specific obstacles and

resolution tactics, respectively. This will be later detailed in Section 4.1.

Phase 3 - Validation appraised the efficacy of the framework resulting from phase 2 through (i) a

Web-based survey and (ii) two case studies of moving an open-source Web-based legacy system,

providing real-time stock quotes, to Pivotal Cloud Foundry and a digital document processing legacy

system to Microsoft Azure cloud platform.

DSR is an iterative develop-and-validate process in the sense that the developed artefact is situated in

a problem space and is iteratively refined to fulfil quality and utility metrics (Henver, March, Park et

al. 2004; Peffers, Tuunanen, Rothenberger et al. 2008). In the context of this research, we conducted

two consecutive cycles.

The first cycle took place between February 2014 and September 2016. It resulted in the initial

version of the framework including its repository and procedure. The collection of obstacles and

resolution tactics were validated using experts in the SLR, goal modelling, and cloud computing

areas. In addition, the resolution tactics were validated for completeness through a comparison against

existing migration methods to verify if they are sufficiently complete (Fahmideh 2016b) and through

an expert review using a public Web-based survey questionnaire (Fahmideh, Daneshgar, Beydoun et

al. 2017). The survey examined if the resolution tactics are perceived as important and relevant for

incorporating into the process of legacy system reengineering to cloud platforms. We used purposeful

sampling (Patton 1990) to identify eligible experts to participate from their public profiles on social

media such as Linkedin, Twitter, and academic research groups. Domain experts were contacted by e-

mail to confirm their expertise. Once willingness and expertise were confirmed, an invitation along

with the link to the survey was issued. Experts were asked to rate the importance of each resolution

tactic on the basis of a seven scales (1–7) where 1 represents ‘completely irrelevant’, 2 indicates

‘unimportant’, 3 for ‘somewhat unimportant’, 4 for ‘neither important nor unimportant’, 5 for

‘somewhat important’, 6 for ‘important’, and 7 for ‘extremely important’.

In this voluntary survey, we invited 515 experts but 144 experts answered the survey. After removing

incomplete responses, 104 answer-sheets were used for data analysis. The respondents were from 32

countries with an average of cloud migration experience of 3.8 years. The statistical analysis of

responses revealed that the majority of the tactics in the repository were perceived sound and

important for incorporation into the cloud migration projects. More detailed can be found in

(Fahmideh, Daneshgar, Beydoun et al. 2017).

In the second DSR cycle, between September 2016 and December 2016, we specialized and adapted

two real-word case studies available in the literature. The first scenario, named SpringTrader (Gordon

2015), described moving an open-source stock screener Web-based system to Pivotal Cloud Foundry

platform. In the second scenario, named InformIT (Rabetski 2012; Rabetski and Schneider 2013), a

digital document processing system was migrated to Microsoft Azure platforms. For both case

studies, we used secondary documents obtained from a variety of sources, mainly SpringTrader’s

Weblog and 43-page project documentation of InformIT project, to enrich our understanding of the

enacted migration process model including project sequence, the architecture of the legacy system and

cloud solution, and user histories. We traced the projects’ documents if and what goals each scenario

defined, issues that were occurred and countermeasures that were applied. The detail description of

the scenarios is presented in Section 5.

5

In this article, we only present the development of the repository and the procedure components in the

first cycle and validating the applicability of the framework in the second cycle.

4. Development of the framework

As shown in Figure 1, the framework comprises (i) a repository holding collections of obstacles and

resolution tactics, and (ii) a goal-obstacle analysis procedure relying on the repository. In Section 4.1,

the result of the literature review to develop the framework repository is presented. This includes

establishing a literature review protocol, conducting the review, and identifying, synthesising, and

organising the collections. Section 4.2, presents the proposed goal-obstacle analysis procedure.

Figure 1. Structure of the proposed framework

4.1 Developing the Repository

Three research tasks were defined to develop the repository’s collections:

(i) Derivation of common quality goals expecting to be satisfied by migrating systems to the

cloud

(ii) Derivation of recurring obstacles against achieving quality goals, and

(iii) Derivation of resolution tactics in handling these obstacles

Figure 2 depicts the SLR was undertaken to conduct tasks (ii) and (iii). We did not reckon a need to

follow an SLR for task (i) as we used a fixed set of system quality goals commonly agreed in software

engineering and cloud computing literature. The objective of the SLR was to answer the following

inquiries: (i) what obstacles may occur against system quality goals when moving systems to or they

are in operation in the cloud and (ii) what resolution tactics are available to address the obstacles?

The same SLR was conducted for tasks (ii) and (iii).

6

Figure 2. SLR conducted for developing the framework repository – duration between February 2014 and

September 2016

Planning Review

The objective of this phase was to tackle any researcher bias (Kitchenham, Pearl Brereton, Budgen et

al. 2009) through defining search strings, study selection criteria, and searching databases.

Defining search strings. The search strings were defined based on the guidelines recommended in

(Dieste and Padua 2007). These included: (i) defining main terms by breaking down the research

questions, (ii) identifying alternative synonyms for main terms, (iii) checking the search strings in any

relevant papers that retrieved, (iv) incorporating alternative synonyms using the logical OR and AND

operators to link the main terms. The terms cloud computing, legacy, reengineering, migration, and

IaaS, PaaS, and SaaS were set as the main keywords from which different search strings defined and

combined using the operators OR and AND. Table 1 shows some examples of generated search

strings.

Table 1. list of related search strings (SS)

SS1: “Migration” OR “Cloud adoption” OR “Cloud migration” OR “Migration to cloud” OR “Legacy to

cloud migration” OR “Legacy migration to cloud” AND [SS2 OR SS3 OR SS4 OR SS5 OR SS6]

SS2: “IaaS risks” OR “IaaS challenges” OR “IaaS challenges” OR “IaaS adoption” OR “IaaS benefits”

SS3: “PaaS risks” OR “PaaS challenges” OR “PaaS issues” OR “PaaS adoption” OR “PaaS benefits”

SS4: “SaaS risks” OR “SaaS challenges” OR “SaaS issues” OR “SaaS adoption” OR “SaaS benefits”

SS5: “Monolith application” OR “Legacy code” OR “Legacy system” OR “Existing system” OR “Legacy

component” OR “Legacy software” OR “Legacy application” “On-premise application” OR “Monolithic

system” OR “Existing software” OR “Pre-existing software” OR “Legacy information system” OR “Legacy

program” OR “Pre-existing assets” OR “Legacy architecture” OR “Legacy asset”

SS6: “Reengineering” OR “Legacy system reengineering” OR “System reengineering”

Defining study selection criteria. From the identified studies those selected that (i) were related to

migrating or developing systems to/for cloud platforms with a proper description of the context and

clear objectives (ii) described situations, i.e. obstacles, that may cause goal failure and if any

resolution tactics, (iii) provided a proper validations through case study, example, interview, etc., (iv)

published from 2007 onwards in software engineering and information systems journals/conference

proceedings, and (v) described in English language.

Searching databases. The following databases were searched: IEEE Explore, ACM Digital Library,

SpringerLink, ScienceDirect, Wiley InterScience, ISI Web of Knowledge, and Google Scholar. We

7

also did not overlook internet blogs and trade journal articles provided empirical accounts for the

specific platform such as Amazon.

Conducting Review

Selecting studies. The databases listed in the previous step were searched using the search strings.

The whole content of each identified study was screened regarding the inclusion criteria. It is

important to mention that conducting the review was not a linear and mechanical process; rather it

was a hermeneutic, iterative, and informed by careful reading each study and understanding its

context. Forward and backward searches were performed so that studies cited in the references and

related work sections of the study were fed into this step to find new studies. The review phase,

strictly speaking is open-ended, resulted in identifying 112 studies as shown in Appendix A.

Extracting and synthesising obstacles and resolution tactics. Each study’ segment that stated any

obstacles or resolution tactics were extracted along with the reference to the study. Some leading

questions that were used during the development of the collections were as follows: (i) does the study

report any technical or social obstacles that may cause cloud adoption goals fail? If so, what is the

obstacle? (ii) how can the obstacle influence the successful adoption of cloud services? and (iii) Are

there any resolution tactics suggested by the study to overcome the obstacles? The collections

obtained through this step presented in Appendix B. A synopsis is provided herein what follows:

(i) Goal collection includes ten ready-made common software system quality goals that cloud

services can positively contribute to the efficiency of legacy systems. This includes Availability,

Scalability, Security, Performance, Customizability, Interoperability, Portability, Testability,

Consistency, and Reduced IT cost. These goals facilitate initialization and refinement of goal

models as described in Section 4.2.

(ii) Obstacle collection has information about 67 common probable, technical or social,

situations causing quality goal failure and thus hampers systems benefit from cloud services.

(iii) Resolution tactic collection contains 45 platform-agnostic solutions applicable for handling

obstacles. Resolution tactics are a result of applying abstraction and synthesisation to existing

ad-hoc implementation techniques to utilize cloud service available in the literature. Our

framework uses them during the goal-obstacle analysis to explore alternative ways to resolve

obstacles. Note that this research tended to keep resolution tactics at the abstract level. Thus

their operationalization details are left to developers or manager as to existing supportive

techniques or tools available in the cloud computing marketplace.

Based on the common service delivery models IaaS, SaaS, and PaaS, Fahmideh et. al. defines a few

variants through which legacy systems can utilize cloud services (Fahmideh, Daneshgar, Low et al.

2016). These are defined as follows. In Type I, the business logic layer of a system, which offers

discrete and reusable functionality, is deployed in cloud infrastructure through IaaS model such as

Amazon EC2 but the data layer is kept in an on-premises network. In Type II, system components

are replaced with fully tested cloud services using SaaS model. In Type III, the system database is

deployed in a cloud data store provider such as Amazon Simple Storage Service (S3), Amazon

Elastic Block Store, Dropbox, or Zip Cloud whilst business logic components are maintained on an

on-premises network. In Type IV, the database of a legacy is modified and converted to a cloud

database solution such as Amazon SimpleDB, Google App Engine data store, or Google Cloud

SQL. Finally, in Type V the whole system stack is encapsulated in virtual machines and ran on

servers.

Adopting each abovementioned migration types may face some obstacles. For example, it is quite

common for incompatibility issues between legacy system data type and a chosen cloud database

solution to arise in the case of adopting migration types I, II, IV, and V. To indicate such situations,

the collection of obstacles in Appendix B shows if an obstacle is related to a migration type via

symbols √. During step 2.1 of the goal-obstacle analysis procedure, this information is used to

identify obstacles.

Result. Table 2 shows an excerpt of the information stored in the repository. Each of goal,

obstacle, and resolution tactic is respectively denoted by an identifier-number G, O, and T. For

example, the quality goal for a system is that it should be interoperable (G6) across different

8

platforms. Studies [S2], [S3], [S4], [S5], [S35], [S36], and [S37] mention that cloud services are

supposed to be interoperable (G6) across different platforms and integrable with systems.

Nevertheless, there are some potential obstacles obstructing the interoperability goal. These

obstacles, for example, as evidenced in [S23], [S24], [S12], [S38], [S25], [S26], [S27], [S39], and

[S40] are Incompatible pluggable cloud services (O19), Incomplete APIs (O20), Incompatible

datatypes (O21), Operating system incompatibility (O22), and Machine-image incompatibility

(O23). In addressing these potential obstacles, two generic tactics Refactor legacy source code (T2)

and Develop adaptor/wrapper (T3) are suggested in [S65], [S66], [S67], [S75], [S76]. Maintaining

consistency, the architect may slightly change the original names of these goals, obstacles, and

resolution tactics for simplifying modelling.

Table 2. An excerpt of probable obstacles obstructing the quality goal system interoperability along with

some alternative resolution tactics and reference to the empirical studies

Quality goal Definition Source

G6

Interoperability. Cloud services can be illimitably

incorporated to and integrated with the systems.

Genera literature on

cloud computing (e.g.

[S2], [S3], [S4],[S5],

[S35], [S36], [S37]

Obstacle Definition Source

O19
Incompatible pluggable cloud services. At runtime, system

might be plugged to a cloud service which is incompatible with

the other cloud services.
[S23]

O20
Incomplete APIs. Cloud service provider lacks providing a rich

set of APIs.
[S24]

O21
Incompatible data types. Data types used in legacy and

cloud service are incompatible.
[S12], [S38]

O22

Operating system incompatibility. System components are

distributed and moved among cloud servers with different

operating systems which might be incompatible for managing,

representing, and formatting virtual machines.

[S25], [S26], [S27]

O23
Machine-image incompatibility. Virtual machines are moving

between different cloud platforms but each platform has different

underlying implementation for virtual machines.
[S39], [S40]

Resolution tactic Definition Source

T5
Refactor legacy source code. Modify the system source code

for being compatible and be able to interact with selected cloud

platform programming language and APIs.
[S65], [S66], [S67]

T3
Develop adaptor/wrapper. Add adaptors for resolving

mismatches, occurring at runtime execution, between legacy

system components and cloud services.
[S75], [S76]

4.2 Establishing goal-obstacle analysis procedure

As mentioned earlier, this research uses KAOS modelling concepts to elicit, model, and reason about

goals for migrating systems to cloud platforms. We enriched KAOS generic concepts by introducing

67 obstacles and 45 tactics. Table 3 presents KAOS modelling concepts used for the second

component.

The procedure includes the following two steps: (i) Specify cloud migration goals to set up and

visualize high-level quality goals targeted for moving systems to the cloud, (ii) Analyse obstacles

comprising sub-steps for identifying obstacles causing goal failure, assessing their risk, and defining

resolution tactics to modify existing goals, or generating new ones to prevent, to reduce, or to mitigate

the obstacles. The output of the procedure is a consolidated requirement model representing cloud

migration goals, potential obstacles to be tackled, and (alternative) resolution tactics. This model can

be later incorporated into the system implementation phase.

To illustrate the inner working of the procedure, an example scenario of moving the database of a

legacy system to the cloud service Amazon Simple Storage (S3) (AmazonS3), a public, secure, and

highly scalable data storage), is described. This is an instance of migration type V.

9

Table 3. notations used for goal modelling

Modelling element Definition Graphical notation

Migration type

An option through which a system can benefit from cloud

services to improve its working performance (See section

2).

Goal
A quality goal that is expected to be satisfied by adopting

cloud services.

Obstacle
A technical or a none-technical exceptional

situation/condition preventing the goal satisfaction.

Resolution tactic
A generic solution (.i.e. new goals, assumptions, or by

modifying existing goals) to resolve an obstacle.

Decomposition
A mechanism to refine a goal/obstacle to a set of fine-grain

goals/obstacles.

Contribution Positive contribution of migration type to a quality goal.

Step 1 Specify cloud migration goals

The framework provides a collection of pre-defined quality goals commonly intended in moving

legacy systems to the cloud that the system architect and stakeholders can use to initiate a goal model.

In this scenario, three goals are set for moving the system database to S3 platform (Figure 3). This

includes Achieve [Reduced IT cost], Achieve [Improved performance], and Achieve [Improved

availability]. Goals can be decomposed into fine granular ones for more accurate analysis. The goal

Achieve [Improved performance] is a combination of sub-goals Achieve [Reduced data uploading

time] and Achieve [Reduced query processing time] meaning that the satisfaction of Achieve

[Improved performance] depends on the satisfaction of both these sub-goals. In Figure 3, the dotted

arrows show the fact that goals, obstacles, and resolution tactics are extracted from the repository.

