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Abstract: Due to the limitation of sample size in predicting the torsional strength of Reinforced
Concrete (RC) beams, this paper aims to discuss the feasibility of employing a novel machine learning
approach with K-fold cross-validation in a small sample range, which combines the advantages of a
Genetic Algorithm (GA) and a Neural Network (NN) to predict the torsional strength of RC beams.
This research study not only utilizes the application of a Back Propagation (BP) neural network and
the Gene Algorithm-Back Propagation (GA-BP) neural network in the prediction of the torsional
strength of the RC beam, but it also investigates neural network parameter optimization, including
connection weights and thresholds, using K-fold cross-validation. The root mean square error (RMSE),
mean absolute error (MAE), mean square error (MSE), mean absolute percentage error (MAPE) and
correlation coefficient (R2) are among the evaluation metrics used to assess the performance of the
trained model. To elaborate on the superiority of the proposed network models in predicting the
torsional strength of RC beams, a parametric study is conducted by comparing the proposed model
to three commonly used empirical formulae from existing design codes. The comparative findings of
this research study demonstrate that the performance of the BP neural network is highly similar to
that of design codes; however, its accuracy is inadequate. After improving the weights and thresholds
by k-fold cross-validation and GA, the prediction of the BP neural network shows higher consistency
with the actual measured values. The outcome of this study can be used as a theoretical reference for
the optimal design of RC beams in practical applications.

Keywords: back-propagation neural network; genetic algorithm; k-fold cross-validation; torsional
behavior; reinforced concrete beam

1. Introduction

Reinforced Concrete (RC) is a complex construction material due to the complexity
of its properties and high maintenance conditions. In the past few years, a huge number
of studies have been conducted on the RC beams for shear and flexural capacities, but
fewer are reported about the torsional strength. Several empirical/analytical formulae from
structural design codes (e.g., ACI-318-14, TBC-500-2000, BS-8110, JSCE-04, CSA-14, etc.) are
available for calculations of the torsional strength of RC beams. In these models, at least
10 design parameters related to members’ dimensions, reinforcement arrangement and
material properties are normally required to arrive at a more accurate calculation, including
the section size of the RC beam as well as longitudinal and transverse reinforcements.
The design codes on the prediction of torsional strength of RC beams provide various
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calculation formulations in different regions. The American design code (ACI-318-14) [1]
ignores the contribution of concrete to torsional strength and only considers the role of
transverse and longitudinal reinforcement. The Canadian standard [2] is similar to ACI-318-
14 [1]. In addition to this, the Turkish standard [3] and British standards [4] are commonly
used, where the calculation of the torsion angle has been simplified. In the Japanese
standard [5], the maximum torsional strength of RC members is assessed based on the
ratio of torsional reinforcement. Based on these codes, the strength of RC structures has a
reference value. It is important to note that the limits of the codes are increased in different
cases. Therefore, the application of the codes needs to be determined on a situational
basis. Additionally, based on a large number of research studies for RC structures, the form
of stress combinations, initial crack angles, dislodgement of concrete, aggregate damage,
etc., are continuously incorporated into the calculations and optimized to obtain better
results [6–9]. This literature provides more accurate predictions but also increases the
complexity of calculating the torsional strength of RC beams.