Figure 3. Goals in moving the system database to Amazon S3

Step 2 Analyse obstacles

Generally, goals are viewed idealistic and overlook unexpected behaviours of a real environment may

cause their failures (van Lamsweerde and Letier 2000; Letier 2001). Taking a pessimistic view to

goals, such situations, i.e. obstacles, should be systematically detected, assessed, and handled at the

early stage of migration and if needed goals should be modified (Letier 2001). Obstacles are a dual

10

notion of goals meaning that as goals capture desired conditions, obstacles capture undesirable

conditions (Letier 2001). The framework defines an identify-assess-resolve cycle as follows:

(i) Identify obstacles that may impede satisfaction of goals (Step 2.1);

(ii) Assess risk of identified obstacles in terms of likelihood and criticality (Step 2.2); and

(iii) Resolve obstacles by modifying existing goals or generating new ones so as to prevent,

reduce, or mitigate the obstacles (Step 2.3).

Step 2.1 Identify obstacles

The system architect can identify obstacles in two ways:

(i) Evidential where the probable obstacles are identified from the repository. For each goal

in a goal model, the system architect reviews the collection of obstacles and shortlists

probable ones. The shortlisting of obstacles is based on information provided by

developers, user experience, statistics about systems, and available accounts about cloud

services.

(ii) Domain-based where the obstacle is domain/platform specific and in fact is a refinement

of an existing obstacle in the repository. Domain-specific obstacles are means to refine

the goal model to new sub-obstacles.

Similar to goal elements, a parent obstacle might be a combination of other obstacles causing the

parent obstacle (Letier 2001). Figure 4 shows goal Achieve [Reduced data uploading time] is

obstructed by the obstacles Performance variability of Amazon S3 (O27) and Geographical distance

(O28). The root obstacle Performance variability of Amazon S3 (O27), which is suggested by the

repository, is refined into two domain-specific obstacles High uploading time for blobs datatype

(100k entries) (O27_1) and Low throughput to write buckets (O27_2). Moreover, the goal Achieve

[Improved availability] is obstructed by the obstacles Service transient fault (O3) and Cloud outage

(O1). The obstacle Cloud outage (O1) suggested by the repository, by itself, is refined into three sub-

obstacles Local network disruption (O1_1), I/O issues of servers (O1_2), and S3 data centre outage

(O1_3) that are domain-specific refinements of the obstacle Cloud outage (O1). The domain-specific

obstacle S3 data centre outage (O1_3) is also refined into two obstacles Local electrical storm

(O1_3_1) and S3 power outage (O1_3_2).

11

Figure 4. Obstacles against achieving quality goals Achieve [Reduced IT cost], Achieve [Improved

performance], and Achieve [Improved availability] retrieved from the repository

Step 2.2 Assess Obstacles

Analysing the risk or criticality of obstacles identified in Step 2.1 is important to get an understanding

of requirements for making a legacy system cloud-enabled. The framework borrows a standard

qualitative technique called Risk Analysis Matrix (RAM) devised by the acquisition reengineering

team at the Air Force Electronic System Centre (Franklin 1996). The qualitative expression of

obstacle risks in RAM is suitable if precise numerical techniques are difficult to find or not required.

In RAM, the likelihood of an obstacle is judged by qualitative scales from Almost Certain, Likely,

Possible, Unlikely, and Rare and the consequence of the obstacle occurrence is represented by

Insignificant, Minor, Moderate, Major, and Catastrophic. These qualitative scales measure the

likelihood of an obstacle occurrence and its associated consequences. The risk of an obstacle is

defined as the product of its probability of occurrence and severity, i.e. Risk = Likelihood ×

Consequences. A risk matrix can be created to highlight the risk zone as shown in Table 4. An

organization may define zones as generally unacceptable, acceptable, or low-risk. For example, the

risk of an obstacle might be perceived as moderate (M) but it is still tolerable whilst an obstacle with

H (High) and E (Extreme) should be handled more carefully.

Note that, calculating the product of likelihood and consequence of obstacles in Table 4 relies on the

availability of information sources such as the specification of cloud services, statistics from legacy

systems, developers, end-users’ experience, and an overall impact of risks on goals. The system

architect may use a voting mechanism involving stakeholders to accurately estimate the occurrence

likelihood and consequences of obstacles. Hence, the values in Table 4 are actually computed based

on the domain information in a goal-obstacle analysis scenario.

Table 4. risk matrix for obstacles

 Consequence severity

Likelihood Insignificant Minor Moderate Major Catastrophic

Almost Certain H H E E V

Likely M H H E V

Possible L M H E E

Unlikely L L M H E

Rare L L M H H

V: Very extreme risk, E: Extreme risk, H: High risk, M: Moderate risk, and L: Low risk

Step 2.3 Resolve Goal Obstacles

Obstacles whose risks are recognized serious enough, (e.g. very extreme, extreme, and high risk) must

be tackled. The framework relies on the repository’s catalogue of resolution tactics to address

obstacles identified in the previous step. In our framework, the tactics are cloud platform agnostic and

vary among seven categories: namely Goal/Service/Migration type Substitution, Obstacle prevention,

Obstacle reduction, Goal weakening, Goal restoration, Goal mitigation, and Do nothing. Their full

definitions are presented in Appendix B. Resolution tactics are platform agnostic to give system

developers freedom to evaluate a broad range of techniques to operationalize them. In this example,

all the obstacles are deemed severe and thus the goal model is further refined down to resolution

tactics (Figure 5). For instance, to reduce the occurrence likelihood of obstacle Geographical distance

(O28), the system architect chooses the resolution tactics Refine network topology (T24) from the

repository. Another example is the reducing the risk of obstacles High uploading time for blobs (100k

entries) (O27_1) and Low throughput to write buckets (O27_2) through incorporating the resolution

tactic Use multiple cloud servers (T27) in the new cloud-enabled architecture of the system.

12

Figure 5. Resolution tactics to tackle obstacles

5. Application of the framework in practice

This section presents two case studies as a benchmark for validating the framework. They are

instances of migration types V and IV. The first case is a scenario of moving an open-source Web-

based system providing real-time stock quotes for users to a private cloud platform. In the second

scenario, a Web-based system for processing digital documents is moved to a public cloud. The

system architect uses domain information related to the scenarios to select and shortlist the pre-

constructed collection of obstacles and resolution tactics. In both scenarios, the risk matrix values

presented in Table 4 are used to assess obstacle risk.

5.1 Case study 1

SpringTrader is an open-source Web-based system that has been developed using J2EE framework

and maintained by many contributor developers over time (Gordon 2015). Its architecture includes (i)

a Web-based layer allows users creating an account, browsing stock portfolios, lookup stock quotes,

and ordering stock trade orders and (ii) a backend that fulfils orders. The communication between the

Web-based frontend and the backend is a-synchronous where the front-end delivers orders to a

message queue and the back-end processes them.

Moving SpringTrader to Pivotal Cloud Foundry, that is an open source platform for developing and

deploying full stack software systems in the cloud, enables users to access real-time stock market data

in a more interactive way with the system as well as the individual scaling up/down of system

components. The system architect analyses architectural requirements in enabling SpringTrader to

operate in Cloud Foundry platform. The documentation of this project is available at (Gordon 2015).

Step 1 Specify cloud migration goals

A goal model is created with the three initial goals Achieve [Increased scalability], Achieve [Keeping

system interoperable], and Achieve [Keeping system available] selected from the repository with the

following specifications:

13

Goal Achieve [Increased scalability]

Definition [Moving the SpringTrader to the cloud should make it scalable in the sense that the system

will be able to service massive end users’ requests during workload]

Goal Achieve [Keeping system interoperable]

Definition [The SpringTrader should be integratable with and be able to call cloud services]

Goal Achieve [Keeping system availability]

Definition [Moving the SpringTrader to the cloud should not affect the system availability to end users]

Step 2 Analyse obstacles

Step 2.1 Identify obstacles. Reviewing the architecture model of SpringTrader reveals that the tight

dependencies among system component impede their individual scalability and portability across

multiple instances of servers. This is an instance of the obstacle Tight dependencies (O51) against the

goal Achieve [Increased scalability]. For the new platform, it is planned to use cloud database

solutions MySQL and MongoDB for the SpringTrader. However, they are incompatible with the SQL

database of SpringTrader. This is indeed an obstacle to the goal Achieve [Keeping system

interoperable], an instantiation of the root obstacle Incompatibility of legacy data storage and cloud

(O49) defined in the repository. This obstacle, by itself, may occur in the form of two obstacles

Incompatible data operations (O50) and Incompatible data types (O21). Another obstacle to the goal

Achieve [Keeping system interoperable] is that SpringTrader has been implemented using Java

Development Kit 6 and Spring 3 that accordingly are not compatible with their equivalent (i.e. Java

Development Kit 8 and Spring 4) in the Cloud Foundry platform. Integrating the SpringTrader with

the Quote Web-Service, a service using the public Yahoo Finance APIs to provide real-time market

data, may raise the risk of service unavailability as this service is hosted on the Cloud Foundry servers

and geographically out of the local network of SpringTrader. This domain information confirmed that

the obstacle Service transient fault (O3) is likely to occur against the goal Achieve [Keeping system

availability]. The goal model is updated with new four obstacles shown in Figure 6.

Figure 6. Goals Achieve [Increased scalability], Achieve [Keeping system interoperable], and Achieve [Keeping

system availability] refined to four obstacles informed by the framework repository

Step 2.2 Assess obstacles. The occurrence probability and the consequence of the obstacles that

identified from step 2.1 were assessed. Table 5 shows the risk matrix of obstacles. The goal Achieve

[Increased scalability] is refined to the obstacle Tight dependencies (O51) as shown in Figure 7.

According to the domain information, the system architect recognizes that the occurrence likelihood

14

of this obstacle is Almost Certain. This is also true for the obstacles Incompatible data operations

(O50) and Incompatible data types (O21) since SpringTrader database is incompatible with the

Pivotal Cloud Foundry platform.

From past experience, developers believe that in some cases the occurrence likelihood of obstacle

Service transient fault (O3) is Possible as SpringTrader components may not successfully call Quote

Web-Service in the first attempt due to transient faults in making network connection to Quote Web-

Service hosted in servers in Pivotal Cloud Foundry platform. Although it is a violation from the goal

Achieve [Keeping system available], its consequence is believed Minor. Therefore, the risk of this

obstacle is set Low.

Table 5. Risk matrix for the obstacles identified from Step 2.1

Obstacle against quality goal Likelihood Consequence Risk

Tight dependencies (O51). SpringTrader components have tight

dependencies to meta-libraries that are sometimes incompatible with

JDK 8. This cause the component of the system cannot be scalable and

portable across multiple instances of servers.

Almost

Certain
Major E

Incompatible data operations (O50). Various SQL statements in

SpringTrader related to manipulating records are not syntactically and

semantically compatible with corresponding MongoDB statements

and MySQL provided by Pivotal Cloud Foundry platform.

Almost

Certain
Major E

Incompatible data types (O21). Some data types (e.g. length and

format) used in SpringTrader database are not compatible with

corresponding ones in MySQL and MongoDB.

Almost

Certain
Major E

Service transient fault (O3). Quote Web-Service might be temporarily

unavailable due to network traffic or server workload.
Possible Minor L

Step 2.3 Resolve goal obstacles. The system architect explored the repository to find resolution

tactics that should be considered in new architecture of SpringTrader to operate in Pivotal Cloud

Foundry platform. The system architect selectes the resolution tactic Decouple system components

(T7) from the category Obstacle prevention to remove obstacle Tight dependencies (O51). To

operationalize the tactic a mediator and synchronisation mechanism is implemented to manage

interaction between the system’s components each deployed in different servers of Pivotal Cloud

Foundry platform. For the obstacles Incompatible data operations (O50) and Incompatible data types

(O21) the architect select the tactics Adapt data (T12) and Develop adaptor/wrapper (T6),

respectively. The former is to convert data types of SpringTrader into the data type of database

solutions, i.e. MySQL and MongoDB, offered by the Pivotal Cloud Foundry platform whilst the latter

is to add adaptors/wrappers that are responsible for runtime conversion of SpringTrader operations

into the Pivotal Cloud Foundry.

To reduce the probability occurrence of the obstacle Service transient fault (O3), the adopted

resolution tactic is Define retry policies (T23) which is subsumed under the group Goal Restoration.

That is, a retry policy is implemented in the architecture of SpringTrader to specify the required delay

before executing the next attempt for connecting to the Pivotal Cloud Foundry server when transient

faults occur due to network congestion. In addition, the system architect chooses the tactic Replicate

system components (T18) from the group Obstacle Prevention group. The tactic is to partition,

replicate, and distribute components/date (replicas) of SpringTrader over multiple servers of Pivotal

Cloud Foundry.

Resolution tactics defined in the framework repository are generic recurrent solutions that can be

operationalized using different implementation techniques or tools available in the cloud computing

marketplace. In this scenario the resolution tactic Develop adaptor/wrapper (T6), addressing

incompatibilities between a system database and a cloud database solution, is operationalized using

the notion of bounded context (Thönes 2015) in the sense that the transition of data is packed and

unpacked during the executing of transactions. To realize the tactic Decouple system components

(T7), developers use micro-service architecture design (Dragoni, Giallorenzo, Lafuente et al. 2016)

along with a service discovery mechanism to enable SpringTrader to locate micro services by name at

a known catalogue endpoint and look them up dynamically at runtime. Figure 7 shows the resolution

tactics selected.

15

Figure 7.Resolutions tactics for handling obstacles

The first and second columns of Table 6, respectively, show the tactics and their operationalisation

techniques used to handle the obstacles presented in the third column.

Table 6. Resolution tactics to handle obstacles in migrating SpringTrader to Pivotal Cloud Foundry

Resolution tactic Operationalisation Relation to obstacle

Decouple system

components (T7)

Decouple the SpringTrader components from each other by

using mediator enabling a- synchronised interaction among

loosely coupled components deployed on distributed

architecture of Pivotal Cloud Foundry.

Tight dependencies

(O51)

Develop

adaptor/wrapper(T6)

Develop adaptor component in SpringTrader to emulate

operations are supported in MySQL and MongoDB and map

mismatches between datatypes in SpringTrader and Pivotal

Cloud Foundry.

Incompatible data

operations (O50)

Adapt data (T12)
Implement a mapping table to convert incompatible data types

in SpringTrader and MySQL and MongoDB.

Incompatible data

types (O21)

Replicate system

components (T18)

Partition, replicate, and distribute the components of

SpringTrader on multiple servers of Pivotal Cloud Foundry. Service transient

fault (O3)

Define retry policies

(T23)

Implement retry policies in the source code of SpringTrader to

specify the required delay before executing the next attempt

when Pivotal Cloud Foundry does not respond.

5.2 Case study 2

The second case is adapted from the scenario presented in (Rabetski 2012; Rabetski and Schneider

2013). InformIT is a small independent software vendor in Sweden providing a Web-based digital

document processing (DDP) system. The system offers publishing services to medium and large

companies who own adequate infrastructure to perform these resource-demanding services. DDP is

running on client companies’ local infrastructure. Small companies are interested in taking the

advantages of DDP’s services. However, they cannot afford the financial commitment to procure new

infrastructure, charging per user, and installation to use DDP. Small companies prefer to use DDP’s

services inconstantly and pay only for the amount of document processing. InformIT believes that

DDP’s services can be also used by small companies without the need for upgrading infrastructure if

they are deployed in the cloud via migration types V and IV. The early stage goal-obstacle analysis

conducts by the system architect regarding reengineering DDP to the cloud is described in the

following.

16

Step 1 Specify cloud adoption goals

The cloud enablement scenario should not exceed 90 days. This is represented via the goal Achieve

[Reduced cloud adoption cost] and its specification is:

Goal Achieve [Reduced cloud adoption cost]

Definition [According to InformIT policy, the latest completion time for any new technology

adoption in small companies should not exceed more than 90 days. In this scenario, moving

the DDP to the cloud should be fulfilled with minimum development effort].

Moreover, goals Achieve [Improved performance], Achieve [Improved testability], and Achieve

[Improved portability] were expected to be satisfied by moving DDP to a cloud platform. For

example, the goal Achieve [Improved performance] is defined:

Goal Achieve [Improved performance]

Category Performance Goal

Definition [acceptable system throughput for rendering a digital document with any size

should be no more than 4.9 seconds].

Step 2 Analyse obstacles

Step 2.1 Identify obstacles. In the view of domain information, scanning the framework repository

refines the top goals towards root obstacles and subsequently leaf ones (Figure 8). For example, there

are two probable obstacles Learning curve (O33) and Incompatibility of legacy and cloud service

(O48) against the satisfaction of the system goal Achieve [Reduced cloud adoption cost]. Moreover,

experience of developers confirmed that the goal Achieve [Improved performance] might be

obstructed by the performance variability of cloud servers once DDP is in operation on cloud servers.

This is shown by the obstacle Performance variability of cloud server (O27) in the goal model (Figure

8).

Figure 8 Goals Achieve [Improved performance], Achieve [Improved testability], Achieve [Reduced cloud

adoption cost], Achieve [Improved portability] refined to leaf obstacles

Step 2.2 Assess obstacles. Technical documents of DDP and an early investigation of public cloud

platforms reveals the occurrence of obstacles Learning curve (O33) and Incompatibility of legacy and

cloud service (O48) is Almost Certain with a Major consequence on the satisfaction of the goal

Achieve [Reduced cloud adoption cost], indicating an Extreme risk. All the leaf obstacles are assigned

a risk value based on the likelihood of their occurrence and consequence as shown in Table 7.

Table 7. Risk matrix for the obstacles identified from Step 2.1

Obstacle Likelihood Consequence Risk

Performance variability of cloud servers (O27) Likely Major E

17

State based dependency (O29) Likely Moderate H

Low middleware performance (O29) Likely Moderate H

Browser latency (O46) Likely Moderate H

Incompatibility of legacy and cloud service (O48) Almost Certain Major E

Learning curve (O33) Almost Certain Major E

Backward incompatibility (O42) Likely Moderate H

Step 2.3 Resolve goal obstacles. The system architect tries to tackle obstacles Learning curve (O33)

and Incompatibility of legacy and cloud service (O48) by using the resolution tactics Substitute cloud

service (T3) and Goal weakening (T36). Substitute cloud service (T3) is to select a cloud

service/provider in a way that the new selected cloud service can still contribute to quality goals. As

DDP has been developed with Microsoft family technologies and developers had programming

experience of, choosing Microsoft Azure cloud platform is taken precedence over other popular cloud

platforms such as Amazon Web Service and Google App Engine. This choice can also contribute to

the goal Achieve [Reduced cloud adoption cost] by decreasing the likelihood occurrence of

incompatibilities between DDP and Microsoft Azure cloud platform from initial value Almost Certain

to Possible.

In some cases that an obstructed goal is found to be very idealistic, its definition can be changed to

make its constraints relaxing in a way that the obstruction occurrence becomes tolerable. In this

regard, the tactic Degrade goal (T36) is used by for the goal Achieve [Reduced cloud adoption cost]

by extending the project deadline from 90 to 120 days. Figure 9 shows the produced goal model thus

far.

Figure 9 Obstacles to the goal Achieve [Reduced cloud adoption cost] and applied resolution tactics Substitute

cloud service (T3) and Degrade goal (T36)

The obstacle resolution is an iterative process in the sense that once a tactic is chosen, it may raise

new obstacles that should be resolved accordingly by reiterating steps 2.1 to 2.3 and refining the goal

model. In the current scenario, despite applying the resolution tactic Substitute cloud service (T3) to

reduce the obstacle Incompatibility of legacy and cloud service (O48), the domain information about

DDP and cloud platform Microsoft Azure documentation confirms that the violation of the goal

Achieve [Reduced cloud adoption cost] is still possible because DDP’s APIs are not compatible with

their counterparts in the Microsoft Azure cloud platform. The obstacle Incompatibility of legacy and

cloud service (O48) is refined into two obstacles Incompatible APIs (O44) (i.e. between DDP and

18

Microsoft Azure platform) and Incompatibility of legacy data storage and cloud (O49). The parent

obstacle Incompatibility of legacy data storage and cloud (O49) is also split into two leaf domain

specific obstacles (Figure 10). The definition of the leaf obstacles against the goal Achieve [Reduced

adoption cost] is as follows:

Obstacle Incompatible APIs (O44)

Definition [DDP uses API’s offered by .NET 2.0 and Visual Studio 2005 which might not be

compatible with Microsoft Azure platforms].

Obstacle Incompatible datatypes (O21)

Definition [Datatypes in DDP are based on SQL Server Database .NET 2.0 platform which

might not be compatible with Microsoft Azure database solution].

Obstacle Incompatible data operations (O50)

Definition [Data operations in DDP supported by SQL Server Database .NET 2.0 platform

might not be compatible with Microsoft Azure database solution].

Figure 10 Refinement of goal Achieve [Reduced IT cost] to obstacles

In addition, applying tactic Substitute cloud service (T3) generated new obstacles specific to

Microsoft Azure Platform. That is, the root obstacle Microsoft Azure middleware latency (O29) is

refined into three leaf obstacles, Microsoft Azure database middleware latency (O29_1), Microsoft

Azure message middleware latency (O29_2), and Microsoft Azure transaction middleware latency

(O29_3). Furthermore, the obstacle Service latency (O47) is decomposed into two obstacles On-

premise hardware latency (O47_1) and Distance from Microsoft Azure servers (O28). Figure 11

shows goal model refined after using the resolution tactic Substitute cloud service (T3) and based on

evidential information provided from the repository. For simplicity, the system architect changes the

original names of some obstacles identified from the repository but obstacle codes left unchanged. For

example, in Figure 11, the obstacle Backward incompatibility (O42) is changed to Switch between

regular file system API to Microsoft Azure Storage API (O42).

19

Figure 11 Refined goals models after identifying obstacles

To handle new obstacles generated as a result of applying the tactic Substitute cloud service (T3), the

system architect selects resolution tactics from the category Obstacle prevention. For the obstacles

Incompatible data operations (O50) and Incompatible datatypes (O21), the system architect uses

Develop adaptor (T6) and Adapt data (T12), respectively. The former is to implement a wrapper

component which hides incompatibilities (e.g. queries and stored procedures) between the data layer

of DDP and Microsoft Azure SQL whilst the later tactic is to convert SQL data types used in DDP to

Microsoft Azure SQL database. To resolve the obstacle Incompatible APIs (O44), the tactic Develop

adaptor (T6) is used. For the obstacle High-time for session handling (O43), the tactics Make system

stateless (T29) is applied. Also, in handling the obstacle Switch between regular file system API to

Microsoft Azure Storage API (O42), the architect picks the tactic Decouple system components (T7)

from the repository.

To reduce the probability occurrence of the root obstacle Microsoft Azure middleware latency (O29),

the adopted resolution tactic is Refine network topology (T24) which belongs to Obstacle reduction

group. This tactic is operationalized through selecting Microsoft Azure servers close to InformIT’s

network located in North Europe. For the obstacle Browser latency (O46) the tactic Update patches

(T21) is used regularly.

Furthermore, in addressing the obstacle Performance variability of Microsoft Azure servers (O27), the

system architect applies Degrade goal (T36), a tactic from Goal weakening group, to modify the

definition of satisfaction level for the root goal Achieve [Improved performance]. The tactic refines

this goal to a more liberal one via allowing the expected processing time of documents by DDP to be

varied up to 2 hours in a peak time for documents with size more than 40 megabytes. The suggested

tactic is hard to get acceptance by DDP users; however, the purpose of considering this tactic is to

probe possible solutions to tackle the obstacle. Hence, the second tactic is Acquire more cloud

resources (T26) operationalized by adding 3 more virtual servers.

The occurrence likelihood of the obstacle On-premise hardware latency (O47_1) was found Possible

with a consequence as Insignificant (i.e. Possible * Insignificant = Low risk) and thus left unresolved.

This is an instance of tactic Do-Nothing. Figure 12 shows the resultant goal model and incorporation

20

of resolution tactics into the system architecture. Table 8 summarises all identified obstacles and

selected resolution tactics.

Figure 12 Resolutions tactics for handling obstacles are incorporated into a new architecture of DDP during the phase

Enable

21

Table 8 Goals, obstacles and their risk, and selected resolution tactics

Goal
Obstacle

Adopted resolution tactics
Obstacle id Likelihood Consequence Risk

Achieve

[Reduced

adoption cost]

O33

Almost

Certain
Major E

Substitute cloud service (T3). Among three major cloud

platforms Amazon Web Services, Google App Engine,

and Microsoft Azure, the system architect choses

Microsoft Azure because the legacy system has been

developed using Microsoft family technology and

developers has consistent experience with it. This

reduces the cost of learning cloud technology and also

potential effort in addressing incompatibilities between

these platforms.

O44 Likely Moderate H

Develop adaptors (T6). A wrapper component is

developed to resolve API mismatches between legacy

system and Microsoft Azure. It hides specific Microsoft

Azure characteristics that cause conflicts with the legacy

system.

O21
Almost

Certain
Moderate E

Adapt data (T12). The legacy system data types are

converted to Microsoft Azure cloud database solution.

O50
Almost

Certain
Moderate E

Develop adaptor (T6). As the Microsoft Azure does not

support some kind of stored procedures, an emulator is

implemented and deployed in Microsoft Azure server

which performs missing functionalities that are not

supported by this platform.

Achieve

[Improved

Portability]

O42 Likely Moderate H

Decouple system components (T7). Legacy system

components are decoupled so that dependency among

them is minimized and they can work independently and

interact in a-synchronised way. A mediator component

is implemented to manage interaction between the

loosely coupled components deployed on Microsoft

Azure servers.

Achieve

[Improved

testability]

O29_2

Likely Moderate H

Refine network topology (T24). Define the geographical

location of virtual machines close to North Europe to

minimize latency of Azure middleware. O29_1 Likely Moderate H

O29_3 Likely Moderate H

Achieve

[Improved

performance]

O27 Likely Major E Acquire more cloud resources (T26). Rent three virtual

machines to address slow CPU clock rates. Use physical

disk shipping to reduce effects of network

latency/transfer rates. Use third party monitoring tools to

independently verify the system performance.

O29_2 Likely Moderate H

O29_1 Likely Moderate H

O29_3 Likely Moderate H

O29 Likely Moderate H

Make system stateless (T29). Legacy system components

should be modified in a way that they do not depend on

internal state. Rather, such states should be stored in an

external storage or requested from an external

component.

O28 Likely Moderate H

Refine network topology (T24). Modify the current

deployment and distribution model of legacy system

components on the basis of transaction delay, proximity,

and geographical distribution. In this case, system

components are deployed in Microsoft Azure servers

located in North Europe close to Sweden (the location of

the system) to reduce latency.

O46 Likely Moderate H
Update patches (T21). Update cloud service consumer

browsers regularly.

O47_1 Possible Insignificant L Do nothing (T41). This obstacle is not perceived critical.

22

6. Related work

Early stage analysis of cloud computing adoption has been previously investigated by other authors.

Drawing upon some relevant studies to compare decision making frameworks e.g. (Babar, Liming and

Jeffery 2004) and following guidelines for legacy system cloud enablement (Fahmideh, Daneshgar,

Low et al. 2016), eight analysis criteria were identified: migration type, lifecycle focus, evaluation

granularity, evaluation approach, process support, stakeholder involvement, modelling language,

experience repository, and tool support. In what follows, existing literature is discussed in view of

these criteria. This will situate the proposed framework in the literature and highlight its contributions

to the state of art.

(i) migration type. As mentioned in Section 4.1, there are few options, namely type I, II, III, IV, and

V, through which legacy system benefit from cloud service. In view of this criterion, (Anstett,

Leymann, Mietzner et al. 2009) presents some factors such as operating system and platform

middleware that a system architect should take into account when deploying business process engines

in IaaS, i.e. migration type I. For migration type II in which system components are substituted with

cloud services through SaaS model, (Godse and Mulik 2009) and (Wu, Lan and Lee 2011) are two

example frameworks presenting approaches for selecting the most appropriate SaaS product for

organizational needs. For the migration type V where the whole system stack is encapsulated in

virtual machines and then ran in the cloud infrastructure, the framework proposed in (Khajeh‐

Hosseini, Greenwood, Smith et al. 2012) supports decision makers in identifying concerns to examine

the costs of deploying IT systems on the cloud. We did not find any noticeable framework in relation

to migration types III and IV.

(ii) lifecycle focus. Decision making frameworks can be classified considering migration phases for

which a framework is appropriate to use. Fahmideh et al. define three migration phases: plan, enable,

and maintain (Fahmideh 2016b). Frameworks related to the planning phase are concerned with the

feasibility assessment of adopting cloud services. Some studies such as (El-Gazzar, Hustad and Olsen

2016), (Low, Chen and Wu 2011) and (Wu 2011) mainly investigate important factors such as

security, cost, and organizational readiness that should be taken into account when adopting cloud

services. Other approaches proposed in (De Assunçao, Di Costanzo and Buyya 2009), (Deelman,

Singh, Livny et al. 2008), (Kondo, Javadi, Malecot et al. 2009), (Walker, Brisken and Romney 2010),

and (Khajeh‐Hosseini, Greenwood, Smith et al. 2012) focus on analysing the feasibility of cloud

adoption from a cost saving point of view. This informs if a deployment option is cost effective. Other

concerns related to re-architecting systems to cloud such as data security, interoperability between

legacy components and cloud services, or system performance are typically not covered in that

analysis. In the enablement phase, cloud services that meet given computational requirements of

systems and the most suitable system components that can benefit from cloud services are first

selected. This is followed with defining an optimum deployment of the components in cloud servers.

Multi-criteria based decision making techniques are applied for shortlisting and ranking of candidate

cloud services: e.g. Analytic Hierarchy Process (AHP) (Garg, Versteeg and Buyya 2013), (Godse and

Mulik 2009), and Analytic Network Process (ANP) (Menzel, Schönherr and Tai 2013). There are

situations in which post-migration assessment is needed. The decision making frameworks related to

this phase may suggest which system components are either de-migrated to the local environment or

enhanced with new cloud services based on new needs and changes in the operational environment

(Scandurra, Mongiello, Colucci et al. 2016).

(iii) evaluation granularity. The unit of analysis in decision making frameworks can be at different

levels such as organizational, system, or system component. A system architect may proceed at one of

these levels to evaluate the suitability and filter out migration variants that do not meet requirements.

For example, some studies such as (Nikkhouy 2013), (Christoforou and Andreou 2013), and (Low,

Chen and Wu 2011) assess whether an organisation is ready to benefit from cloud services. Other

frameworks (Tak, Urgaonkar and Sivasubramaniam 2011), (Juan-Verdejo and Baars 2013), (Menzel

and Ranjan 2012), (Khajeh‐Hosseini, Greenwood, Smith et al. 2012), (Fittkau, Frey and Hasselbring

2012), (Saripalli and Pingali 2011), and (Calheiros, Ranjan, Beloglazov et al. 2011) examine which

systems are adequate for moving to the cloud using migration types V. Furthermore, (Leymann,

23

Fehling, Mietzner et al. 2011) suggests an approach to identify system components suitable for being

cloud-enabled based on other factors such as latency, data transfer, and component dependencies.