In recent years, machine learning (ML) technology has been widely developed and
applied to various scenarios of force analysis of RC beams. Abdulkadir et al. [10] used
genetic programming to simulate the RC beam torsional strength and proposed an empirical
formulation. Additionally, ML methods such as decision trees, random forests and fuzzy
logic were used to simulate the compressive strength and slump of concrete with high
accuracy [11]. Ling et al. [12] employed k-fold cross-validation to optimize a support
vector machine (SVM) to reduce the average relative error and improve the prediction
accuracy in predicting the degradation of concrete strength. In addition, neural network-
based models have gained more attention due to their autonomous learning capability
and their ability to ignore parameter classes. Tanarslan and Kumanlioglu [13] collected
the parameters of 84 RC beams and improved the accuracy of the ANN model, which
achieved excellent prediction accuracy in comparison with national guidelines. In addition,
Hosein et al. [14] and Yang et al. [15] trained a neural network model to predict the shear
strength of RC beams and showed high accuracy. Amani and Moeini [16] selected six
significant parameters of RC beams as input of the BP neural network and the adaptive
neuro-fuzzy inference system (ANFIS) to predict the shear strength of RC beams. The
prediction accuracy of ANN and ANFIS was found to be more accurate than the ACI code.
In the case of RC beams under torsion, Arslan [17] applied an artificial neural network
to predict the ultimate torsional strength of beams and compared the results with design
code calculations. The results showed that ANN outperformed design code in predicting
the torsional strength and confirmed the potential feasibility of ANN in predicting the
torsional strength of RC beams. On the other hand, the optimization of neural networks
has been studied by many researchers, and different types of optimization algorithms
have been derived. Among ANNs, the back-propagation neural network has also been
applied in engineering applications. Lv et al. combined a BP neural network and the Grey
model to predict the settlement of foundation [18]. Wu et al. [19] mentioned the common
problems of the BP neural network, i.e., the inaccuracy of initial weights and thresholds,
which affect the accuracy of the algorithm prediction, and used GA to optimize the BP
neural network to improve the accuracy in the problem of energy consumption of copper
electrowinning by 14.25%. Based on this, Liu et al. [20] used the Grey Verhulst model to
improve the GA-BP neural network model and stated an accurate model in settlement
prediction. Furthermore, Cevik et al. [21] used genetic programming for modelling torsional
strength, and Ilkhani et al. [22] proposed a novel approach to predict the torsional strength
of RC beams. In addition, Arslan [23] compared the prediction of the torsional strength of
RC beams between ANNs and different design codes for the research feasibility of ANN.
In the ML modelling approaches, fuzzy logic, random forests and support vector machines
have been reported in predicting concrete mechanical properties such as compressive
strength and elastic modulus that are largely consistent with the simulation results of
neural networks [11,24,25]. However, these methods, except neural networks, usually
require a significant computational effort in finding an optimal solution to a complex
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problem. Therefore, neural networks have been used for complex nonlinear problems such
as the shear strength and torsional strength of RC beams in civil aspects by researchers.

Although the optimized neural networks employed in previous studies generated
positive results in the engineering field, there are few applications of neural networks in
the prediction of torsional behavior of RC beams, particularly in terms of derived neural
networks such as BP neural networks, GA-BP neural networks, convolutional neural
networks, etc. Moreover, the BP neural network has limitations regarding optimizing
weights and thresholds when the testing and validating sample datasets are insufficient.
Therefore, in this paper, the k-fold cross-validation method is used to select the best model
and collect its thresholds and weights as the initial values, which can significantly improve
the error correction of the BP neural network model. Then, GA is utilized to optimize the
weights and thresholds to improve the accuracy of the model. In addition, this paper also
discusses the variations in the prediction accuracy of the BP neural network and the GA-BP
neural network optimized by k-fold cross-validation for the torsional strength of RC beams.
Furthermore, five statistical evaluation metrics (RMSE, MAE, MSE, MAPE and R2) are
employed to appraise the prediction accuracy of the developed models. It is found that
the prediction accuracy of the BP neural network improves when optimized thresholds
and weights are extracted and entered using the k-fold validation method. However, it
is discovered that this approach has less impact on the GA-BP neural network model. In
addition to this, the design codes from different sources such as ACI-318-2014 [1], TBC-500-
2000 [3] and BS8110 [4] are used to predict the results and compare them with the results
predicted by the model of the BP neural network.

2. Data Collection and Analysis

A high-accuracy BP neural network requires a large amount of data to train the model
and test the model with new data samples. Since the experimental data on the torsional
strength of the RC beam are limited, it is necessary to make adequate use of the available
data for each parameter in order to improve the accuracy of the model. Liu [18] mentioned
that BP neural network models need to consider the relative parameters of the actual
problem. Additionally, according to [13,26,27], in a neural network model for predicting
the strength of RC beams, a few input neurons can make the network fitting process more
complex and difficult, or even fail. Therefore, in this paper, 11 different parameters of RC
beams were selected, which include the RC beam section (the width (b), depth (h)), closed
stirrup (width (b′), depth (h′), spacing (s)) compressive strength ( fc

′), yield strength of the
longitudinal reinforcement ( fyl), longitudinal reinforcement ratio (ρl), yield strength of
transverse reinforcement ( fyt), transverse reinforcement ratio (ρt) and torsional strength
(Tu). The detailed information of the dataset used in this study is shown in Table 1 and
Figure 1, respectively, which are collected from references [2,3,17,27–31].