(iv) evaluation approach. This criterion is useful to know the level of information and technique are

required for an evaluation exercise. Decision making frameworks may use a wide range of techniques

to satisfy desired goals. To name a few, some frameworks are metric based such as (De Assunçao, Di

Costanzo and Buyya 2009), (Deelman, Singh, Livny et al. 2008), and (Kondo, Javadi, Malecot et al.

2009), some use goal-based reasoning such as (Zardari, Bahsoon and Ekárt 2014) and (Scandurra,

Mongiello, Colucci et al. 2016), some use optimisation technique such as (Leymann, Fehling,

Mietzner et al. 2011) and other use hybrid techniques such as (Menzel and Ranjan 2012), (Fittkau,

Frey and Hasselbring 2012), (Saripalli and Pingali 2011).

(v) process support. Decision making frameworks may define a precise definition of their steps and

sequencing. They may clearly describe for each step the input and the output products, their

guidelines, controls, and any heuristics for an accurate assessment. They ultimately help a system

architect to accomplish decision making goals. Except for some frameworks presented in Table 9, the

majority of frameworks reviewed in this section provide at least a general description of their process,

though they differ in the level of details provided. However, it should be said that some frameworks

related to the planning phase do not have an explicit process support.

(vi) stakeholder involvement. As with many decision making scenarios in software engineering,

cloud computing adoption may involve multiple stakeholders such as cloud service providers,

consumers, brokers, developers, project managers, and end-users whose interests attempt to influence

risks and benefits. These stakeholders may well have their own competing interests and attempt to

influence risks and benefits of an assessment process. Their active participation enables proper

elicitation of their goals and priorities. Resolving conflicts during decision making process is essential

for the quality of the assessment. Existing frameworks generally recognize the importance of

incorporating key stakeholders, but they vary in how and to what degree stakeholders are engaged.

(vii) modelling language. Evaluation frameworks can be compared in terms of if and how they

employ a notation to represent elements, semantic interpretation, and outcome of each decision step.

Using a modelling language can facilitate communications and understandability of the decision

making process to stakeholders. It can also provide a scope for automation. For example, the

framework by (Christoforou and Andreou 2013) uses Influence Diagrams, a directed acyclic graph

with nodes, to show decision variables and how they influence each other. Nodes representations

along with their dependencies model decision making questions and provide final decision nodes. In

another framework, (Zardari, Bahsoon and Ekárt 2014) goal-oriented modelling is used to represent

risks encountered and mitigating strategies for using cloud services.

(viii) experience repository. The notion of reuse is a perennial means for increasing productivity in

software engineering (A. Aurum 2003). Like any other software development activity, cloud

migration decision making is a knowledge-intensive process. It can be a costly exercise if it starts

from scratch in an ad-hoc manner each time. The effort involved can clearly be reduced if knowledge

from activities in previous adoption scenarios is maintained and reused. Towards this, CLiCk (Cloud

Life Cycle) provides a repository containing historical information on QoS of different service

platforms to improve the accuracy of service selection (Giovanoli 2012). Reusing and sharing

recurring decision logs in the course of re-architecting legacy systems to cloud platforms is suggested

in (Zimmermann, Wegmann, Koziolek et al. 2015). In another work, (Menzel, Schönherr and Tai

2013) provides a reusable catalogue of criteria for creating customized evaluation methods to evaluate

alternative service providers.

(ix) tool support. A decision making process can involve time-consuming tasks such as collecting,

documenting, and maintaining relevant domain data. Particularly, at the early stage of transition to the

cloud, consumers may face a higher number of risks in utilizing cloud services which should be

carefully evaluated (Lacity, Khan and Willcocks 2009). Decision-making tools can capture, for

example, alternative cloud services and their service level agreements offering by different providers,

costs and risk factors relevant to decision scope, automate as many as decision steps, and come up

with evaluation outcomes. The importance of tool support is recognized in some frameworks such as

(Khajeh‐Hosseini, Greenwood, Smith et al. 2012) and (Menzel and Ranjan 2012).

24

Table 9 summarizes characterizing the existing studies. Our proposed framework in the current study

distinguishes itself from the existing one in the view of analysis criterion experience repository.

Compared to the existing studies reviewed above, our framework provides an evidential knowledge

repository of reusable cloud-specific obstacles and corresponding resolution tactics along with a

visualization mechanism for systematically analysing risks in migrating systems to cloud platforms.

Perhaps, the only notable close work to our framework is by (Giovanoli 2012) which provides a

repository containing information on the different service providers and their services. However, it

does not cover several areas of obstacles and resolution tactics (e.g. incompatibilities between systems

and cloud platforms). None of the existing studies utilises cloud adoption knowledge during goal

reasoning to address probable risks and to undertake countermeasures. They rather rely on knowledge

of system architect which might be imprecise and incomplete. Using our framework, system architects

can get an informed insight of attainability of system quality goals via cloud-enablement of systems.

They also get a detailed goal-obstacle analysis supported by the evidential knowledge repository.

25

Table 9. Literature comparison addressing the evaluating of cloud computing adoption

Study Aim Migration

Type

Lifecycle

Focus

Evaluation

granularity

Evaluation

approach

Process

support

Stakeholder

involvement

Modelling

language

Experience

repository

Tool

Support

(Anstett, Leymann,

Mietzner et al. 2009)

Identifying factors such as operating

system, platform middleware and legacy

system to be considered in deploying

business process execution language

(BPEL) on IaaS.

Type V Plan

phase

Legacy

system

Not

specified

Not

specified

Not specified Not specified Not

considered

Not

available

(Khajeh‐Hosseini,

Greenwood, Smith et

al. 2012)

Providing a decision making support for

identifying concerns in using IaaS.

Type V Plan

phase

Legacy

systems

Cost

modelling

Yes Yes Deployment

model of

system

Not

considered

Yes

(El-Gazzar, Hustad

and Olsen 2016)

Identifying inhibitors and organisational

drivers are involved in a decision

making for cloud computing adoption.

All Plan

phase

Organisation Not

specified

Not

specified

Not specified Not specified Not

considered

Not

available

(Low, Chen and Wu

2011)

Exploring factors affecting organisations

in adopting cloud computing.

All Plan

phase

Organisation Not

specified

Not

specified

Not specified Not specified Not

considered

Not

available

(Wu, Lan and Lee

2011)

Exploring factors influencing successful

SaaS adoption.

Type II Plan

phase

Organisation Decision

making trial

and

evaluation

laboratory

Not

specified

Not specified Cause-effect

diagram

Not

considered

Not

available

(De Assunçao, Di

Costanzo and Buyya

2009)

Evaluating the optimality of scheduling

strategies used by an organisation to

reduce response time in using IaaS.

Type V Enable

phase

Organisation Performance

metrics

Not

specified

Not specified Not specified Not

considered

Not

available

(Deelman, Singh,

Livny et al. 2008)

Analysing the cost-performance trade-

off between difference executions and

resource provisioning plans by legacy

systems.

Type III Enable

phase

Legacy

systems

Performance

metrics

Not

specified

Not specified Not specified Not

considered

Not

available

(Kondo, Javadi,

Malecot et al. 2009)

Comparing cost and performance of

legacy systems in using IaaS.

Type V Enable

phase

Legacy

systems

Performance

metrics

Not

specified

Not specified Not specified Not

considered

Not

available

(Walker, Brisken and

Romney 2010)

Reasoning about the cost of leasing

infrastructure from cloud storage.

Type III Enable

phase

Organisation Net present

value

Not

specified

Not specified Not specified Not

considered

Not

available

(Garg, Versteeg and

Buyya 2011)

Measuring, comparing, and prioritizing

cloud services based on users’

requirements.

Type V Enable

phase

Organisation/

Legacy

systems

QoS metrics Yes Implicitly

supported

Not specified Not

considered

Not

available

26

(Godse and Mulik

2009)

Analysing and selecting appropriate

SaaS products.

Type II Enable

phase

Organisation AHP Embedded

in

framework

description

Implicitly

supported

Not specified Not

considered

Not

available

(Menzel, Schönherr

and Tai 2013)

Examining if IaaS meets organisation’s

needs by evaluating and ranking

alternatives using a set of criteria

catalogue.

All Enable

phase

Organisation/

Legacy

systems

ANP Yes Implicitly

supported

Not specified Not

considered

Yes

(Scandurra,

Mongiello, Colucci et

al. 2016)

Redeploying e-commerce cloud

applications on different servers at run-

time based on evolving requirements,

sudden changes in the operational

environment conditions, and application

traffic.

 Maintain

phase

Legacy

systems

Goal

reasoning

Embedded

in

framework

description

Not specified Graph

modelling

Not

considered

Not

available

(Nikkhouy 2013) Exploring potential benefits and risks in

migrating legacy systems to cloud

services.

All Plan

phase

Organisation Change

analysis

Yes Implicitly

supported

Cause and

effect diagram

Not

considered

Not

available

(Christoforou and

Andreou 2013)

Assessing the feasibility of the cloud

adoption in organizations regarding

factors such as security, legal issues,

availability, cost, return on investment

(ROI), compliance, performance,

scalability, and data access/import-

export.

All Plan

phase

Organisation Analysing

influencing

factors

Embedded

in

framework

description

Yes Influence

diagrams

modelling

Not

considered

Not

available

(Tak, Urgaonkar and

Sivasubramaniam

2011)

Exploring factors such as workload

intensity, growth rate, storage capacity

and software licensing costs affecting

the cost of deployment options in the

cloud.

V Plan

phase

Legacy

systems

Using

benchmarks

representing

of different

scenarios

Not

specified

Not specified NPV models Not

considered

Not

available

(Juan-Verdejo and

Baars 2013)

Identifying suitable components of

legacy systems for deploying in IaaS

with respect to interdependencies among

components and factors such as data

transfer volumes, performance,

sensitivity of cloud-based data

repositories, and exposure to public

networks.

V Enable

phase

Legacy

systems

Combination

of scenario

based &

AHP

Embedded

in

framework

description

Yes Legacy system

architecture

model

Not

considered

Not

available

27

(Menzel and Ranjan

2012)

Identifying a compatible combination of

software images (e.g., Web server

image) in mapping web applications to

virtualized cloud services while

expected QoS of applications are

satisfied.

V Enable

phase

Legacy

systems

Combination

of

optimization

and AHP

Embedded

in

framework

description

Yes Simulation

models

Not

considered

Not

available

(Fittkau, Frey and

Hasselbring 2012)

Evaluation of competing cloud

deployment options and finding the most

suitable mapping of virtual machines to

cloud services regarding cost and system

performance.

V Enable

phase

Legacy

systems

Combination

of

optimization

and

scenario-

based

Yes Yes Simulation

models

Not

considered

Not

available

(Saripalli and Pingali

2011)

Ranking legacy system workloads for

migrating to cloud environments based

on attributes such as latency, bandwidth,

and cost.

All Enable

phase

Legacy

systems

Combination

of multi-

attribute

decision

making and

wide-band

Delphi

Embedded

in

framework

description

Yes Decision

matrix

Not

considered

Not

available

(Calheiros, Ranjan,

Beloglazov et al.

2011)

Determining the best deployment

options of legacy system components of

on cloud servers whilst QoS are

satisfied.

V Enable

phase

Legacy

systems

Scenario-

based

Embedded

in

framework

description

Yes Simulation

models

Not

considered

Yes

(Leymann, Fehling,

Mietzner et al. 2011)

Rearrangement of the legacy application

deployment topology in cloud servers

regarding dependencies among its

components and requirements such as

latency, transfer, and data privacy are

addressed.

V Enable

phase

Legacy

systems

Optimisation

algorithm

(e.g.

simulated

annealing)

Yes Not specified Metamodeling,

application

templates

Not

considered

Yes

(Giovanoli 2012) Assessing and selecting the most

suitable cloud services via guidelines

provided in a database containing

information of different cloud service

providers.

All Enable

phase

Legacy

systems

Not

specified

Not

specified

Not specified Not specified Information

repository

of cloud

service

providers

Yes

(Zardari, Bahsoon and

Ekárt 2014)

Prioritising obstacles related to cloud

service adoption and resolution tactics.

All Plan

phase

Legacy

systems

Goal

reasoning

and AHP

Yes Yes Goal models Not

considered

No

28

This work Analysing goal-obstacle in migrating

legacy systems to cloud platforms along

with utilization of an evidence-based

repository during the steps of the goal-

oriented elaboration process.

All Plan and

enable

phases

Legacy

systems

Goal

reasoning

and

evidence-

based

approach

Yes Yes Goal models Yes No

29

7. Research contributions

Firstly, the proposed framework enables system architects to make context driven decision on

adopting cloud services rather than merely on the basis of their novelty or available anecdotal

evidence. The repository component of the framework is, in essence, a knowledge sharing platform. It

strives providing a body of documented evidence from the extant literature. This body of knowledge

informs cloud adoption requirement analysis ultimately enhancing the reliability and any concomitant

decision.

Secondly, an early stage analysis of cloud migration goals is not trivial. There is a dearth of research

on how to elicit, model, and anticipate potential impacts of obstacles on them in a systematic way. We

provided a systematic framework to explore goals, exceptional conditions impeding these goals, and

to produce a complete set of requirements. The framework has been built on top of the empirical

knowledge that makes results of goal-obstacle analysis more reliable compared to a situation in which

the analysis is merely based on general knowledge of cloud platforms or personal experience of the

system architect. The output from the framework is a goal-oriented requirements model relating cloud

migration goals to risky obstacles following with operational countermeasures. This model gives the

system architects a broad view of rationale and costs of specific requirements before delving into

technical aspects of integrating systems with cloud services. The model can be incorporated into the

implementation stage to make appropriate trade-offs on the basis of, for example, cost, security, or

performance goals. Not only the framework applicability is positioned in the earliest stage of

migration, but it can also be used during the post-migration stage to tackle costly mistakes.

Finally, the framework can be employed to complement existing decision making frameworks as

reviewed in Section 6. It fills their gaps in reusing existing empirical knowledge and the strategic

goals of the overall migration process. It can be also used as a stand-alone framework for a goal-

obstacle analysis of cloud migration types to reason about risky obstacles. Our framework takes a

qualitative approach as its aim is not to quantitatively measure probability occurrence of obstacles or

goal achievement, instead; the framework simply intents in specifying cloud migration goals that

might be impacted by obstacles. We hope the current study provides a motivation for combining the

evidence-based software engineering and goal-oriented modelling literature and stimulates more

efforts in the context of cloud computing.

8. Threats to validity

Our framework has been validated to account for both internal and external validity threats. Internal

validity threats relate to factors that a researcher has not been aware of and may have affected the

research outcome i.e. the framework artefact itself (Wohlin, Runeson, Höst et al. 2012). External

validity threats relate to the extent to which the resulting framework can be generalised (Wohlin,

Runeson, Höst et al. 2012).

To ensure the repository’s coverage, we focused on studies pertaining to legacy systems transition to

cloud platforms in the SLR depicted in Figure 2. The SLR identified 112 studies and two itemized

collections, respectively, presented in Appendix A and B. SLRs are generally criticised for being too

mechanical, protocol-driven, and formal that limits research’s curiosity and scholarly examining of

knowledge in a literature review (Hjørland 2011; Boell and Cecez-Kecmanovic 2015). Another

common concern associated with SLRs is their indeterminacy and multiplicity of a domain language.