Table 1. The range of input and output parameters (σ: Standard deviation).

Parameters Input/Output Unit Minimum Maximum Average σ

Section details

b mm 85 600 265.943 124.295
h mm 178 600 391.155 134.699
b′ mm 56.5 546 219.021 112.81
h′ mm 149.5 549 336.241 123.514

Concrete fc MPa 14.3 109.8 45.309 20.175

Longitudinal bar fyl MPa 310 724 437.871 121.795
ρl Percentage 0.18 3.89 1.370 0.980

Transvers bar
fyt MPa 265 715 430.422 130.735
ρt Percentage 0.13 3.2 1.034 0.539
s mm 41 300 104.095 39.595

Test strength Tu kN·m 2.18 239 265.943 124.295
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Figure 1. Cont.
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Figure 1. Historical distributions of parameters (a) RC beam section’s width (𝑏𝑏); (b) RC beam sec-
tion’s depth (ℎ); (c) Closed stirrup width (𝑏𝑏′); (d) Closed stirrup depth (ℎ′); (e) Compressive 

Figure 1. Historical distributions of parameters (a) RC beam section’s width (b); (b) RC beam section’s
depth (h); (c) Closed stirrup width (b′); (d) Closed stirrup depth (h′); (e) Compressive strength ( fc

′);
(f) Longitudinal reinforcement ratio (ρl); (g) Yield strength of the longitudinal reinforcement ( fyl);
(h) Transverse reinforcement ratio (ρt); (i) Yield strength of transverse reinforcement ( fyt); (j) Closed
stirrup spacing (s); (k) Torsional strength (Tn).
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In general, the inputs of the neural network should have small correlations between
themselves. A number of the strongly correlated coefficients can lead to worse predictions
of the BP neural network model, if all 10 variables are employed as inputs in this research.
This is a result of the possible strong correlation of variables. Campbell and Atchley [32]
suggested using the mathematical tool principal component analysis (PCA) to reduce the
number of correlated variables and transform the correlated variables in the dataset to
uncorrelated variables. Furthermore, PCA revealed the importance ranking of the newly
generated 10 principal components (PCs). The PCA results are shown in Table 2. The first
seven PCs are sufficient to represent approximately 99% of the information in the original
dataset. Therefore, these seven PCs were selected as the inputs of the BP neural network.
Although the number of model inputs is reduced, the quality of the data can be improved
due to non-correlation, as shown in Figure 2.

Table 2. Results of principal components analysis.

Parameters PC1 PC2 PC3 PC4 PC5 PC6 PC7

b 0.4513 −0.0733 −0.1332 −0.0737 −0.2801 0.1528 0.3637
h 0.4105 −0.1879 −0.1967 0.2998 0.2935 −0.0503 −0.1717
b′ 0.4447 −0.0665 −0.14140 −0.1248 −0.2906 0.2082 0.3884
h′ 0.4029 −0.1520 −0.2235 0.3162 0.3667 −0.0109 −0.2833
fc
′ 0.1861 0.4078 0.14240 −0.4710 0.6869 0.1614 0.2243

ρl −0.1359 0.4595 −0.0914 0.6491 0.1079 −0.1887 0.5298
fyl 0.2955 0.4469 0.2218 0.0426 −0.2801 −0.1148 −0.1564
ρt −0.2355 0.2810 −0.5069 0.0827 −0.0536 0.7372 −0.1903
fyt 0.2680 0.4601 0.2442 0.0754 −0.2099 0.0434 −0.4526
s 0.0066 −0.2531 0.6923 0.3522 0.0862 0.5572 0.1033
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Figure 2. Significance of principal components. 

  

Figure 2. Significance of principal components.

3. Methodology
3.1. Design Code

Due to the building standard differences in various regions, three widely used design
codes are selected as comparison candidates. The details of these codes are shown in Table 3.
In addition, according to the applicable conditions of the design codes, some parameters
are limited, and calculation results may generate deviations.
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Table 3. Building standards expression of torsional strength.

Building Standard Expression for Torsional Strength Reference

ACI-318-14 Tn =
2Ao At fyt

s cotθ At—the area of one leg of a closed stirrup resisting torsion.
Ao—the gross area enclosed by shear flow path
fyt—characteristic strength of the links
Ae—the cross-sectional area of the surrounding stirrups
θ—the torsional angel

BS-8110 Tn =
0.8b′h′(0.87 fyt)At

s

TBC-500-2000 Tn =
2Ao Ae fyt
2(b′+h′)

3.2. K-Fold Cross-Validation

The flow chart in Figure 3 shows that the k-fold cross-validation starts by randomly
breaking up the data into K groups, after which, for each group, the following operations
are performed:

• Select one of the training folds as the testing dataset.
• The remaining K−1 groups are used as the training set.
• Use the selected training dataset to train the model and evaluate it with the testing dataset.
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In a small sample dataset of this work, k is usually set as 10, which is an empirical
value obtained through extensive experimental trials. Directly utilizing the neural network
simulation results in low bias and modest variance of the outcome. Therefore, in this
simulation, the comprehensive datasets were randomly divided, with the first 170 sets
selected as the training set and the last 70 sets as the testing set. Then, 170 samples were
divided into 10 training folds. In addition, a different testing fold from D1 to D10 was
selected each time as the validation set. Afterward, these 10 sets of data were inputted
into the BP neural network model sequentially. The inaccuracy of the model evaluation
caused by the accidental division of the sample datasets can be excluded via 10-time
cross-validation.
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3.3. BP Neural Network and Genetic Algorithm

Based on the advantages of the BP neural network, such as the nonlinear mapping
capability, self-learning and self-adaptive capability, generalization capability and fault
tolerance, this paper discusses the applicability of the BP neural network in predicting the
torsional strength of RC beams. The forward and backward computation refers to [26].

The activity level for neuron j in layer l is

v(l)j (n) = ∑p
i=0 w(l)

ji (n)yl−1
i (n), (1)

The logic sigmoid function for threshold is

y(l)j (n) = (1 + exp (−v(l)j (n))
−1

, (2)

The weight of the neural network is

w(l)
ji (n + 1) = w(l)

ji (x) + α
[
w(l)

ji (n− 1)
]
+ ηδl

j(n)·y
(l−1)
j (n), (3)

where δ in the output layer and hidden layer are, respectively,

δ
(l)
j (n) = e(l)j (n)·oj(n)

[
1− oj(n)

]
, (4)

δ
(l)
j (n) = y(l)j (n)

[
1− y(l)j (n)

]
∑k δ

(l+1)
k (n)w(l+1)

kj (n), (5)

and the experience of α is chosen between 0 and 1 and the learning rate η = 0.5, which is
suggested by [33,34].

In a BP neural network, the neural network has a nonlinear mapping capability, which
is suitable for solving problems with complex mechanisms, so the neural network can
predict the nonlinear function output. It can obtain random weights and thresholds from
the divided samples and start training the model. Using the BP algorithm, the partial
derivative (gradient) of the loss function with respect to the weights and biases of each
layer is found based on the loss function [33]. Then, this value is used to update the initial
weights and bias terms until the loss function is either minimized or the set number of
iterations is completed. In addition, this value is also used to calculate the best parameters
for the neural network. The next part is the genetic algorithm section, which calculates
adaptation values, crossover, variation and other steps to select the best group until it is
close to the optimal solution [35–37]. In general, the GA uses a binary code and divides
the program into four parts: Input and hidden layer link weights, hidden layer weights,
hidden and output layer weights and output layer weights. Each weight and threshold are
encoded in M-bit binary and then the optimized weights and thresholds are fed into the BP
neural network. Figure 4 demonstrates the flowchart of BP neural network optimized by
K-fold cross-validation and GA.
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3.4. Model Parameter Setting

In this work, 240 groups of data are selected as training and testing samples for model
development. The sum of the absolute values of the prediction errors of the training data is
taken as the individual fitness value, and the smaller the individual fitness value, the better
the individual is.