This latter concern is of particular relevance to the cloud computing field where precise terminologies

or nomenclature have not yet been grounded. A particular obstacle or resolution tactic may be

expressed using different terms and vocabularies. For example, we found that studies in Appendix A

do not necessarily use the search strings presented in Table 1 or terms goals, obstacles, resolution

tactics, and decision making. To mitigate against the incompleteness of the framework repository, e.g.

due to missing some important and reusable empirical findings, our SLR had a phase for early

understanding and critical reading of the cloud migration literature before it is fine-tuned as shown in

Figure 2. For example, we did not confine ourselves with the fixed search strings presented in Table

1; rather, we sought concepts related to goals, obstacles, resolution tactics and not merely for search

strings because such concepts were not only expressed using search strings and sometimes they were

30

described or paraphrased. With all due care taken above in conducting the SLR, it is not possible to

affirm that the repository is complete.

Additionally, the reliability of case studies is subjected to the quality and accuracy of the written

documents of them. The documents used for the case studies may have been slightly different from

activities that actually had been performed due to reasons such as hindsight bias or error in

remembering details. As a consequence, there is a possibility of missing the identification of some

new obstacles and resolution tactics that could be added as new entry to the framework repository or

change the procedure’s step of the framework. This may have weakened internal validity of running

case studies. To mitigate against this, we conducted follow-up communications with key document

providers to confirm the validity of the documents of projects and to provide any missing information.

Furthermore, an often-cited limitation of case studies is their specificity to a particular context at a

particular point in time which circumscribes generalisability of results to other applications and

contexts. Although the framework was validated through two idiosyncratic case studies, its

applicability to all possible cases can still, of course, be debated. The repository is however extensible

with new entries if more case studies are performed.

Finally, we do not claim the framework procedure is complete to provide a great analysis of all

scenarios of transition cloud platforms. There might be some short-cuts to satisfy goals, or some

hidden factors that hinder certain goal achievement but are not detected in the framework procedure.

At this stage, there is no assertion regarding the generalisability of the procedure beyond the cases

investigated in this study. But it can be extended with new steps if the framework is appraised with

more case studies in a variety of scenarios.

9. Conclusion and future work

This article is based on this premise that endeavours towards cloud migration are sometimes

rewarding or challenging along with many lessons learned along the way. Reusing these lessons in

different scenarios is a promising approach in a better exploration of uncertain risks against cloud

adoption goals and reliability of decision outcomes. In this regard, our proposed framework harnesses

a synergy between evidence-based software engineering and goal-oriented modelling approaches. The

proposed framework comprises an itemized evidence-based repository and a cloud adoption goal-

obstacle procedure utilizing the repository information. This is the first attempt turning the existing

body of knowledge of cloud enablement into a concise, accessible, and a reusable source. This has not

been a feature of the past research. Nevertheless, some deficiencies regarding the completeness of the

repository are clear areas for further research as discussed in the following.

Firstly, there is an unequal availability of empirical studies in the literature in support of the repository

collections. On the one hand, as shown in the Appendix B and suggested by several studies, the

resolution tactic Develop adaptor/wrapper (T6) can be used in addressing several obstacles namely

Incompatible pluggable cloud services (O19), Incomplete APIs (O20), Incompatible data types (O21),

Operating system incompatibility (O22), Machine-image incompatibility (O23), Virtual machine

contextualization incompatibility (O24), API incompatibility across multiple cloud (O25), and

Proprietary APIs (O36). On the other hand, there is only one resolution tactic to address the obstacle

Extra testing effort (O32) which is Prioritize tests (T30). Hence, further research is required to add

more empirical findings to the repository as more studies appear in the cloud computing literature.

Secondly, we plan to add a probabilistic layer for goal specification and obstacle assessment in view

of their estimation and required degrees of satisfaction grounded on system domain. The criticality of

obstacle consequences will be computed by propagation probabilities from leaf obstacles towards

high-level goals through the goal refinement model. To this aim, we will extend the procedure’s steps

of the framework by annotating obstacle and goal elements with the probability of their occurrence

(Cailliau and van Lamsweerde 2013).

Finally, the framework repository in its current state is stored in the textual template and does not

provide a systematic mechanism for regularly updating the repository with new empirical data as

identified in the literature. Also, the goal-obstacle procedure utilizing the repository is manual. These

deficiencies confine the usability of the framework. We plan to provide a tool support that facilitates

using the framework when working with large-scale goal models.

31

Reference
A. Aurum, R. J., C. Wohlin, and M. Handzic (2003). Managing Software Engineering Knowledge.

AmazonS3 "Amazon Web Services S3 - Simple Cloud Storage Service."
https://aws.amazon.com/s3/?sc_channel=PS&sc_campaign=acquisition_AU&sc_publisher=google&sc_medium=s3_b&sc_c
ontent=s3_e&sc_detail=s3.amazonaws.com&sc_category=s3&sc_segment=118649900484&sc_matchtype=e&sc_country=
AU&s_kwcid=AL!4422!3!118649900484!e!!g!!s3.amazonaws.com&ef_id=Uvy8OgAABEYZb5Xa:20161022040726:s (Last
accessed October 2016).

Anstett, T., F. Leymann, R. Mietzner, et al. (2009). Towards BPEL in the Cloud: Exploiting Different Delivery Models for the
Execution of Business Processes. Services - I, 2009 World Conference on.

Babar, M. A., Z. Liming and R. Jeffery (2004). A framework for classifying and comparing software architecture evaluation
methods. Software Engineering Conference, 2004. Proceedings. 2004 Australian.

Boell, K. S. and D. Cecez-Kecmanovic (2015). "On being ‘systematic’ in literature reviews in IS." Journal of Information
Technology 30(2): 161-173.

Cailliau, A. and A. van Lamsweerde (2013). "Assessing requirements-related risks through probabilistic goals and
obstacles." Requirements Engineering 18(2): 129-146.

Calheiros, R. N., R. Ranjan, A. Beloglazov, et al. (2011). "CloudSim: a toolkit for modeling and simulation of cloud computing
environments and evaluation of resource provisioning algorithms." Software: Practice and Experience 41(1): 23-50.

Chow, R., P. Golle, M. Jakobsson, et al. (2009). Controlling data in the cloud: outsourcing computation without outsourcing
control. Proceedings of the 2009 ACM workshop on Cloud computing security, ACM.

Christoforou, A. and A. S. Andreou (2013). A Cloud Adoption Decision Support Model Using Influence Diagrams. Artificial
Intelligence Applications and Innovations, Springer: 151-160.

Dardenne, A., A. Van Lamsweerde and S. Fickas (1993). "Goal-directed requirements acquisition." Science of computer
programming 20(1): 3-50.

De Assunçao, M. D., A. Di Costanzo and R. Buyya (2009). Evaluating the cost-benefit of using cloud computing to extend the
capacity of clusters. Proceedings of the 18th ACM international symposium on High performance distributed computing,
ACM.

Deelman, E., G. Singh, M. Livny, et al. (2008). The cost of doing science on the cloud: the montage example. Proceedings of
the 2008 ACM/IEEE conference on Supercomputing, IEEE Press.

Dieste, O. and O. Padua (2007). Developing search strategies for detecting relevant experiments for systematic reviews.
Empirical Software Engineering and Measurement, 2007. ESEM 2007. First International Symposium on, IEEE.

Dragoni, N., S. Giallorenzo, A. L. Lafuente, et al. (2016). "Microservices: yesterday, today, and tomorrow." arXiv preprint
arXiv:1606.04036.

Dyba, T., B. A. Kitchenham and M. Jorgensen (2005). "Evidence-based software engineering for practitioners." Software,
IEEE 22(1): 58-65.

El-Gazzar, R., E. Hustad and D. H. Olsen (2016). "Understanding cloud computing adoption issues: A Delphi study
approach." Journal of Systems and Software 118: 64-84.

Fahmideh, M., F. Daneshgar, G. Beydoun, et al. (2017). "Challenges in migrating legacy software systems to the cloud — an
empirical study." Information Systems 67(Supplement C): 100-113.

Fahmideh, M., F. Daneshgar, G. Low, et al. (2016). "Cloud migration process—A survey, evaluation framework, and open
challenges." Journal of Systems and Software 120: 31-69.

Fahmideh, M., Low Graham, Ghassan Beydoun (2016b). "Conceptualising Cloud Migration Process." Twenty-Fourth
European Conference on Information Systems (ECIS), İstanbul,Turkey, 2016 1: 0.

32

Fittkau, F., S. Frey and W. Hasselbring (2012). CDOSim: Simulating cloud deployment options for software migration
support. Maintenance and Evolution of Service-Oriented and Cloud-Based Systems (MESOCA), 2012 IEEE 6th International
Workshop on the.

Franklin, C. (1996). "Lt. Gen (USAF) Commander ESC, January 1996, Memorandum for ESC Program Managers, ESC/CC."
Risk Management, Department of the Air Force, Headquarters ESC (AFMC) Hanscom Air Force Base, MA.

Garg, S. K., S. Versteeg and R. Buyya (2011). SMICloud: A Framework for Comparing and Ranking Cloud Services. Utility and
Cloud Computing (UCC), 2011 Fourth IEEE International Conference on.

Garg, S. K., S. Versteeg and R. Buyya (2013). "A framework for ranking of cloud computing services." Future Generation
Computer Systems 29(4): 1012-1023.

Giovanoli, G. (2012). Building a Knowledge Base for Guiding Users through the Cloud Life Cycle

Godse, M. and S. Mulik (2009). An approach for selecting software-as-a-service (SaaS) product. Cloud Computing, 2009.
CLOUD'09. IEEE International Conference on, IEEE.

Godse, M. and S. Mulik (2009). An approach for selecting software-as-a-service (SaaS) product. 2009 IEEE International
Conference on Cloud Computing, IEEE.

Gordon, J. (2015). Case Study: Refactoring A Monolith Into A Cloud Native App,
https://www.dropbox.com/s/t0sfl6cn6uounhy/Migration%20scenario-SpringTrader.docx?dl=0.

Gregor, S. and D. Jones (2007). "The anatomy of a design theory." Journal of the Association for Information Systems 8(5):
312-335.

Henver, A., S. T. March, J. Park, et al. (2004). "Design science in information systems research." MIS quarterly 28(1): 75-105.

Hjørland, B. (2011). "Evidence-based practice: An analysis based on the philosophy of science." Journal of the American
society for information science and technology 62(7): 1301-1310.

Juan-Verdejo, A. and H. Baars (2013). Decision support for partially moving applications to the cloud: the example of
business intelligence. Proceedings of the 2013 international workshop on Hot topics in cloud services. Prague, Czech
Republic, ACM: 35-42.

Khajeh-Hosseini, A., D. Greenwood and I. Sommerville (2010). Cloud Migration: A Case Study of Migrating an Enterprise IT
System to IaaS. Cloud Computing (CLOUD), 2010 IEEE 3rd International Conference on.

Khajeh-Hosseini, A., I. Sommerville, J. Bogaerts, et al. (2011). Decision support tools for cloud migration in the enterprise.
Cloud Computing (CLOUD), 2011 IEEE International Conference on, IEEE.

Khajeh‐Hosseini, A., D. Greenwood, J. W. Smith, et al. (2012). "The cloud adoption toolkit: supporting cloud adoption
decisions in the enterprise." Software: Practice and Experience 42(4): 447-465.

Kitchenham, B., O. Pearl Brereton, D. Budgen, et al. (2009). "Systematic literature reviews in software engineering – A
systematic literature review." Information and software technology 51(1): 7-15.

Kondo, D., B. Javadi, P. Malecot, et al. (2009). Cost-benefit analysis of cloud computing versus desktop grids. Parallel &
Distributed Processing, 2009. IPDPS 2009. IEEE International Symposium on, IEEE.

Lacity, M. C., S. A. Khan and L. P. Willcocks (2009). "A review of the IT outsourcing literature: Insights for practice." The
Journal of Strategic Information Systems 18(3): 130-146.

Letier, E. (2001). Reasoning about agents in goal-oriented requirements engineering, PhD thesis, Université catholique de
Louvain.

Leymann, F., C. Fehling, R. Mietzner, et al. (2011). "Moving applications to the cloud: An approach based on application
model enrichment." International Journal of Cooperative Information Systems 20(03): 307-356.

Linthicum, D. (2012). "Why Cloud Computing Projects Fail?" Available at: http://www.slideshare.net/Linthicum/why-cloud-
computing-projects-fail, last access October 2016.

http://www.dropbox.com/s/t0sfl6cn6uounhy/Migration%20scenario-SpringTrader.docx?dl=0
http://www.slideshare.net/Linthicum/why-cloud-computing-projects-fail
http://www.slideshare.net/Linthicum/why-cloud-computing-projects-fail

33

Low, C., Y. Chen and M. Wu (2011). "Understanding the determinants of cloud computing adoption." Industrial
management & data systems 111(7): 1006-1023.

Menzel, M. and R. Ranjan (2012). CloudGenius: decision support for web server cloud migration. Proceedings of the 21st
international conference on World Wide Web, ACM.

Menzel, M., M. Schönherr and S. Tai (2013). "(MC2)2: criteria, requirements and a software prototype for Cloud
infrastructure decisions." Software: Practice and Experience 43(11): 1283-1297.

Nikkhouy, E. (2013). "Decision Making About Migrating To The Cloud Model." Cloud-Based Software Engineering: 8.

Patton, M. Q. (1990). Qualitative evaluation and research methods, SAGE Publications, inc.

Peffers, K., T. Tuunanen, M. A. Rothenberger, et al. (2008). "A design science research methodology for information
systems research." Journal of management information systems 24(3): 45-77.

Pepitone, J. (2011). "Amazon EC2 outage downs Reddit, Quora." Retrieved May 17: 2011.

Rabetski, P. (2012). "Migration of an on-premise application to the cloud."

Rabetski, P. and G. Schneider (2013). Migration of an On-Premise Application to the Cloud: Experience Report. Service-
Oriented and Cloud Computing, Springer: 227-241.

Saripalli, P. and G. Pingali (2011). MADMAC: Multiple Attribute Decision Methodology for Adoption of Clouds. Cloud
Computing (CLOUD), 2011 IEEE International Conference on.

Scandurra, P., M. Mongiello, S. Colucci, et al. (2016). Towards a goal-oriented approach to adaptable re-deployment of
cloud-based applications. Proceedings of the 6th international conference on cloud computing and services science.

Tak, B. C., B. Urgaonkar and A. Sivasubramaniam (2011). To move or not to move: the economics of cloud computing.
Proceedings of the 3rd USENIX conference on Hot topics in cloud computing. Portland, OR, USENIX Association: 5-5.

Thönes, J. (2015). "Microservices." IEEE software 32(1): 116-116.

Tsidulko, J. (2016). "The 10 Biggest Cloud Outages Of 2016." Available at http://www.crn.com/slide-
shows/cloud/300081477/the-10-biggest-cloud-outages-of-2016-so-far.htm.

Van Lamsweerde, A. (2009). "Requirements engineering: from system goals to UML models to software specifications."

van Lamsweerde, A. and E. Letier (2000). "Handling obstacles in goal-oriented requirements engineering." Software
Engineering, IEEE Transactions on 26(10): 978-1005.

Van Lamsweerde, A. and E. Letier (2004). From object orientation to goal orientation: A paradigm shift for requirements
engineering. Radical Innovations of Software and Systems Engineering in the Future, Springer: 325-340.

Walker, E., W. Brisken and J. Romney (2010). "To lease or not to lease from storage clouds." Computer 43(4): 44-50.

Wohlin, C., P. Runeson, M. Höst, et al. (2012). Experimentation in software engineering, Springer Science & Business
Media.