To reach the optimal simulation of a BP neural network model, the number of hidden-
layer neurons needs to be varied according to the learning rate, the number of neurons, the
learning algorithm, etc., and to be determined after several experimental trials [26]. Addi-
tionally, according to the models and experimental methods from the literature [16,20,26],
the number of neurons in the hidden layer was assumed to be in order from 1 to 20. In
addition, the simulation results of BP neural network (BPNN) were used to test the optimal
number of neurons (the prediction results are shown in Figure 5). In this study, the main
objective is to improve the prediction model by the k-fold validation method. In this
process, it is difficult to determine whether the prediction results have been changed by
the k-fold validation method when the number of neurons in the hidden layer changes.
Therefore, controlling the number of neurons in the hidden layer provides a more intuitive
view of this approach. Figure 6 shows the final network architecture of ANN used in this
study for torsional strength prediction.

In the BP neural network, the number of samples is randomly divided into two groups:
The first group contains 170 samples for training and the remaining 70 samples were used
as the testing samples. This is more indicative of the realism of the simulation results. In
the GA-BP neural network, the number of samples is also divided, but the weights and
thresholds are varied with the best gene individuals selected. The GA parameters are
set as follows: The population size of GA is 10, the maximum iteration number is 50, the
crossover rate is 0.4 and the mutation probability is 0.2.
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3.5. Evaluation Metrics

In this paper, five statistical evaluation metrics were used to assess the performance of
different models, which includes the mean absolute error (MAE), mean squared error (MSE),
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root mean squared error (RMSE), coefficient of determination (R2) and mean absolute
percentage error (MAPE) [38,39]. Those metrics are calculated as follows:

MAE =
1
n ∑n

i=1|ŷi − yi|, (6)

MSE =
1
n ∑n

i=1(ŷi − yi)
2, (7)

RMSE =

√
1
n ∑n

i=1(ŷi − yi)
2, (8)

R2=
∑n

i=1(ŷi − y)2

∑n
i=1(yi − y)2 , (9)

MAPE =
100%

n ∑n
i=1

∣∣∣∣ ŷi − yi
yi

∣∣∣∣, (10)

where n is the number of data groups, y is the mean of the testing torsional strength, ŷi is
the prediction of the torsional strength and yi is the testing torsional strength.

MSE, MAE and RMSE are convenient measures of the ‘mean error’ and are used to
evaluate the degree of variability of the data. In addition to this, although RMSE is more
complex and biased towards higher errors, it has a smoothed loss function. Furthermore,
R2 is used to characterize a good or bad fit by the variation in the data. Its normal range of
values is [0 1], and the closer it is to 1, the better the variables of the equation explain y and
the better the model fits the data. In addition, MAPE can also be used to determine how well
different models evaluate the same data, with a value of 1 indicating a close relationship
and 0 indicating a random relationship. The lower the value, the better the prediction.

4. Results and Discussion

The K-fold cross-validation method is used to sequentially select the training samples
as the input data, and then the BP and GA-BP neural networks are used to predict the
torsional strength of the RC beams. The results are shown in Table 4. From the table below,
the results of the K-fold cross-validation for different 10 datasets are provided. In this step,
the model with the best prediction performance is selected by comparing the evaluation
metrics. Although some of the test groups have high correlation values closer to 1, they
perform poorly in both the RMSE and MSE metrics and the values perform worse.

Table 4. Results of 10-fold cross-validation in BP neural networks.