Wu, W.-W. (2011). "Mining significant factors affecting the adoption of SaaS using the rough set approach." Journal of
Systems and Software 84(3): 435-441.

Wu, W.-W., L. W. Lan and Y.-T. Lee (2011). "Exploring decisive factors affecting an organization's SaaS adoption: A case
study." International Journal of Information Management 31(6): 556-563.

Yang, H. and M. Tate (2012). "A descriptive literature review and classification of cloud computing research."
Communications of the Association for Information systems 31(2): 35-60.

Yu, E. S. K. (1997). Towards modelling and reasoning support for early-phase requirements engineering. Requirements
Engineering, 1997., Proceedings of the Third IEEE International Symposium on.

http://www.crn.com/slide-shows/cloud/300081477/the-10-biggest-cloud-outages-of-2016-so-far.htm
http://www.crn.com/slide-shows/cloud/300081477/the-10-biggest-cloud-outages-of-2016-so-far.htm

34

Zardari, S., R. Bahsoon and A. Ekárt (2014). "Cloud Adoption: Prioritizing Obstacles and Obstacles Resolution Tactics Using
AHP."

Zimmermann, O., L. Wegmann, H. Koziolek, et al. (2015). Architectural decision guidance across projects-problem space
modeling, decision backlog management and cloud computing knowledge. Software Architecture (WICSA), 2015 12th
Working IEEE/IFIP Conference on, IEEE.

35

Appendix A (Studies used to develop the knowledge repository of the

framework)
Identifier Study Year

[S1]
Torbacki, W, SaaS–direction of technology development in ERP/MRP systems. Archives of

Materials Science 58: 58.
2008

[S2]
Fox, A., Above the clouds: A Berkeley view of cloud computing. Dept. Electrical Eng. and Comput.

Sciences, University of California, Berkeley,Rep. UCB/EECS 28.
2009

[S3]

Habib, S. M., Cloud computing landscape and research challenges regarding trust and reputation.

Ubiquitous Intelligence & Computing and 7th International Conference on Autonomic & Trusted

Computing (UIC/ATC), 2010 7th International Conference on, IEEE.

2010

[S4]
Wood, T, Disaster recovery as a cloud service: Economic benefits & deployment challenges. 2nd

USENIX Workshop on Hot Topics in Cloud Computing.
2010

[S5] Marston, S., Cloud computing—The business perspective. Decision support systems 51(1): 176-189. 2011

[S6]
Anstett, T., Towards BPEL in the Cloud: Exploiting Different Delivery Models for the Execution of

Business Processes. Services - I, 2009 World Conference on.
2009

[S7] Herbert, L., The ROI Of Software-As-A-Service. Forrester Research. 2009

[S8]
Wada, H., Data Consistency Properties and the Trade-offs in Commercial Cloud Storage: the

Consumers' Perspective, CIDR.
2011

[S9]
La, H. J., Technical challenges and solution space for developing SaaS and mash-up cloud services.

e-Business Engineering, ICEBE'09. IEEE International Conference on, IEEE.
2009

[S10]
Duipmans, E., Business Process Management in the cloud: Business Process as a Service (BPaaS).

University of Twente.
2012

[S11]
Widera P, K. N. , Protein models comparator: scalable bioinformatics computing on the Google

App Engine platform. Computing Research Repository: 8.
2011

[S12]
Andrikopoulos, V., How to adapt applications for the Cloud environment. Computing 95(6): 493-

535.
2013

[S13]

Brebner, P. C., Is your cloud elastic enough?: performance modelling the elasticity of infrastructure

as a service (IaaS) cloud applications. Proceedings of the third joint WOSP/SIPEW international

conference on Performance Engineering, ACM.

2012

[S14]
Li, A., CloudCmp: comparing public cloud providers. Proceedings of the 10th ACM SIGCOMM

conference on Internet measurement, ACM.
2010

[S15] Mansfield-Devine, S, Cloud Security: Danger in the clouds. Netw. Secur. 2008(12): 9-11. 2008

[S16]
Jensen, M., On technical security issues in cloud computing. Cloud Computing, 2009. CLOUD'09.

IEEE International Conference on, IEEE.
2009

[S17]
Hay, B., Storm clouds rising: security challenges for IaaS cloud computing. System Sciences

(HICSS), 2011 44th Hawaii International Conference on, IEEE.
2011

[S18] Vogels, W, Eventually consistent. Communications of the ACM 52(1): 40-44. 2009

[S19]
Ristenpart, T., Hey, you, get off of my cloud: exploring information leakage in third-party compute

clouds. Proceedings of the 16th ACM conference on Computer and communications security, ACM.
2009

[S20]
Gupta, R., Above the Clouds: A View of Cloud Computing. Asian Journal of Research in Social

Sciences and Humanities 2(6): 84-110.
2012

[S21]
Zissis, D, Addressing cloud computing security issues. Future Generation Computer Systems 28(3):

583-592.
2012

[S22] Hubbard, D., Top Threats to Cloud Computing V1. 0. Cloud Security Alliance. 2010

[S23]
Hussain, O. K., A framework for user feedback based cloud service monitoring. Complex,

Intelligent and Software Intensive Systems (CISIS), Sixth International Conference on, IEEE.
2012

[S24]
Alhamad, M., Conceptual SLA framework for cloud computing. Digital Ecosystems and

Technologies (DEST), 4th IEEE International Conference on, IEEE.
2010

[S25]
Harmer, T., Provider-Independent Use of the Cloud. Euro-Par 2009 Parallel Processing. H. Sips, D.

Epema etal., Springer Berlin Heidelberg. 5704: 454-465.
2009

[S26]
K. Keahey, Matsunaga, and J. Fortes. Sky Computing. IEEE Internet Computing, Palo Alto vol. 13:

315-340.
2009

[S27]
Loutas, N., Towards a Reference Architecture for Semantically Interoperable Clouds. Cloud

Computing Technology and Science (CloudCom), IEEE Second International Conference on.
2010

[S28]
Martinez Garro, Constructing hybrid architectures and dynamic services in Cloud BPM. Science

and Information Conference (SAI).
2013

[S29]
Zissis, D., Addressing cloud computing security issues. Future Generation Computer Systems 28(3):

583-592.
2012

[S30]
Vecchiola, C, Deadline-driven provisioning of resources for scientific applications in hybrid clouds

with Aneka. Future Generation Computer Systems 28(1): 58-65.
2012

[S31]
Kossmann, D, Data Management in the Cloud: Promises, State-of-the-art, and Open Questions.

Datenbank-Spektrum 10(3): 121-129.
2010

[S32]
Iosup, A., On the performance variability of production cloud services. Cluster, Cloud and Grid

Computing (CCGrid), 11th IEEE/ACM International Symposium on, IEEE.
2011

36

[S33]
Ma, D. The Business Model of Software-As-A-Service. Services Computing, 2007. SCC 2007. IEEE

International Conference on, IEEE.
2007

[S34]

Buyya, R., Market-oriented cloud computing: Vision, hype, and reality for delivering it services as

computing utilities. High Performance Computing and Communications, HPCC'08. 10th IEEE

International Conference on, Ieee.

2008

[S35]
Rayport, J. F, Envisioning the cloud: the next computing paradigm. Int. J. Database Manage.

Syst.(IJDMS) 1(1).
2009

[S36] Vogels, W., CTO roundtable: cloud computing. 2009

[S37]
Gao, J., Cloud testing-issues, challenges, needs and practice. Software Engineering: An

International Journal 1(1): 9-23.
2011

[S38]

Strauch, S., Using Patterns to Move the Application Data Layer to the Cloud. Proceedings of the 5th

International Conference on Pervasive Patterns and Applications, PATTERNS 2013, 27 May – June

1 2013, Valencia, Spain, Xpert Publishing Services (XPS).

2013

[S39]
Armstrong, D., Towards a contextualization solution for cloud platform services. Cloud Computing

Technology and Science (CloudCom), 2011 IEEE Third International Conference on, IEEE.
2011

[S40] Sriram, I. Research agenda in cloud technologies. arXiv preprint arXiv:1001.3259. 2010

[S41]
Batarseh, F. A, Context-assisted test cases reduction for cloud validation. International and

Interdisciplinary Conference on Modeling and Using Context, Springer.
2013

[S42]
Parveen, T., When to Migrate Software Testing to the Cloud? Software Testing, Verification, and

Validation Workshops (ICSTW), 2010 Third International Conference on.
2010

[S43]
Tran, V., Application migration to cloud: a taxonomy of critical factors. Proc. of 2nd International

Workshop on Software Engineering for Cloud Computing, ACM.
2011

[S44]
Khajeh-Hosseini, A, Cloud migration: A case study of migrating an enterprise it system to iaas.

Cloud Computing (CLOUD), IEEE 3rd International Conference on, IEEE.
2010

[S45]

Catteddu, D. (2010). Cloud Computing: Benefits, Risks and Recommendations for Information

Security. Web Application Security. C. Serrão, V. Aguilera Díaz and F. Cerullo, Springer Berlin

Heidelberg. 72: 17-17.

2010

[S46]
Khajeh-Hosseini, A., Research challenges for enterprise cloud computing. arXiv preprint

arXiv:1001.3257.
2010

[S47]
Torbacki, W. (2008). SaaS–direction of technology development in ERP/MRP systems. Archives of

Materials Science 58: 58.
2008

[S48]
M. Xin, N. L. Software-as-a-service model: elaborating client-side adoption factors. Proceedings of

the Twenty-ninth International Conference on Information
2008

[S49]
Kerr, J., Cloud computing: legal and privacy issues, Journal of Legal Issues and Cases in Business

1: 1.
2012

[S50] Leavitt, N, Is Cloud Computing Really Ready for Prime Time? Computer 42(1): 15-20. 2009

[S51]
Satzger, B., et al. (2013). Winds of change: from vendor lock-in to the meta cloud. Internet

Computing, IEEE 17(1): 69-73.
2012

[S52]
Silva, G. C, A systematic review of cloud lock-in solutions, Cloud Computing Technology and

Science (CloudCom), 2013 5th International Conference on, IEEE.
2013

[S53]
Dillon, T., Cloud computing: Issues and challenges. Advanced Information Networking and

Applications (AINA), 24th IEEE International Conference on, Ieee.
2010

[S54]
So, K, Cloud computing security issues and challenges. International Journal of Computer

Networks 3(5).
2011

[S55]
Dalheimer, M., Genlm: license management for grid and cloud computing environments. Cluster

Computing and the Grid, CCGRID'09. 9th IEEE/ACM International Symposium on, IEEE.
2009

[S56] Morgan, L., Factors affecting the adoption of cloud computing: an exploratory study. 2013

[S57] Joint, A., Hey, you, get off of that cloud? Computer Law & Security Review 25(3): 270-274. 2009

[S58]
Hajjat, M., Cloudward bound: planning for beneficial migration of enterprise applications to the

cloud. Proceedings of the ACM SIGCOMM conference. New Delhi, India, ACM: 243-254.
2010

[S59]

Bezemer, C.-P. Multi-tenant SaaS applications: maintenance dream or nightmare? Proceedings of

the Joint ERCIM Workshop on Software Evolution (EVOL) and International Workshop on

Principles of Software Evolution (IWPSE), ACM.

2010

[S60] Chong, F., Multi-tenant data architecture. MSDN Library, Microsoft Corporation 2006

[S61] Krebs, R., Architectural Concerns in Multi-tenant SaaS Applications. CLOSER. 2012

[S62]

Mietzner, R., Variability modeling to support customization and deployment of multi-tenant-aware

Software as a Service applications. Proceedings of the 2009 ICSE Workshop on Principles of

Engineering Service Oriented Systems, IEEE Computer Society: 18-25.

2009

[S63]
Gonidis, F., Addressing the challenge of application portability in cloud platforms. 7th South-East

European Doctoral Student Conference.
2012

[S64]
Petcu, D. Portability and interoperability between clouds: challenges and case study. European

Conference on a Service-Based Internet, Springer.
2011

[S65]
Chauhan, M. A., Towards Process Support for Migrating Applications to Cloud Computing. Cloud

and Service Computing (CSC), International Conference on.
2012

[S66] Strauch, S., Migrating eScience Applications to the Cloud: Methodology and Evaluation. 2014

37

[S67]
Strauch, S., Migrating Enterprise Applications to the Cloud: Methodology and Evaluation,

International Journal of Big Data Intelligence.
2014

[S68]
ShaoJie, T., AMAZING: An Optimal Bidding Strategy for Amazon EC2 Cloud Spot Instance,

available at http://www.cs.iit.edu/~xli/paper/Conf/EC-CLOUD2012.pdf
2016

[S69] Computing, C., Toward a multi-tenancy authorization system for cloud services. 2010

[S70] Karampaglis, Z., Secure Migration of Legacy Applications to the Web. Migration(1/18). 2012

[S71]
Pahl, C., A Comparison of On-Premise to Cloud Migration Approaches. Service-Oriented and

Cloud Computing, Springer: 212-226.
2013

[S72] Council, C. S. C. , Migration applications to public Cloud Services: roadmap for success. 2013

[S73]

Menychtas, A., ARTIST Methodology and Framework: A novel approach for the migration of

legacy software on the Cloud. Symbolic and Numeric Algorithms for Scientific Computing

(SYNASC), 15th International Symposium on, IEEE.

2013

[S74]
Varia, J., Migrating your existing applications to the aws cloud: A Phase-driven Approach to Cloud

Migration.
2010

[S75] Betts, D., Moving Apps to the Cloud on Microsoft 2012

[S76]
Binz, T., CMotion: A framework for migration of applications into and between clouds. Service-

Oriented Computing and Applications (SOCA), 2011 IEEE International Conference on.
2011

[S77]
Rabetski, P., Migration of an On-Premise Application to the Cloud: Experience Report. Service-

Oriented and Cloud Computing, Springer: 227-241.
2013

[S78]
Bahga, A., Rapid Prototyping of Multitier Cloud-Based Services and Systems. Computer 46(11): 76-

83.
2013

[S79]
Chauhan, M. A., Migrating Service-Oriented System to Cloud Computing: An Experience Report.

Cloud Computing (CLOUD), IEEE International Conference on.
2011

[S80]

Guo, C. J., A framework for native multi-tenancy application development and management. E-

Commerce Technology and the 4th IEEE International Conference on Enterprise Computing, E-

Commerce, and E-Services, 2007. CEC/EEE 2007. The 9th IEEE International Conference on,

IEEE.

2007

[S81]
Huru, H. A., MILAS: ModernIzing Legtacy Applications towards Service Oriented Architecture

(SOA) and Software as a Service (SaaS).
2009

[S82]
Zagarese, Q., Enabling advanced loading strategies for data intensive web services. Web Services

(ICWS), IEEE 19th International Conference on, IEEE.
2012

[S83]
Miranda, J., Assisting Cloud Service Migration Using Software Adaptation Techniques. Proceedings

of the 2013 IEEE Sixth International Conference on Cloud Computing, IEEE Computer Society.
2013

[S84] Laszewski, T., Migrating to the Cloud: Oracle Client/Server Modernization, Elsevier. 2011

[S85]
Bessani, A., DepSky: dependable and secure storage in a cloud-of-clouds. Proceedings of the sixth

conference on Computer systems. Austria, ACM: 31-46.
2011

[S86]
Nussbaumer, N., Cloud Migration for SMEs in a Service Oriented Approach. Computer Software

and Applications, Conference Workshops (COMPSACW), IEEE 37th Annual.
2013

[S87]
Banerjee, J., Moving to the cloud: Workload migration techniques and approaches. High

Performance Computing (HiPC), 19th International Conference on, IEEE.
2012

[S88]
Bezemer, C.-P., Enabling multi-tenancy: An industrial experience report. Software Maintenance

(ICSM), IEEE International Conference on, IEEE.
2010

[S89]

Kwok, T., A software as a service with multi-tenancy support for an electronic contract

management application. Services Computing, 2008. SCC'08. IEEE International Conference on,

IEEE.

2008

[S90]
Zhu, Y., A Platform for Changing Legacy Application to Multi-tenant Model. International Journal

of Multimedia and Ubiquitous Engineering 9(8): 407-418.
2014

[S91]

Pahl, C., Migration to PaaS clouds-Migration process and architectural concerns. Maintenance and

Evolution of Service-Oriented and Cloud-Based Systems (MESOCA), 2013 IEEE 7th International

Symposium on the, IEEE.

2013

[S92] Durkee, D., Why cloud computing will never be free. Queue 8(4): 20. 2010

[S93]
Barker, S. K., Empirical evaluation of latency-sensitive application performance in the cloud.

Proceedings of the first annual ACM SIGMM conference on Multimedia systems, ACM.
2010

[S94]
Khajeh-Hosseini, A., Decision support tools for cloud migration in the enterprise. Cloud

Computing (CLOUD), IEEE International Conference on, IEEE.
2011

[S95]
Batarseh, F. A., Context-assisted test cases reduction for cloud validation. International and

Interdisciplinary Conference on Modeling and Using Context, Springer.
2013

[S96] Krebs, R., Architectural Concerns in Multi-tenant SaaS Applications. CLOSER 12: 426-431. 2012

[S97]
Strauch, S., ESB MT: Enabling Multi-Tenancy in Enterprise Service Buses. Cloud Computing

Technology and Science (CloudCom), 2012 IEEE 4th International Conference on, IEEE.
2012

[S98]

S.Strauch, V. A., Decision Support for the Migration of the Application Database Layer to the

Cloud. Proceedings of the 5th IEEE International Conference on Cloud Computing Technology and

Science, CloudCom 2013, 2-5 December 2013, Bristol, UK: 639--646.

2013

[S99]
Qaisi, L.M., A Twitter Sentiment Analysis for Cloud Providers: A Case Study of Azure Vs. Aws,

Computer Science and Information Technology (CSIT), 2016 7th International Conference on:
2016

38

IEEE, pp. 1-6.

[S100]

Dignan, L., Public Cloud Computing Vendors: A Look at Strengths, Weaknesses, Big Picture,

available at http://www.zdnet.com/article/public-cloud-computing-vendors-a-look-at-strengths-

weaknesses-big-picture/.

2016

[S101]

Tsai, P., Aws Vs. Azure: It Pros Weigh the Pros and Cons, available at:

https://www.cloudcomputing-news.net/news/2016/sep/06/aws-vs-azure-it-pros-weigh-pros-and-

cons.

2016

[S102] Serrano, N., Infrastructure as a Service and Cloud Technologies, IEEE software (32:2), pp. 30-36. 2015

[S103]
Modi, C., A Survey on Security Issues and Solutions at Different Layers of Cloud Computing, The

journal of supercomputing), pp. 1-32.
2013

[S104]

Somorovsky, J., All Your Clouds Are Belong to Us: Security Analysis of Cloud Management

Interfaces, Proceedings of the 3rd ACM workshop on Cloud computing security workshop: ACM,

pp. 3-14.

2011

[S105]

Tajadod, G., Microsoft and Amazon: A Comparison of Approaches to Cloud Security, Cloud

Computing Technology and Science (CloudCom), 2012 IEEE 4th International Conference on:

IEEE, pp. 539-544.

2012

[S106]
Roloff, Eduardo, Evaluating high performance computing on the windows azure platform, Cloud

Computing (CLOUD), IEEE 5th International Conference on. IEEE.
2012

[S107]
Google documentation, Regions and Zones, available at

https://cloud.google.com/compute/docs/regions-zones/regions-zones.
2017

[S108]

Smeds, J., Nybom, Devops: A Definition and Perceived Adoption Impediments, in Agile Processes

in Software Engineering and Extreme Programming: 16th International Conference, Xp 2015,

Helsinki, Finland, May 25-29, 2015, Proceedings, C. Lassenius, T. Dingsøyr and M. Paasivaara

(eds.). Cham: Springer International Publishing, pp. 166-177.

2015

[S109]

Riungu-Kalliosaari, L., DevOps Adoption Benefits and Challenges in Practice: A Case Study,

Product-Focused Software Process Improvement: 17th International Conference, PROFES 2016,

Trondheim, Norway, November 22-24, 2016, Proceedings 17. Springer International Publishing.

2016

[S110] Pahl, Claus, Containerization and the paas cloud, IEEE Cloud Computing 2.3, p 24-31. 2015

[S111]
Gunka, A, Moving an application to the cloud: an evolutionary approach. Proceedings of the 2013

international workshop on Multi-cloud applications and federated clouds. ACM.
2013

[S112]

Ardagna, Danilo, Modaclouds: A model-driven approach for the design and execution of

applications on multiple clouds. Proceedings of the 4th international workshop on modeling in

software engineering. IEEE Press.

2012

39

Appendix B (Collections in the framework repository)

The catalogue of common goals that are supposed to be contributed by cloud computing technology

Goal id Quality goal Explanation (from cloud service consumer perspective) Study

G1 Availability

Anywhere/anytime/any device (desktop, laptop, and mobile) access to

resources (e.g. CPU, storage, virtual machines, and network bandwidth) which

are redundant and guarantee more availability (24/7/365 and 99.99%

availability) compared to run in-house infrastructure.

 [S2], [S3], [S4], [S5],

[S35], [S36], and [S37].

G2 Scalability
On the fly scaling up/ down resources and capability to provide varying

resource demanding patterns.

G3 Security Providing secure services protected from unauthorized access by other tenants.

G4 Performance
An excellent throughout speed and computations on cutting edge

infrastructure.

G5 Customizability Customisable and modifiable services upon requirements of consumers.

G6 Interoperability
Cloud services are integrable and incorporable with software systems as

required.

G7 Portability
Systems can move from one cloud to another cloud to get better offer (e.g.

performance, price, and security) with minimum disruption.

G8 Testability
Providing a scalable infrastructure to perform test and evaluation of high-

computational tasks.

G9 Consistency
Guarantee of data consistency and not resulting in an error state for the system

once data are processing and changing in the cloud.

G10 Reduced IT cost
Lower expense for infrastructure procuring, data storages, system updates,

maintenance, and staff.

40

Probable obstacles against goals in migrating legacy systems to cloud platforms

Obstacle Definition

Quality goals Migration type*

Study

A
v

ai
la

b
il

it
y

S
ca

la
b

il
it

y

S
ec

u
ri

ty

P
er

fo
rm

an
ce

C
u

st
o

m
iz

ab
il

it
y

In
te

ro
p

er
ab

il
it

y

P
o

rt
ab

il
it

y

T
es

ta
b

il
it

y

C
o

n
si

st
en

cy

R
ed

u
ce

d
 I

T
 c

o
st

I II III IV V

O1 Cloud outage

A cloud service may suffer from outages for reasons such as going out

of business, being the subject of regulatory action, or the outage of

contact system.

* √ √ √ √ √ [S2], [S44], [S58]

O2 Service failure

Cloud service maybe unavailable by service consumer due to reasons

such as network congestion, hardware failure, service middleware

failure, or faults on various elements of the service platform.

* √ √ √ √ √ [S2], [S9]

O3 Service transient fault
Cloud service maybe temporarily unavailable due to network traffic

load or restarting by administrators after a failure.
* √ √ √ √ √ [S2], [S9]

O4 Tenant interfere
Several tenants maybe in run on the same cloud and negatively affect

the system data security.
 * √ √ √ √ √ [S59], [S60], [S88]

O5
Un-customisable

scalability

The scalability rules may not be flexible and merely controlled and

managed by service provider.
 * * - √ - - - [S10], [S11]

O6 Scaling latency

Cloud service may have delay in providing resource requested by

service consumer due to reasons such as a server workload in the

region, the rate of load acceleration, or quotas imposed by the cloud

service provider.

 * √ √ - √ √ [S12], [S13], [S14]

O7 Browser vulnerabilities
Cloud consumer who connects to cloud services by a Web browser

might be attacked by malicious tenants.
 * √ √ √ √ √ [S15], [S16]

O8 Code disruption
System codes that are executing in the cloud maybe accessed and

disrupted by other tenants are in operation in the same cloud service.
 * √ - - - √ [S6], [S17]

O9 Cloud attack
Malicious tenants can disrupt cloud service functionalities.

 * √ √ √ √ √
[S16], [S17],

[S45], [S58]

O10 Extra security cost

There might be an extra cost to address security if system components

are deployed across different cloud server with complex relationships

and security configuration, which demands provider-independent

techniques to establish a security and configuration context. Service

consumer might be responsible for locking ports, patching the

operating system, running an anti-virus software and enforcement of

access control policies.

 * √ √ √ √ √ [S6], [S26], [S28]

O11
Lack of control on code

execution location

Executing of a system in the cloud might not be fixed to a geographical

location and rather the system may move from one physical server to

another one during its lifetime. The decision on the execution location

 *

 √ - - - √ [S17], [S19]

41

of the system is based on factors such as load balancing mechanism of

cloud, network and server performance and availability, and even

characteristics of the current consumer.

O12
Lack of control on data

location

Sensitive data may move to the outside the organization network or

country. There is no assumption where the location of the data is.
 *

 - √ √ √ √ [S12], [S20], [S21]

O13 Data remanence
The residual representation of data after finishing system execution on

the cloud server may cause unwilling disclosure of private data.
 *

 - √ √ √ √ [S22]

O14 Data interruption
Tenants or subcontractors of cloud providers may get access to system

data and affect data confidentiality.
 *

 - √ √ √ √ [S29]

O15 Session hijacking
A malicious tenant may use a valid session key to get authorised

access to use system using cloud service.
 *

 √ √ - - √ [S29]

O16
System source codes

propriety

Cloud provider, its subcontractors, or tenant may get access to all

system codes/algorithms which might be confidential.
 *

 √ √ - - √ [S17]

O17 Vendor lock-in

System owner is dissatisfied with cloud service but it cannot easily and

inexpensively transfer its system and data to another platform or in-

house.

 * *

 √ √ √ √ √ [S50], [S51], [S52]

O18 Traversal vulnerability
A malicious tenant may damage resources that are used by other

tenants.
 *

 √ √ √ √ √

[S59], [S60],

[S61], [S62]

O19
Incompatible pluggable

cloud services

At runtime, system might be plugged to a cloud service which is

incompatible with the other cloud services.
 * *

 √ - - - √ [S23]

O20 Incomplete APIs Cloud service provider lacks providing a rich set of APIs. * * * √ √ - √ √ [S24]

O21 Incompatible data types Data types used in legacy and cloud service are incompatible. * * √ √ - √ √ [S12], [S38]

O22
Operating system

incompatibility

System components are distributed and moved among cloud servers

with different operating systems which might be incompatible for

managing, representing, and formatting virtual machines.

 * *

 √ - - - √ [S25], [S26], [S27]

O23
Machine-image

incompatibility

Virtual machines are moving between different cloud platforms but

each platform has different underlying implementation for virtual

machines.

 * *

 √ - - - √ [S39], [S40]

Q24

Virtual machine

contextualization

incompatibility

Virtual machines are moving between different platforms but each

platform may use different methods for customizing the context of

virtual machine such as setting the operating system’s username and

password.

 * *

 √ √ - - √ [S39],[S40]

O25
API incompatibility

across multiple cloud

Cloud service may offer APIs to implement systems or virtual

machines which might be incompatible with each other services.
 * *

 √ - - - √

[S25], [S26],

[S27], [S30], [S40]

O26 Message passing

Message passing between system and cloud services or among system

components deployed on cloud servers might be unsecure and accessed

by malicious tenants. Also, message size might be large affecting

system performance.

 * *

 √ √ √ √ √ [S12], [S45]

O27
Performance variability

of cloud service

Workload variability, virtualization overheads, or resource time-

sharing of cloud server may have negative effect on the system

performance operating in the cloud.

 *

 √ √ - - √
[S12], [S31],

[S32], [S93]

O28 Geographical distance High distance between system components that are distributed and * * √ √ √ √ √ [S12]

42

deployed on cloud servers may cause increased latency when accessing

or manipulating the data.

O29
Low middleware

performance

A cloud service may have been built on several layers of middleware,

from the guest operating system of the VM to the data-centre resource

manager, which each middleware may impact on the system

efficiency.

 * * *

 √ √ - √ √ [S32]

O30 High cancellation fees
Cloud service provider may force a consumer to a long term

commitment and consumers’ early exit may causes forfeit.
 * √ √ √ √ √ [S33]

O31 Inflexible pricing model
Cloud service provider may not offer a billing model based on the

service usage and limit consumer to flat rates or usage thresholds.
 * √ √ √ √ √ [S34]

O32 Extra testing effort

The test of system which may be deployed on multiple cloud servers

may needs testing connectivity of local components and those

deployed on cloud servers along with adding a new dimension of test

such as elasticity, multi-tenancy, interoperability, and elasticity.

 * *

 √ √ √ √ √
[S37], [S41],

[S42], [S95]

O33 Learning curve

Learning a new programming style, concepts, APIs, tools, and

understanding organisational impact of the cloud technology might be

time consuming.

* √ √ √ √ √ [S43]

O34
Loose of control over

resources and updates

Loss of control over resource management and their update.
 * √ √ √ √ √ [S45], [S46]

O35
Bargaining power of

provider

Cloud provider may get bargaining power in the future for example by

raising service fee prices or refusing to invest maintenance backward

compatible interface.

 *

 √ √ √ √ √ [S48], [S49]

O36 Proprietary APIs
Proprietary cloud APIs may impede integration of cloud services with

legacy systems.
 * * * √ √ √ √ √ [S53], [S54]

O37 Licensing issue

Software is charged per instance model but cloud server creates several

instances in the case of workload occurrence which might be

contradictory with software licensing.

* √ √ - √ √ [S45], [S55]

O38 Department downsizing
The maintenance team of legacy systems may become downsize as

some of their responsibilities are outsourced to cloud providers.

* √ √ √ √ √ [S44], [S56]

O39 Resistance to change
Users/staff may resist against moving to the cloud due to change in

their positions and organisational structure.
 * √ √ √ √ √ [S36], [S40]

O40 Non-compliancy
Users or standard regulations don’t consent to move

personal/organisational data to the cloud.

* √ √ √ √ √ [S57]

O41
Extra management

effort

Maintaining a system deployed in several clouds takes extra effort

such as keeping relationships with cloud providers, change of

providers, and monitoring.

* √ √ √ √ √ [S44]

O42
Backward

incompatibility

System might not be easily switched between on-premise and cloud

environments.
 *

 √ √ √ √ √ [S77]

O43 State-based dependency

System may heavily depend on contextual data, storing on server or

client, such as configuration changes to operate and remain consistent

from one session to another one.