Evaluation Metric 1 2 3 4 5 6 7 8 9 10

MAE
(kN·m) 8.430 14.536 10.930 16.924 14.549 7.059 4.511 6.072 5.727 4.737

MSE(
kN2·m2

) 126.362 333.467 230.512 1144.994 625.964 82.497 542.109 289.448 63.630 51.052

RMSE
(kN·m) 11.241 18.261 15.183 33.838 25.019 9.083 23.283 17.013 7.977 7.145

MAPE
(%) 33.530 33.431 38.752 30.469 19.198 27.160 16.307 17.697 45.789 18.477

R2 0.945 0.896 0.756 0.840 0.776 0.968 0.979 0.952 0.952 0.979

After the K-fold cross-validation is conducted, the results in Table 4 show that the
best model should be group 10, as the MSE, RMSE and MAPE values of group 10 are
lower than that of other models. In Table 4, the evaluation indicators can be used to assess
the prediction performance of each group of models. The values of the MAE, RMSE,
MSE and MAPE are smaller, and the generalization capacity of the prediction model is
increased. Similarly, R2 is also informative, and the value of the perfect model should
be closer to 1. Therefore groups 2, 3, 4 and 5, where the MAE exceeds 10 kN ·m, should
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be excluded. Similarly, since the value of MSE for group 7 (542.109 kN2·m2) and group
8 (289.448 kN2·m2) is much greater than groups 1, 6, 9 and 10, the models in groups 7 and
8 should be excluded. In addition to this, the RMSE evaluation indicator provides a reason
for excluding group 1, since the corresponding RMSE value for group 1 (11.241 kN·m) is
larger than that for group 6 (9.083 kN·m), group 9 (7.977 kN·m) and group 10 (7.145 kN·m).
The coefficient of 45.789% for group 9 in MAPE was much greater than that of group
6 (27.160%) and group 10 (18.477%). Finally, the coefficient of determination for group
10 (0.979) was closer to 1 than group 6 (0.968). Therefore, the tenth group is selected for
comprehensive consideration. Furthermore, the weights and thresholds are recorded and
inputted into the BP neural network model for comparison with the test set. After changing
the initial weights and thresholds, the model prediction of the GA-BP neural network and
the BP neural network is improved. However, this is not a significant improvement for the
GA-BP neural network (Figure 7).

From the figure below, GA and k-fold cross-validation perform well in improving
the prediction accuracy of BPNN. The error range of the different models can be observed
in Figure 8. In Figure 8a, the error of the GA-BPNN model is reduced from 78 kN·m to
50 kN·m. Similarly, Figure 8b shows the reduction in the model error from 78 kN·m to
40 kN·m using the k-fold validation method. In addition to this, the error was also reduced
after using the k-fold validation method (Figure 8d). Furthermore, it can be observed from
Figure 8c that the k-fold validation method outperforms the gene algorithm in terms of
error reduction with 70 testing data. In addition, k-fold cross-validation has been reduced
by approximately 15 kN·m in the absolute maximum error. Based on the K-fold cross-
validation method, the prediction error values of BPNN and GA-BPNN are almost the
same. Additionally, the maximum errors of both networks are close to approximately
25 kN·m.
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Figure 8. Error distribution between different models. (a) Error comparison between BPNN and
GA-BPNN. (b) Error comparison between BPNN and optimized BPNN. (c) Error comparison between
optimized BPNN and GA-BPNN. (d) Error comparison between GA-BPNN and optimized GA-BPNN.
(e) Error comparison between optimized BPNN and optimized GA-BPNN.
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The prediction values of the BP neural network model have higher error values than
the -BP neural network. In particular, the BP neural network predicts negative values in
the range of numbers 20 to 25 and numbers 45 to 50. In addition, the prediction of the
GA-BP model and BP model has a low deviation range between 0 and 10. The reason for
this result is the small number of data selected for training and the limited derivation of
thresholds and weights by the BP neural network. It is worth noting that the BP neural
network also performs well after optimizing the thresholds and weights by GA (as shown
in Figure 9). Additionally, these two models produce better results in the last 10 testing
data. In Figure 10, the simulation line shows high repeatability between the forecasted
and actual values, especially in the range of group numbers 12–17, 40–45, 51–58 and 60–65.
However, the optimized BP neural network model does not provide accurate prediction
results of the groups of data for numbers 45–50. Comprehensively, the optimized BP neural
network predictions show a high degree of agreement with the actual values.
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Figure 9. Prediction results of GA-BP neural network.
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Figure 10. Prediction results of BP neural network.