 * *

 √ √ - - √ [S71], [S91]

O44 Incompatible APIs Legacy system APIs and cloud’s APIs are incompatible. * * * √ √ √ √ √ [S12], [43]

43

O45 Network latency
Connection speed between on premise and cloud is low due to latency

in on-premise network or latency of internal cloud network.
 * * √ √ √ √ √ [S12]

O46 Browser latency The browser in the on-premise environment is working slowly. * * √ √ √ √ √ [S12]

O47 Service latency
Latency in performing cloud service due to obstacles O7, O28, O46,

and O45.
 * * √ √ √ √ √ [S12]

O48

Incompatibility of

legacy system and cloud

service

Incompatibility between legacy system and cloud services due to

obstacles O21, O22, O23, Q24, and O25. * *

* √ √ √ √ √ [S12], [S43]

O49

Incompatibility of

legacy system data

storage and cloud

Incompatibility between legacy data storage and cloud database

solution due to O21 and O50. * *

* - - - √ - [S12], [S43]

O50
Incompatible data

operations

Stored procedures, views, and functions providing by cloud data store

might not be compatible (either syntactically or semantically) with

those defined in legacy system.

 * *

* - - - √ - [S12], [S43]

O51 Tight dependencies

Tight dependencies among legacy system components or dependency

to underlying technologies, operating systems, programming language,

or other legacy systems may obstruct individual scalability and

portability of system components across multiple clouds and on

premise.

 * * *

 √ √ √ √ √
[S67], [S98],

[S108]

O52
Inconsistency of system

components

Cloud data storage services may offer weaker consistency properties in

the sense that it will be taken long time to have consistent data across

all servers.

*

 - - √ √ √ [S8], [S18]

O53 Identity theft
An attacker may get a valid user’s identity and access resources of

legacy systems.
 * √ √ √ √ √ [S104]

O54
Variable price of cloud

resources

The price of using cloud resources may vary depending on cloud

workload across the time, particularly in a pick period. Such price

variation may not be suitable for legacy systems with heavy processing

tasks.

* √ √ - - √ [S112]

O55
High cost of support

(Specific to AWS)

AWS is a general provider which expects its services to be used and

managed by its uses independently. If a problem occurs, AWS has an

expensive technical support.

* √ - - - - [S102]

O56
Unreliable IT support

(Specific to AWS)

The quality of IT support by AWS might be a risk.
 * √ - √ - √ [S100]

O57
Varying support fee

(Specific to AWS)

AWS support fees vary on a sliding scale tied to monthly in a way that

support costs may grow quickly if system performs heavy tasks.
 * √ - - - - [S101]

O58
Vulnerable security

(Specific to AWS)

Amazon simple storage service (S3) may be accessible via SSL (secure

socket layer) encrypted end points, implying that it is the user’s

responsibility to encrypt data before storing into S3.

 *

 - - √ - - [S103]

O59
Injection attack

(Specific to AWS)

An attacker may hijack user accounts by creating, modifying, and

deleting virtual machine images, and changing administrative

passwords to control interfaces used to manage cloud computing

resources (e.g. S3 or EC2).

 *

 √ - √ - - [S104]

44

O60
Inflexible cost model

(Specific to Azure)

Azure computes the cost of recourses that were used per minute with

rounding up service usage to the nearest minute. In other words, if a

user allocated a resource for one hour and a half, then payment is

computed for the exact period of time whilst a provider like Amazon

round up service consumption to nearest hour.

* √ √ √ √ √ [S99]

O61
Inflexible configuration

(Specific to Azure)

The provider may not provide high flexible hardware configurability

for each virtual machine instance compared to Amazon offering high

flexibility in virtual machine configuration.

 *

 √ - - - - [S104]

O62

Operating system

incompatibility

(Specific to Azure)

Microsoft Azure mainly supports Windows-based servers. Porting

legacy systems from other platforms (e.g. Linux) to Azure might

require modifying the source code to be compatible with Windows

APIs and them able to execute on Azure.

 *

 √ [S104], [S106]

O63

Limited geographical

zone (Specific to

Google)

Google may not provide an extensive coverage of data centres to

deploy legacy systems. *

 √ [S107]

O64
Inflexible cost model

(Specific to Rackspace)

Rackspace may offer limited pricing options and month-to-month

subscriptions.
 * √ - - - - [S102]

O65

Heterogeneous

production

environments

The complexity and differences between production environments (e.g.

cloud platform, third-party clouds, and legacy systems) related to

deployments and configurations can hinder the efficiency of test.

 *

 √ √ √ √ √ [S108], [S109]

O66 Costly virtual machine

Virtual machine and its underlying infrastructure might be costly in

terms of need for large disk storage, isolated binary and library files,

memory management, and full gust operating system image.

* √ √ - - √ [S110]

O67
Incompatible execution

environments of system

A legacy system which is encapsulated in a virtual machine may not be

interoperable and portable across multiple cloud platforms.
 * √ √ - - √ [S110]

* For the migration types see the migration criteria in Section 6.

Catalogue of resolution tactics for handling obstacle

Resolution tactic Definition Relation to obstacle Source Category

T1 Substitute goal
Identify an alternative goal which is still contributable by the chosen migration

type or cloud services in a way that the obstructed goal and obstacle will not occur.

Applicable to resolve

all obstacles
KAOS framework

Goal/Service/Migration

type Substitution

T2
Substitute cloud

migration type

Choose an alternative cloud adoption type which satisfies the obstructed goal is

adopted in a way that the obstacle will no longer occur. The tactics has root in the

fact that different cloud adoption types, besides their specific contributions to

quality goals, might have common contributions towards migration goals.

Applicable to resolve

all obstacles

Adopted from KAOS

framework

Goal/Service/Migration

type Substitution, Obstacle

reduction

T3
Substitute cloud

service

Resolve the obstacle by selecting/changing the cloud service/provider in a way that

new the cloud service can contribute to quality goals. Define a set of suitability

criteria that characterise desirable features of cloud providers. The criteria include

provider profile (e.g. pricing model, constraints, offered QoS, electricity costs,

power, and cooling costs), organisation migration characteristics (migration goals,

available budget), and system requirements. Based on the criteria, identify and

Applicable to resolve

all obstacles

Adopted from KAOS

framework and [S65],

[S79]

Goal/Service/Migration

type Substitution, Obstacle

reduction

45

select suitable cloud providers.

T4
Analyse migration

feasibility

Perform a feasibility analysis to evaluate the benefits and the consequences of

moving legacies to the cloud and its impact on organisation structure, staff’s roles,

and legacies.

O38, O39 [S73], [S74] Obstacle prevention

T5
Refactor legacy

source code

Adapt the source code for being compatible and able to interact with the selected

cloud platform programming language and APIs.

O19, O20, O21, O22,

O23, Q24, O25
[S65], [S66], [S67] Obstacle prevention

T6
Develop

adaptor/wrapper

Add adaptors for resolving mismatches, occurring at runtime system execution,

between legacy system components and cloud services.

O19, O20, O21, O22,

O23, Q24, O25, O36,

O50

[S75], [S76] Obstacle prevention

T7
Decouple system

components

Decouple the legacy system components from each other. Use mediator and

synchronisation mechanisms to manage interaction between the loosely coupled

components in the cloud environment.

O51 [S12], [S77], [S78] Obstacle prevention

T8
Encrypt/decrypt

message passing

Add support for the runtime encryption/decryption of message transition between

components in on-premises network and cloud environment.
O26 [S12], [S75], [S79] Obstacle prevention

T9 Obfuscate code

Protect unauthorised access to code blocks of components by other tenants that are

running on the same cloud service. Use encryption mechanisms in the sense that

no other tenants will be able to access, read, or alter the code blocks with the

components when running in the cloud.

O8, O16 [S6] Obstacle prevention

T10 Isolate tenant

Enable multi-tenancy in the system. Based on multi-tenancy requirement (i) define

tenant-based identification and hierarchical access control for tenants and (ii)

separate tenant data using authorization and authentication mechanisms.

O4
[S80], [S81], [S96],

[S97]
Obstacle prevention

T11
Tune message

granularity

Define suitable granularity for messages, that are passing between system

components hosted on local network and the cloud, based on the degree of

functionality that is offered to the service consumer and consumer's infrastructure

capability to process the messages. A proper message granularity can be identified

or predicted based on pieces of data actually used by system or using heuristic

functions to understand the number of interaction between system components

over the cloud network.

O26 [S12], [S82] Obstacle prevention

T12 Adapt data

Convert legacy data types to the data type of target cloud database solution. Also,

add an extension component to the legacy system which includes a set of

commands to be performed by the system or cloud. The emulator supports missed

database functionalities of cloud database solution provider.

O50, O21
[S12], [S38], [S71],

[S83], [S84]
Obstacle prevention

T13

Involve staff with

cloud adoption

process

Involve staff and stakeholders actively in the cloud adoption process and give them

insight of benefits of the cloud and organisational change. O38, O39 [S46]

Obstacle reduction

T14
Define an

authorization

Add a component determining if a tenant has privilege to perform a given action

over the database.
O4 [S69] Obstacle prevention

T15 Encrypt data
Use data encryption mechanisms prior outsourcing or hosting system data to the

cloud.
O14, O13, O4 [S12], [S79], [S85] Obstacle prevention

T16
Filter unauthorised

requests

Add support to filter unauthorized data access received from users at the edge of

premise or cloud network as early as possible to avoid unauthorized network

traffic.

O14, O4 [S58] Obstacle prevention

46

T17
Adjust security

policies

Add support for runtime security assessment of received queries for run on data.
O14, O4 [S58] Obstacle prevention

T18
Replicate system

components

Partition, replicate, and distribute system components and data (replicas) on

multiple cloud servers.

O3, O6,

O27, O45, O28
[S58], [S78], [S86]

Obstacle reduction

T19 Backup periodically Implement a procedure to periodically perform data backup. O4, O14, O15, O17 [S71], [S72] Obstacle prevention

T20
Detect and filter

intrusions

Filter unauthorised packets and malformed data traversed between system

components in local network and the cloud environment.
O4, O8, O9 [S58], [S70] Obstacle prevention

T21 Update patches Perform regular patch update across system components in the cloud. O7, O8, O9, O46 [S74], [S87] Obstacle reduction

T22 Isolate tenant
Protect tenants' data from to be accessed by other tenants. Each tenant should be

authorised and able to access to its own data.
T7 [S88], [S89], [S90] Obstacle prevention

T23
Define retry

policies

Define retry policies and implement them in the system for the operation to

succeed.
O3 [S66], [S75] Goal restoration

T24
Refine network

topology

Define a proper network topology with a consideration of server proximity and

system components, proper provider equipment, the location of the data centres,

router hops, and infrastructure bandwidth.

O27, O28, O47, O45
[S65], [S66], [S74],

[S77], [S78]

Obstacle reduction

T25
Examine cloud

service behaviour

Use benchmarking tools to investigate performance of the cloud under

investigation before decision making.
O27, O11, O12, O17 [S32], [S65] Obstacle prevention

T26
Acquire more cloud

resources

Rent more VMs or higher spec ones to deal with slow CPU clock rates, use

physical disk shipping to reduce effects of network latency/transfer rates.
O27 [S2], [S92]

Obstacle reduction

T27
Use multiple cloud

servers

Deploy and replicate system components in several clouds.
O27 [S45]

Obstacle reduction

T28 Add intermediation

Implement an intermediate layer (mediator components) between legacy system

and cloud services that decouple legacy systems from cloud specific APIs. This

helps to create intermediate APIs and get indirect service from the cloud.

O6, O29, O47 [S63], [S64] Obstacle prevention

T29
Make system

stateless

Provide a support in the system to the handle safety and traceability of tenant’s

session when various system instances are hosted in the cloud.
O43 [S78], [S91] Obstacle prevention

T30 Prioritize tests Perform test cases on the basis of their importance and criticality. O32 [S95] Obstacle prevention

T31
Resolve licensing

issue

There are alternative sub-tactics: (i) negotiate with system owner to make a

suitable licensing model which satisfies all parties, (ii) extend legacy system with a

new component (e.g. VPN tunnel) in a way that cloud services can be indirectly

offered to them, and (iii) enable a license tracking mechanism through monitoring

connections between the software system and cloud resources.

O37 [S72], [S74] Obstacle prevention

T32
Define weak

inconsistency

Implement an eventual consistency or similar weak consistency model for data.
O52 [S8] Obstacle reduction

T33 Check compliance Check if cloud adoption is compliance with the auditors and cloud providers. O40 [S45], [S57] Obstacle prevention

T34 Clarify roles Clarify roles and responsibilities relevant to cloud adoption. O38, O39 [S40], [S45] Obstacle reduction

T35
Aware top-level

management

Make management aware of the extra effort that might be required for cloud

adoption in the organisation.

O31, O33, O35, O38,

O39, O41
[S94] Obstacle reduction

T36 Degrade goal

Resolve an obstacle by degrading goal definition and refining its assumption for

required levels of satisfaction so that the refined goal makes more freedom for

violation.

Applicable to resolve

all obstacles
KAOS framework

Goal weakening

T37 Restore goal Add a new goal for restoring the satisfaction of the obstructed goal when violated. Applicable to resolve KAOS framework Goal restoration

47

all obstacles

T38 Mitigate goal
Add a new goal for mitigating the consequences of an obstacle if it occurs. Applicable to resolve

all obstacles
KAOS framework

Goal mitigation

T39 Fix inconsistencies
Perform manual or semi-automate steps to resolve inconsistencies which have

occurred after data operations.
O52 [S8] Goal mitigation

T40
Define

compensation

Specify penalties (e.g. financial or getting more quote) to be paid by cloud

provider in the case of a disruption.
O1, O2 [S2], [S3], [S4]

Goal mitigation

T41 Do nothing
Leave obstacle unresolved. Applicable to resolve

all obstacles
KAOS framework

Do nothing

T42
Use rigorous

authentication

Use strong passwords and authentication mechanism when running system in

cloud environment.
O53 [S104] Obstacle prevention

T43
Keep virtualization

at the system level

Create virtualization and isolation boundary at the legacy system level rather than

at the server level through container concept. Such a container (i) handles resource

allocation meaning that in the case of excessive resource consumption by a system

operating in the cloud, only individual container is affected and whole virtual

machine is left unaffected and (ii) reduces incompatibility problems between

systems across multiple platforms.

O24, O66, O67 [S110]

Obstacle prevention

T44
Use dedicated

virtual machine

Run the system on dedicated virtual machine in the sense that the virtual machine

is entirely performed on separate resources such physical servers, network, switch,

bandwidth, disk, CPU, memory to satisfy expected goals, i.e. quality of service.

All resources are physically dedicated to the virtual machine.

O4, O6, O8, O9, O13,

O14, O18, O27, O29,

O53, O58, O59

[S111]

Obstacle reduction

T45
Define bidding

strategy

Identify heavy processing tasks of the system (e.g. image, video, conversion and

rendering) and define a bidding strategy for spot instance to lessen the cost of

using cloud resources.

O54 [S68]

Obstacle prevention

48

Mahdi received a PhD degree in Information Systems from the University of New

South Wales, Sydney. He also holds a master degree in software engineering. He is

currently a research associate at University of Technology Sydney. Mahdi's vision

in research is to develop IT-based solutions for real problems or to help

organizations in adopting IT innovations in a systematic way. His research interests

lie in the areas of cloud computing, big data, conceptual modelling, and method

engineering. Mahdi has hands-on experience in design and development IT

solutions in different industry domains including accounting, insurance, defense,

and publishing.

Professor Ghassan Beydoun received a degree in computer science and a PhD

degree in knowledge systems from the University of New South Wales, Sydney.

He is currently a Professor of Information Systems at the University of Technology

Sydney. He has authored more than 100 papers international journals and

conferences. He is currently working on the metamodels for on project sponsored

by Australian Research Council and Australian companies to investigate the

endowing methodologies for distributed intelligent systems and supply chains with

intelligence. His other research interests include multi agent systems applications,

ontologies and their applications, and knowledge acquisition.