In general, BP neural networks perform poorly without parameter optimization due
to the random generation of thresholds and weights. Similarly, while GA can be em-
ployed to find the best weights and thresholds, the prediction results are often similar
to BP neural networks when initializing the population. However, the network can be
improved by inputting weights and thresholds that were filtered by k-fold cross-validation.
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This phenomenon has been validated via the samples (index 0 to 10) in Figures 8–11. In
Figures 8 and 9, the prediction results of testing data of indices 1-6 are lower than their
actual testing data, which is the opposite to the simulation results for the design code. The
design code predictions are mostly higher than the actual values in this dataset, especially in
TBC-500-2000 where the predicted lines almost include the actual lines. This phenomenon
can also be seen in Figures 12–14. Compared with the prediction of three building standards,
the correlation of the coefficient of ACI-318-14 and BS-8110 is similar and it is higher than
TBC-500-2000. The results in Table 5 show that the results from ACI-318-14 and BS-8110
are similar to the predictions of the BP neural network. This is due to the small sample
datasets. In this case, most machine learning (e.g., decision tree, random forest, support
vector machine linear, etc.) simulations are comparable to those of BP neural networks [11].
Figure 15 shows the radar diagram of evaluation metrics for model performance evaluation.
However, the accuracy of the model is improved via GA optimization, with the MSE
reduced from 315.363 to 240.046, but the R2 only improved by about 0.04. In addition,
the BP neural network optimized by k-fold cross-validation achieves better results than
the BP neural network model. Additionally, the values of MAE, MSE, RMSE and MAPE
are all reduced, and the value of the correlation coefficient increases by 0.1. This result
is similar to that of the GA-BP neural network optimized by the k-fold cross-validation.
Compared with the optimized GA-BP neural network, the k-fold cross-validation made
a significant impact on the optimization of the GA-BP neural network by setting better
initial weights and thresholds. The simulation results show that although GA also has
an optimizing effect on the BP neural network, the improvement is neither adequate nor
stable. However, the RMSE, MSE, MAE and MAPE values of the neural network model are
reduced after optimization using the k-fold cross-validation method (Table 5). In particular,
BPNN and GA-BPNN in the MSE evaluation metric decrease from 315.363 and 240.046 to
103.100 and 103.988, respectively, after optimization. The correlation coefficients of the BP
neural network and GA-BP neural network models were also improved.
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Figure 11. GA-BP neural network optimized by k-fold cross-validation. Figure 11. GA-BP neural network optimized by k-fold cross-validation.
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5. Conclusions

This study aims to investigate the performance of an optimized BP neural network
in predicting the torsional strength of RC beams. Ten variables and four aspects were
investigated in terms of section details, concrete strength, longitudinal bar and transvers
bars. In this paper, to ensure the dataset is easier to use and to remove noise, the raw
data are normalized using PCA and the seven most important features are retained for
the prediction. The 240 groups of experimental data collected from existing publications
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were randomly divided into two groups: The first group contains 170 data samples for the
model training and validation, and the remaining data were used to verify the accuracy of
the model. the BP neural network was used in this paper, and the network parameters of
this model were optimized using GA and k-fold cross-validation, respectively.

The design code is widely used in the construction sector as a traditional method for
calculating the torsional strength of reinforced concrete beams. However, in order to obtain
accurate predictions, the individual variables of a reinforced concrete beam are necessary,
and the conditions of use of the beam under different conditions need to be taken into
account. BPNN is able to ignore the conditions of application of the various variables for
reinforced concrete beams and obtain predictions similar to those of the conventional design
codes. This gives BPNN an advantage in the prediction of torsional forces in reinforced
concrete beams. However, the method has limitations in terms of weights and thresholds.
Due to the complexity of the construction conditions in reinforced concrete beams, it is
difficult to obtain accurate and sufficient data. The application of k-fold cross-validation
and GA methods can effectively avoid this situation. The k-fold cross-validation optimizes
the initial threshold and weights of the BPNN after modelling 10 sets of data in turn. On
the other hand, GA finds the optimal thresholds and weights in continuous iterations.
While both methods improve the accuracy of the prediction results of the BPNN, k-fold
cross-validation is more suitable for the case of insufficient data (R2 increased from 0.846 to
0.943). At the same time, the GA-BPNN model is optimized on the basis of the thresholds
and weights provided by k-fold cross-validation, and the improvement is significant. Based
on the statistical results of MAE, MSE, RMSE, MAPE and R2, the k-fold cross-validation-
optimized GA-BPNN is the best prediction model for the torsional strength of reinforced
concrete beams.

In the future work, in addition to k-fold cross-validation-optimized GA-BPNN and
existing design codes, other soft computing approaches, such as the support vector machine
(SVM), extreme learning machine (ELM), adaptive neuro-fuzzy inference system (ANFIS),
gene programming (GP), etc., will be investigated to compare and determine the optimal
data-driven model for the torsional strength prediction of RC beam.
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